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FEATURES 
Low noise  

Voltage noise: 2.3 nV/√Hz 
Current noise: 2 pA/√Hz 

Wide bandwidth 
Small signal: 235 MHz (VGAx); 80 MHz (differential output 

amplifier) 
Large signal: 80 MHz (1 V p-p) 

Gain range 
0 to 24 dB (input to VGA output) 
6 to 30 dB (input to differential output) 

Gain scaling: 20 dB/V 
DC-coupled 
Single-ended input and differential output 
Supplies: ±2.5 V to ±5 V 
Low power: 140 mW per channel @ ±3.3 V 
 

APPLICATIONS 
Multichannel data acquisition 
Positron emission tomography 
Gain trim 
Industrial and medical ultrasound 
Radar receivers 
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Figure 1.  

GENERAL DESCRIPTION 
The AD8264 is a 4-channel, linear-in-dB, general-purpose 
variable gain amplifier (VGA) with a preamplifier (preamp), 
and a flexible differential output buffer. Intended for a broad 
range of applications, dc coupling combined with wide band-
width makes this amplifier a very good pulse processor. 

Each channel includes a single-ended input preamp/VGA 
section to preserve the wide bandwidth and fast slew rate for low-
distortion pulse applications. A 6 dB differential output buffer 
with common-mode and offset adjustments enable direct coupling 
to most modern high speed analog-to-digital converters (ADCs), 
using the converter reference output for perfect dc matching levels. 

The −3 dB bandwidth of the preamp/VGA is dc to 235 MHz, 
and the bandwidth of the differential driver is 80 MHz. The 
floating gain control interface provides a precise linear-in-dB scale 
of 20 dB/V and is easy to interface to a variety of external circuits. 

The gain of each channel is adjusted independently, and all 
channels are referenced to a single pin, GNLO. Combined with 
a multi-output, digital-to-analog converter (DAC), each section 
of the AD8264 can be used for active calibration or as a trim 
amplifier. 

The gain range of the VGA section is 24 dB. Operation from  
a dual polarity power supply enables amplification of negative 
voltage pulses that are generated by current-sinking pulses into 
a grounded load, such as is typical of photodiodes or photo-
multiplier tubes (PMT). Delay-free processing of wide-band 
video signals is also possible. The differential output amplifier 
permits convenient level shifting and interfacing to single-
supply ADCs using the VOCM and OFSx pins.  

The AD8264 is available in a 40-lead, 6 mm × 6 mm LFCSP 
with an operating temperature range of −40°C to +105°C. 
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SPECIFICATIONS 
VS = ±2.5 V, TA = 25°C, f = 10 MHz, CL = 5 pF, RL = 500 Ω per output (VGAx, VOHx, VOLx), VGAIN = (VGNHx − VGNLO) = 0 V,  
VVOCM = GND, VOFSx = GND, gain range = 6 dB to 30 dB, unless otherwise specified. 

Table 1.  
Parameter Conditions Min Typ Max Unit 
GENERAL PERFORMANCE      

–3 dB Small Signal Bandwidth (VGAx) VOUT = 10 mV p-p  235  MHz 
–3 dB Large Signal Bandwidth (VGAx) VOUT = 1 V p-p  150  MHz 
–3 dB Small Signal Bandwidth (Differential Output)1 VOUT = 100 mV p-p  80  MHz 
–3 dB Large Signal Bandwidth (Differential Output)1 VOUT = 2 V p-p  80  MHz 
Slew Rate VGAx, VOUT = 2 V p-p  380  V/μs 
 VGAx, VOUT = 1 V p-p  290  V/μs 
 Differential output, VOUT = 2 V p-p  470  V/μs 
 Differential output, VOUT = 1 V p-p  220  V/μs 
Input Bias Current Pins IPPx −8 −5 −3 μA 
Input Resistance Pins IPPx at dc; ΔVIN/ΔIBIAS  4.2  MΩ 
Input Capacitance Pins IPPx  2  pF 
Input Impedance Pins IPPx at 10 MHz  7.9  kΩ 
Input Voltage Noise   2.3  nV/√Hz 
Input Current Noise   2  pA/√Hz 
Noise Figure (Differential Output) VGAIN = 0.7 V, RS = 50 Ω, unterminated  9  dB 
Output-Referred Noise (Differential Output) VGAIN = 0.7 V (Gain = 30 dB)  72  nV/√Hz 
 VGAIN = −0.7 V (Gain = 6 dB)  45  nV/√Hz 
Output Impedance VGAx, dc to 10 MHz  3.5  Ω 
 Differential output, dc to 10 MHz  <1  Ω 
Output Signal Range Preamp  |VS| − 1.3  V 
 VGAx, RL ≥ 500 Ω  |VS| − 1.3  V 
 Differential amplifier, RL ≥ 500 Ω per side  |VS| − 0.5  V 
Output Offset Voltage Preamp offset −6 |<1| +6 mV 
 VGAx offset, VGAIN = 0.7 V −18 |<5| +18 mV 
 Differential output offset, VGAIN = 0.7 V  −38 |<10| +38 mV 

DYNAMIC PERFORMANCE      
Harmonic Distortion VGAx = 1 V p-p, differential  

output = 2 V p-p (measured at VGAx) 
   

 
HD2 f = 1 MHz  −73  dBc 
HD3   −68  dBc 
HD2 f = 10 MHz  −71  dBc 
HD3   −61  dBc 
HD2 f = 35 MHz  −60  dBc 
HD3   −53  dBc 

 VGAx = 1 V p-p, differential output = 2 V p-p 
(measured at differential output) 

   
 

HD2 f = 1 MHz  −78  dBc 
HD3   −66  dBc 
HD2 f = 10 MHz  −71  dBc 
HD3   −43  dBc 
HD2 f = 35 MHz  −56  dBc 
HD3   −20  dBc 

Input 1 dB Compression Point VGAIN = −0.7 V, f = 10 MHz  7  dBm2 
 VGAIN = +0.7 V, f = 10 MHz  −9.6  dBm 
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Parameter Conditions Min Typ Max Unit 
Two-Tone Intermodulation Distortion (IMD3) VGAx = 1 V p-p, f1 = 10 MHz, f2 = 11 MHz  −68  dBc 

 VGAx = 1 V p-p, f1 = 35 MHz, f2 = 36 MHz  −51  dBc 
 VOUT = 2 V p-p, f1 = 10 MHz, f2 = 11 MHz  −49  dBc 
 VOUT = 2 V p-p, f1 = 35 MHz, f2 = 36 MHz  −34  dBc 
Output Third-Order Intercept VGAx = 1 V p-p, f = 10 MHz  32  dBm 
   19  dBVRMS 

 VGAx = 1 V p-p, f = 35 MHz  23  dBm 
   10  dBVRMS 

 VOUT = 2 V p-p, f = 10 MHz  30  dBm 
   17  dBVRMS 
 VOUT = 2 V p-p, f = 35 MHz  21  dBm 
   8  dBVRMS 
Overload Recovery VGAIN = 0.7 V, VIN stepped from  

0.1 V p-p to 1 V p-p 
 25  

ns 
Group Delay Variation 1 MHz < f < 100 MHz, full gain range  ±1  ns 

ACCURACY      
Absolute Gain Error3 −0.7 V < VGAIN < −0.6 V 0 0.2 to 2 3 dB 

 −0.6 V < VGAIN < −0.5 V −1.25 ±0.35 +1.25 dB 
 −0.5 V < VGAIN < +0.5 V −1 ±0.25 +1 dB 

 0.5 V < VGAIN < 0.6 V −1.25 ±0.35 +1.25 dB 
 0.6 V < VGAIN < 0.7 V −3 −0.2 to −2 0 dB 
Gain Law Conformance4 −0.5 V < VGAIN < +0.5 V, ±2.5 V ≤ VS ≤ ±5 V  ±0.2  dB 
 −0.5 V < VGAIN < +0.5 V, −40°C ≤ TA ≤ +105°C  ±0.3  dB 
Channel-to-Channel Matching Single IC, −0.5 V < VGAIN < +0.5 V,  

−40°C ≤ TA ≤ +105°C 
−0.5 ±0.1 to ±0.25 +0.5 

dB 
 Multiple ICs, −0.5 V < VGAIN < +0.5 V,  

−40°C ≤ TA ≤ +105°C 
 ±0.25  

dB 
GAIN CONTROL INTERFACE      

Gain Scaling Factor −0.5 V < VGAIN < +0.5 V 19.5 20.0 20.5 dB/V 
Over Temperature −40°C ≤ TA ≤ +105°C  20 ± 0.5  dB/V 

Gain Range   24  dB 
Gain Intercept to VGAx  11.5 11.9 12.2 dB 

Over Temperature −40°C ≤ TA ≤ +105°C  11.9 ± 0.4  dB 
Gain Intercept to Differential Output  17.5 17.9 18.2 dB 

Over Temperature −40°C ≤ TA ≤ +105°C  17.9 ± 0.4  dB 
GNHx Input Voltage Range GNLO = 0 V, no gain foldover −VS  +VS V 
Input Resistance ΔVIN/ΔIBIAS, −0.7 V < VGAIN < +0.7 V  70  MΩ 
GNHx Input Bias Current −0.7 V < VGAIN < 0.7 V −0.9 −0.4 0 μA 

Over Temperature −0.7 V < VGAIN < 0.7 V, −40°C ≤ TA ≤ +105°C  −0.4 ± +0.2  μA 
GNLO Input Bias Current −0.7 V < VGAIN < 0.7 V  −1.2  μA 

Over Temperature −0.7 V < VGAIN < 0.7 V, −40°C ≤ TA ≤ +105°C  −1.2 ± +0.4  μA 
Response Time 24 dB gain change  200  ns 

OUTPUT BUFFER      
VOCM Input Bias Current  0.3 1.5 2.5 nA 

Over Temperature −40°C ≤ TA ≤ +105°C  1.5 ± 0.3  nA 
VOCM Input Voltage Range OFSx = 0 V, VGAx = 0 V −1.4  +1.4 V 
Gain (VGAx to Differential Output)  5.75 6 6.25 dB 

Over Temperature −40°C ≤ TA ≤ +105°C  6 ± 0.5  dB 
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Parameter Conditions Min Typ Max Unit 
POWER SUPPLY      

Supply Voltage  ±2.5  ±5 V 
Power Consumption      

Quiescent Current      
 VS = ± 2.5 V 65 79 88 mA 
 VS = ± 2.5 V, −40°C ≤ TA ≤ +105°C  79 ± 25  mA 
 VS = ± 3.3 V 70 85 95 mA 
 VS = ± 3.3 V, −40°C ≤ TA ≤ +105°C  85 ± 30  mA 
 VS = ± 5 V 81 99 110 mA 
 VS = ± 5 V, −40°C ≤ TA ≤ +85°C5  99 ± 30  mA 
Power Dissipation VS = ± 2.5 V  395  mW 

 VS = ±3.3 V  560  mW 
 VS = ±5 V  990  mW 
PSRR From VPOS to differential output, VGAIN = 0.7 V  −15  dB 

 From VNEG to differential output, VGAIN = 0.7 V  −15  dB 
 
1 Differential Output = (VOHx − VOLx). 
2 All dBm values are calculated with 50 Ω reference, unless otherwise noted. 
3 Conformance to theoretical gain expression (see Equation 1 in the Theory of Operation section). 
4 Conformance to best-fit dB linear curve. 
5 For supplies greater than ±3.3 V, the operating temperature range is limited to −40°C ≤ TA ≤ +85°C. 
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ABSOLUTE MAXIMUM RATINGS 
Table 2. 
Parameter Rating 
Voltage  

Supply Voltage (VPOS, VNEG) ±6 V 
Input Voltage (INPx) VPOS, VNEG 
Gain Voltage (GNHx, GNLO) VPOS, VNEG 

Power Dissipation 2.5 W 
Temperature  

Operating Temperature Range −40°C to +105°C 
Storage Temperature Range −65°C to +150°C 

Lead Temperature (Soldering, 60 sec) 300°C 
Package Glass Transition Temperature (TG) 150°C 

Stresses above those listed under Absolute Maximum Ratings 
may cause permanent damage to the device. This is a stress 
rating only; functional operation of the device at these or any 
other conditions above those indicated in the operational 
section of this specification is not implied. Exposure to absolute 
maximum rating conditions for extended periods may affect 
device reliability. 

THERMAL RESISTANCE 
θJA is specified for the worst-case conditions, that is, a device 
soldered in a circuit board for surface-mount packages. The θJA 

values in Table 3 assume a 4-layer JEDEC standard board with 
zero airflow. 

Table 3. Thermal Resistance 
Package Type θJA θJC Unit 
40-Lead LFCSP1 31.0 2.3 °C/W 

1 4-Layer JEDEC board (2S2P). 

MAXIMUM POWER DISSIPATION 
The maximum safe power dissipation for the AD8264 is limited 
by the associated rise in junction temperature (TJ) on the die. At 
approximately 150°C, which is the glass transition temperature, 
the properties of the plastic change. Even temporarily exceeding 
this temperature limit may change the stresses that the package 
exerts on the die, permanently shifting the parametric performance 
of the amplifiers. Exceeding a temperature of 150°C for an 
extended period can cause changes in silicon devices, potentially 
resulting in a loss of functionality.  

 

ESD CAUTION 
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PIN CONFIGURATION AND FUNCTION DESCRIPTIONS 
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Figure 2. Pin Configuration 

 

Table 4. Pin Function Descriptions 
Pin No. Mnemonic Description 
0 (EP), 12, 39 COMM Ground. Exposed paddle (EP, Pin 0) needs an electrical connection to ground. For proper RF grounding 

and increased reliability, the pad must be connected to the ground plane. 
1, 4, 7, 10 IPN1, IPN2,  

IPN3, IPN4 
Negative Preamp Inputs for Channel 1 Through Channel 4. Normally, no external connection is needed. 

2, 3, 8, 9 OPP1, OPP2, 
OPP3, OPP4 

Preamp Output for Channel 1 Through Channel 4. This pin is internally connected to the attenuator 
(VGA) input, and normally, no external connection is needed. 

5, 6, 11, 40 IPP1, IPP2, 
IPP3, IPP4 

Positive Preamp Input for Channel 1 Through Channel 4. High impedance. 

13, 14, 37, 38 GNH1, GNH2, 
GNH3, GNH4 

Positive Gain Control Voltage Input for Channel 1 Through Channel 4. This pin is referenced to GNLO (Pin 36). 

15 VOCM This pin sets the differential output amplifier (VOHx and VOLx) common-mode voltage. 
16, 35 VPOS Positive Supply (Internally Tied Together). 
17, 34 VNEG Negative Supply (Internally Tied Together). 
18, 19, 32, 33 OFS1, OFS2, 

OFS3, OFS4 
Voltage sets the differential output offset for Channel 1 through Channel 4. This is the noninverting input 
to the differential amplifier, and it has the same bandwidth as the inverting input (VGAx). 

20, 25, 26, 31 VGA4, VGA3 
VGA2, VGA1 

VGA Output for Channel 1 Through Channel 4. 

21, 24, 27, 30 VOL1, VOL2 
VOL3, VOL4 

Negative Differential Amplifier Output for Channel 1 Through Channel 4. 

22, 23, 28, 29 VOH1, VOH2, 
VOH3, VOH4 

Positive Differential Amplifier Output for Channel 1 Through Channel 4. 

36 GNLO Negative Gain Control Input (Reference for GNHx Pins). 
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TYPICAL PERFORMANCE CHARACTERISTICS 
VS = ±2.5 V, TA = 25°C, f = 10 MHz, CL = 5 pF, RL = 500 Ω per output (VGAx, VOHx, VOLx), VGAIN = (VGNHx − VGNLO) = 0 V,  
VVOCM = GND, VOFSx = GND, gain range = 6 dB to 30 dB, unless otherwise specified. 
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Figure 10. Frequency Response vs. Gain to VGAx for  
Various Values of VGAIN 
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Figure 11. Frequency Response vs. Gain to Differential Output for  
Various Values of VGAIN 
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Figure 12. Frequency Response to Differential Output for  
Various Capacitive Loads 
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Figure 13. Frequency Response to Differential Output for  
Various Capacitive Loads with Series R = 10 Ω  

–30

–20

–10

0

10

20

G
A

IN
 (d

B
)

FREQUENCY (Hz)

100k 1M 10M 100M 500M

CL = 0pF
CL = 10pF
CL = 22pF
CL = 47pF

07
73

6-
01

4

VOUT = 0.1V p-p

 

Figure 14. Small Signal Frequency Response to VGAx for  
Various Capacitive Loads  
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Figure 15. Large Signal Frequency Response to VGAx for  
Various Capacitive Loads 
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Figure 16. Small Signal Frequency Response to VGAx for  
Various Capacitive Loads with Series R = 10 Ω  
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Figure 17. Large Signal Frequency Response to VGAx for  
Various Capacitive Loads with Series R = 10 Ω 
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Figure 18. Small Signal Frequency Response vs. Gain to VGAx for  
Various Supply Voltages  
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Figure 19. Small Signal Frequency Response vs. Gain to Differential Output 
for Various Supply Voltages  
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Figure 22. Frequency Response from OFSx to Differential Output for  
Various Supply Voltages 
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Figure 23. Preamp Frequency Response to OPPx 
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Figure 24. Group Delay vs. Frequency to VGAx 
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Figure 25. Group Delay vs. Frequency to Differential Output 
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Figure 26. Differential Output Offset Voltage vs. VGAIN vs. Temperature 
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Figure 27. VGAx Output Offset Voltage vs. VGAIN vs. Temperature 
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Figure 28. Output Offset Histogram to VGAx  
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Figure 29. Output Offset Histogram to Differential Output  
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Figure 30. Output Resistance (VOHx, VOLx) vs.Frequency 
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Figure 31. Output Resistance (VGAx) vs. Frequency 
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Figure 32. Output Referred Noise to VGAx and Differential Output vs. VGAIN 
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Figure 33. Input Referred Noise from VGAx and Differential Output vs. VGAIN 
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Figure 34. Input Referred Noise vs. Frequency at Maximum Gain 
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Figure 35. Input Referred Noise vs. RSOURCE 
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Figure 36. Noise Figure vs. VGAIN 
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Figure 37. VOCM Common-Mode Rejection Ratio vs. Frequency  
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Figure 38. Harmonic Distortion to VGAx vs. RLOAD and Various Supplies 
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Figure 39. Harmonic Distortion to VGAx vs. CLOAD 

 

−90

−60

−50

−80

−70

H
D

 (d
B

c)

−30

−40

RLOAD (Ω)

HD2, VS = ±2.5V
HD3, VS = ±2.5V
HD2, VS = ±5V
HD3, VS = ±5V

0 400 800 1200 20001600

07
73

6-
04

0

Figure 40. Harmonic Distortion to Differential Output vs.  
RLOAD and Various Supplies 
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Figure 41. Harmonic Distortion to Differential Output vs. CLOAD 
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Figure 42. HD2 vs. VGAIN vs. Frequency to VGAx 
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Figure 43. HD3 vs. VGAIN vs. Frequency to VGAx 
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Figure 44. HD2 vs. Amplitude to VGAx  
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Figure 45. HD3 vs. Amplitude to VGAx  
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Figure 46. HD2 vs. VGAIN vs. Frequency to Differential Output 
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Figure 47. HD3 vs. VGAIN vs. Frequency to Differential Output 
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Figure 48. HD2 vs. Amplitude to Differential Output 
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Figure 49. HD3 vs. Amplitude to Differential Output 
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Figure 50. IMD3 vs. Frequency to VGAx 
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Figure 51. OIP3 vs. VGAIN vs. Frequency to VGAx  
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Figure 52. IMD3 vs. Frequency to Differential Output  
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Figure 53. OIP3 vs. Frequency to Differential Output 
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Figure 54. Input P1dB vs. VGAIN   
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Figure 55. Small Signal Pulse Response to VGAx 
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Figure 56. Small Signal Pulse Response to Differential Output 
 



   AD8264
 

Rev. 0 | Page 17 of 40 

–40 –20 0 20 40 60 80 100
–1.5

–1.0

–0.5

0

0.5

1.0

1.5

VO
LT

A
G

E 
(V

)

TIME (ns)

1V p-p

2V p-p

07
73

6-
05

7

VGAIN = 0.7V

 

Figure 57. Large Signal Pulse Response to VGAx 
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Figure 58. Large Signal Pulse Response to Differential Output 
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Figure 59. VOCM Large Signal Pulse Response 
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Figure 60. OFSx Large Signal Pulse Response 
 

TIME (ns)

–1.0

–0.5

0

0.5

1.0

VO
LT

A
G

E 
(V

)

CL = 0pF
CL = 10pF
CL = 22pF

07
73

6-
06

1–40 –20 0 20 40 60 80 100

VGAIN = 0.7V

 

Figure 61. Large Signal Pulse Response to VGAx for Various Capacitive Loads 
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Figure 62. Large Signal Pulse Response to Differential Output for  
Various Capacitive Loads 
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Figure 63. Large Signal Pulse Response to Differential Output for  
Various Capacitive Loads with Series R = 10 Ω  

–1.5

–1.0

–0.5

0

0.5

1.0

1.5

0 400 800 1200 1600 2000

VO
TL

A
G

E 
(V

)

TIME (ns)

VGAIN PULSE

GAIN
RESPONSE

07
73

6-
06

4

 

Figure 64. VGAx Response to Change in VGAIN 
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Figure 65. Differential Output Response to Change in VGAIN 
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Figure 66. Preamp Overdrive Recovery 
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Figure 67. VGA Overdrive Recovery 
 

100k 1M 10M 100M

PS
R

R
 (d

B
)

FREQUENCY (Hz)

–10

–20

–30

–40

–50

–60

0

VGAx (VGAIN = −0.7V)
DIFF OUT (VGAIN = −0.7V)

VGAx (VGAIN = +0.7V)
DIFF OUT (VGAIN = +0.7V)

07
73

6-
06

8

 

Figure 68. Power Supply Rejection vs. Frequency (VPOS) 
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Figure 69. Power Supply Rejection vs. Frequency (VNEG) 
 

55

65

75

85

95

105

115

125

135

–40 –15 10 35 60 85 110

SU
PP

LY
 C

U
R

R
EN

T 
(m

A
)

TEMPERATURE (°C)

±2.5V

±5V

±3.3V

07
73

6-
07

0

Figure 70. Quiescent Supply Current vs. Temperature 
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TEST CIRCUITS 
VS = ±2.5 V, TA = 25°C, f = 10 MHz, CL = 5 pF, RL = 500 Ω per output (VGAx, VOHx, VOLx), VGAIN = (VGNHx − VGNLO) = 0 V,  
VVOCM = GND, VOFSx = GND, gain range = 6 dB to 30 dB, unless otherwise specified. 
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Figure 71. Gain vs. VGAIN vs. Temperature (See Figure 3 and Figure 4)  
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Figure 72. Gain Error vs. VGAIN at Various Frequencies to VGAx (See Figure 5) 
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Figure 73. Frequency Response vs. Gain to VGAx for Various Values of VGAIN,  
VGAIN = GNHx – GNLO (See Figure 10)  
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Figure 74. Frequency Response vs. Gain to Differential Output for Various 
Values of VGAIN (See Figure 11) 
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Figure 75. Frequency Response to Differential Output for  
Various Capacitive Loads (See Figure 12) 
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Figure 76. Frequency Response to Differential Output for Various Capacitive 
Loads with Series R = 10 Ω (See Figure 13) 
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Figure 77. Frequency Response to VGAx for Various Capacitive Loads  
(See Figure 14) 

PrA
6dB

+

– 6dB
+

–

VOCM

AD8264

GNLO

50Ω

DIFFERENTIAL
PROBE

VGAIN

CH1 CH2

50Ω 50Ω

500Ω

10Ω

CL

NETWORK ANALYZER

07
73

6-
07

7

IPPx

IPNx

GNHx

VOLx

VOHx

OFSx

VGAx

Figure 78. Frequency Response to VGAx for Various Capacitive Loads with 
Series R =10 Ω (See Figure 16) 
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Figure 79. Frequency Response vs. Gain to VGAx for  
Various Supply Voltages (See Figure 18) 
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Figure 80. Frequency Response vs. Gain to Differential Output for  
Various Supply Voltages (See Figure 19) 
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Figure 81. VOCM Frequency Response to Differential Output (See Figure 21) 
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Figure 82. OFSx Frequency Response to Differential Output (See Figure 22) 
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Figure 83. Output Offset Voltage vs. VGAIN vs. Temperature  
(See Figure 26 and Figure 27) 
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Figure 84. Output Resistance vs. Frequency  
(See Figure 30 and Figure 31) 
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Figure 85. Output Referred Noise vs. VGAIN (See Figure 32)  
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Figure 86. Input Referred Noise vs. Frequency (See Figure 34)  
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Figure 87. Noise Figure vs. VGAIN (See Figure 36) 
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Figure 88. Input Referred Noise vs. RSOURCE (See Figure 35) 
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Figure 89. VOCM Common-Mode Rejection vs. Frequency (See Figure 37)  
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Figure 90. Test Circuit Harmonic Distortion to VGAx vs. 
 RLOAD and Various Supplies (See Figure 38)  
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Figure 91. Harmonic Distortion to VGAx vs. CLOAD (Figure 39)  
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Figure 92. Harmonic Distortion to Differential Output vs. RLOAD and Various 
Supplies (See Figure 40)  
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Figure 93. Harmonic Distortion to Differential Output vs.  
CLOAD (See Figure 41)  
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Figure 94. HD2 and HD3 to VGAx (See Figure 42 Through Figure 45) 
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Figure 95. HD2 and HD3 to Differential Output (See Figure 46 through Figure 49) 
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Figure 96. IMD3 and OIP3 to VGAx (See Figure 50 and Figure 51)  
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Figure 97. IMD3 and OIP3 to Differential Output (See Figure 52 and Figure 53)  
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Figure 98. Input P1dB vs. VGAIN (See Figure 54) 
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Figure 99. Pulse Response to VGAx, VGAIN = 0.7 V (See Figure 55 and Figure 57) 
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Figure 100. Pulse Response to Differential Outputs, VGAIN = 0.7 V  
(See Figure 56 and Figure 58) 
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Figure 101. VOCM Pulse Response (See Figure 59)  
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Figure 102. OFSx Pulse Response (See Figure 60) 
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Figure 103. Pulse Response to VGAx for Various Capacitive Loads,  
VGAIN = 0.7 V (See Figure 61) 
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Figure 104. Pulse Response to Differential Output for Various Capacitive 

Loads, VGAIN = 0.7 V (See Figure 62) 
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Figure 105. Pulse Response to Differential Output for Various Capacitive 
Loads with Series R = 10 Ω, VGAIN = 0.7 V (See Figure 63) 
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Figure 106. Gain Response to VGAx or Differential Output  
(See Figure 64 and Figure 65) 
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Figure 107. Preamp Overdrive Recovery (See Figure 66) 
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Figure 108. VGA Overdrive Recovery, VGAIN = 0.7 V (See Figure 67) 
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Figure 109. PSRR (See Figure 68 and Figure 69) 
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Figure 110. Quiescent Supply Current (See Figure 70) 
 

 

 



AD8264  
 

Rev. 0 | Page 28 of 40 

THEORY OF OPERATION 
OVERVIEW 
The AD8264 is a dc-coupled quad channel VGA with a fixed 
gain-of-2 (6 dB) preamplifier and a single-ended-to-differential 
output amplifier with level shift capability that can be used as an 
ADC driver. Figure 111 shows a representative block diagram of 
a single channel; all four channels are identical. The supply can 
operate from ±2.5 V to ±5 V. The primary application is as a 
pulse processor for medical positron emission tomography 
(PET) imaging; however, the part is useful for any dc-coupled 
application that can benefit from variable gain. 

The signal chain consists of three fundamental stages: the 
preamplifier, the variable gain amplifier, and the differential 
output buffer amplifier. The preamplifier has an internally fixed 
gain-of-2 (6 dB). The VGA comprises an attenuator that 
provides 0 dB to 24 dB of attenuation, followed by a fixed gain 
18 dB (8×) amplifier. The single-ended VGA output is connected 
directly to the noninverting input of the differential output 
(post) amplifier, which has a differential fixed gain-of-2 (6 dB). 

The gain range from the preamp input to the VGA output is 
0 dB to 24 dB. The aggregate gain range from preamp input to 
the differential postamplifier output is 6 dB to 30 dB. 

The ideal gain equation for the gain from the single-ended 
input to the output is 

VGAIN = VGNHx − VGNLO (1) 

ICPTVGain GAIN +×=
V
dB

20  (2) 

The ideal value for ICPT, or the intercept, is defined at VGAIN = 0 V. 
The ICPT for the VGA output and differential amplifier outputs 
equals 12.1 dB and 18.1 dB, respectively. The actual intercept 
varies with any additional gain or loss along the signal path.  
The measured values are both approximately 0.2 dB low. 

PREAMP 
The preamplifier is a current feedback amplifier, designed to 
drive the internal 100 Ω gain setting resistors and the resistive 
attenuator, which together result in a nominal load to the 
preamplifier of about 113 Ω. Normally, the negative preamp 
input, IPNx, is not connected externally. The positive input 
IPPx is the high impedance input of the current feedback amp. 
Note that, at the largest supply voltage of ±5 V, the input signal 
can become so large that the preamplifier output cannot deliver 
the required current to drive the 113 Ω load and, therefore, limits 
at 6 V p-p. This means that the input limits at 3 V p-p. 

The short-circuit input referred noise at maximum VGA gain is 
about 2.3 nV/√Hz, and this accounts for all of the amplifiers and 
gain setting resistors. When measuring the input referred noise 
from the VGA output, the number is slightly lower at 2.1 nV/√Hz 
because the noise of the postamplifier is not included in the 
noise calculation. 

VGA 
The VGA has a voltage feedback architecture and uses analog 
control to vary the gain. Its low gain range helps to maintain 
low offset and is intended for gain trim applications. The offset 
of the preamp and the VGA are trimmed; therefore, the maximum 
input referred offset is <0.5 mV over temperature (see Figure 26). 
Keeping the gain of each stage relatively low also allows the 
bandwidth to stay high. 

The gain of the VGA is adjusted using the fully differential 
control inputs, GNHx and GNLO. The GNLO pin is internally 
connected to all four channels and must be biased externally. 
Under typical conditions, the GNLO pin is grounded. The gain 
high control pins (GNHx) are independent for each channel. 
The gain slope is nominally 20 dB/V. With GNLO connected to 
ground, each GNHx input can have a voltage applied from VNEG 
to VPOS without gain foldover. 

To make use of the full gain range of the VGA, the nominal gain 
control voltage needed at GNHx is ±0.65 V relative to the voltage 
applied to GNLO. At the lowest supply voltage of ±2.5 V, the pin 
GNLO should always be grounded. With increasing supply, the 
common-mode range of the gain control interface increases. 
This means that GNLO can be anywhere within ±1.2 V at 
±3.3 V supplies and ±2.8 V at ±5 V supplies.  

Table 5. Gain Control Input Range 
Supply Voltage (V) GNLO Voltage Range (V) VGAIN Range (V) 
±5 ±2.8 ±0.65 
±3.3 ±1.2 ±0.65 
±2.5 0 ±0.65 

 

For example, at ±3.3 V supplies, the outputs of a single-supply 
unipolar DAC, such as the 10-bit, 4-channel AD5314, can be 
used to drive the GNHx pins directly, in conjunction with using 
the ADR318 1.8 V reference to bias the GNLO pin at VREF/2 = 0.9. 
Because the GNLO pin sources only about 1.2 μA for the four 
channels (~300 nA per channel, the same as for the GNHx pins), a 
simple resistive divider is generally adequate to set the voltage at 
the GNLO input. 

 

 

http://www.analog.com/AD5314
http://www.analog.com/ADR318
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Figure 111. Single-Channel Block Diagram  

 

POST AMPLIFIER 
From the preamp input to the VGA output (VGAx), the gain  
is noninverting. As can be seen in Figure 111, the VGAx pins 
drive the positive input of the differential amplifier. The gain  
is inverting from the input of the preamp to the output pin at 
VOLx, and the gain is noninverting to the output VOHx. 

Other than the input from VGAx, each differential amplifier 
has two additional inputs: VOCM and OFSx. A common 
VOCM pin is shared among all four postamplifiers, while 
separate OFSx pins are provided for each channel.  

VOCM Pin 

The VOCM pin sets the common-mode voltage of the differential 
output and must be biased by an external voltage. When driving 
a dc-coupled ADC, the voltage typically comes from the ADC 
reference, as shown in the Applications Information section. 

If dc level shift is not necessary, the VOCM pin is connected  
to ground. 

OFSx Pins 

The OFSx pins are the inverting inputs of the differential post 
amplifiers and can be used to prebias a differential dc offset at 
the output. This is very useful when the input is a unipolar pulse 
because the user can set up the gain and the offset in such a way 
as to optimally map a unipolar pulse into the full-scale input of 
an ADC, while dc coupling throughout. 

If dc offset is not desired, then the OFSx pins should be connected 
to ground. However, the OFSx pins can also be used as separate 
inputs if the user wants this function. 

NOISE 
At maximum gain, the preamplifier is the primary contributor 
of noise and results in a differential output referred noise of 
roughly 73 nV/√Hz. The noise at the VGAx outputs is 34 nV/√Hz, 
and because of the gain-of-2, the VGA output noise is amplified 
by 6 dB to 68 nV/√Hz. The differential amplifier, including the 
gain setting resistors, contributes another 26 nV/√Hz, and the 
rms sum results in a total noise of 73 nV/√Hz. At the lowest 
gain, the noise at the VGA output is approximately 19 nV/√Hz, and 
when multiplied by two, it results in 38 nV/√Hz at the differential 
output; again, rms summing this with the 26 nV/√Hz of the 
differential amplifier causes the total output referred noise to  
be approximately 46 nV/√Hz. 

The input referred noise to the preamplifier at maximum gain  
is 2.3 nV/√Hz and increases with decreasing gain. Note that all 
noise numbers include the necessary gain setting resistors. 
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APPLICATIONS INFORMATION 
A LOW CHANNEL COUNT APPLICATION CONCEPT 
USING A DISCRETE REFERENCE 
The AD8264 is particularly well suited for use in the analog 
front end of medical PET imaging systems. Figure 112 shows 
how the AD8264 may be used with the AD5314 (a 4-channel, 
10-bit DAC) and the AD9222/AD9228 (an octal or quad, 12-bit 
ADC, respectively). The DAC sets the gain of the AD8264. Note 
that the full gain span of 24 dB is achieved with this setup because 
the gain control input range of the AD8264 is very close to 1.25 V. 
The GNLO pin must offset by 1.25/2 = 625 mV because the 
gain control input is bipolar around the voltage applied at GNLO. 
This is done with two 1 kΩ, 1% resistors. The approximately 1 μA 
of bias current flowing from the GNLO pin does not contribute 
a significant error because the basic gain error of the AD8264 is 
the limiting factor. 

The ADR127 1.25 V precision reference with an input of 3.3 V 
can supply −2 mA to +5 mA from −40°C to +125°C, which is 
sufficient to drive both the resistive divider and the REFIN pin 
of the AD5314. The AD5314 is based on the string DAC concept, 
which means that the REFIN pin looks like a resistor that is 
nominally 45 kΩ; this results in a current draw of 1.25V/45 kΩ = 
28 μA. Even at the lowest specified resistance of 37 kΩ, this is 
still only a current of 34 μA. Therefore, the total current draw from 
the ADR127 is the 625 μA of the resistive divider plus ~30 μA, 
which equals ~655 μA, well below the 5 mA maximum current. 

Figure 112 also includes the DAC output equation, which 
indicates that the output can vary between 0 V and VREF = 1.25 V. 

The output of the AD8264 is ideal to drive an ADC like the 1.8 V 
quad-channel AD9228. If eight channels are needed, two AD8264s 
with the octal AD9222 ADC achieve the same thing. The same 
resistive divider can be used for two AD8264s because the bias 
current flowing is now ~2 μA, but this still only introduces an 
error of 1 mV with ideally matched resistors. With 20 dB/V gain 
scaling, this is a gain error of only 0.02 dB, which is much 
smaller than the fundamental gain error of the AD8264 
(typically ~0.2 dB). 

The single-ended-to-differential amplifier of the AD8264 
amplifies the VGA output signal by 6 dB and can provide the 
required dc bias of the AD9222/AD9228, as shown in Figure 112. 
The ADC is connected with the default internal reference because 
the SENSE pin is grounded. With this connection, the AD9222/ 
AD9228 VREF pin is an output that provides 1 V; this is then 
connected to the VOCM input of the AD8264, which sets the 
output common-mode voltage of the VOHx and VOLx pins to 
1 V. This voltage is very close to the recommended optimal value of 
VDD/2 = 0.9 V. With this configuration, the ADC inputs are set 
to a full-scale (FS) of 2 V p-p. 

Note that the ADC VREF should not drive many loads; therefore, 
for multiple AD8264s, the VREF should be buffered. 
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Figure 112. Application Concept of the AD8264 with the AD5314 10-Bit DAC and the AD9222/AD9228 12-Bit ADC 
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A DC CONNECTED CONCEPT EXAMPLE 
The dc connected concept example in Figure 113 is an application 
with the 40-channel AD5381, 3 V, 12-bit DAC. The main difference 
between this example and Figure 112 is that, for the same ADR127 
1.25 V reference, the full-scale output of the DAC is from  
0 V to 2 × VREFIN = 2.5 V. Two options for gain control 
include the following: 

• Use the same circuit as in Figure 112 but use only half the 
DAC output voltage from 0 V to 1.25 V. This is the simplest 
solution, requiring the fewest extra components. Note that 
the overall gain resolution increases by one bit to 11 bits 
over the 10-bit AD5314. 

• Ground GNLO and scale the DAC output so that the 
GNHx inputs vary from −0.652 V to +0.625 V. Figure 113 
shows a possible circuit implementation using a divider 
between the DAC output and a −1.25 V reference. 

GNLO cannot simply be increased to 1.25 V because, for a 
given supply voltage, GNLO has a limited voltage range to 
achieve the full gain span (see Table 5).  

However, a third possibility is to use another voltage that is 
between 1.2 V and 625 mV on GNLO, such as 1 V. In this case, 
the DAC must vary from 0.375 V to 1.625 V to achieve the fully 
specified gain range.  

Note the gain limits when the differential gain control exceeds 
±0.625 V, either to 6 dB or to 30 dB. If the differential gain 
control input voltage is exceeded, no gain foldover occurs. 

Figure 113 shows how the AD8264 is connected in a PET 
application. The PMT generates a negative-going current pulse 
that results in a voltage pulse at the preamplifier input and a 
differential output pulse on VOLx and VOHx.  

To fully appreciate the advantages of the AD8264, note the 
common-mode and polarity conversion afforded. The AD9228, 
as with most modern ADCs, is a low voltage, single-polarity 
device. Recall that the PMT is a high voltage device that yields a 
negative pulse. To map the pulse to the input range of the ADC, 
the pulse must be inverted, shifted, and amplified to the full 
input range of the ADC. This is done by using the gain control, 
signal offset, and common-mode features of the AD8264. 

The full-scale input of the converter is 0 V to 2 V, with a common-
mode of 1 V. Match the VOCM voltage of the AD8264 to the 
ADC common mode (VREF = 1 V), and the two devices can be 
connected directly using an appropriate level of the antialiasing 
filter. The PMT signal is 0 V to −0.1 V. With a gain of 20× (26 dB), 
the AD8264 output signal range is 2 V p-p. Prebias the signal 
negative by −0.5 V using the AD8264 OFSx inputs, which sets 
VOHx = 1.5 V and VOLx = 0.5 V for VOCM = 1 V. The output 
is perfectly matched to the input of the ADC.  

Note that, by connecting VOLx to the positive ADC input and 
VOHx to the negative ADC input, the negative input pulse is 
inverted automatically. The VGAx output is still a negative 
pulse, amplified by 20 dB for this example. 
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Figure 113. Concept Application of AD8264 with 40-Channel AD5381 12-Bit, 3 V DAC and AD9222/AD9228 12-Bit ADC 
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Figure 114. Evaluation Setup for DC-Coupled Analog Front-End Pulse Processing Application Using the AD8264 
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Figure 115. AD5381 Evaluation Software 

 

A convenient method of verifying and customizing the signal 
chains shown in Figure 112 or Figure 113 is by ordering the 
corresponding evaluation boards available on www.analog.com. 
The AD8264-EVALZ is a platform through which the user can 
quickly become familiar with the features and performance 
capabilities of the AD8264. See the Evaluation Board section for 
more information. 

The EVAL-AD5381EB (40-channel DAC) includes a parallel PC 
interface and software evaluation program to control the DAC. 
The AD5381evaluation software allows the user to configure 

and program such DAC parameters as input codes, offset level, 
and output range based on a 2.5 V or 1.25 V reference. For 
example, as shown in Figure 114, the reference can be set to 1.25 V, 
with a 0 V to 1.25 V output range to drive the GNHx inputs. 

The ADC evaluation kit includes the AD9228-65EBZ board and 
HSC-ADC-FIFO5 board to decode the ADC output. It also 
leverages the capabilities of VisualAnalog®, powerful simulation 
and data analysis software that enables the user to run FFTs and 
to do real-time capture of the output levels. 

 

 

http://www.analog.com/
http://www.analog.com/AD5381
http://www.analog.com/AD5381
http://www.analog.com/AD9228


   AD8264
 

Rev. 0 | Page 33 of 40 

INx

AGNDx

AVDDxDVDD

DGND

GNH1
GNH2
GNH3
GNH4

VNEG

VOCM

VOHx
VOLx

GNLO

VPOS

IPPx

OFSx
VGAx

ADC
AD9228
EVAL KIT

VPOS

VREF

AC
SOURCE

–15
0

–30
–45
–60
–75
–90

–105
–120
–135
–150

1.5M 3.0M 4.5M 6.0M 7.5M 9.0M 10.5M

PARALLEL
INTERFACE

TO PC
CONTROL

REFIN
(ON BOARD)

IN
PU

T 
EX

A
M

PL
ES

USB 2.0 TO PC
ADI VISUAL

ANALOG
ANALYSIS

SOFTWARE

–INx

+INx

TO
SWITCHING
POWER
SUPPLY

+3.3V +3.3V +3.3V –3.3V

+2.5V

VOUT0
VOUT1
VOUT3
VOUT4

VOUT39

VOUT RANGE = 0V TO 1.25V
EACH

AD8264 VGA
EVAL BOARD

DAC
AD5381

EVAL BOARD TO 9
OTHER
AD8264S

GNLO = 625mV VOCM = 1.0V

+1.0V

VGA
OUTPUTS TO

OTHER
SIGNAL

PROCESSING

42
+

3

07
73

6-
08

6

 
Figure 116. Evaluation Setup for AC Signal Processing Application Using the AD8264 
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EVALUATION BOARD 
Analog Devices, Inc. provides evaluation boards to customers as 
a support service so that the circuit designer can become 
familiar with the device in the most efficient way possible. The 
AD8264 evaluation board provides a fast, easy, and convenient 
means to assess the performance of the AD8264 before going 
through the hassle and expense of design and layout of a custom 
board. The board is shipped fully assembled and tested, and it 
provides basic functionality as shipped. Standard connectors 
enable the user to attach standard lab test equipment without 
having to wait for the rest of the design to be completed. Figure 117 
shows a digital image of the top view, and Figure 118 shows the 
schematic diagram of the AD8264 evaluation board. 

The printed circuit board (PCB) artwork for all conductor and silk-
screen layers is shown in Figure 119 to Figure 124. A description of 
a typical test setup can be found in the Applications Information 
section. The PCB artwork can be used as a guide for circuit 
layout and placement of parts. This is particularly useful for 
multiple function circuits with many pins, requiring multiple 
passive components. 

CONNECTING AND USING THE AD8264-EVALZ 
The AD8264 operates with bipolar power supplies from ±2.5 V dc 
to ±5 V dc. Make sure the current capacity is ≥400 mA. Connect a 
ground reference from the supplies to any of the black test loops, 
the positive supply to the red test loop (+V), and the negative 
supply to the blue test loop (−V). 

Notice that the board is shipped with jumpers installed on the 
2-pin headers marked GN1_2, GN3_4, OFS_12, OFS_34, and 
VOCM. If these jumpers are missing, the offset and common-
mode functions float high, substantially increasing the 
quiescent current of the board.  

Apply input signals to any of the preamps at the SMA connectors, 
IN1 through IN4. These connectors are terminated with 50 Ω to 
accommodate typical signal generator analyzer voltage source 
impedances. The gain of the AD8264 preamps is fixed at 6 dB (2×) 
and can be monitored at the SMA connectors, OP1_2 and OP3_4, 
if desired. Note that there are output selector switches for each pair 
of preamps and 453 Ω resistors in series with the preamp outputs. 
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Figure 117. Digital Image of the AD8264-EVALZ (Top View)  
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Figure 118. AD8264-EVALZ Schematic 

The SMA connectors, VGA1 through VGA4, enable signal 
monitoring at these nodes, with 453 Ω resistors for protecting 
the device. These resistors can be shorted at the discretion of 
the user if wide bandwidth is desired. The differential outputs 
are provided with 0.1” spacing 2-pin headers, which fit the low 
capacitance Tektronix differential scope probe P6045 model.  

Note that the gain control input of the AD8264 is differential. 
Each channel has its own gain control pin (GNHx); however, 
pairs of pins are connected together on the evaluation board 
and connected to a test loop. The 2-pin headers are provided for 
jumpers to connect the gain pins to ground, preventing the 

quiescent gain control voltage at the GNHx pins from floating 
high. The low sides of the gain controls for each channel are 
internally connected in the AD8264, and a 2-pin header with 
jumper is provided to connect this pin (GNLO) to ground as well. 

A similar arrangement of 2-pin headers is provided for the output 
offset voltage. As shipped, the offset pins are connected to ground, 
preventing the pins from floating high.  

For connecting to an ADC, remove the jumpers at the OF1_2 
and OF3_4 headers and connect the appropriate offset voltage 
at the test loops, OF12 and OF34. If the VOCM pin is buffered, 
it can be connected to the reference of the ADC. 
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Figure 119. Component Side Assembly  
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Figure 120. Component Side Copper  
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Figure 121. Component Side Silk Screen 
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Figure 122. Secondary Side Copper 
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Figure 123. Ground Plane 
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Figure 124. Power Plane 
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OUTLINE DIMENSIONS 
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Figure 125. 40-Lead Lead Frame Chip Scale Package [LFCSP_VQ] 

6 mm × 6 mm Body, Very Thin Quad 
(CP-40-1) 

Dimensions shown in millimeters 

 

ORDERING GUIDE 
Model Temperature Range Package Description Package Option Branding 
AD8264ACPZ1 −40°C to +85°C 40-Lead LFCSP_VQ CP-40-1 H1V 
AD8264ACPZ-R71 −40°C to +85°C 40-Lead LFCSP_VQ, 7” Tape and Reel CP-40-1 H1V 
AD8264ACPZ-RL1 −40°C to +85°C 40-Lead LFCSP_VQ, 13” Tape and Reel CP-40-1 H1V 
AD8264-EVALZ1  Evaluation Board   
 
1 Z = RoHS Compliant Part. 
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