

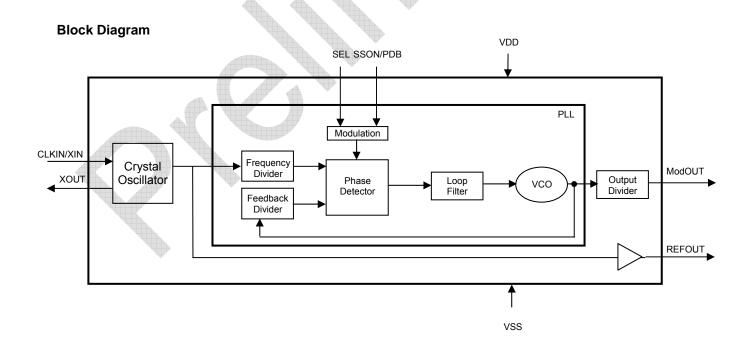
Spread Spectrum Clock Generator for Mobile Applications

Features

 Generates a 4X EMI optimized clock signal at the Output.

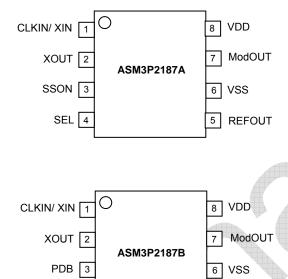
Input frequency : 12.5MHz to 20MHz
 Output frequency : 50MHz to 80MHz

- SSON/PDB option
- Selectable Centre Spread : ± 0.5%, ± 1.0%
- Low power CMOS design
- Supply Voltage: 3.3V ± 0.3V
- · Industrial Temperature range
- 8-pin TSSOP Package
- Drop-in replacement for MB88155-412 Device


Product Description

The ASM3P2187A/B is a versatile spread spectrum frequency modulator designed specifically for a wide range of clock frequencies. The ASM3P2187A/B reduces electromagnetic interference (EMI) at the clock source, allowing system wide reduction of EMI of all clock dependent signals. The ASM3P2187A/B allows significant system cost savings by reducing the number of circuit board layers ferrite beads, shielding that are traditionally required to pass EMI regulations.

ASM3P2187A device has an option of Spread ON/OFF and ASM3P2187B device has Powerdown option


Application

The ASM3P2187A/B is targeted towards mobile phones, mobile audio players and PDAs.

Pin Configurations

5 REFOUT

Pin Description

Pin#	Pin Name	Туре	Description		
1	CLKIN/XIN	ı	External reference Clock input or Crystal connection.		
2	XOUT	0	Crystal connection. If using an external reference, this pin must be lef unconnected.		
3	SSON / PDB*		Modulation enable pin/ Power down pin. Has an Internal pull up resistor		
4	SEL		Modulation rate setting pin Centre spread, SEL = "L": Frequency Deviation ± 0.5% Centre spread, SEL = "H": Frequency Deviation ± 1.0% Has an Internal pull up resistor.		
5	REFOUT	0	Non-modulated clock output pin. The Frequency is same as input frequency. This pin becomes to "L" at power-down.		
6	VSS	Р	Ground Connection. Connect to system ground.		
7	ModOUT	0	Modulated clock output pin This pin becomes to "L" at power-down.		
8	VDD	Р	Power Supply Voltage Pin. Connect to +3.3V.		

^{*} SSON Pin is available in ASM3P2187A Device and PDB Pin is available in ASM3P2187B Device

SEL

Modulation Enable Setting Table

SSON	Modulation
L	No Modulation
Н	Modulation

Power down Status Table

PDB	Status	
L	Power Down Status	
Н	Operating Status	

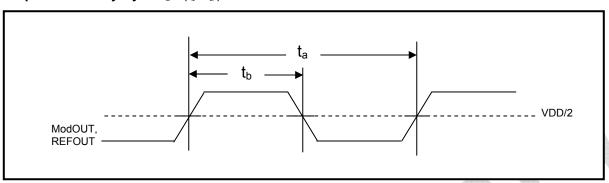
Spread Range Selection Table

SEL	Deviation @ 15MHz
L	± 0.50%
Н	± 1.00%

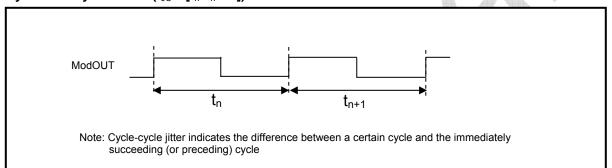
Absolute Maximum Ratings

Symbol	Parameter	Rating	Unit		
VDD	Supply Voltage pin with respect to Ground	-0.5 to +4.6	V		
V _{IN}	Input Voltage pin with respect to Ground	VSS-0.5 to VDD+0.5	V		
V_{OUT}	Output Voltage pin with respect to Ground	VSS-0.5 to VDD+0.5	V		
T _{STG}	Storage temperature	-55 to +125	°C		
Ts	Max. Soldering Temperature (10 sec)	260	°C		
T_J	Junction Temperature	150	°C		
T_DV	Static Discharge Voltage	2	KV		
	(As per JEDEC STD22- A114-B)	_			
Note: These are stress ratings only and are not implied for functional use. Exposure to absolute maximum ratings for prolonged periods of time may affect device reliability.					

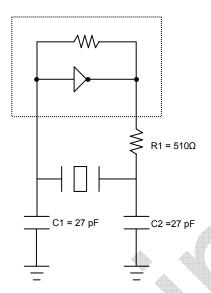
DC Electrical Characteristics


Symbol		Min	Тур	Max	Unit	
V_{IL}	Input low voltage	VSS - 0.3		0.8	V	
V _{IH}	Input high voltage		2.0		VDD+ 0.3	V
I _{IL}	Input low current				-50	μΑ
I _{IH}	Input high current				+50	μΑ
V _{OL}	Output low voltage	VSS		0.4	V	
V _{OH}	Output high voltage	For REFOUT, $I_{OL} = 3mA$ Output high voltage For ModOUT, $I_{OH} = -4mA$ For REFOUT, $I_{OH} = -3mA$			VDD	V
Icc	Dynamic supply curre	4		17	mA	
I _{DD}	Static supply current s (CLKIN/XIN pulled LO			8	mA	
VDD	Operating voltage	3.3	3.3	3.6	V	
t _{ON}	Power up time (first locked clock cycle after power up)				5	mS
Z _{OUT}	Clock output impedan		50		Ω	
C _{IN}	Input Capacitance				7	pF
C _L	Load Capacitance		*		15	pF

AC Electrical Characteristics

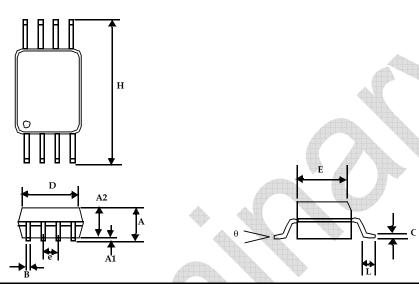

Symbol	Parameter		Min	Тур	Max	Unit
CLKIN/XIN	Input Clock frequency		12.5	15	20	MHz
CLKOUT	Output Clock	REFOUT	12.5	15	20	NALI-
CLKOUT	frequency	ModOUT	50	60	80	MHz
M_F	Modulation Frequency		32.4	39	52	KHz
t _{LH} *	Output rise time (Measured from 20% to 80%)			2	2.5	nS
t _{HL} *	Output fall time (Measured from 80% to 20%)			1.5	2	nS
t _{uc}	Cycle to Cycle Jitter			±250	±325	pS
t√p	Period Jitter (REFOUT)			±150	±200	μS
t _D	Output duty cycle		45	50	55	%
*t _{l.H} and t _{HL} are measured with a capacitive load of 15pF						

Output Clock Duty Cycle $t_D = (t_b / t_a)$



Cycle –to- Cycle Jitter $(t_{JC} = [t_n - t_n + 1])$

Typical Crystal Oscillator Circuit


Typical Crystal Specifications

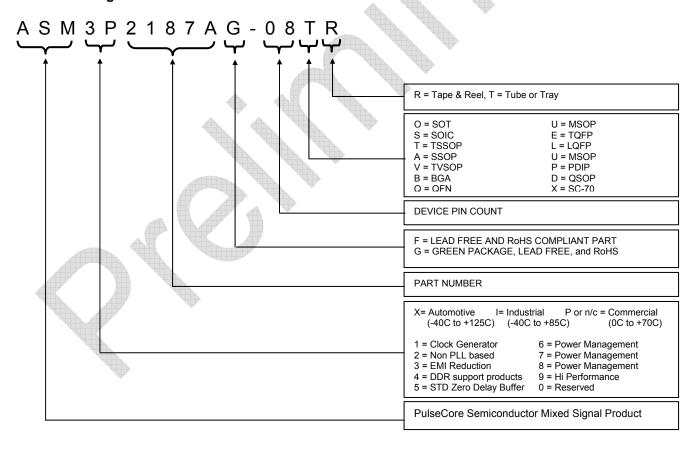
Fundamental AT cut parallel resonant crystal				
Nominal frequency	14.31818MHz			
Frequency tolerance	± 50 ppm or better at 25°C			
Operating temperature range	-25°C to +85°C			
Storage temperature	-40°C to +85°C			
Load capacitance	18pF			
Shunt capacitance	7pF maximum			
ESR	25Ω			

Package Information

Mechanical Package Outline 8-Pin TSSOP

	Dimensions				
Symbol	Inc	hes	Millimeters		
	Min Max		Min	Max	
Α		0.043		1.10	
A1	0.002	0.006	0.05	0.15	
A2	0.033	0.037	0.85	0.95	
В	0.008	0.012	0.19	0.30	
С	0.004	0.008	0.09	0.20	
D	0.114	0.122	2.90	3.10	
Е	0.169	0.177	4.30	4.50	
е	0.026 BSC		0.65 BSC		
Н	0.252	BSC	6.40	BSC	
L	0.020	0.028	0.50	0.70	
θ	0°	8°	0°	8°	

Note: Controlling dimensions are millimeters TSSOP – 0.034 grams unit weight



Ordering Code

Part Number Marking		Package Type	Temperature	
ASM3P2187AG-08TT	3P2187AG	8-Pin TSSOP, TUBE, Green	Commercial	
ASM3P2187AG-08TR	3P2187AG	8-Pin TSSOP, TAPE & REEL, Green Commercial		
ASM3I2187AG-08TT	3I2187AG	8-Pin TSSOP, TUBE, Green	Industrial	
ASM3I2187AG-08TR	3I2187AG	8-Pin TSSOP, TAPE & REEL, Green	Industrial	
ASM3P2187BG-08TT	3P2187BG	8-Pin TSSOP, TUBE, Green	Commercial	
ASM3P2187BG-08TR	3P2187BG	8-Pin TSSOP, TAPE & REEL, Green	Commercial	
ASM3I2187BG-08TT	3I2187BG	8-Pin TSSOP, TUBE, Green	Industrial	
ASM3I2187BG-08TR	3I2187BG	8-Pin TSSOP, TAPE & REEL, Green	Industrial	

Device Ordering Information

Licensed under U.S Patent Nos 5,488,627 and 5,631,921

May 2008

PulseCore
Giving you the edge

rev 0.2

PulseCore Semiconductor Corporation 1715 S. Bascom Ave Suite 200 Campbell, CA 95008 Tel: 408-879-9077

Fax: 408-879-9018 www.pulsecoresemi.com

Copyright © PulseCore Semiconductor All Rights Reserved Part Number: ASM3P2187A/B Document Version: 0.2

Note: This product utilizes US Patent #6,646,463 Impedance Emulator Patent issued to PulseCore Semiconductor, dated 11-11-2003 Many PulseCore Semiconductor products are protected by issued patents or by applications for patent

© Copyright 2006 PulseCore Semiconductor Corporation. All rights reserved. Our logo and name are trademarks or registered trademarks of PulseCore Semiconductor. All other brand and product names may be the trademarks of their respective companies. PulseCore reserves the right to make changes to this document and its products at any time without notice. PulseCore assumes no responsibility for any errors that may appear in this document. The data contained herein represents PulseCore's best data and/or estimates at the time of issuance. PulseCore reserves the right to change or correct this data at any time, without notice. If the product described herein is under development, significant changes to these specifications are possible. The information in this product data sheet is intended to be general descriptive information for potential customers and users, and is not intended to operate as, or provide, any guarantee or warrantee to any user or customer. PulseCore does not assume any responsibility or liability arising out of the application or use of any product described herein, and disclaims any express or implied warranties related to the sale and/or use of PulseCore products including liability or warranties related to fitness for a particular purpose, merchantability, or infringement of any intellectual property rights, except as express agreed to in PulseCore's Terms and Conditions of Sale (which are available from PulseCore). All sales of PulseCore products are made exclusively according to PulseCore's Terms and Conditions of Sale. The purchase of products from PulseCore does not convey a license under any patent rights, copyrights; mask works rights, trademarks, or any other intellectual property rights of PulseCore or third parties. PulseCore does not authorize its products for use as critical components in life-supporting systems where a malfunction or failure may reasonably be expected to result in significant injury to the user, and the inclusion of PulseCore products in such life-supporting systems implies that the manufacturer assumes all risk of such use and agrees to indemnify PulseCore against all claims arising from such use.