Features
* High Performance, Low Power AVR®32 UC 32-Bit Microcontroller
— Compact Single-cycle RISC Instruction Set Including DSP Instruction Set
— Read-Modify-Write Instructions and Atomic Bit Manipulation
— Performing 1.49 DMIPS / MHz
Up to 91 DMIPS Running at 66 MHz from Flash (1 Wait-State)
Up to 49 DMIPS Running at 33MHz from Flash (0 Wait-State)
— Memory Protection Unit
e Multi-hierarchy Bus System
— High-Performance Data Transfers on Separate Buses for Increased Performance
— 15 Peripheral DMA Channels Improves Speed for Peripheral Communication
* Internal High-Speed Flash
— 512K Bytes, 256K Bytes, 128K Bytes Versions
— Single Cycle Access up to 33 MHz
— Prefetch Buffer Optimizing Instruction Execution at Maximum Speed
— 4ms Page Programming Time and 8ms Full-Chip Erase Time
— 100,000 Write Cycles, 15-year Data Retention Capability
— Flash Security Locks and User Defined Configuration Area
* Internal High-Speed SRAM, Single-Cycle Access at Full Speed
— 64K Bytes (512KB and 256KB Flash), 32K Bytes (128KB Flash)
* External Memory Interface on AT32UC3AO0 Derivatives
— SDRAM / SRAM Compatible Memory Bus (16-bit Data and 24-bit Address Buses)
* Interrupt Controller
— Autovectored Low Latency Interrupt Service with Programmable Priority
* System Functions
— Power and Clock Manager Including Internal RC Clock and One 32KHz Oscillator
— Two Multipurpose Oscillators and Two Phase-Lock-Loop (PLL) allowing
Independant CPU Frequency from USB Frequency
— Watchdog Timer, Real-Time Clock Timer
* Universal Serial Bus (USB)
— Device 2.0 Full Speed and On-The-Go (OTG) Low Speed and Full Speed
— Flexible End-Point Configuration and Management with Dedicated DMA Channels
— On-chip Transceivers Including Pull-Ups
* Ethernet MAC 10/100 Mbps interface
— 802.3 Ethernet Media Access Controller
— Supports Media Independent Interface (Mll) and Reduced MIl (RMII)
* One Three-Channel 16-bit Timer/Counter (TC)
— Three External Clock Inputs, PWM, Capture and Various Counting Capabilities
* One 7-Channel 16-bit Pulse Width Modulation Controller (PWM)
* Four Universal Synchronous/Asynchronous Receiver/Transmitters (USART)
— Independant Baudrate Generator, Support for SPI, IrDA and 1ISO7816 interfaces
— Support for Hardware Handshaking, RS485 Interfaces and Modem Line
* Two Master/Slave Serial Peripheral Interfaces (SPI) with Chip Select Signals
* One Synchronous Serial Protocol Controller
— Supports 12S and Generic Frame-Based Protocols
* One Master/Slave Two-Wire Interface (TWI), 400kbit/s I2C-compatible
* One 8-channel 10-bit Analog-To-Digital Converter
* 16-bit Stereo Audio Bitstream
— Sample Rate Up to 50 KHz

ATMEL

Y ()

AVR®32
32-Bit
Microcontroller

AT32UC3A0512
AT32UC3A0256
AT32UC3A0128
AT32UC3A1512
AT32UC3A1256
AT32UC3A1128

Preliminary

32058H-AVR32-03/09

On-Chip Debug System (JTAG interface)
— Nexus Class 2+, Runtime Control, Non-Intrusive Data and Program Trace
100-pin TQFP (69 GPIO pins), 144-pin LQFP (109 GPIO pins), 144 BGA (109 GPIO pins)
* 5V Input Tolerant I/0Os
* Single 3.3V Power Supply or Dual 1.8V-3.3V Power Supply

ATMEL z

32058H-AVR32-03/09

1. Description

32058H-AVR32-03/09

The AT32UC3A is a complete System-On-Chip microcontroller based on the AVR32 UC RISC
processor running at frequencies up to 66 MHz. AVR32 UC is a high-performance 32-bit RISC
microprocessor core, designed for cost-sensitive embedded applications, with particular empha-
sis on low power consumption, high code density and high performance.

The processor implements a Memory Protection Unit (MPU) and a fast and flexible interrupt con-
troller for supporting modern operating systems and real-time operating systems. Higher
computation capabilities are achievable using a rich set of DSP instructions.

The AT32UCS3A incorporates on-chip Flash and SRAM memories for secure and fast access.
For applications requiring additional memory, an external memory interface is provided on
AT32UC3AO0 derivatives.

The Peripheral Direct Memory Access controller (PDCA) enables data transfers between periph-
erals and memories without processor involvement. PDCA drastically reduces processing
overhead when transferring continuous and large data streams between modules within the
MCU.

The PowerManager improves design flexibility and security: the on-chip Brown-Out Detector
monitors the power supply, the CPU runs from the on-chip RC oscillator or from one of external
oscillator sources, a Real-Time Clock and its associated timer keeps track of the time.

The Timer/Counter includes three identical 16-bit timer/counter channels. Each channel can be
independently programmed to perform frequency measurement, event counting, interval mea-
surement, pulse generation, delay timing and pulse width modulation.

The PWM modules provides seven independent channels with many configuration options
including polarity, edge alignment and waveform non overlap control. One PWM channel can
trigger ADC conversions for more accurate close loop control implementations.

The AT32UC3A also features many communication interfaces for communication intensive
applications. In addition to standard serial interfaces like UART, SPI or TWI, other interfaces like
flexible Synchronous Serial Controller, USB and Ethernet MAC are available.

The Synchronous Serial Controller provides easy access to serial communication protocols and
audio standards like 12S.

The Full-Speed USB 2.0 Device interface supports several USB Classes at the same time
thanks to the rich End-Point configuration. The On-The-GO (OTG) Host interface allows device
like a USB Flash disk or a USB printer to be directly connected to the processor.

The media-independent interface (MIl) and reduced MIl (RMII) 10/100 Ethernet MAC module
provides on-chip solutions for network-connected devices.

AT32UC3A integrates a class 2+ Nexus 2.0 On-Chip Debug (OCD) System, with non-intrusive
real-time trace, full-speed read/write memory access in addition to basic runtime control.

ATMEL ;

2. Configuration Summary

The table below lists all AT32UC3A memory and package configurations:

Ethernet

Device Flash SRAM Ext. Bus Interface | MAC Package
AT32UC3A0512 512 Kbytes 64 Kbytes | yes yes 144 pin LQFP

144 pin BGA
AT32UC3A0256 256 Kbytes 64 Kbytes | yes yes 144 pin LQFP

144 pin BGA
AT32UC3A0128 128 Kbytes 32 Kbytes | yes yes 144 pin LQFP

144 pin BGA
AT32UC3A1512 512 Kbytes 64 Kbytes no yes 100 pin TQFP
AT32UC3A1256 256 Kbytes 64 Kbytes no yes 100 pin TQFP
AT32UC3A1128 128 Kbytes 32 Kbytes no yes 100 pin TQFP

3. Abbreviations

* GCLK: Power Manager Generic Clock

* GPIO: General Purpose Input/Output

« HSB: High Speed Bus

* MPU: Memory Protection Unit

* OCD: On Chip Debug

« PB: Peripheral Bus

* PDCA: Peripheral Direct Memory Access Controller (PDC) version A
* USBB: USB On-The-GO Controller version B

ATMEL :

32058H-AVR32-03/09

4. Blockdiagram

Figure 4-1. Blockdiagram
— TAS e K] AVR <0 e | mrors
T INTERFACE V 32 2
—
TMS NEXUS uc CPU 4
€ mcko—————— CLASS 2+ z
< MDO[5..0] O0CD :iCMEMORY PROTECTION UNlTQE: 5 64 KB
€« .
MSEO[1..0} g SRAM
F— EVIIN—— INSTR DATA z
EVIO N———] INTERFACE INTERFACE =
— VBUS »|
<— D+ > USB o
<— D- » o o
o—»| INTERFACE a i
(€—VBOF— I J
S M M M S 0n O 512 KB
DMA <}:"> <e
M sK e FLASH
coL, . g
RxCDFfsS'O] DMA <I|'>M HIGH SPEED O
e iR BUS MATRIX
RX_DV, | €—DATA[15..01— |
RX_ER w o> L
S " S <)::> 2 % ADDR[23..0]-»|
MoC, S ——NCS[3..0—|
o ETHI\EEC’:\IET % - NRD—— >
8 < TXiEN,‘i CONFIGURATION REGISTERS BUS E 5 ﬁ < ':‘V\Xlg'g
w -g)l;—EEERI; s HSB wEd Nwes
73 P s HSB-PB PERIPHERAL S NWE3—
O |¢—MpIo—p HSB-PB DMA alE RAS—)
& BRIDGE B BRIDGE A coNT LR 292 cAS—»|
E PB § S0 SDA10—P»|
= il SDCK—P|
§ < ; a ——SDCKE—»|
ul INTERRUPT o 2 SDCSO—P»|
SDWE—|
Z CONTROLLER /l\::|,>
o €————RXD
I TXD—— |
e EXTERNAL K=>8 USART1 «——clk———p &
<PC EXTINT[7..0—— | <’\::> a «——RTS,CTS——p| = gg
PX [€«———KPS[7.0b— INTERRUPT €«—DSR, DTR, DCD, RI—3» 4 4%
NMI_N——— | CONTROLLER 0o o
USARTO <« R0 &
<:"> 2 USART2 7CLK4’ 2
REAL TIME o USART3 RTS. OTS]
COUNTER @ y ’ g
]
< > Z
o SERIAL %MISEC;OS\H 6
e | e e
TIMER ———NPCS[3..1——)
SYNCHRONOUS € TX_CLOCK, TX_FRAME_SYNC»
115 kHz j C POWER i\‘ [: 9 SERIAL — TX DATA—— »
RCOSC MANAGER a CONTROLLER €RX_CLOCK, RX_FRAME_SYNC)»
—xiN32p| 32 KHz <:::> <€————RX_DATA
[XOUT32— OSC CLOCK
GENERATOR 0 TWO-WIRE D ——
—xINO i #)
<XZ':T[: osco K= e INTERFACE < spA
CLOCK
F—XIN1-| CONTROLLER
OSC1 <#>
xouT1] = .| PULSEwDTH
PLLO K= SLEEP <3| MODULATION | ———pwmis.or—>
CONTROLLER CONTROLLER
PLLL K=
RESET
| ANALOG TO [€«———AD[7.0]
RESET N |[€———GCLK[3..0} CONTROLLER § oAl ouner
CONVERTER
€« AR.OF—
<———B2.0——» TIMER/ICOUNTER ([
CLK[2.0—— o AUDIO L DATAL.O—
<#> g BITSDTARCEAM I DATAN[L.OF—

32058H-AVR32-03/09

ATmEL

4.1 Processor and architecture
4.1.1 AVR32 UC CPU

* 32-bit load/store AVR32A RISC architecture.
15 general-purpose 32-bit registers.
32-bit Stack Pointer, Program Counter and Link Register reside in register file.
Fully orthogonal instruction set.
Privileged and unprivileged modes enabling efficient and secure Operating Systems.
— Innovative instruction set together with variable instruction length ensuring industry leading
code density.
— DSP extention with saturating arithmetic, and a wide variety of multiply instructions.
* 3 stage pipeline allows one instruction per clock cycle for most instructions.
— Byte, half-word, word and double word memory access.
— Multiple interrupt priority levels.
* MPU allows for operating systems with memory protection.

41.2 Debug and Test system

* |[EEE1149.1 compliant JTAG and boundary scan

* Direct memory access and programming capabilities through JTAG interface

* Extensive On-Chip Debug features in compliance with IEEE-ISTO 5001-2003 (Nexus 2.0) Class 2+
— Low-cost NanoTrace supported.

* Auxiliary port for high-speed trace information

¢ Hardware support for 6 Program and 2 data breakpoints

¢ Unlimited number of software breakpoints supported

e Advanced Program, Data, Ownership, and Watchpoint trace supported

4.1.3 Peripheral DMA Controller

* Transfers from/to peripheral to/from any memory space without intervention of the processor.
* Next Pointer Support, forbids strong real-time constraints on buffer management.
* Fifteen channels

— Two for each USART

— Two for each Serial Synchronous Controller

— Two for each Serial Peripheral Interface

— One for each ADC

— Two for each TWI Interface

4.1.4 Bus system

* High Speed Bus (HSB) matrix with 6 Masters and 6 Slaves handled

— Handles Requests from the CPU Data Fetch, CPU Instruction Fetch, PDCA, USBB, Ethernet
Controller, CPU SAB, and to internal Flash, internal SRAM, Peripheral Bus A, Peripheral Bus
B, EBI.

— Round-Robin Arbitration (three modes supported: no default master, last accessed default
master, fixed default master)

— Burst Breaking with Slot Cycle Limit

— One Address Decoder Provided per Master

ATMEL ;

32058H-AVR32-03/09

32058H-AVR32-03/09

e Peripheral Bus A able to run on at divided bus speeds compared to the High Speed Bus

Figure 4-1 gives an overview of the bus system. All modules connected to the same bus use the
same clock, but the clock to each module can be individually shut off by the Power Manager.
The figure identifies the number of master and slave interfaces of each module connected to the
High Speed Bus, and which DMA controller is connected to which peripheral.

ATMEL 7

5. Signals Description

The following table gives details on the signal name classified by peripheral

The signals are multiplexed with GPIO pins as described in "Peripheral Multiplexing on 1/O lines”
on page 45.

Table 5-1. Signal Description List

Active
Signal Name Function Type Level Comments
Power
VDDPLL Power supply for PLL Fl’rc:\F/)vlir 1.65Vto 195V
Power
VDDCORE Core Power Supply Input 1.65Vto 1.95V
VDDIO /0 Power Supply F;g‘gir 3.0V to 3.6V
VDDANA Analog Power Supply Tr?\g)vuetr 3.0V to 3.6V
VDDIN Voltage Regulator Input Supply Fl)r?\pl)vuetr 3.0V to 3.6V
VDDOUT Voltage Regulator Output Power 1.65V to 1.95 V
Output
GNDANA Analog Ground Ground
GND Ground Ground

Clocks, Oscillators, and PLL's

XINO, XIN1, XIN32 Crystal 0, 1, 32 Input Analog
igglg,zxoun, Crystal 0, 1, 32 Output Analog
JTAG
TCK Test Clock Input
TDI Test Data In Input
TDO Test Data Out Output
T™MS Test Mode Select Input
Auxiliary Port - AUX
MCKO Trace Data Output Clock Output
MDOO - MDO5 Trace Data Output Output

ATMEL :

32058H-AVR32-03/09

Table 5-1. Signal Description List
Active
Signal Name Function Type Level Comments
MSEOO - MSEO1 Trace Frame Control Output
EVTI_N Event In Output Low
EVTO_N Event Out Output Low
Power Manager - PM
GCLKO - GCLK3 Generic Clock Pins Output
RESET_N Reset Pin Input Low
Real Time Counter - RTC
RTC_CLOCK RTC clock Output
Watchdog Timer - WDT
WDTEXT External Watchdog Pin Output
External Interrupt Controller - EIC
EXTINTO - EXTINT7 External Interrupt Pins Input
KPSO - KPS7 Keypad Scan Pins Output
NMI_N Non-Maskable Interrupt Pin Input Low
Ethernet MAC - MACB
COL Collision Detect Input
CRS Carrier Sense and Data Valid Input
MDC Management Data Clock Output
MDIO Management Data Input/Output 1/0
RXDO - RXD3 Receive Data Input
RX_CLK Receive Clock Input
RX_DV Receive Data Valid Input
RX_ER Receive Coding Error Input
SPEED Speed
TXDO - TXD3 Transmit Data Output
TX_CLK Transmit Clock or Reference Clock Output
TX_EN Transmit Enable Output
TX_ER Transmit Coding Error Output

32058H-AVR32-03/09

ATMEL

Table 5-1. Signal Description List

Active

Signal Name Function Type Level Comments

External Bus Interface - HEBI
ADDRO - ADDR23 Address Bus Output
CAS Column Signal Output Low
DATAO - DATA15 Data Bus 1/O
NCSO - NCS3 Chip Select Output Low
NRD Read Signal Output Low
NWAIT External Wait Signal Input Low
NWEO Write Enable 0 Output Low
NWE1 Write Enable 1 Output Low
NWE3 Write Enable 3 Output Low
RAS Row Signal Output Low
SDA10 SDRAM Address 10 Line Output
SDCK SDRAM Clock Output
SDCKE SDRAM Clock Enable Output
SDCSO0 SDRAM Chip Select Output Low
SDWE SDRAM Write Enable Output Low

General Purpose Input/Output 2 - GPIOA, GPIOB, GPIOC

PO - P31 Parallel /0O Controller GPIOA /0
PO - P31 Parallel I/0O Controller GPIOB /0
PO - P5 Parallel I/O Controller GPIOC I/1O
PO - P31 Parallel I/O Controller GPIOX /0

Serial Peripheral Interface - SPI0, SPI1

MISO Master In Slave Out I/0

MOSI Master Out Slave In 110

NPCSO0 - NPCS3 SPI Peripheral Chip Select 1/0 Low
SCK Clock Output

Synchronous Serial Controller - SSC

RX_CLOCK SSC Receive Clock I/O

ATMEL X

32058H-AVR32-03/09

Table 5-1. Signal Description List
Active

Signal Name Function Type Level Comments
RX_DATA SSC Receive Data Input

RX_FRAME_SYNC SSC Receive Frame Sync I/0

TX_CLOCK SSC Transmit Clock /0

TX_DATA SSC Transmit Data Output

TX_FRAME_SYNC SSC Transmit Frame Sync 110

Timer/Counter - TIMER

AO Channel O Line A /0
Al Channel 1 Line A /0
A2 Channel 2 Line A /0
BO Channel O Line B /0
Bl Channel 1 Line B /0
B2 Channel 2 Line B /0
CLKO Channel 0 External Clock Input Input
CLK1 Channel 1 External Clock Input Input
CLK2 Channel 2 External Clock Input Input
Two-wire Interface - TWI

SCL Serial Clock /0
SDA Serial Data 11O

Universal Synchronous Asynchronous Receiver Transmitter - USARTO, USART1, USART2, USART3
CLK Clock 11O
CTS Clear To Send Input
DCD Data Carrier Detect Only USART1
DSR Data Set Ready Only USART1
DTR Data Terminal Ready Only USART1
RI Ring Indicator Only USART1
RTS Request To Send Output
RXD Receive Data Input
TXD Transmit Data Output

32058H-AVR32-03/09

ATMEL

11

Table 5-1. Signal Description List
Active
Signal Name Function Type Level Comments
Analog to Digital Converter - ADC
ADO - AD7 Analog input pins Analog
input
ADVREF Analog positive reference voltage input p}gzll?tg 2.6to 3.6V
Pulse Width Modulator - PWM
PWMO - PWM6 PWM Output Pins Output
Universal Serial Bus Device - USB
DDM USB Device Port Data - Analog
DDP USB Device Port Data + Analog
VBUS USB VBUS Monitor and OTG Negociation A;?lzll?tg
USBID ID Pin of the USB Bus Input
USB_VBOF USB VBUS On/off: bus power control port output
Audio Bitstream DAC (ABDAC)
DATAO-DATA1 D/A Data out Outpu
DATANO-DATAN1 D/A Data inverted out Outpu

32058H-AVR32-03/09

ATMEL

12

6. Power Considerations

6.1 Power Supplies

The AT32UC3A has several types of power supply pins:

* VDDIO: Powers I/O lines. Voltage is 3.3V nominal.

* VDDANA: Powers the ADC Voltage is 3.3V nominal.
* VDDIN: Input voltage for the voltage regulator. Voltage is 3.3V nominal.

* VDDCORE: Powers the core, memories, and peripherals. Voltage is 1.8V nominal.
* VDDPLL: Powers the PLL. Voltage is 1.8V nominal.

The ground pins GND are common to VDDCORE, VDDIO, VDDPLL. The ground pin for

VDDANA is GNDANA.

Refer to "Power Consumption” on page 767 for power consumption on the various supply pins.

Single Power Supply

3.3V -——b& VDDANA
—X] vobio

——X] ADVREF

L——]X] vODIN —x
1.8V
Regulator

—X] vbbouT «——]

% VDDCORE

L——D] vooPLL

ATMEL

32058H-AVR32-03/09

3.3V

1.8v

Dual Power Supply

-

—[X] vDDANA
——{X] vbpIO

L »]]ADVREF

. 4
VDDIN
1.8V
Regulator

VDDOUT —+——

,Z| VDDCORE

L[] voDPLL

13

6.2 Voltage Regulator
6.2.1 Single Power Supply

The AT32UC3A embeds a voltage regulator that converts from 3.3V to 1.8V. The regulator takes
its input voltage from VDDIN, and supplies the output voltage on VDDOUT. VDDOUT should be
externally connected to the 1.8V domains.

Adequate input supply decoupling is mandatory for VDDIN in order to improve startup stability
and reduce source voltage drop. Two input decoupling capacitors must be placed close to the
chip.

Adequate output supply decoupling is mandatory for VDDOUT to reduce ripple and avoid oscil-
lations. The best way to achieve this is to use two capacitors in parallel between VDDOUT and
GND as close to the chip as possible

33V = > XJ VDDIN
C J— J_ C & Elill-----n-u-.....!
IN2 j; j”_ IN1 E 18V §
i Regulatori
1.8V = &VDDOUT <ﬁ-u“uu
Courz f f Court

Refer to Section 38.3 on page 765 for decoupling capacitors values and regulator characteristics

6.2.2 Dual Power Supply

In case of dual power supply, VDDIN and VDDOUT should be connected to ground to prevent
from leakage current.

VDDIN

VDDOUT

ATMEL 1

32058H-AVR32-03/09

6.3 Analog-to-Digital Converter (A.D.C) reference.

32058H-AVR32-03/09

The ADC reference (ADVREF) must be provided from an external source. Two decoupling
capacitors must be used to insure proper decoupling.

3.3V m ADVREF

I CVREFZ—TmlzCVREFl

Refer to Section 38.4 on page 765 for decoupling capacitors values and electrical
characteristics.

In case ADC is not used, the ADVREF pin should be connected to GND to avoid extra
consumption.

ATMEL i

7. Package and Pinout
The device pins are multiplexed with peripheral functions as described in "Peripheral Multiplexing on I/O lines” on page 45.

Figure 7-1. TQFP100 Pinout

75 51
I I
76 = = 50
100 = = 26
I I
1 25
Table 7-1. TQFP100 Package Pinout

1 PB20 26 PAO5 51 PA21 76 PB08
2 PB21 27 PA06 52 PA22 77 PBO09
3 PB22 28 PAQ7 53 PA23 78 PB10
4 VDDIO 29 PAO8 54 PA24 79 VDDIO
5 GND 30 PA09 55 PA25 80 GND
6 PB23 31 PA10 56 PA26 81 PB11
7 PB24 32 N/C 57 PA27 82 PB12
8 PB25 33 PA11 58 PA28 83 PA29
9 PB26 34 VDDCORE 59 VDDANA 84 PA30
10 PB27 35 GND 60 ADVREF 85 PCO02
11 VDDOUT 36 PA12 61 GNDANA 86 PCO3
12 VDDIN 37 PA13 62 VDDPLL 87 PB13
13 GND 38 VDDCORE 63 PCO0 88 PB14
14 PB28 39 PA14 64 PCO1 89 T™MS
15 PB29 40 PA15 65 PBO0 90 TCK
16 PB30 41 PA16 66 PBO1 91 TDO
17 PB31 42 PAL7 67 VDDIO 92 TDI
18 RESET_N 43 PA18 68 VDDIO 93 PC04
19 PAQO 44 PA19 69 GND 94 PCO5
20 PAO1 45 PA20 70 PBO02 95 PB15
21 GND 46 VBUS 71 PBO3 96 PB16
22 VDDCORE 47 VDDIO 72 PBO4 97 VDDCORE

ATMEL i

32058H-AVR32-03/09

Table 7-1. TQFP100 Package Pinout
23 PA02 48 DM 73 PBO5 98 PB17
24 PAO3 49 DP 74 PBO06 99 PB18
25 PAO4 50 GND 75 PBO7 100 PB19

Figure 7-2. LQFP144 Pinout

108 73
I I
109 = = 72
144 = » = 37
I I
1 36
Table 7-2. VQFP144 Package Pinout

1 PX00 37 GND 73 PA21 109 GND
2 PX01 38 PX10 74 PA22 110 PX30
3 PB20 39 PAO5 75 PA23 111 PBO8
4 PX02 40 PX11 76 PA24 112 PX31
5 PB21 41 PA06 77 PA25 113 PBO09
6 PB22 42 PX12 78 PA26 114 PX32
7 VDDIO 43 PAO7 79 PA27 115 PB10
8 GND 44 PX13 80 PA28 116 VDDIO
9 PB23 45 PAO8 81 VDDANA 117 GND
10 PX03 46 PX14 82 ADVREF 118 PX33
11 PB24 47 PA09 83 GNDANA 119 PB11
12 PX04 48 PA10 84 VDDPLL 120 PX34
13 PB25 49 N/C 85 PCO0 121 PB12
14 PB26 50 PA11 86 PCO1 122 PA29
15 PB27 51 VDDCORE 87 PX20 123 PA30
16 VDDOUT 52 GND 88 PBOO 124 PCO02
17 VDDIN 53 PA12 89 PX21 125 PCO3
18 GND 54 PA13 90 PBO1 126 PB13
19 PB28 55 VDDCORE 91 PX22 127 PB14
20 PB29 56 PA14 92 VDDIO 128 T™MS
21 PB30 57 PA15 93 VDDIO 129 TCK

ATMEL i

32058H-AVR32-03/09

Table 7-2. VQFP144 Package Pinout

22 PB31 58 PA16 94 GND 130 TDO
23 RESET_N 59 PX15 95 PX23 131 TDI
24 PX05 60 PAL17 96 PB02 132 PCO04
25 PAOO 61 PX16 97 PX24 133 PCO05
26 PX06 62 PA18 98 PB03 134 PB15
27 PAO1 63 PX17 99 PX25 135 PX35
28 GND 64 PA19 100 PB04 136 PB16
29 VDDCORE 65 PX18 101 PX26 137 PX36
30 PAO2 66 PA20 102 PB05 138 VDDCORE
31 PX07 67 PX19 103 PX27 139 PB17
32 PAO3 68 VBUS 104 PB06 140 PX37
33 PX08 69 VDDIO 105 PX28 141 PB18
34 PAO4 70 DM 106 PBO7 142 PX38
35 PX09 71 DP 107 PX29 143 PB19
36 VDDIO 72 GND 108 VDDIO 144 PX39

Figure 7-3. BGA144 Pinout

PIN A1 CORNER

\123456?891{}1112

O

= r & o I @a|lmm 9o O m F

ATMEL i

32058H-AVR32-03/09

Table 7-3. BGA144 Package Pinout A1..M8
1 2 3 4 5 6 7 8

A | VDDIO PBO7 PB05 PB02 PBO3 PBO1 PCO00 PA28
B | PB0O8 GND PB06 PB04 VDDIO PB00 PCO1 VDDPLL
C | PB09 PX33 PA29 PCO02 PX28 PX26 PX22 PX21
D | PB11 PB13 PB12 PX30 PX29 PX25 PX24 PX20
E | PB10 VDDIO PX32 PX31 VDDIO PX27 PX23 VDDANA
F | PA30 PB14 PX34 PB16 TCK GND GND PX16
G | T™MS PCO03 PX36 PX35 PX37 GND GND PA16
H | TDO VDDCORE PX38 PX39 VDDIO PAOL PA10 VDDCORE
J | TDI PB17 PB15 PX00 PX01 PAOO PAO3 PAO4
K | pPcos PCO04 PB19 PB20 PX02 PB29 PB30 PAO2
L | PB21 GND PB18 PB24 VDDOUT PX04 PB31 VDDIN
M | PB22 PB23 PB25 PB26 PX03 PB27 PB28 RESET_N

Table 7-4. BGA144 Package Pinout A9..M12

9 10 11 12

A | PA26 PA25 PA24 PA23

B | PA27 PA21 GND PA22

C | ADVREF GNDANA PX19 PA19

D | PA18 PA20 DP DM

E | Px18 PX17 VDDIO VBUS

F | PAL7 PX15 PA15 PA14

G | PA13 PA12 PA11l NC

H | PX11 PAO8 VDDCORE VDDCORE

J | PX14 PAO7 PX13 PAO9

K | PXx08 GND PAO5 PX12

L | PX06 PX10 GND PA06

M | PX05 PX07 PX09 VDDIO

Note: NC is not connected.

32058H-AVR32-03/09

ATMEL

19

8. 1/0 Line Considerations

8.1 JTAG pins

8.2 RESET_N pin

8.3 TWIpins

8.4 GPIO pins

32058H-AVR32-03/09

TMS, TDI and TCK have pull-up resistors. TDO is an output, driven at up to VDDIO, and has no
pull-up resistor.

The RESET_N pin is a schmitt input and integrates a permanent pull-up resistor to VDDIO. As
the product integrates a power-on reset cell, the RESET_N pin can be left unconnected in case
no reset from the system needs to be applied to the product.

When these pins are used for TWI, the pins are open-drain outputs with slew-rate limitation and
inputs with inputs with spike-filtering. When used as GPIO-pins or used for other peripherals, the
pins have the same characteristics as PIO pins.

All the I/O lines integrate a programmable pull-up resistor. Programming of this pull-up resistor is
performed independently for each 1/O line through the GPIO Controllers. After reset, I/O lines
default as inputs with pull-up resistors disabled, except when indicated otherwise in the column
“Reset State” of the GPIO Controller multiplexing tables.

ATMEL 2

9. Processor and Architecture

This chapter gives an overview of the AVR32UC CPU. AVR32UC is an implementation of the
AVR32 architecture. A summary of the programming model, instruction set and MPU is pre-
sented. For further details, see the AVR32 Architecture Manual and the AVR32UC Technical
Reference Manual.

9.1 AVR32 Architecture

AVR32 is a new, high-performance 32-bit RISC microprocessor architecture, designed for cost-
sensitive embedded applications, with particular emphasis on low power consumption and high
code density. In addition, the instruction set architecture has been tuned to allow a variety of
microarchitectures, enabling the AVR32 to be implemented as low-, mid- or high-performance
processors. AVR32 extends the AVR family into the world of 32- and 64-bit applications.

Through a quantitative approach, a large set of industry recognized benchmarks has been com-
piled and analyzed to achieve the best code density in its class. In addition to lowering the
memory requirements, a compact code size also contributes to the core’s low power characteris-
tics. The processor supports byte and half-word data types without penalty in code size and
performance.

Memory load and store operations are provided for byte, half-word, word and double word data
with automatic sign- or zero extension of half-word and byte data. The C-compiler is closely
linked to the architecture and is able to exploit code optimization features, both for size and
speed.

In order to reduce code size to a minimum, some instructions have multiple addressing modes.
As an example, instructions with immediates often have a compact format with a smaller imme-
diate, and an extended format with a larger immediate. In this way, the compiler is able to use
the format giving the smallest code size.

Another feature of the instruction set is that frequently used instructions, like add, have a com-
pact format with two operands as well as an extended format with three operands. The larger
format increases performance, allowing an addition and a data move in the same instruction in a
single cycle. Load and store instructions have several different formats in order to reduce code
size and speed up execution.

The register file is organized as sixteen 32-bit registers and includes the Program Counter, the
Link Register, and the Stack Pointer. In addition, register R12 is designed to hold return values
from function calls and is used implicitly by some instructions.

9.2 The AVR32UC CPU

The AVR32 UC CPU targets low- and medium-performance applications, and provides an
advanced OCD system, no caches, and a Memory Protection Unit (MPU). Java acceleration
hardware is not implemented.

AVR32 UC provides three memory interfaces, one High Speed Bus master for instruction fetch,
one High Speed Bus master for data access, and one High Speed Bus slave interface allowing
other bus masters to access data RAMs internal to the CPU. Keeping data RAMs internal to the
CPU allows fast access to the RAMSs, reduces latency and guarantees deterministic timing. Also,
power consumption is reduced by not needing a full High Speed Bus access for memory
accesses. A dedicated data RAM interface is provided for communicating with the internal data
RAMs.

ATMEL 2

32058H-AVR32-03/09

9.2.1

32058H-AVR32-03/09

A local bus interface is provided for connecting the CPU to device-specific high-speed systems,
such as floating-point units and fast GPIO ports. This local bus has to be enabled by writing the
LOCEN bit in the CPUCR system register. The local bus is able to transfer data between the
CPU and the local bus slave in a single clock cycle. The local bus has a dedicated memory
range allocated to it, and data transfers are performed using regular load and store instructions.
Details on which devices that are mapped into the local bus space is given in the device-specific
“Peripherals” chapter of this data sheet.

Figure 9-1 on page 22 displays the contents of AVR32UC.

Figure 9-1. Overview of the AVR32UC CPU
N

interface)
Reset interface)

OCD i

Power/
Reset
control

OCD
system

Interrupt controller interface

AVR32UC CPU pipeline

| MPU

Instruction memory controller Data memory controller

High
Speed
Bus
master

High CPU Local
Speed Bus
Bus slave master

High Speed Bus master

Data RAM interface

High Speed Bus
High Speed Bus
High Speed Bus
CPU Local Bus

{

Pipeline Overview

AVR32 UC is a pipelined processor with three pipeline stages. There are three pipeline stages,
Instruction Fetch (IF), Instruction Decode (ID) and Instruction Execute (EX). The EX stage is
split into three parallel subsections, one arithmetic/logic (ALU) section, one multiply (MUL) sec-
tion and one load/store (LS) section.

Instructions are issued and complete in order. Certain operations require several clock cycles to
complete, and in this case, the instruction resides in the ID and EX stages for the required num-
ber of clock cycles. Since there is only three pipeline stages, no internal data forwarding is
required, and no data dependencies can arise in the pipeline.

Figure 9-2 on page 23 shows an overview of the AVR32 UC pipeline stages.

ATMEL 2

Figure 9-2. The AVR32UC Pipeline

—{ MUL > Multiply unit
F D Regfile »| ALU p| Redfie ALU unit
Read w rite
Prefetch unit | Decode unit |—
Y
o Load-store
’ LS o unit

9.2.2 AVR32A Microarchitecture Compliance
AVR32UC implements an AVR32A microarchitecture. The AVR32A microarchitecture is tar-
geted at cost-sensitive, lower-end applications like smaller microcontrollers. This
microarchitecture does not provide dedicated hardware registers for shadowing of register file
registers in interrupt contexts. Additionally, it does not provide hardware registers for the return
address registers and return status registers. Instead, all this information is stored on the system
stack. This saves chip area at the expense of slower interrupt handling.

Upon interrupt initiation, registers R8-R12 are automatically pushed to the system stack. These
registers are pushed regardless of the priority level of the pending interrupt. The return address
and status register are also automatically pushed to stack. The interrupt handler can therefore
use R8-R12 freely. Upon interrupt completion, the old R8-R12 registers and status register are
restored, and execution continues at the return address stored popped from stack.

The stack is also used to store the status register and return address for exceptions and scall.
Executing the rete or rets instruction at the completion of an exception or system call will pop
this status register and continue execution at the popped return address.

9.2.3 Java Support
AVR32UC does not provide Java hardware acceleration.

9.2.4 Memory protection
The MPU allows the user to check all memory accesses for privilege violations. If an access is
attempted to an illegal memory address, the access is aborted and an exception is taken. The
MPU in AVR32UC is specified in the AVR32UC Technical Reference manual.

9.2.5 Unaligned reference handling
AVR32UC does not support unaligned accesses, except for doubleword accesses. AVR32UC is
able to perform word-aligned st.d and Id.d. Any other unaligned memory access will cause an
address exception. Doubleword-sized accesses with word-aligned pointers will automatically be
performed as two word-sized accesses.

ATMEL 2

32058H-AVR32-03/09

The following table shows the instructions with support for unaligned addresses. All other
instructions require aligned addresses.

Table 9-1. Instructions with unaligned reference support
Instruction Supported alignment
Id.d Word
st.d Word
9.2.6 Unimplemented instructions

The following instructions are unimplemented in AVR32UC, and will cause an Unimplemented
Instruction Exception if executed:

« All SIMD instructions

« All coprocessor instructions

« retj, incjosp, popjc, pushjc

« tlbr, tlbs, tlbw

 cache

9.2.7 CPU and Architecture revision

Two major revisions of the AVR32UC CPU currently exist. The device described in this
datasheet uses CPU revision 2.

The Architecture Revision field in the CONFIGO system register identifies which architecture
revision is implemented in a specific device.

AVR32UC CPU revision 2 is fully backward-compatible with revision 1, ie. code compiled for
revision 1 is binary-compatible with revision 2 CPUs.

ATMEL 2

32058H-AVR32-03/09

9.3 Programming Model

9.3.1 Register file configuration
The AVR32UC register file is shown below.

Figure 9-3. The AVR32UC Register File

Application Supervisor INTO INT1 INT2 INT3 Exception NMI
Bit 31 Bit 0 Bit 31 Bit 0 Bit 31 Bit 0 Bit 31 Bit 0 Bit 31 Bit 0 Bit 31 Bit 0 Bit 31 Bit 0 Bit 31 Bit 0
[PC PC PC PC PC PC PC PC
(LR LR LR LR LR LR LR LR
SP_APP SP_SYS SP_SYS SP_SYS SP_SYS SP_SYS SP_SYS SP_SYS

R12 R12 R12 R12 R12 R12 R12 R12

R11 RI11 R11 R11 RI11 R11 RI11 R11

R10 R10 R10 R10 R10 R10 R10 RI10

R9 R9 R9 R9 R9 RO RO RO

R8 R8 R8 R8 R8 R8 R8 R8

R7 R7 R7 R7 R7 R7 R7 R7

R6 R6 R6 R6 R6 R6 R6 R6

R5 R5 R5 R5 R5

R4 R4 R4 R4 R4 R4 R4 R4

R3 R3 R3 R3

R R R R R R2 R2 R2

RL RL RL RL RL RL RL RL

RO RO RO RO RO RO RO RO

SR || SR || SR || SR || SR | SR || SR || SR

9.3.2 Status register configuration

The Status Register (SR) is split into two halfwords, one upper and one lower, see Figure 9-4 on
page 25 and Figure 9-5 on page 26. The lower word contains the C, Z, N, V and Q condition
code flags and the R, T and L bits, while the upper halfword contains information about the
mode and state the processor executes in. Refer to the AVR32 Architecture Manual for details.

Figure 9-4. The Status Register High Halfword

Bit 31 Bit 16

- - DM D - M2 [ML [MO | BM [I3M |I12M |I1IM [IOM | GM |Bit name

0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 |lInitialvalue

T I—» Global Interrupt Mask

—— Interrupt Level 0 Mask
Interrupt Level 1 Mask
Interrupt Level 2 Mask
Interrupt Level 3 Mask
Exception Mask
Mode Bit 0

Mode Bit 1

Mode Bit 2

Reserved

Debug State

Debug State Mask
Reserved

YYYYYYYYY V{

ATMEL 2

32058H-AVR32-03/09

AT32UC3A

Figure 9-5. The Status Register Low Halfword

Bit 15 Bit 0

R| T/ - - - - - - - - L{Q|V|N]| Z]|C [Btname

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |Initialvalue

Y L» Carry

L——» Zero

Sign

Overflow

Saturation

Lock

Reserved

Scratch

Register Remap Enable

YYVYYyvYY 7{

9.3.3 Processor States
9.3.3.1 Normal RISC State
The AVR32 processor supports several different execution contexts as shown in Table 9-2 on
page 26.
Table 9-2. Overview of execution modes, their priorities and privilege levels.
Priority Mode Security Description
1 Non Maskable Interrupt Privileged Non Maskable high priority interrupt mode
2 Exception Privileged Execute exceptions
3 Interrupt 3 Privileged General purpose interrupt mode
4 Interrupt 2 Privileged General purpose interrupt mode
5 Interrupt 1 Privileged General purpose interrupt mode
6 Interrupt O Privileged General purpose interrupt mode
N/A Supervisor Privileged Runs supervisor calls
N/A Application Unprivileged Normal program execution mode

Mode changes can be made under software control, or can be caused by external interrupts or
exception processing. A mode can be interrupted by a higher priority mode, but never by one
with lower priority. Nested exceptions can be supported with a minimal software overhead.

When running an operating system on the AVR32, user processes will typically execute in the
application mode. The programs executed in this mode are restricted from executing certain
instructions. Furthermore, most system registers together with the upper halfword of the status
register cannot be accessed. Protected memory areas are also not available. All other operating
modes are privileged and are collectively called System Modes. They have full access to all priv-
ileged and unprivileged resources. After a reset, the processor will be in supervisor mode.

9.3.3.2 Debug State
The AVR32 can be set in a debug state, which allows implementation of software monitor rou-
tines that can read out and alter system information for use during application development. This
implies that all system and application registers, including the status registers and program
counters, are accessible in debug state. The privileged instructions are also available.

ATMEL 2

32058H-AVR32-03/09

All interrupt levels are by default disabled when debug state is entered, but they can individually
be switched on by the monitor routine by clearing the respective mask bit in the status register.

Debug state can be entered as described in the AVR32UC Technical Reference Manual.

Debug state is exited by the retd instruction.

9.3.4 System registers

32058H-AVR32-03/09

The system registers are placed outside of the virtual memory space, and are only accessible
using the privileged mfsr and mtsr instructions. The table below lists the system registers speci-
fied in the AVR32 architecture, some of which are unused in AVR32UC. The programmer is
responsible for maintaining correct sequencing of any instructions following a mtsr instruction.
For detail on the system registers, refer to the AVR32UC Technical Reference Manual.

Table 9-3. System Registers

Reg # Address Name Function

0 0 SR Status Register

1 4 EVBA Exception Vector Base Address
2 8 ACBA Application Call Base Address
3 12 CPUCR CPU Control Register

4 16 ECR Exception Cause Register

5 20 RSR_SUP Unused in AVR32UC

6 24 RSR_INTO Unused in AVR32UC

7 28 RSR_INT1 Unused in AVR32UC

8 32 RSR_INT2 Unused in AVR32UC

9 36 RSR_INT3 Unused in AVR32UC

10 40 RSR_EX Unused in AVYR32UC

11 44 RSR_NMI Unused in AVYR32UC

12 48 RSR_DBG Return Status Register for Debug Mode
13 52 RAR_SUP Unused in AVR32UC

14 56 RAR_INTO Unused in AVR32UC

15 60 RAR_INT1 Unused in AVR32UC

16 64 RAR_INT2 Unused in AVR32UC

17 68 RAR_INT3 Unused in AVR32UC

18 72 RAR_EX Unused in AVR32UC

19 76 RAR_NMI Unused in AVR32UC

20 80 RAR_DBG Return Address Register for Debug Mode
21 84 JECR Unused in AVR32UC

22 88 JOSP Unused in AVR32UC

23 92 JAVA_LVO Unused in AVYR32UC

24 96 JAVA_LV1 Unused in AVR32UC

25 100 JAVA_LV2 Unused in AVR32UC

ATMEL 2

Table 9-3. System Registers (Continued)

Reg # Address Name Function

26 104 JAVA_LV3 Unused in AVR32UC

27 108 JAVA_LV4 Unused in AVYR32UC

28 112 JAVA_LV5 Unused in AVYR32UC

29 116 JAVA_LV6 Unused in AVYR32UC

30 120 JAVA_LV7 Unused in AVR32UC

31 124 JTBA Unused in AVR32UC

32 128 JBCR Unused in AVR32UC

33-63 132-252 Reserved Reserved for future use

64 256 CONFIGO Configuration register 0

65 260 CONFIG1 Configuration register 1

66 264 COUNT Cycle Counter register

67 268 COMPARE Compare register

68 272 TLBEHI Unused in AVR32UC

69 276 TLBELO Unused in AVR32UC

70 280 PTBR Unused in AVR32UC

71 284 TLBEAR Unused in AVYR32UC

72 288 MMUCR Unused in AVR32UC

73 292 TLBARLO Unused in AVR32UC

74 296 TLBARHI Unused in AVR32UC

75 300 PCCNT Unused in AVR32UC

76 304 PCNTO Unused in AVR32UC

77 308 PCNT1 Unused in AVYR32UC

78 312 PCCR Unused in AVR32UC

79 316 BEAR Bus Error Address Register

80 320 MPUARO MPU Address Register region 0

81 324 MPUAR1 MPU Address Register region 1

82 328 MPUAR2 MPU Address Register region 2

83 332 MPUARS3 MPU Address Register region 3

84 336 MPUAR4 MPU Address Register region 4

85 340 MPUARS5 MPU Address Register region 5

86 344 MPUARG MPU Address Register region 6

87 348 MPUAR7 MPU Address Register region 7

88 352 MPUPSRO MPU Privilege Select Register region 0
89 356 MPUPSR1 MPU Privilege Select Register region 1
90 360 MPUPSR2 MPU Privilege Select Register region 2
91 364 MPUPSR3 MPU Privilege Select Register region 3

ATMEL 2

32058H-AVR32-03/09

9.4

94.1

32058H-AVR32-03/09

Table 9-3. System Registers (Continued)

Reg # Address Name Function

92 368 MPUPSR4 MPU Privilege Select Register region 4
93 372 MPUPSR5 MPU Privilege Select Register region 5
94 376 MPUPSR6 MPU Privilege Select Register region 6
95 380 MPUPSR7 MPU Privilege Select Register region 7
96 384 MPUCRA Unused in this version of AVR32UC

97 388 MPUCRB Unused in this version of AVR32UC

98 392 MPUBRA Unused in this version of AVR32UC

99 396 MPUBRB Unused in this version of AVR32UC
100 400 MPUAPRA MPU Access Permission Register A
101 404 MPUAPRB MPU Access Permission Register B
102 408 MPUCR MPU Control Register

103-191 412-764 Reserved Reserved for future use

192-255 768-1020 IMPL IMPLEMENTATION DEFINED

Exceptions and Interrupts

AVR32UC incorporates a powerful exception handling scheme. The different exception sources,
like lllegal Op-code and external interrupt requests, have different priority levels, ensuring a well-
defined behavior when multiple exceptions are received simultaneously. Additionally, pending
exceptions of a higher priority class may preempt handling of ongoing exceptions of a lower pri-
ority class.

When an event occurs, the execution of the instruction stream is halted, and execution control is
passed to an event handler at an address specified in Table 9-4 on page 32. Most of the han-
dlers are placed sequentially in the code space starting at the address specified by EVBA, with
four bytes between each handler. This gives ample space for a jump instruction to be placed
there, jumping to the event routine itself. A few critical handlers have larger spacing between
them, allowing the entire event routine to be placed directly at the address specified by the
EVBA-relative offset generated by hardware. All external interrupt sources have autovectored
interrupt service routine (ISR) addresses. This allows the interrupt controller to directly specify
the ISR address as an address relative to EVBA. The autovector offset has 14 address bits, giv-
ing an offset of maximum 16384 bytes. The target address of the event handler is calculated as
(EVBA | event_handler_offset), not (EVBA + event_handler_offset), so EVBA and exception
code segments must be set up appropriately. The same mechanisms are used to service all dif-
ferent types of events, including external interrupt requests, yielding a uniform event handling
scheme.

An interrupt controller does the priority handling of the external interrupts and provides the
autovector offset to the CPU.

System stack issues

Event handling in AVR32 UC uses the system stack pointed to by the system stack pointer,
SP_SYS, for pushing and popping R8-R12, LR, status register and return address. Since event
code may be timing-critical, SP_SYS should point to memory addresses in the IRAM section,
since the timing of accesses to this memory section is both fast and deterministic.

ATMEL 2

9.4.2

9.4.3

9.4.4

32058H-AVR32-03/09

The user must also make sure that the system stack is large enough so that any event is able to
push the required registers to stack. If the system stack is full, and an event occurs, the system
will enter an UNDEFINED state.

Exceptions and interrupt requests

When an event other than scall or debug request is received by the core, the following actions
are performed atomically:

1. The pending event will not be accepted if it is masked. The 13M, I12M, 11M, I0OM, EM and
GM bits in the Status Register are used to mask different events. Not all events can be
masked. A few critical events (NMI, Unrecoverable Exception, TLB Multiple Hit and Bus
Error) can not be masked. When an event is accepted, hardware automatically sets the
mask bits corresponding to all sources with equal or lower priority. This inhibits accep-
tance of other events of the same or lower priority, except for the critical events listed
above. Software may choose to clear some or all of these bits after saving the neces-
sary state if other priority schemes are desired. It is the event source’s responsability to
ensure that their events are left pending until accepted by the CPU.

2. When arequest is accepted, the Status Register and Program Counter of the current
context is stored to the system stack. If the eventis an INTO, INT1, INT2 or INT3, regis-
ters R8-R12 and LR are also automatically stored to stack. Storing the Status Register
ensures that the core is returned to the previous execution mode when the current
event handling is completed. When exceptions occur, both the EM and GM bits are set,
and the application may manually enable nested exceptions if desired by clearing the
appropriate bit. Each exception handler has a dedicated handler address, and this
address uniquely identifies the exception source.

3. The Mode bits are set to reflect the priority of the accepted event, and the correct regis-
ter file bank is selected. The address of the event handler, as shown in Table 9-4, is
loaded into the Program Counter.

The execution of the event handler routine then continues from the effective address calculated.

The rete instruction signals the end of the event. When encountered, the Return Status Register
and Return Address Register are popped from the system stack and restored to the Status Reg-
ister and Program Counter. If the rete instruction returns from INTO, INT1, INT2 or INTS3,
registers R8-R12 and LR are also popped from the system stack. The restored Status Register
contains information allowing the core to resume operation in the previous execution mode. This
concludes the event handling.

Supervisor calls

The AVR32 instruction set provides a supervisor mode call instruction. The scall instruction is
designed so that privileged routines can be called from any context. This facilitates sharing of
code between different execution modes. The scall mechanism is designed so that a minimal
execution cycle overhead is experienced when performing supervisor routine calls from time-
critical event handlers.

The scall instruction behaves differently depending on which mode it is called from. The behav-
iour is detailed in the instruction set reference. In order to allow the scall routine to return to the
correct context, a return from supervisor call instruction, rets, is implemented. In the AVR32UC
CPU, scall and rets uses the system stack to store the return address and the status register.

Debug requests

The AVR32 architecture defines a dedicated debug mode. When a debug request is received by
the core, Debug mode is entered. Entry into Debug mode can be masked by the DM bit in the

ATMEL L

status register. Upon entry into Debug mode, hardware sets the SR[D] bit and jumps to the
Debug Exception handler. By default, debug mode executes in the exception context, but with
dedicated Return Address Register and Return Status Register. These dedicated registers
remove the need for storing this data to the system stack, thereby improving debuggability. The
mode bits in the status register can freely be manipulated in Debug mode, to observe registers
in all contexts, while retaining full privileges.

Debug mode is exited by executing the retd instruction. This returns to the previous context.

9.4.5 Entry points for events

32058H-AVR32-03/09

Several different event handler entry points exists. In AVR32 UC, the reset address is
0x8000_0000. This places the reset address in the boot flash memory area.

TLB miss exceptions and scall have a dedicated space relative to EVBA where their event han-
dler can be placed. This speeds up execution by removing the need for a jump instruction placed
at the program address jumped to by the event hardware. All other exceptions have a dedicated
event routine entry point located relative to EVBA. The handler routine address identifies the
exception source directly.

AVR32UC uses the ITLB and DTLB protection exceptions to signal a MPU protection violation.
ITLB and DTLB miss exceptions are used to signal that an access address did not map to any of
the entries in the MPU. TLB multiple hit exception indicates that an access address did map to
multiple TLB entries, signalling an error.

All external interrupt requests have entry points located at an offset relative to EVBA. This
autovector offset is specified by an external Interrupt Controller. The programmer must make
sure that none of the autovector offsets interfere with the placement of other code. The autovec-
tor offset has 14 address bits, giving an offset of maximum 16384 bytes.

Special considerations should be made when loading EVBA with a pointer. Due to security con-
siderations, the event handlers should be located in non-writeable flash memory, or optionally in
a privileged memory protection region if an MPU is present.

If several events occur on the same instruction, they are handled in a prioritized way. The priority
ordering is presented in Table 9-4. If events occur on several instructions at different locations in
the pipeline, the events on the oldest instruction are always handled before any events on any
younger instruction, even if the younger instruction has events of higher priority than the oldest
instruction. An instruction B is younger than an instruction A if it was sent down the pipeline later
than A.

The addresses and priority of simultaneous events are shown in Table 9-4. Some of the excep-
tions are unused in AVR32 UC since it has no MMU, coprocessor interface or floating-point unit.

ATMEL 2

Table 9-4. Priority and handler addresses for events
Priority | Handler Address Name Event source Stored Return Address
1 0x8000_0000 Reset External input Undefined
2 Provided by OCD system OCD Stop CPU OCD system First non-completed instruction
3 EVBA+0x00 Unrecoverable exception Internal PC of offending instruction
4 EVBA+0x04 TLB multiple hit MPU
5 EVBA+0x08 Bus error data fetch Data bus First non-completed instruction
6 EVBA+0x0C Bus error instruction fetch Data bus First non-completed instruction
7 EVBA+0x10 NMI External input First non-completed instruction
8 Autovectored Interrupt 3 request External input First non-completed instruction
9 Autovectored Interrupt 2 request External input First non-completed instruction
10 Autovectored Interrupt 1 request External input First non-completed instruction
11 Autovectored Interrupt O request External input First non-completed instruction
12 EVBA+0x14 Instruction Address CPU PC of offending instruction
13 EVBA+0x50 ITLB Miss MPU
14 EVBA+0x18 ITLB Protection MPU PC of offending instruction
15 EVBA+0x1C Breakpoint OCD system First non-completed instruction
16 EVBA+0x20 lllegal Opcode Instruction PC of offending instruction
17 EVBA+0x24 Unimplemented instruction Instruction PC of offending instruction
18 EVBA+0x28 Privilege violation Instruction PC of offending instruction
19 EVBA+0x2C Floating-point UNUSED
20 EVBA+0x30 Coprocessor absent UNUSED
21 EVBA+0x100 Supervisor call Instruction PC(Supervisor Call) +2
22 EVBA+0x34 Data Address (Read) CPU PC of offending instruction
23 EVBA+0x38 Data Address (Write) CPU PC of offending instruction
24 EVBA+0x60 DTLB Miss (Read) MPU
25 EVBA+0x70 DTLB Miss (Write) MPU
26 EVBA+0x3C DTLB Protection (Read) MPU PC of offending instruction
27 EVBA+0x40 DTLB Protection (Write) MPU PC of offending instruction
28 EVBA+0x44 DTLB Modified UNUSED

32058H-AVR32-03/09

ATMEL

32

10. Memories

10.1 Embedded Memories

* Internal High-Speed Flash
— 512 KBytes (AT32UC3A0512, AT32UC3A1512)
— 256 KBytes (AT32UC3A0256, AT32UC3A1256)
— 128 KBytes (AT32UC3A1128, AT32UC3A2128)
- 0 Wait State Access at up to 33 MHz in Worst Case Conditions
- 1 Wait State Access at up to 66 MHz in Worst Case Conditions
- Pipelined Flash Architecture, allowing burst reads from sequential Flash locations, hiding
penalty of 1 wait state access
- Pipelined Flash Architecture typically reduces the cycle penalty of 1 wait state operation
to only 15% compared to 0 wait state operation
- 100 000 Write Cycles, 15-year Data Retention Capability
-4 ms Page Programming Time, 8 ms Chip Erase Time
- Sector Lock Capabilities, Bootloader Protection, Security Bit
- 32 Fuses, Erased During Chip Erase
- User Page For Data To Be Preserved During Chip Erase
* Internal High-Speed SRAM, Single-cycle access at full speed
— 64 KBytes (AT32UC3A0512, AT32UC3A0256, AT32UC3A1512, AT32UC3A1256)
— 32KBytes (AT32UC3A1128)

10.2 Physical Memory Map

The system bus is implemented as a bus matrix. All system bus addresses are fixed, and they
are never remapped in any way, not even in boot. Note that AVR32 UC CPU uses unsegmented
translation, as described in the AVR32 Architecture Manual. The 32-bit physical address space
is mapped as follows:

Table 10-1. AT32UC3A Physical Memory Map

Device Start Address Size

AT32UC3A0512 | AT32UC3A1512 | AT32UC3A0256 | AT32UC3A1256 | AT32UC3A0128 | AT32UC3A1128
Embedded SRAM | 0x0000_0000 64 Kbyte 64 Kbyte 64 Kbyte 64 Kbyte 32 Kbyte 32 Kbyte
Embedded Flash 0x8000_0000 | 512 Kbyte 512 Kbyte 256 Kbyte 256 Kbyte 128 Kbyte 128 Kbyte
EBI SRAM CSO 0xC000_0000 | 16 Mbyte - 16 Mbyte - 16 Mbyte -
EBI SRAM CS2 0xC800_0000 | 16 Mbyte - 16 Mbyte - 16 Mbyte -
EBI SRAM CS3 0xCC00_0000 | 16 Mbyte - 16 Mbyte - 16 Mbyte -
FS%SEG'\(@SCOQ 0xD000_0000 | 128 Mbyte | - 128 Mbyte - 128 Mbyte | -
USB. . OXE000_0000 | 64 Kbyte 64 Kbyte 64 Kbyte 64 Kbyte 64 Kbyte 64 Kbyte
Configuration
HSB-PB Bridge A | OxFFFE_0000 | 64 Kbyte 64 Kbyte 64 Kbyte 64 Kbyte 64 Kbyte 64 Kbyte
HSB-PB Bridge B | OxFFFF_0000 | 64 Kbyte 64 Kbyte 64 kByte 64 kByte 64 Kbyte 64 Kbyte

32058H-AVR32-03/09

ATMEL 5

Table 10-2. Flash Memory Parameters

General Purpose
Flash Size Number of pages Page size Fuse bits
Part Number (FLASH_PW) (FLASH_P) (FLASH_W) (FLASH_F)

AT32UC3A0512 512 Kbytes 1024 128 words 32 fuses
AT32UC3A1512 512 Kbytes 1024 128 words 32 fuses
AT32UC3A0256 256 Kbytes 512 128 words 32 fuses
AT32UC3A1256 256 Kbytes 512 128 words 32 fuses
AT32UC3A1128 128 Kbytes 256 128 words 32 fuses
AT32UC3A0128 128 Kbytes 256 128 words 32 fuses

10.3 Bus Matrix Connections

32058H-AVR32-03/09

Accesses to unused areas returns an error result to the master requesting such an access.

The bus matrix has the several masters and slaves. Each master has its own bus and its own
decoder, thus allowing a different memory mapping per master. The master number in the table
below can be used to index the HMATRIX control registers. For example, MCFGO is associated
with the CPU Data master interface.

Table 10-3. High Speed Bus masters

Master O CPU Data
Master 1 CPU Instruction
Master 2 CPU SAB
Master 3 PDCA

Master 4 MACB DMA
Master 5 USBB DMA

Each slave has its own arbiter, thus allowing a different arbitration per slave. The slave number
in the table below can be used to index the HMATRIX control registers. For example, SCFG3 is
associated with the Internal SRAM Slave Interface.

Table 10-4. High Speed Bus slaves

Slave 0 Internal Flash
Slave 1 HSB-PB Bridge 0
Slave 2 HSB-PB Bridge 1
Slave 3 Internal SRAM
Slave 4 USBB DPRAM
Slave 5 EBI

ATMEL o

Figure 10-1. HMatrix Master / Slave Connections

HMATRIX SLAVES
= =)
E o © oo - é é
< 2o | 3y | ©¢ %) &
© = o
g b2 | BT | a4 a w
@ I o I o 5 %)
= E >
1 2 3 4 5
CPU Data 0 >
CPU
! 1
Instruction
(%]
i
®
Z’ CPU SAB 2 @ @ >
=
x
= PDCA 3 >
<
=
I
MACB 4 >
USBBDMA | 5 @ O >

ATMEL 5

32058H-AVR32-03/09

11. Fuses Settings

The flash block contains a number of general purpose fuses. Some of these fuses have defined
meanings outside the flash controller and are described in this section.

The general purpose fuses are erase by a JTAG chip erase.

11.1 Flash General Purpose Fuse Register (FGPFRLO)

Table 11-1. FGPFR Register Description

31 30 29 28 27 26 25 24
R GPF30 GPF29 BODEN | BODHYST BODLEVEL[5:4] |
23 22 21 20 19 18 17 16
| BODLEVEL[3:0] BOOTPROT EPFL |
15 14 13 12 11 10 9 8
| LOCK([15:8] |
7 6 5 4 3 2 1 0
| LOCK[7:0] |

BODEN: Brown Out Detector Enable

Table 11-2. BODEN Field Description

BODEN Description

0x0 BOD disabled

0ox1 BOD enabled, BOD reset enabled
0x2 BOD enabled, BOD reset disabled
0x3 BOD disabled

BODHYST: Brown Out Detector Hysteresis

Table 11-3. BODEN Field Description
BODHYST Description
Ob The Brown out detector hysteresis is disabled

1b he Brown out detector hysteresis is enabled.

BODLEVEL: Brown Out Detector Trigger Level

This controls the voltage trigger level for the Brown out detector. Refer to sectionTable 38-6 on
page 765 for values description. If the BODLEVEL is set higher than VDDCORE and enabled by
fuses, the part will be in constant reset. To recover from this situation, apply an external voltage
on VDDCORE that is higher than the BOD level and disable the BOD.

ATMEL s

32058H-AVR32-03/09

LOCK, EPFL, BOOTPROT

These are Flash controller fuses and are described in the FLASHC section.

11.2 Default Fuse Value

The devices are shipped with the FGPFRLO register value: OXFCO7FFFF:

* GPF31 fuse set to 1b. This fuse is used by the pre-programmed USB bootloader.

* GPF30 fuse set to 1b. This fuse is used by the pre-programmed USB bootloader.

* GPF29 fuse set to 1b. This fuse is used by the pre-programmed USB bootloader.

* BODEN fuses set to 11b. BOD is disabled.

« BODHYST fuse set to 1b. The BOD hysteresis is enabled.

* BODLEVEL fuses set to 000000b. This is the minimum voltage trigger level for BOD.
« BOOTPROT fuses set to 011b. The bootloader protected size is 8 Ko.

» EPFL fuse set to 1b. External privileged fetch is not locked.

* LOCK fuses sett01111111111111111b. No region locked.

See also the AT32UC3A Bootloader user guide document.

After the JTAG chip erase command, the FGPFRLO register value is OXFFFFFFFF.

ATMEL o

32058H-AVR32-03/09

12. Peripherals

12.1 Peripheral address map
Table 12-1. Peripheral Address Mapping

Address
0xE0000000
USBB
OxFFFEOO000
USBB
OxFFFE1000
HMATRIX
OxFFFE1400
FLASHC
OxFFFE1800
MACB
OxFFFE1CO0
SMC
OxFFFE2000
SDRAMC
OxFFFF0000
PDCA
OxFFFF0800
INTC
OxFFFFOCO00
PM
OxFFFFODOO
RTC
OxFFFFOD30
WDT
OxFFFFOD80
EIC
OxFFFF1000
GPIO
OxFFFF1400
USARTO
OxFFFF1800
USART1

32058H-AVR32-03/09

Peripheral Name

USBB Slave Interface - USBB

USBB Configuration Interface - USBB

HMATRIX Configuration Interface - HMATRIX

Flash Controller - FLASHC

MACB Configuration Interface - MACB

Static Memory Controller Configuration Interface -
SMC

SDRAM Controller Configuration Interface -
SDRAMC

Peripheral DMA Interface - PDCA

Interrupt Controller Interface - INTC

Power Manager - PM

Real Time Clock - RTC

WatchDog Timer - WDT

External Interrupt Controller - EIC

General Purpose 10 Controller - GPIO

Universal Synchronous Asynchronous Receiver
Transmitter - USARTO

Universal Synchronous Asynchronous Receiver
Transmitter - USART1

ATMEL

Bus

HSB

PBB

PBB

PBB

PBB

PBB

PBB

PBA

PBA

PBA

PBA

PBA

PBA

PBA

PBA

PBA

38

Table 12-1. Peripheral Address Mapping (Continued)

Address Peripheral Name Bus
OxFFFF1C00 Universal Synchronous Asynchronous Receiver
USART2 Transmitter - USART2 PBA
OxFFFF2000 Universal Synchronous Asynchronous Receiver
USARTS3 Transmitter - USART3 PBA
OxFFFF2400 _ _
SPIO Serial Peripheral Interface - SPIO PBA
OxFFFF2800 . ,
SPI1 Serial Peripheral Interface - SPI1 PBA
0xFFFF2C00 i
TWI Two Wire Interface - TWI PBA
OxFFFF3000] _
PWM Pulse Width Modulation Controller - PWM PBA
OxFFFF3400 .
SsC Synchronous Serial Controller - SSC PBA
OxFFFF3800 .
TC Timer/Counter - TC PBA
OXxFFFF3C00 o
ADC Analog To Digital Converter - ADC PBA

12.2 CPU Local Bus Mapping

32058H-AVR32-03/09

Some of the registers in the GPIO module are mapped onto the CPU local bus, in addition to
being mapped on the Peripheral Bus. These registers can therefore be reached both by
accesses on the Peripheral Bus, and by accesses on the local bus.

Mapping these registers on the local bus allows cycle-deterministic toggling of GPIO pins since
the CPU and GPIO are the only modules connected to this bus. Also, since the local bus runs at
CPU speed, one write or read operation can be performed per clock cycle to the local bus-
mapped GPIO registers.

ATMEL s

The following GPIO registers are mapped on the local bus:

Table 12-2. Local bus mapped GPIO registers

Local Bus

Port Register Mode Address Access
0 Output Driver Enable Register (ODER) WRITE 0x4000_0040 Write-only
SET 0x4000_0044 Write-only
CLEAR 0x4000_0048 Write-only
TOGGLE 0x4000_004C Write-only
Output Value Register (OVR) WRITE 0x4000_0050 Write-only
SET 0x4000_0054 Write-only
CLEAR 0x4000_0058 Write-only
TOGGLE 0x4000_005C Write-only
Pin Value Register (PVR) - 0x4000_0060 Read-only
1 Output Driver Enable Register (ODER) WRITE 0x4000_0140 Write-only
SET 0x4000_0144 Write-only
CLEAR 0x4000_0148 Write-only
TOGGLE 0x4000_014C Write-only
Output Value Register (OVR) WRITE 0x4000_0150 Write-only
SET 0x4000_0154 Write-only
CLEAR 0x4000_0158 Write-only
TOGGLE 0x4000_015C Write-only
Pin Value Register (PVR) - 0x4000_0160 Read-only
2 Output Driver Enable Register (ODER) WRITE 0x4000_0240 Write-only
SET 0x4000_0244 Write-only
CLEAR 0x4000_0248 Write-only
TOGGLE 0x4000_024C Write-only
Output Value Register (OVR) WRITE 0x4000_0250 Write-only
SET 0x4000_0254 Write-only
CLEAR 0x4000_0258 Write-only
TOGGLE 0x4000_025C Write-only
Pin Value Register (PVR) - 0x4000_0260 Read-only

ATMEL i

32058H-AVR32-03/09

12.3

Table 12-2. Local bus mapped GPIO registers
Local Bus

Port Register Mode Address Access
3 Output Driver Enable Register (ODER) WRITE 0x4000_0340 Write-only
SET 0x4000_0344 Write-only
CLEAR 0x4000_0348 Write-only
TOGGLE 0x4000_034C Write-only
Output Value Register (OVR) WRITE 0x4000_0350 Write-only
SET 0x4000_0354 Write-only
CLEAR 0x4000_0358 Write-only
TOGGLE 0x4000_035C Write-only
Pin Value Register (PVR) - 0x4000_0360 Read-only

Interrupt Request Signal Map

The various modules may output Interrupt request signals. These signals are routed to the Inter-
rupt Controller (INTC), described in a later chapter. The Interrupt Controller supports up to 64
groups of interrupt requests. Each group can have up to 32 interrupt request signals. All interrupt
signals in the same group share the same autovector address and priority level. Refer to the
documentation for the individual submodules for a description of the semantics of the different

interrupt requests.

The interrupt request signals are connected to the INTC as follows.

Table 12-3. Interrupt Request Signal Map
Group Line Module Signal
0 0 AVRSZ UC CPU with optional MPU and SYSBLOCK
optional OCD COMPARE
0 External Interrupt Controller EICO
1 External Interrupt Controller EIC1
2 External Interrupt Controller EIC 2
3 External Interrupt Controller EIC 3
4 External Interrupt Controller EIC 4
1 5 External Interrupt Controller EIC5
6 External Interrupt Controller EIC 6
7 External Interrupt Controller EIC7
8 Real Time Counter RTC
9 Power Manager PM
10 Frequency Meter FREQM

32058H-AVR32-03/09

ATMEL

41

Table 12-3. Interrupt Request Signal Map

0 General Purpose Input/Output GPIO 0O
1 General Purpose Input/Output GPIO 1
2 General Purpose Input/Output GPIO 2
3 General Purpose Input/Output GPIO 3
4 General Purpose Input/Output GPIO 4
5 General Purpose Input/Output GPIO 5
6 General Purpose Input/Output GPIO 6
2 7 General Purpose Input/Output GPIO 7
8 General Purpose Input/Output GPIO 8
9 General Purpose Input/Output GPIO 9
10 General Purpose Input/Output GPIO 10
11 General Purpose Input/Output GPIO 11
12 General Purpose Input/Output GPIO 12
13 General Purpose Input/Output GPIO 13
0 Peripheral DMA Controller PDCAO
1 Peripheral DMA Controller PDCA 1
2 Peripheral DMA Controller PDCA 2
3 Peripheral DMA Controller PDCA 3
4 Peripheral DMA Controller PDCA 4
5 Peripheral DMA Controller PDCAS5
6 Peripheral DMA Controller PDCA 6
3 7 Peripheral DMA Controller PDCA 7
8 Peripheral DMA Controller PDCA 8
9 Peripheral DMA Controller PDCA 9
10 Peripheral DMA Controller PDCA 10
11 Peripheral DMA Controller PDCA 11
12 Peripheral DMA Controller PDCA 12
13 Peripheral DMA Controller PDCA 13
14 Peripheral DMA Controller PDCA 14
4 0 Flash Controller FLASHC
5 0 Unive_rsal Synchr_onous/Asynchronous USARTO
Receiver/Transmitter
6 0 Univgrsal Synchrpnous/Asynchronous USART1
Receiver/Transmitter
7 0 Unive_rsal Synchr_onous/Asynchronous USART?2
Receiver/Transmitter
8 0 Unive_rsal Synchr_onous/Asynchronous USART3
Receiver/Transmitter

ATMEL i

32058H-AVR32-03/09

Table 12-3. Interrupt Request Signal Map
9 0 Serial Peripheral Interface SPIO
10 0 Serial Peripheral Interface SPI1
11 0 Two-wire Interface TWI
12 0 Pulse Width Modulation Controller PWM
13 0 Synchronous Serial Controller SSC
0 Timer/Counter TCO
14 1 Timer/Counter TC1
2 Timer/Counter TC2
15 0 Analog to Digital Converter ADC
16 0 Ethernet MAC MACB
17 0 USB 2.0 OTG Interface USBB
18 0 SDRAM Controller SDRAMC
19 0 Audio Bitstream DAC DAC

12.4 Clock Connections

124.1 Timer/Counters
Each Timer/Counter channel can independently select an internal or external clock source for its
counter:
Table 12-4. Timer/Counter clock connections
Source Name Connection
Internal TIMER_CLOCK1 32 KHz Oscillator
TIMER_CLOCK2 PBA clock / 2
TIMER_CLOCKS3 PBA clock / 8
TIMER_CLOCK4 PBA clock / 32
TIMER_CLOCK5 PBA clock / 128
External XCO0 See Section 12.7
XC1
XC2
12.4.2 USARTs

Each USART can be connected to an internally divided clock:

Table 12-5. USART clock connections
USART Source Name Connection
0 Internal CLK_DIV PBA clock / 8
1
2
3

32058H-AVR32-03/09

ATMEL

43

12.4.3 SPIs

Each SPI can be connected to an internally divided clock:

Table 12-6. SPI clock connections
SPI Source Name Connection
0 Internal CLK_DIV PBA clock or
1 PBA clock / 32

12.5 Nexus OCD AUX port connections

If the OCD trace system is enabled, the trace system will take control over a number of pins, irre-
spectively of the PIO configuration. Two different OCD trace pin mappings are possible,
depending on the configuration of the OCD AXS register. For details, see the AVR32 UC Tech-
nical Reference Manual.

Table 12-7. Nexus OCD AUX port connections
Pin AXS=0 AXS=1
EVTI_N PB19 PAO8
MDOJ[5] PB16 PA27
MDOI[4] PB14 PA26
MDOI[3] PB13 PA25
MDOJ2] PB12 PA24
MDOJ[1] PB11 PA23
MDOI[0] PB10 PA22
EVTO_N PB20 PB20
MCKO PB21 PA21
MSEO[1] PB0O4 PAO7
MSEOI[0] PB17 PA28

12.6 PDC handshake signals

The PDC and the peripheral modules communicate through a set of handshake signals. The fol-
lowing table defines the valid settings for the Peripheral Identifier (PID) in the PDC Peripheral
Select Register (PSR).

Table 12-8. PDC Handshake Signals
PID Value Peripheral module & direction
0 ADC
1 SSC - RX
2 USARTO - RX
3 USART1 - RX

32058H-AVR32-03/09

ATMEL

44

Table 12-8. PDC Handshake Signals
PID Value Peripheral module & direction
4 USART2 - RX
5 USART3 - RX
6 TWI - RX
7 SPIO - RX
8 SPI1 - RX
9 SSC-TX
10 USARTO - TX
11 USART1 - TX
12 USART2 - TX
13 USART3 - TX
14 TWI - TX
15 SPIO - TX
16 SPI1-TX
17 ABDAC

12.7 Peripheral Multiplexing on 1/O lines

Each GPIO line can be assigned to one of 3 peripheral functions; A, B or C. The following table
define how the I/O lines on the peripherals A, B and C are multiplexed by the GPIO.

Table 12-9. GPIO Controller Function Multiplexing
TQFP100 VQFP144 PIN GPIO Pin Function A Function B Function C
19 25 PAQO GPIO O USARTO - RXD TC - CLKO
20 27 PAO1 GPIO 1 USARTO - TXD TC - CLK1
23 30 PA02 GPIO 2 USARTO - CLK TC-CLK2
24 32 PAO3 GPIO 3 USARTO - RTS EIM - EXTINT[4] DAC - DATA[0]
25 34 PA04 GPIO 4 USARTO - CTS EIM - EXTINT[5] DAC - DATANI0]
26 39 PAO5 GPIO 5 USART1 - RXD PWM - PWM[4]
27 41 PA06 GPIO 6 USART1 - TXD PWM - PWM[S5]
28 43 PAO7 GPIO 7 USARTL1 - CLK PM - GCLK]0] SPIO - NPCS[3]
29 45 PAO8 GPIO 8 USART1 - RTS SPIO0 - NPCS[1] EIM - EXTINT[7]
30 47 PA09 GPIO 9 USART1 - CTS SPIO - NPCS[2] MACB - WOL
31 48 PA10 GPIO 10 SPIO - NPCS[0] EIM - EXTINT[6]
33 50 PA11 GPIO 11 SPIO - MISO USB - USB_ID
36 53 PA12 GPIO 12 SPIO - MOSI USB - USB_VBOF
37 54 PA13 GPIO 13 SPIO0 - SCK
39 56 PAl4 GPIO 14 SSC - SPI1 - NPCS[0] EBI - NCSI[0]
TX_FRAME_SYNC
40 57 PA15 GPIO 15 SSC - TX_CLOCK SPI1 - SCK EBI - ADDR[20]

32058H-AVR32-03/09

ATMEL

45

Table 12-9. GPIO Controller Function Multiplexing
41 58 PA16 GPIO 16 SSC - TX_DATA SPI1 - MOSI EBI - ADDR[21]
42 60 PAL7 GPIO 17 SSC - RX_DATA SPI1 - MISO EBI - ADDR[22]
43 62 PA18 GPIO 18 SSC - RX_CLOCK SPI1 - NPCS[1] MACB - WOL
44 64 PA19 GPIO 19 SSC - SPI1 - NPCS[2]
RX_FRAME_SYNC
45 66 PA20 GPIO 20 EIM - EXTINT[8] SPI1 - NPCS[3]
51 73 PA21 GPIO 21 ADC - AD[0] EIM - EXTINT[O] USB - USB_ID
52 74 PA22 GPIO 22 ADC - AD[1] EIM - EXTINT[1] USB - USB_VBOF
53 75 PA23 GPIO 23 ADC - AD[2] EIM - EXTINT[2] DAC - DATA[1]
54 76 PA24 GPIO 24 ADC - AD[3] EIM - EXTINT[3] DAC - DATAN[1]
55 77 PA25 GPIO 25 ADC - AD[4] EIM - SCANI0] EBI - NCSJ[(]
56 78 PA26 GPIO 26 ADC - AD[5] EIM - SCAN[1] EBI - ADDR[20]
57 79 PA27 GPIO 27 ADC - AD[6] EIM - SCAN[2] EBI - ADDR[21]
58 80 PA28 GPIO 28 ADC - AD[7] EIM - SCANI3] EBI - ADDR[22]
83 122 PA29 GPIO 29 TWI - SDA USART2 - RTS
84 123 PA30 GPIO 30 TWI - SCL USART2 - CTS
65 88 PBO00 GPIO 32 MACB - TX_CLK USART2 - RTS USART3 - RTS
66 90 PBO1 GPIO 33 MACB - TX_EN USART2 - CTS USART3 - CTS
70 96 PBO02 GPIO 34 MACB - TXDI[0] DAC - DATA[0]
71 98 PBO3 GPIO 35 MACB - TXD[1] DAC - DATANI0]
72 100 PBO4 GPIO 36 MACB - CRS USART3 - CLK EBI - NCSJ[3]
73 102 PBO5 GPIO 37 MACB - RXD[0] DAC - DATA[1]
74 104 PBO6 GPIO 38 MACB - RXDI[1] DAC - DATAN[1]
75 106 PBO7 GPIO 39 MACB - RX_ER
76 111 PB08 GPIO 40 MACB - MDC
77 113 PBO09 GPIO 41 MACB - MDIO
78 115 PB10 GPIO 42 MACB - TXD[2] USART3 - RXD EBI - SDCK
81 119 PB11 GPIO 43 MACB - TXD[3] USART3 - TXD EBI - SDCKE
82 121 PB12 GPIO 44 MACB - TX_ER TC - CLKO EBI - RAS
87 126 PB13 GPIO 45 MACB - RXD[2] TC - CLK1 EBI - CAS
88 127 PB14 GPIO 46 MACB - RXD[3] TC - CLK2 EBI - SDWE
95 134 PB15 GPIO 47 MACB - RX_DV
96 136 PB16 GPIO 48 MACB - COL USB - USB_ID EBI - SDA10
98 139 PB17 GPIO 49 MACB - RX_CLK USB - USB_VBOF EBI - ADDR[23]
99 141 PB18 GPIO 50 MACB - SPEED ADC - TRIGGER PWM - PWM[6]
100 143 PB19 GPIO 51 PWM - PWMI0] PM - GCLK]0] EIM - SCAN[4]
1 3 PB20 GPIO 52 PWM - PWM[1] PM - GCLK][1] EIM - SCANI[S5]
2 5 PB21 GPIO 53 PWM - PWM[2] PM - GCLK][2] EIM - SCAN[6]
3 6 PB22 GPIO 54 PWM - PWM[3] PM - GCLK]3] EIM - SCAN[7]
6 9 PB23 GPIO 55 TC-A0 USART1 - DCD

32058H-AVR32-03/09

ATMEL

46

Table 12-9. GPIO Controller Function Multiplexing
7 11 PB24 GPIO 56 TC-BO USART1 - DSR
8 13 PB25 GPIO 57 TC-Al USARTL - DTR
9 14 PB26 GPIO 58 TC-B1 USARTL1 - Rl
10 15 PB27 GPIO 59 TC-A2 PWM - PWM[4]
14 19 PB28 GPIO 60 TC-B2 PWM - PWM[5]
15 20 PB29 GPIO 61 USART2 - RXD PM - GCLKI[1] EBI - NCS[2]
16 21 PB30 GPIO 62 USART2 - TXD PM - GCLK[2] EBI - SDCS
17 22 PB31 GPIO 63 USART2 - CLK PM - GCLKI3] EBI - NWAIT
63 85 PC00 GPIO 64
64 86 pPCO1 GPIO 65
85 124 PCO02 GPIO 66
86 125 PC03 GPIO 67
93 132 PC04 GPIO 68
94 133 PC05 GPIO 69
1 PX00 GPIO 100 EBI - DATA[10] USARTO - RXD
2 PX01 GPIO 99 EBI - DATA[9] USARTO - TXD
4 PX02 GPIO 98 EBI - DATA[8] USARTO - CTS
10 PX03 GPIO 97 EBI - DATA[7] USARTO - RTS
12 PX04 GPIO 96 EBI - DATA[6] USART1 - RXD
24 PX05 GPIO 95 EBI - DATA[5] USART1 - TXD
26 PX06 GPIO 94 EBI - DATA[4] USART1 - CTS
31 PX07 GPIO 93 EBI - DATA[3] USART1 - RTS
33 PX08 GPIO 92 EBI - DATA[2] USARTS3 - RXD
35 PX09 GPIO 91 EBI - DATA[1] USART3 - TXD
38 PX10 GPIO 90 EBI - DATA[0] USART2 - RXD
40 PX11 GPIO 109 EBI - NWE1 USART2 - TXD
42 PX12 GPIO 108 EBI - NWEO USART2 - CTS
44 PX13 GPIO 107 EBI - NRD USART2 - RTS
46 PX14 GPIO 106 EBI - NCSJ[1] TC- A0
59 PX15 GPIO 89 EBI - ADDR[19] USART3 - RTS TC-BO
61 PX16 GPIO 88 EBI - ADDR[18] USART3 - CTS TC-Al
63 PX17 GPIO 87 EBI - ADDR[17] TC-B1
65 PX18 GPIO 86 EBI - ADDR[16] TC- A2
67 PX19 GPIO 85 EBI - ADDR[15] EIM - SCANIQ] TC-B2
87 PX20 GPIO 84 EBI - ADDR[14] EIM - SCAN[1] TC - CLKO
89 PX21 GPIO 83 EBI - ADDR[13] EIM - SCAN|[2] TC - CLK1
91 PX22 GPIO 82 EBI - ADDR[12] EIM - SCAN[3] TC - CLK2
95 PX23 GPIO 81 EBI - ADDR[11] EIM - SCAN[4]
97 PX24 GPIO 80 EBI - ADDR[10] EIM - SCAN[5]

32058H-AVR32-03/09

ATMEL

47

Table 12-9. GPIO Controller Function Multiplexing
99 PX25 GPIO 79 EBI - ADDRI[9] EIM - SCANI6]
101 PX26 GPIO 78 EBI - ADDRI[8] EIM - SCAN[7]
103 PX27 GPIO 77 EBI - ADDR([7] SPIO - MISO
105 PX28 GPIO 76 EBI - ADDRI6] SPIO - MOSI
107 PX29 GPIO 75 EBI - ADDRJ[5] SPIO - SCK
110 PX30 GPIO 74 EBI - ADDR[4] SPIO0 - NPCS[0]
112 PX31 GPIO 73 EBI - ADDR[3] SPI0 - NPCS[1]
114 PX32 GPIO 72 EBI - ADDR][2] SPIO - NPCS[2]
118 PX33 GPIO 71 EBI - ADDRJ[1] SPIO0 - NPCS[3]
120 PX34 GPIO 70 EBI - ADDRI[0] SPI1 - MISO
135 PX35 GPIO 105 EBI - DATA[15] SPI1 - MOSI
137 PX36 GPIO 104 EBI - DATA[14] SPI1 - SCK
140 PX37 GPIO 103 EBI - DATA[13] SPI1 - NPCSI0]
142 PX38 GPIO 102 EBI - DATA[12] SPI1 - NPCS[1]
144 PX39 GPIO 101 EBI - DATA[11] SPI1 - NPCS[2]

12.8 Oscillator Pinout

The oscillators are not mapped to the normal A,B or C functions and their muxings are controlled
by registers in the Power Manager (PM). Please refer to the power manager chapter for more
information about this.

Table 12-10. Oscillator pinout

TQFP100 pin VQFP144 pin Pad Oscillator pin
85 124 PCO02 xin0
93 132 PCO04 xinl
63 85 PCO00 xin32
86 125 PCO3 xout0
94 133 PCO05 xoutl
64 86 PCO1 xout32
12.9 USART Configuration
Table 12-11. USART Supported Mode
SPI RS485 1ISO7816 IrDA Modem Mé‘:;:;itger
USARTO Yes No No No No No
USART1 Yes Yes Yes Yes Yes Yes
USART2 Yes No No No No No
USART3 Yes No No No No No

ATMEL i

32058H-AVR32-03/09

12.10 GPIO

The GPIO open drain feature (GPIO ODMER register (Open Drain Mode Enable Register)) is
not available for this device.

12.11 Peripheral overview

12.11.1 External Bus Interface

Optimized for Application Memory Space support
Integrates Two External Memory Controllers:
— Static Memory Controller
— SDRAM Controller
Optimized External Bus:
— 16-bit Data Bus
— 24-bit Address Bus, Up to 16-Mbytes Addressable
— Optimized pin multiplexing to reduce latencies on External Memories
4 SRAM Chip Selects, 1ISDRAM Chip Select:
— Static Memory Controller on NCSO
— SDRAM Controller or Static Memory Controller on NCS1
— Static Memory Controller on NCS2
— Static Memory Controller on NCS3

12.11.2 Static Memory Controller

4 Chip Selects Available

64-Mbyte Address Space per Chip Select

8-, 16-bit Data Bus

Word, Halfword, Byte Transfers

Byte Write or Byte Select Lines

Programmable Setup, Pulse And Hold Time for Read Signals per Chip Select
Programmable Setup, Pulse And Hold Time for Write Signals per Chip Select
Programmable Data Float Time per Chip Select

Compliant with LCD Module

External Wait Request

Automatic Switch to Slow Clock Mode

Asynchronous Read in Page Mode Supported: Page Size Ranges from 4 to 32 Bytes

12.11.3 SDRAM Controller

32058H-AVR32-03/09

Numerous Configurations Supported
— 2K, 4K, 8K Row Address Memory Parts
— SDRAM with Two or Four Internal Banks
— SDRAM with 16-bit Data Path
Programming Facilities
— Word, Half-word, Byte Access
— Automatic Page Break When Memory Boundary Has Been Reached
— Multibank Ping-pong Access
— Timing Parameters Specified by Software
— Automatic Refresh Operation, Refresh Rate is Programmable
Energy-saving Capabilities
— Self-refresh, Power-down and Deep Power Modes Supported

ATMEL i

— Supports Mobile SDRAM Devices
e Error Detection
— Refresh Error Interrupt
* SDRAM Power-up Initialization by Software
e CAS Latency of 1, 2, 3 Supported
* Auto Precharge Command Not Used
12.11.4 USB Controller

e USB 2.0 Compliant, Full-/Low-Speed (FS/LS) and On-The-Go (OTG), 12 Mbit/s
* 7 Pipes/Endpoints
* 960 bytes of Embedded Dual-Port RAM (DPRAM) for Pipes/Endpoints
* Up to 2 Memory Banks per Pipe/Endpoint (Not for Control Pipe/Endpoint)
* Flexible Pipe/Endpoint Configuration and Management with Dedicated DMA Channels
* On-Chip Transceivers Including Pull-Ups
12.11.5 Serial Peripheral Interface

e Supports communication with serial external devices
— Four chip selects with external decoder support allow communication with up to 15
peripherals
— Serial memories, such as DataFlash and 3-wire EEPROMs
— Serial peripherals, such as ADCs, DACs, LCD Controllers, CAN Controllers and Sensors
— External co-processors
* Master or slave serial peripheral bus interface
— 8- to 16-bit programmable data length per chip select
— Programmable phase and polarity per chip select
— Programmable transfer delays between consecutive transfers and between clock and data
per chip select
— Programmable delay between consecutive transfers
— Selectable mode fault detection
* Very fast transfers supported
— Transfers with baud rates up to Peripheral Bus A (PBA) max frequency
— The chip select line may be left active to speed up transfers on the same device
12.11.6 Two-wire Interface

* High speed up to 400kbit/s
* Compatibility with standard two-wire serial memory
* One, two or three bytes for slave address
* Sequential read/write operations
12.11.7 USART

* Programmable Baud Rate Generator

e 5-t0 9-bit full-duplex synchronous or asynchronous serial communications
1, 1.5 or 2 stop bits in Asynchronous Mode or 1 or 2 stop bits in Synchronous Mode
— Parity generation and error detection

Framing error detection, overrun error detection

MSB- or LSB-first

Optional break generation and detection

By 8 or by-16 over-sampling receiver frequency

Hardware handshaking RTS-CTS

Receiver time-out and transmitter timeguard

Optional Multi-drop Mode with address generation and detection

ATMEL s

32058H-AVR32-03/09

— Optional Manchester Encoding
RS485 with driver control signal
1ISO7816, T =0 or T =1 Protocols for interfacing with smart cards
— NACK handling, error counter with repetition and iteration limit
IrDA modulation and demodulation
— Communication at up to 115.2 Kbps
Test Modes
— Remote Loopback, Local Loopback, Automatic Echo
SPI Mode
— Master or Slave
— Serial Clock Programmable Phase and Polarity
— SPI Serial Clock (SCK) Frequency up to Internal Clock Frequency PBA/4
Supports Connection of Two Peripheral DMA Controller Channels (PDC)
— Offers Buffer Transfer without Processor Intervention

12.11.8 Serial Synchronous Controller

12.11.9 Timer Counter

Provides serial synchronous communication links used in audio and telecom applications (with
CODECs in Master or Slave Modes, 12S, TDM Buses, Magnetic Card Reader, etc.)

Contains an independent receiver and transmitter and a common clock divider

Offers a configurable frame sync and data length

Receiver and transmitter can be programmed to start automatically or on detection of different
event on the frame sync signal

Receiver and transmitter include a data signal, a clock signal and a frame synchronization signal

Three 16-bit Timer Counter Channels
Wide range of functions including:
— Frequency Measurement
— Event Counting
Interval Measurement
Pulse Generation
Delay Timing
Pulse Width Modulation
Up/down Capabilities
Each channel is user-configurable and contains:
— Three external clock inputs
— Five internal clock inputs
— Two multi-purpose input/output signals
Two global registers that act on all three TC Channels

12.11.10 Pulse Width Modulation Controller

32058H-AVR32-03/09

7 channels, one 20-bit counter per channel
Common clock generator, providing Thirteen Different Clocks
— A Modulo n counter providing eleven clocks
— Two independent Linear Dividers working on modulo n counter outputs
Independent channel programming
Independent Enable Disable Commands
Independent Clock
Independent Period and Duty Cycle, with Double Bufferization
Programmable selection of the output waveform polarity
— Programmable center or left aligned output waveform

ATMEL 2

12.11.11 Ethernet 10/200 MAC

* Compatibility with IEEE Standard 802.3
* 10 and 100 Mbits per second data throughput capability
¢ Full- and half-duplex operations
* MIl or RMIl interface to the physical layer
* Register Interface to address, data, status and control registers
* DMA Interface, operating as a master on the Memory Controller
* Interrupt generation to signal receive and transmit completion
e 28-byte transmit and 28-byte receive FIFOs
e Automatic pad and CRC generation on transmitted frames
* Address checking logic to recognize four 48-bit addresses
e Support promiscuous mode where all valid frames are copied to memory
* Support physical layer management through MDIO interface control of alarm and update
time/calendar data
12.11.12 Audio Bitstream DAC

* Digital Stereo DAC
* Oversampled D/A conversion architecture
— Oversampling ratio fixed 128x
— FIR equalization filter
— Digital interpolation filter: Comb4
— 3rd Order Sigma-Delta D/A converters
* Digital bitstream outputs
* Parallel interface
* Connected to Peripheral DMA Controller for background transfer without CPU intervention

ATMEL 52

32058H-AVR32-03/09

13. Power Manager (PM)

13.1 Features

13.2 Description

32058H-AVR32-03/09

Rev: 2.0.0.1

* Controls integrated oscillators and PLLs

* Generates clocks and resets for digital logic

e Supports 2 crystal oscillators 450 kHz-16 MHz

e Supports 2 PLLs 80-240 MHz

e Supports 32 KHz ultra-low power oscillator

* Integrated low-power RC oscillator

* On-the fly frequency change of CPU, HSB, PBA, and PBB clocks

* Sleep modes allow simple disabling of logic clocks, PLLs, and oscillators

* Module-level clock gating through maskable peripheral clocks

* Wake-up from internal or external interrupts

* Generic clocks with wide frequency range provided

e Automatic identification of reset sources

* Controls brownout detector (BOD), RC oscillator, and bandgap voltage reference through control
and calibration registers

The Power Manager (PM) controls the oscillators and PLLs, and generates the clocks and
resets in the device. The PM controls two fast crystal oscillators, as well as two PLLs, which can
multiply the clock from either oscillator to provide higher frequencies. Additionally, a low-power
32 KHz oscillator is used to generate the real-time counter clock for high accuracy real-time
measurements. The PM also contains a low-power RC oscillator with fast start-up time, which
can be used to clock the digital logic.

The provided clocks are divided into synchronous and generic clocks. The synchronous clocks
are used to clock the main digital logic in the device, namely the CPU, and the modules and
peripherals connected to the HSB, PBA, and PBB buses. The generic clocks are asynchronous
clocks, which can be tuned precisely within a wide frequency range, which makes them suitable
for peripherals that require specific frequencies, such as timers and communication modules.

The PM also contains advanced power-saving features, allowing the user to optimize the power
consumption for an application. The synchronous clocks are divided into three clock domains,
one for the CPU and HSB, one for modules on the PBA bus, and one for modules on the PBB
bus.The three clocks can run at different speeds, so the user can save power by running periph-
erals at a relatively low clock, while maintaining a high CPU performance. Additionally, the
clocks can be independently changed on-the-fly, without halting any peripherals. This enables
the user to adjust the speed of the CPU and memories to the dynamic load of the application,
without disturbing or re-configuring active peripherals.

Each module also has a separate clock, enabling the user to switch off the clock for inactive
modules, to save further power. Additionally, clocks and oscillators can be automatically
switched off during idle periods by using the sleep instruction on the CPU. The system will return
to normal on occurrence of interrupts.

The Power Manager also contains a Reset Controller, which collects all possible reset sources,
generates hard and soft resets, and allows the reset source to be identified by software.

ATMEL 5

13.3 Block Diagram

32058H-AVR32-03/09

-§-Voltage Regulator=—

Calibration

fuses—m] .
Registers

A\
Brown-Out

Interrupts—p=|

Detector

Power-On

.
-

Detector

A
__ Otherreset

sources

\ 4
Oscillator and Startup
PLL Control Counter
A
Sleep
Sleep Controller e— = -t —
Reset Controller resets—

External Reset Pad x

Figure 13-1. Power Manager block diagram

ATMEL

» Synchronous
RCOSC | Synchronous | " clocks
~ | Clock Generator CPU, HSB,
—| PBA, PBB
Oscillator 0 -
> PLLO
Oscillator 1 » PLL1
L]
Generic Clock
—Generic clocks#m
> Generator
32 'KHZ | 32 KHzclock__
Oscillator for RTC
OSC/PLL
Control signals _ RC
| Oscillator

—Slow cloCck———»

54

13.4 Product Dependencies

13.4.1

13.4.2

13.4.3

13.5

1351

13.5.2

I/O Lines

Interrupt

The PM provides a number of generic clock outputs, which can be connected to output pins,
multiplexed with GPIO lines. The programmer must first program the GPIO controller to assign
these pins to their peripheral function. If the I/O pins of the PM are not used by the application,
they can be used for other purposes by the GPIO controller.

The PM interrupt line is connected to one of the internal sources of the interrupt controller. Using
the PM interrupt requires the interrupt controller to be programmed first.

Clock implementation

In AT32UCS3A, the HSB shares the source clock with the CPU. This means that writing to the
HSBDIV and HSBSEL bits in CKSEL has no effect. These bits will always read the same as
CPUDIV and CPUSEL.

Functional Description

Slow clock

The slow clock is generated from an internal RC oscillator which is always running, except in
Static mode. The slow clock can be used for the main clock in the device, as described in "Syn-
chronous clocks” on page 58. The slow clock is also used for the Watchdog Timer and
measuring various delays in the Power Manager.

The RC oscillator has a 3 cycles startup time, and is always available when the CPU is running.
The RC oscillator operates at approximately 115 kHz, and can be calibrated to a narrow range
by the RCOSCCAL fuses. Software can also change RC oscillator calibration through the use of
the RCCR register. Please see the Electrical Characteristics section for details.

RC oscillator can also be used as the RTC clock when crystal accuracy is not required.

Oscillator 0 and 1 operation

32058H-AVR32-03/09

The two main oscillators are designed to be used with an external 450 kHz to 16 MHz crystal
and two biasing capacitors, as shown in Figure 13-2. Oscillator O can be used for the main clock
in the device, as described in "Synchronous clocks” on page 58. Both oscillators can be used as
source for the generic clocks, as described in "Generic clocks” on page 61.

The oscillators are disabled by default after reset. When the oscillators are disabled, the XIN and
XOUT pins can be used as general purpose 1/0s. When the oscillators are configured to use an
external clock, the clock must be applied to the XIN pin while the XOUT pin can be used as a
general purpose /0.

The oscillators can be enabled by writing to the OSCnEN bits in MCCTRL. Operation mode
(external clock or crystal) is chosen by writing to the MODE field in OSCCTRLn. Oscillators are
automatically switched off in certain sleep modes to reduce power consumption, as described in
Section 13.5.7 on page 60.

After a hard reset, or when waking up from a sleep mode that disabled the oscillators, the oscil-
lators may need a certain amount of time to stabilize on the correct frequency. This start-up time
can be set in the OSCCTRLn register.

ATMEL 5

13.5.3

1354

The PM masks the oscillator outputs during the start-up time, to ensure that no unstable clocks
propagate to the digital logic. The OSCnhRDY bits in POSCSR are automatically set and cleared
according to the status of the oscillators. A zero to one transition on these bits can also be con-
figured to generate an interrupt, as described in "Interrupt Enable/Disable/Mask/Status/Clear” on
page 76.

C

XOUT & I||

XIN g I||

C,

Figure 13-2. Oscillator connections

32 KHz oscillator operation

PLL operation

32058H-AVR32-03/09

The 32 KHz oscillator operates as described for Oscillator 0 and 1 above. The 32 KHz oscillator
is used as source clock for the Real-Time Counter.

The oscillator is disabled by default, but can be enabled by writing OSC32EN in OSCCTRL32.
The oscillator is an ultra-low power design and remains enabled in all sleep modes except Static
mode.

While the 32 KHz oscillator is disabled, the XIN32 and XOUT32 pins are available as general
purpose I/0Os. When the oscillator is configured to work with an external clock (MODE field in
OSCCTRL32 register), the external clock must be connected to XIN32 while the XOUT32 pin
can be used as a general purpose 1/0O.

The startup time of the 32 KHz oscillator can be set in the OSCCTRL32, after which OSC32RDY
in POSCSR is set. An interrupt can be generated on a zero to one transition of OSC32RDY.

As a crystal oscillator usually requires a very long startup time (up to 1 second), the 32 KHz
oscillator will keep running across resets, except Power-On-Reset.

The device contains two PLLs, PLLO and PLL1. These are disabled by default, but can be
enabled to provide high frequency source clocks for synchronous or generic clocks. The PLLs
can take either Oscillator O or 1 as reference clock. The PLL output is divided by a multiplication
factor, and the PLL compares the resulting clock to the reference clock. The PLL will adjust its
output frequency until the two compared clocks are equal, thus locking the output frequency to a
multiple of the reference clock frequency.

The Voltage Controlled Oscillator inside the PLL can generate frequencies from 80 to 240 MHz.
To make the PLL output frequencies under 80 MHz the OTP[1] bitfield could be set. This will

ATMEL L

OscO
clock

dscl
slock

13541

32058H-AVR32-03/09

PLLOSC

divide the output of the PLL by two and bring the clock in range of the max frequency of the
CPU.

When the PLL is switched on, or when changing the clock source or multiplication factor for the
PLL, the PLL is unlocked and the output frequency is undefined. The PLL clock for the digital
logic is automatically masked when the PLL is unlocked, to prevent connected digital logic from
receiving a too high frequency and thus become unstable.

PLLMUL
PLLOPTI[1]

Output e fyco ¢

Divider I PLL

Phase Lock | i
Input p| Detector = VCO B Detector ock bit
Divider

PLLOPT

PLLDIV |

Figure 13-3. PLL with control logic and filters

Enabling the PLL

PLLn is enabled by writing the PLLEN bit in the PLLn register. PLLOSC selects Oscillator O or 1
as clock source. The PLLMUL and PLLDIV bitfields must be written with the multiplication and
division factors, respectively, creating the voltage controlled ocillator frequency f, -5 and the PLL
frequency fp, :

fvco = (PLLMUL+21)/(PLLDIV) fOSC if PLLDIV > 0.
fuco = 2*(PLLMUL+1) * fogc if PLLDIV = 0.

If PLLOPTI[1] field is set to O:

forL = fuco.
If PLLOPTI[1] field is set to 1:
forL = fuco/ 2.

The PLLn:PLLOPT field should be set to proper values according to the PLL operating fre-
quency. The PLLOPT field can also be set to divide the output frequency of the PLLs by 2.

The lock signal for each PLL is available as a LOCKn flag in POSCSR. An interrupt can be gen-
erated on a 0 to 1 transition of these bits.

ATMEL 57

13.5.5 Synchronous clocks

The slow clock (default), Oscillator 0, or PLLO provide the source for the main clock, which is the
common root for the synchronous clocks for the CPU/HSB, PBA, and PBB modules. The main
clock is divided by an 8-bit prescaler, and each of these four synchronous clocks can run from
any tapping of this prescaler, or the undivided main clock, as long as fcpy [fpga g - The synchro-
nous clock source can be changed on-the fly, responding to varying load in the application. The
clock domains can be shut down in sleep mode, as described in "Sleep modes” on page 60.
Additionally, the clocks for each module in the four domains can be individually masked, to avoid
power consumption in inactive modules.

~ Sleep) Sleep
instruction Controller
] L.
I
—Slow clock ! B Main clockizl >_> Mask ‘—I—ﬁ—l I I CPU clocks™ %
——0sc0 clock: T |—|4‘ HSB clocks—#
——PLLO clock > Prescaler P (I ,_L ocks—
i oo CPUMASK | | I PBAclocks'
| | | I I [PBB clocks »
MCSEL | CPUSEL | (I : I
| by
| by
__________________ I | |
L e ____ 1 :
L _____ |
|
__________________ J
Figure 13-4. Synchronous clock generation
13.5.5.1 Selecting PLL or oscillator for the main clock
The common main clock can be connected to the slow clock, Oscillator 0, or PLLO. By default,
the main clock will be connected to the slow clock. The user can connect the main clock to Oscil-
lator 0 or PLLO by writing the MCSEL bitfield in the Main Clock Control Register (MCCTRL). This
must only be done after that unit has been enabled, otherwise a deadlock will occur. Care
should also be taken that the new frequency of the synchronous clocks does not exceed the
maximum frequency for each clock domain.
13.5.5.2 Selecting synchronous clock division ratio

32058H-AVR32-03/09

The main clock feeds an 8-bit prescaler, which can be used to generate the synchronous clocks.
By default, the synchronous clocks run on the undivided main clock. The user can select a pres-

ATMEL s

caler division for the CPU clock by writing CKSEL:CPUDIV to 1 and CPUSEL to the prescaling
value, resulting in a CPU clock frequency:

fCPU - fmain / 2(CPUSEL+1)

Similarly, the clock for the PBA, and PBB can be divided by writing their respective bitfields. To
ensure correct operation, frequencies must be selected so that fopy [fpga g AlSO, frequencies
must never exceed the specified maximum frequency for each clock domain.

CKSEL can be written without halting or disabling peripheral modules. Writing CKSEL allows a
new clock setting to be written to all synchronous clocks at the same time. It is possible to keep
one or more clocks unchanged by writing the same value a before to the xxxDIV and xxxSEL bit-
fields. This way, it is possible to e.g. scale CPU and HSB speed according to the required
performance, while keeping the PBA and PBB frequency constant.

13.5.5.3 Clock Ready flag

There is a slight delay from CKSEL is written and the new clock setting becomes effective. Dur-
ing this interval, the Clock Ready (CKRDY) flag in ISR will read as 0. If IER:CKRDY is written to
1, the Power Manager interrupt can be triggered when the new clock setting is effective. CKSEL
must not be re-written while CKRDY is 0, or the system may become unstable or hang.

13.5.6 Peripheral clock masking

By default, the clock for all modules are enabled, regardless of which modules are actually being
used. It is possible to disable the clock for a module in the CPU, HSB, PBA, or PBB clock
domain by writing the corresponding bit in the Clock Mask register (CPU/HSB/PBA/PBB) to O.
When a module is not clocked, it will cease operation, and its registers cannot be read or written.
The module can be re-enabled later by writing the corresponding mask bit to 1.

A module may be connected to several clock domains, in which case it will have several mask
bits.

Table 13-5 contains a list of implemented maskable clocks.

13.5.6.1 Cautionary note

Note that clocks should only be switched off if it is certain that the module will not be used.
Switching off the clock for the internal RAM will cause a problem if the stack is mapped there.
Switching off the clock to the Power Manager (PM), which contains the mask registers, or the
corresponding PBx bridge, will make it impossible to write the mask registers again. In this case,
they can only be re-enabled by a system reset.

13.5.6.2 Mask Ready flag

Due to synchronization in the clock generator, there is a slight delay from a mask register is writ-
ten until the new mask setting goes into effect. When clearing mask bits, this delay can usually
be ignored. However, when setting mask bits, the registers in the corresponding module must
not be written until the clock has actually be re-enabled. The status flag MSKRDY in ISR pro-
vides the required mask status information. When writing either mask register with any value,
this bit is cleared. The bit is set when the clocks have been enabled and disabled according to
the new mask setting. Optionally, the Power Manager interrupt can be enabled by writing the
MSKRDY bit in IER.

ATMEL 5

32058H-AVR32-03/09

13.5.7 Sleep modes

In normal operation, all clock domains are active, allowing software execution and peripheral
operation. When the CPU is idle, it is possible to switch off the CPU clock and optionally other
clock domains to save power. This is activated by the sleep instruction, which takes the sleep
mode index number as argument.

13.5.7.1 Entering and exiting sleep modes
The sleep instruction will halt the CPU and all modules belonging to the stopped clock domains.
The modules will be halted regardless of the bit settings of the mask registers.
Oscillators and PLLs can also be switched off to save power. Some of these modules have a rel-
atively long start-up time, and are only switched off when very low power consumption is
required.
The CPU and affected modules are restarted when the sleep mode is exited. This occurs when
an interrupt triggers. Note that even if an interrupt is enabled in sleep mode, it may not trigger if
the source module is not clocked.
13.5.7.2 Supported sleep modes
The following sleep modes are supported. These are detailed in Table 13-1.
eldle: The CPU is stopped, the rest of the chip is operating. Wake-up sources are any interrupt.
*Frozen: The CPU and HSB modules are stopped, peripherals are operating. Wake-up sources
are any interrupt from PB modules.
«Standby: All synchronous clocks are stopped, but oscillators and PLLs are running, allowing
quick wake-up to normal mode. Wake-up sources are RTC or external interrupt (EIC).
«Stop: As Standby, but Oscillator 0 and 1, and the PLLs are stopped. 32 KHz (if enabled) and
RC oscillators and RTC/WDT still operate. Wake-up sources are RTC, external interrupt (EIC),
or external reset pin.
*DeepStop: All synchronous clocks, Oscillator 0 and 1 and PLL 0 and 1 are stopped. 32 KHz
oscillator can run if enabled. RC oscillator still operates. Bandgap voltage reference and BOD is
turned off. Wake-up sources are RTC, external interrupt (EIC) or external reset pin.
«Static: All oscillators, including 32 KHz and RC oscillator are stopped. Bandgap voltage refer-
ence BOD detector is turned off. Wake-up sources are external interrupt (EIC) in asynchronous
mode only or external reset pin.
Table 13-1. Sleep modes
PBA,B Osc0,1 BOD & Voltage
Index Sleep Mode CPU HSB GCLK PLLO,1 Osc32 RCOsc | Bandgap | Regulator
0 Idle Stop Run Run Run Run Run On Full power
1 Frozen Stop Stop Run Run Run Run On Full power
2 Standby Stop Stop Stop Run Run Run On Full power
3 Stop Stop Stop Stop Stop Run Run On Low power
4 DeepStop Stop Stop Stop Stop Run Run Off Low power
5 Static Stop Stop Stop Stop Stop Stop Off Low power

32058H-AVR32-

03/09

ATMEL o

The power level of the internal voltage regulator is also adjusted according to the sleep mode to
reduce the internal regulator power consumption.

13.5.7.3 Precautions when entering sleep mode

13.5.7.4 Wake up

13.5.8 Generic clocks

32058H-AVR32-03/09

Modules communicating with external circuits should normally be disabled before entering a
sleep mode that will stop the module operation. This prevents erratic behavior when entering or
exiting sleep mode. Please refer to the relevant module documentation for recommended
actions.

Communication between the synchronous clock domains is disturbed when entering and exiting
sleep modes. This means that bus transactions are not allowed between clock domains affected
by the sleep mode. The system may hang if the bus clocks are stopped in the middle of a bus
transaction.

The CPU is automatically stopped in a safe state to ensure that all CPU bus operations are com-
plete when the sleep mode goes into effect. Thus, when entering Idle mode, no further action is
necessary.

When entering a sleep mode (except Idle mode), all HSB masters must be stopped before
entering the sleep mode. Also, if there is a chance that any PB write operations are incomplete,
the CPU should perform a read operation from any register on the PB bus before executing the
sleep instruction. This will stall the CPU while waiting for any pending PB operations to
complete.

The USB can be used to wake up the part from sleep modes through register PM_AWEN of the
Power Manager.

Timers, communication modules, and other modules connected to external circuitry may require
specific clock frequencies to operate correctly. The Power Manager contains an implementation
defined number of generic clocks that can provide a wide range of accurate clock frequencies.

Each generic clock module runs from either Oscillator 0 or 1, or PLLO or 1. The selected source
can optionally be divided by any even integer up to 512. Each clock can be independently
enabled and disabled, and is also automatically disabled along with peripheral clocks by the
Sleep Controller.

ATMEL o

AT32UC3A

Sleep
Controller
——0sc0 clock: Mask —Generic Clock—»
——0scl1 clock ; o
——PLLO clock: Divider
——PLL1 clock
PLLSEL * DIVEN CEN

DIV

OSCSEL

Figure 13-5. Generic clock generation

13.5.8.1 Enabling a generic clock

A generic clock is enabled by writing the CEN bit in GCCTRL to 1. Each generic clock can use
either Oscillator 0 or 1 or PLLO or 1 as source, as selected by the PLLSEL and OSCSEL bits.
The source clock can optionally be divided by writing DIVEN to 1 and the division factor to DIV,
resulting in the output frequency:

fock = fsre / (2*(DIV+1))

13.5.8.2 Disabling a generic clock

The generic clock can be disabled by writing CEN to 0 or entering a sleep mode that disables
the PB clocks. In either case, the generic clock will be switched off on the first falling edge after
the disabling event, to ensure that no glitches occur. If CEN is written to 0, the bit will still read as
1 until the next falling edge occurs, and the clock is actually switched off. When writing CEN to 0,
the other bits in GCCTRL should not be changed until CEN reads as 0, to avoid glitches on the
generic clock.

When the clock is disabled, both the prescaler and output are reset.
13.5.8.3 Changing clock frequency
When changing generic clock frequency by writing GCCTRL, the clock should be switched off by

the procedure above, before being re-enabled with the new clock source or division setting. This
prevents glitches during the transition.

ATMEL o

32058H-AVR32-03/09

13.5.84 Generic clock implementation

In AT32UC3A, there are 6 generic clocks. These are allocated to different functions as shown in
Table 13-2.

Table 13-2. Generic clock allocation

Clock number | Function

0 GCLKO pin

GCLK1 pin

GCLK2 pin

USBB

1
2
3 GCLK3 pin
4
5

ABDAC

13.5.9 Divided PB clocks

The clock generator in the Power Manager provides divided PBA and PBB clocks for use by
peripherals that require a prescaled PBx clock. This is described in the documentation for the
relevant modules.

The divided clocks are not directly maskable, but are stopped in sleep modes where the PBx
clocks are stopped.

13.5.10 Debug operation

During a debug session, the user may need to halt the system to inspect memory and CPU reg-
isters. The clocks normally keep running during this debug operation, but some peripherals may
require the clocks to be stopped, e.g. to prevent timer overflow, which would cause the program
to fail. For this reason, peripherals on the PBA and PBB buses may use “debug qualified” PBx
clocks. This is described in the documentation for the relevant modules. The divided PBx clocks
are always debug qualified clocks.

Debug qualified PB clocks are stopped during debug operation. The debug system can option-
ally keep these clocks running during the debug operation. This is described in the
documentation for the On-Chip Debug system.

13.5.11 Reset Controller

32058H-AVR32-03/09

The Reset Controller collects the various reset sources in the system and generates hard and
soft resets for the digital logic.

The device contains a Power-On Detector, which keeps the system reset until power is stable.
This eliminates the need for external reset circuitry to guarantee stable operation when powering
up the device.

ATMEL o

AT32UC3A

It is also possible to reset the device by asserting the RESET_N pin. This pin has an internal pul-
lup, and does not need to be driven externally when negated. Table 13-4 lists these and other
reset sources supported by the Reset Controller.

RC_RCAUSE
RESET_N &—»
Power-On o
Detector o

Reset
Brownout - Controller
Detector

JTAG -
0CD >

W atchdog Reset———7

CPU, HSB,

—
PBA, PBB

o OCD, RTC/WDT

Figure 13-6. Reset Controller block diagram

" Clock Generato

In addition to the listed reset types, the JTAG can keep parts of the device statically reset
through the JTAG Reset Register. See JTAG documentation for details.

Table 13-3. Reset description

Reset source

Description

Power-on Reset

Supply voltage below the power-on reset detector threshold

voltage

External Reset

RESET_N pin asserted

Brownout Reset

Supply voltage below the brownout reset detector threshold

voltage

CPU Error

Caused by an illegal CPU access to external memory while

in Supervisor mode

Watchdog Timer

See watchdog timer documentation.

OCD

See On-Chip Debug documentation

When a Reset occurs, some parts of the chip are not necessarily reset, depending on the reset
source. Only the Power On Reset (POR) will force a reset of the whole chip.

32058H-AVR32-03/09

ATMEL

64

Table 13-4 lists parts of the device that are reset, depending on the reset source.

Table 13-4.

Effect of the different reset events

Power-On
Reset

External
Reset

Watchdog
Reset

BOD
Reset

CPU Error
Reset

OCD
Reset

CPU/HSB/PBA/PBB
(excluding Power Manager)

Y

Y

Y

Y

32 KHz oscillator

RTC control register

GPLP registers

Watchdog control register

Voltage Calibration register

RC Oscillator Calibration register

BOD control register

Bandgap control register

Clock control registers

Osc0/Oscl and control registers

PLLO/PLL1 and control registers

OCD system and OCD registers

<|<|=<|=<|=<|=<|=<|=<|=<|=<|=<|=<

<|<|<x|<x|<x|<x|z|z|<|z2|2|2

Z2 | K| XK K| Z2|/Z2/z2z|Z2|Z2|2|2|Z2

X | X[XK |Z2|/Z2|/Z2|Z2|<|Z2|2|Z2

X | XX K|Z2|/Z2|/Z2|Z2|<|Z2|2|Z2

Z2 | X | XK |Z2|/Z2/Z2|Z2|<|Z2|Z2|Z2

13.5.11.1

13.5.11.2

32058H-AVR32-03/09

The cause of the last reset can be read from the RCAUSE register. This register contains one bit
for each reset source, and can be read during the boot sequence of an application to determine
the proper action to be taken.

Power-On Detector

The Power-On Detector monitors the VDDCORE supply pin and generates a reset when the
device is powered on. The reset is active until the supply voltage from the linear regulator is
above the power-on threshold level. The reset will be re-activated if the voltage drops below the
power-on threshold level. See Electrical Characteristics for parametric details.

Brown-Out Detector

The Brown-Out Detector (BOD) monitors the VDDCORE supply pin and compares the supply
voltage to the brown-out detection level, as set in BOD:LEVEL. The BOD is disabled by default,
but can be enabled either by software or by flash fuses. The Brown-Out Detector can either gen-
erate an interrupt or a reset when the supply voltage is below the brown-out detection level. In
any case, the BOD output is available in bit POSCR:BODET bit.

Note that any change to the BOD:LEVEL field of the BOD register should be done with the BOD
deactivated to avoid spurious reset or interrupt.

See Electrical Characteristics for parametric details.

ATMEL o

13.5.11.3

13.5.12

External Reset

The external reset detector monitors the state of the RESET_N pin. By default, a low level on
this pin will generate a reset.

Calibration registers

The Power Manager controls the calibration of the RC oscillator, voltage regulator, bandgap

voltage reference through several calibrations registers.

Those calibration registers are loaded after a Power On Reset with default values stored in fac-
tory-programmed flash fuses.

Although it is not recommended to override default factory settings, it is still possible to override
these default values by writing to those registers. To prevent unexpected writes due to software
bugs, write access to these registers is protected by a “key”. First, a write to the register must be
made with the field “KEY” equal to 0x55 then a second write must be issued with the “KEY” field

equal to OXAA

13.6 User Interface

Offset Register Name Access Reset State
0x0000 Main Clock Control MCCTRL Read/Write 0x00000000
0x0004 Clock Select CKSEL Read/Write 0x00000000
0x0008 CPU Mask CPUMASK Read/Write 0x00000003
0x000C HSB Mask HSBMASK Read/Write 0x0000007F
0x0010 PBA Mask PBAMASK Read/Write 0x0000FFFF
0x0014 PBB Mask PBBMASK Read/Write 0x0000003F
0x0018 - 0x001C Reserved
0x0020 PLLO Control PLLO Read/Write 0x00000000
0x0024 PLL1 Control PLL1 Read/Write 0x00000000
0x0028 Oscillator 0 Control Register OSCCTRLO Read/Write 0x00000000
0x002C Oscillator 1 Control Register OSCCTRL1 Read/Write 0x00000000
0x0030 Oscillator 32 Control Register OSCCTRL32 Read/Write 0x00000000
0x0034 Reserved
0x0038 Reserved
0x003C Reserved
0x0040 PM Interrupt Enable Register IER Write Only 0x00000000
0x0044 PM Interrupt Disable Register IDR Write Only 0x00000000
0x0048 PM Interrupt Mask Register IMR Read Only 0x00000000
0x004C PM Interrupt Status Register ISR Read Only 0x00000000
0x0050 PM Interrupt Clear Register ICR Write Only 0x00000000
0x0054 Power and Oscillators Status Register POSCSR Read/Write 0x00000000
0x0058 - 0x005C Reserved

32058H-AVR32-03/09

ATMEL

66

0x0060 Generic Clock Control GCCTRL Read/Write 0x00000000
0x0064 - 0x00BC Reserved

0x00CO0 RC Oscillator Calibration Register RCCR Read/Write Factory settings
0x00C4 Bandgap Calibration Register BGCR Read/Write Factory settings
0x00C8 Linear Regulator Calibration Register VREGCR Read/Write Factory settings
0x00CC Reserved

0x00D0 BOD Level Register BOD Read/Write BOD fuses in Flash
0x00D4 - 0x013C Reserved

0x0140 Reset Cause Register RCAUSE Read Only Latest Reset Source
0x0144 - Ox01FC Reserved

0x0200 General Purpose Low-Power register O GPLPO Read/Write 0x00000000
0x0204 General Purpose Low-Power register 1 GPLP1 Read/Write 0x00000000

32058H-AVR32-03/09

ATMEL

67

13.6.1 Main Clock Control

Name: MCCTRL

Access Type: Read/Write
31 30 29 28 27 26 25 24

- r - r - r - +r - - [- 7 - |
23 22 21 20 19 18 17 16

- r - r - r - +r - - [- 7 - |
15 14 13 12 11 10 9 8

- - r - r - r-+r - - [- 7 - |
7 6 5 4 3 2 1 0

| - | - | | | OSCIEN | OSCOEN | MCSEL |

* MCSEL: Main Clock Select
0: The slow clock is the source for the main clock
1: Oscillator 0 is source for the main clock
2: PLLO is source for the main clock
3: Reserved
* OSCOEN: Oscillator 0 Enable
0: Oscillator 0 is disabled
1: Oscillator 0 is enabled
e OSCI1EN: Oscillator 1 Enable
0: Oscillator 1is disabled
1: Oscillator 1is enabled

ATMEL o

32058H-AVR32-03/09

13.6.2 Clock Select

Name: CKSEL

Access Type: Read/Write
31 30 29 28 27 26 25 24

‘ PBBDIV ‘ - ‘ - ‘ - ‘ - ‘ PBBSEL ‘
23 22 21 20 19 18 17 16

‘ PBADIV ‘ - ‘ - ‘ - ‘ - ‘ PBASEL ‘
15 14 13 12 11 10 9 8

‘ HSBDIV ‘ - ‘ - ‘ - ‘ - ‘ HSBSEL ‘
7 6 5 4 3 2 1 0

‘ CPUDIV ‘ - ‘ - ‘ - ‘ - ‘ CPUSEL ‘

PBBDIV, PBBSEL: PBB Division and Clock Select

PBBDIV = 0: PBB clock equals main clock.

PBBDIV = 1: PBB clock equals main clock divided by 2(PBBSEL*D),
PBADIV, PBASEL: PBA Division and Clock Select

PBADIV = 0: PBA clock equals main clock.

PBADIV = 1: PBA clock equals main clock divided by 2(PBASEL+D),
HSBDIV, HSBSEL: HSB Division and Clock Select

For the AT32UC3A, HSBDIV always equals CPUDIV, and HSBSEL always equals CPUSEL, as the HSB clock is always equal to

the CPU clock.
CPUDIV, CPUSEL: CPU Division and Clock Select

CPUDIV = 0: CPU clock equals main clock.

CPUDIV = 1: CPU clock equals main clock divided by 2(CPUSEL+D),

Note that if xxxDIV is written to 0, xxxSEL should also be written to 0 to ensure correct operation.

Also note that writing this register clears POSCSR:CKRDY. The register must not be re-written until CKRDY goes high.

ATMEL o

32058H-AVR32-03/09

13.6.3 Clock Mask

Name: CPU/HSB/PBA/PBBMASK

Access Type: Read/Write
31 30 29 28 26 25 24

‘ MASK([31:24] ‘
23 22 21 20 18 17 16

‘ MASK[23:16] ‘
15 14 13 12 10 9 8

‘ MASK[15:8] ‘
7 6 5 4 2 1 0

‘ MASK[7:0] ‘

* MASK: Clock Mask
If bit n is cleared, the clock for module n is stopped. If bit n is set, the clock for module n is enabled according to the current
power mode. The number of implemented bits in each mask register, as well as which module clock is controlled by each bit, is

shown in Table 13-5.

Table 13-5. Maskable module clocks in AT32UC3A.

Bit CPUMASK HSBMASK PBAMASK PBBMASK
0 - FLASHC INTC HMATRIX
1 OCD PBA bridge GPIO USBB
2 - PBB bridge PDCA FLASHC
3 - USBB PM/RTC/EIC MACB
4 - MACB ADC SMC
5 - PDCA SPIO SDRAMC
6 - EBI SPI1 -

7 - - TWI -
8 - - USARTO -
9 - - USART1 -

10 - - USART2 -

11 - - USART3 -

12 - - PWM -

13 - - SSC -

32058H-AVR32-03/09

ATMEL

70

Table 13-5. Maskable module clocks in AT32UC3A.

Bit CPUMASK HSBMASK PBAMASK PBBMASK

14 - - TC -

15 - - ABDAC -

16 SYSTIMER - - -
(COMPARE/COUNT
REGISTERS CLK)

31 - - - -

17

32058H-AVR32-03/09

ATMEL

71

13.6.4 PLL Control

Name: PLLO,1

Access Type: Read/Write
31 30 29 28 27 26 25 24

‘ RESERVED PLLCOUNT ‘
23 22 21 20 19 18 17 16

‘ RESERVED ‘ PLLMUL ‘
15 14 13 12 11 10 9 8

‘ RESERVED ‘ PLLDIV ‘
7 6 5 4 3 2 1 0

‘ - - - PLLOPT PLLOSC PLLEN

RESERVED: Reserved bitfields
Reserved for internal use. Always write to O.
PLLCOUNT: PLL Count

Specifies the number of slow clock cycles before ISR:LOCKnN will be set after PLLn has been written, or after PLLn has been

automatically re-enabled after exiting a sleep mode.
e PLLMUL: PLL Multiply Factor
PLLDIV: PLL Division Factor

These bitfields determine the ratio of the PLL output frequency (voltage controlled oscillator frequency f,) to the source

oscillator frequency:

fyco = (PLLMUL+1)/(PLLDIV) ¢ fogc if PLLDIV > 0.

fvco = 2*(PLLMUL+1) ¢ fogc if PLLDIV = 0.

If PLLOPT[1] field is set to O:

forL = fuco.

If PLLOPT[1] field is set to 1:

fore = fuco / 2

Note that the MUL field cannot be equal to 0 or 1, or the behavior of the PLL will be undefined.

* PLLOPT: PLL Option
Select the operating range for the PLL.
PLLOPT[O]: Select the VCO frequency range.
PLLOPT[1]: Enable the extra output divider.
PLLOPT][2]: Disable the Wide-Bandwidth mode (Wide-Bandwidth mode allows a faster startup time and out-of-lock time).

ATMEL

32058H-AVR32-03/09

72

Table 13-6. PLLOPT Fields Description in AT32UC3A

Description

PLLOPTIO]: VCO frequency

0 160MHz<f,,,<240MHz

1 80MHz<f,,<180MHz
PLLOPT[1]: Output divider

0 foL = fuco

1 forL = ficol2
PLLOPT[2]

0 Wide Bandwidth Mode enabled

1 Wide Bandwidth Mode disabled

* PLLOSC: PLL Oscillator Select
0: Oscillator 0 is the source for the PLL.
1: Oscillator 1 is the source for the PLL.
e PLLEN: PLL Enable
0: PLL is disabled.
1: PLL is enabled.

ATMEL

32058H-AVR32-03/09

13.6.5 PM Oscillator 0/1 Control

Register name OSCCTRLO,1
Register access Read/Write
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8
| i | i | i | i | i | STARTUP |
7 6 5 4 3 2 1 0
. - r - r - r - [- | MODE |

* MODE: Oscillator Mode
Choose between crystal, or external clock
0: External clock connected on XIN, XOUT can be used as an I/O (no crystal)
1 to 3: reserved
4: Crystal is connected to XIN/XOUT - Oscillator is used with gain GO (XIN from 0.4 MHz to 0.9 MHz).
5: Crystal is connected to XIN/XOUT - Oscillator is used with gain G1 (XIN from 0.9 MHz to 3.0 MHz).

6: Crystal is connected to XIN/XOUT - Oscillator is used with gain G2 (XIN from 3.0 MHz to 8.0 MHz).
7: Crystal is connected to XIN/XOUT - Oscillator is used with gain G3 (XIN from 8.0 Mhz).

* STARTUP: Oscillator Startup Time
Select startup time for the oscillator.

Table 13-7. Startup time for oscillators 0 and 1

Number of RC oscillator Approximative Equivalent time

STARTUP clock cycle (RCOsc =115 kHz)

0 0 0

1 64 560 us

2 128 1.1ms

3 2048 18 ms

4 4096 36 ms

5 8192 71 ms

6 16384 142 ms

7 Reserved Reserved

ATMEL z

32058H-AVR32-03/09

13.6.6 PM 32 KHz Oscillator Control Register

Register name OSCCTRL32

Register access Read/Write
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16

| i | i | i | i | i | STARTUP |
15 14 13 12 11 10 9 8

. - r - r - r - [- | MODE |
7 6 5 4 3 2 1 0

| : | : | . | : | : | : : OSC32EN |

Note: This register is only reset by Power-On Reset

* OSC32EN: Enable the 32 KHz oscillator
0: 32 KHz Oscillator is disabled
1: 32 KHz Oscillator is enabled

* MODE: Oscillator Mode

Choose between crystal, or external clock

0: External clock connected on XIN32, XOUT32 can be used as a I/O (no crystal)
1: Crystal is connected to XIN32/XOUT32
2to 7: reserved

e STARTUP: Oscillator Startup Time
Select startup time for 32 KHz oscillator

Table 13-8. Startup time for 32 KHz oscillator

Number of RC oscillator Approximative Equivalent time

STARTUP clock cycle (RCOsc =115 kHz)

0 0 0

1 128 1.1ms

2 8192 72.3ms

3 16384 143 ms

4 65536 570 ms

5 131072 11s

6 262144 23s

7 524288 46s

ATMEL s

32058H-AVR32-03/09

13.6.7 Interrupt Enable/Disable/Mask/Status/Clear

Name: IER/IDR/IMR/ISR/ICR

Access Type: IER/IDR/ICR: Write-only

IMR/ISR: Read-only

31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16

- - r - - @ - @ - | - | soooer |
15 14 13 12 1 10 9 8

| : | : | : | : | - | : | oscazrov | osciroy |
7 6 5 4 3 2 1 0

| oscorov | wmskrov | ckrov | : | - | : | ockt | Locko |

32058H-AVR32-03/09

BODDET: Brown out detection
Set to 1 when 0 to 1 transition on POSCSR:BODDET bit is detected: BOD has detected that power supply is going below
BOD reference value.

OSC32RDY: 32 KHz oscillator Ready
Set to 1 when 0 to 1 transition on the POSCSR:OSC32RDY bit is detected: The 32 KHz oscillator is stable and ready to be
used as clock source.

OSC1RDY: Oscillator 1 Ready
Set to 1 when 0 to 1 transition on the POSCSR:OSC1RDY bit is detected: Oscillator 1 is stable and ready to be used as
clock source.

OSCORDY: Oscillator 0 Ready
Set to 1 when 0 to 1 transition on the POSCSR:OSC1RDY hit is detected: Oscillator 1 is stable and ready to be used as
clock source.

MSKRDY: Mask Ready
Set to 1 when 0 to 1 transition on the POSCSR:MSKRDY bit is detected: Clocks are now masked according to the
(CPU/HSB/PBA/PBB)_MASK registers.

CKRDY: Clock Ready
0: The CKSEL register has been written, and the new clock setting is not yet effective.
1: The synchronous clocks have frequencies as indicated in the CKSEL register.
Note: Writing ICR:CKRDY to 1 has no effect.

LOCK1: PLL1 locked
Set to 1 when 0 to 1 transition on the POSCSR:LOCK1 bit is detected: PLL 1 is locked and ready to be selected as clock
source.

LOCKO: PLLO locked
Set to 1 when 0 to 1 transition on the POSCSR:LOCKO bit is detected: PLL O is locked and ready to be selected as clock
source.

ATMEL 7

The effect of writing or reading the bits listed above depends on which register is being accessed:

* IER (Write-only)
0: No effect
1: Enable Interrupt
* IDR (Write-only)
0: No effect
1: Disable Interrupt
* IMR (Read-only)
0: Interrupt is disabled
1: Interrupt is enabled
* ISR (Read-only)
0: An interrupt event has not occurred or has been previously cleared
1: An interrupt event has not occurred
ICR (Write-only)
0: No effect
1: Clear corresponding event

ATMEL m

32058H-AVR32-03/09

13.6.8 Power and Oscillators Status

Name: POSCSR
Access Type: Read-only
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
- - - r - r - r - 1 - | - | soooer |
15 14 13 12 11 10 9 8
- [- [- | - T T = T oscamov | oscirov |
7 6 5 4 3 2 1 0
‘ OSCORDY ‘ MSKRDY | CKRDY ‘ - ‘ - ‘ - | LOCK1 ‘ LOCKO ‘

* BODDET: Brown out detection
0: No BOD event
1: BOD has detected that power supply is going below BOD reference value.
e OSC32RDY: 32 KHz oscillator Ready
0: The 32 KHz oscillator is not enabled or not ready.
1: The 32 KHz oscillator is stable and ready to be used as clock source.
* OSC1RDY: OSC1 ready
0: Oscillator 1 not enabled or not ready.
1: Oscillator 1 is stable and ready to be used as clock source.
* OSCORDY: OSCO ready
0: Oscillator 0 not enabled or not ready.
1: Oscillator 0 is stable and ready to be used as clock source.
* MSKRDY: Mask ready
0: Mask register has been changed, masking in progress.
1: Clock are masked according to xxx_MASK
* CKRDY:
0: The CKSEL register has been written, and the new clock setting is not yet effective.
1: The synchronous clocks have frequencies as indicated in the CKSEL register.
e LOCK1: PLL 1 locked
0:PLL 1 is unlocked
1:PLL 1 is locked, and ready to be selected as clock source.
* LOCKO: PLL 0 locked
0: PLL O is unlocked
1: PLL O is locked, and ready to be selected as clock source.

ATMEL 7

32058H-AVR32-03/09

13.6.9 Generic Clock Control

Name: GCCTRL

Access Type: Read/Write
31 30 29 28 27 26 25 24

. - ! - r - r -+ - ;r - & - [- |
23 22 21 20 19 18 17 16

. - ! - r - r -+ - ;r - 1@ - [- |
15 14 13 12 11 10 9 8

‘ DIV[7:0] ‘
7 6 5 4 3 2 1 0

‘ - - - DIVEN - CEN PLLSEL OSCSEL ‘

There is one GCCTRL register per generic clock in the design.

* DIV: Division Factor
* DIVEN: Divide Enable
0: The generic clock equals the undivided source clock.
1: The generic clock equals the source clock divided by 2*(DIV+1).
* CEN: Clock Enable
0: Clock is stopped.
1: Clock is running.
PLLSEL: PLL Select
0: Oscillator is source for the generic clock.
1: PLL is source for the generic clock.
* OSCSEL: Oscillator Select
0: Oscillator (or PLL) 0 is source for the generic clock.
1: Oscillator (or PLL) 1 is source for the generic clock.

ATMEL 7

32058H-AVR32-03/09

13.6.10 Reset Cause

Name: RCAUSE
Access Type: Read-only
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8
‘ - ‘ - | - ‘ - ‘ - ‘ - | JTAGHARD ‘ OCDRST ‘
7 6 5 4 3 2 1 0
‘ CPUERR ‘ - | - ‘ JTAG ‘ WDT ‘ EXT | BOD ‘ POR ‘

* POR Power-on Reset
The CPU was reset due to the supply voltage being lower than the power-on threshold level.
* BOD: Brown-out Reset
The CPU was reset due to the supply voltage being lower than the brown-out threshold level.
e EXT: External Reset Pin
The CPU was reset due to the RESET pin being asserted.
* WDT: Watchdog Reset
The CPU was reset because of a watchdog timeout.
* JTAG: JTAG reset
The CPU was reset by setting the bit RC_CPU in the JTAG reset register.
* CPUERR: CPU Error
The CPU was reset because it had detected an illegal access.
* OCDRST: OCD Reset
The CPU was reset because the RES strobe in the OCD Development Control register has been written to one.
* JTAGHARD: JTAG Hard Reset
The chip was reset by setting the bit RC_OCD in the JTAG reset register or by using the JTAG HALT instruction.

ATMEL 5

32058H-AVR32-03/09

13.6.11

BOD Level register
Register name

Register access

BOD Control

BOD
Read/Write

31 30 29 28 27 26 25 24
‘ KEY ‘

23 22 21 20 19 18 17 16
I I T - =

15 14 13 12 11 10 9 8
I I T T

7 6 5 4 3 2 1 0
‘ - ‘ HYST | LEVEL

* KEY: Register Write protection
This field must be written twice, first with key value 0x55, then OxAA, for a write operation to have an effect.
* FCD: BOD Fuse calibration done

Setto 1 when CTRL, HYST and LEVEL fields has been updated by the Flash fuses after power-on reset or Flash fuses update
If one, the CTRL, HYST and LEVEL values will not be updated again by Flash fuses
Can be cleared to allow subsequent overwriting of the value by Flash fuses

* CTRL: BOD Control
0: BOD is off
1: BOD is enabled and can reset the chip

2: BOD is enabled and but cannot reset the chip. Only interrupt will be sent to interrupt controller, if enabled in the IMR register.

3: BOD is off

* HYST: BOD Hysteresis
0: No hysteresis
1: Hysteresis On

LEVEL: BOD Level
This field sets the triggering threshold of the BOD. See Electrical Characteristics for actual voltage levels.

Note that any change to the LEVEL field of the BOD register should be done with the BOD deactivated to avoid spurious reset

or interrupt.

32058H-AVR32-03/09

ATMEL

81

13.6.12 RC Oscillator Calibration

Register name RCCR

Register access Read/Write
31 30 29 28 27 26 25 24

‘ KEY ‘
23 22 21 20 19 18 17 16

. - r - r - r - r - - [- Feo |
15 14 13 12 11 10 9 8

. - r - r - r - r - @ - | cALs |
7 6 5 4 3 2 1 0

‘ CALIB ‘

* CALIB: Calibration Value
Calibration Value for the RC oscillator.

* FCD: Flash Calibration Done
Set to 1 when CTRL, HYST, and LEVEL fields have been updated by the Flash fuses after power-on reset, or after Flash fuses
are reprogrammed. The CTRL, HYST and LEVEL values will not be updated again by the Flash fuses until a new power-on
reset or the FCD field is written to zero.

* KEY: Register Write protection
This field must be written twice, first with key value 0x55, then OxAA, for a write operation to have an effect.

ATMEL 5

32058H-AVR32-03/09

13.6.13 Bandgap Calibration

Register name BGCR

Register access Read/Write
31 30 29 28 27 26 25 24

‘ KEY ‘
23 22 21 20 19 18 17 16

. - - r - r - r - @ - [} - | ro |
15 14 13 12 11 10 9 8
7 6 5 4 3 2 1 0

- r - - @ - [- | caLe |

* KEY: Register Write protection

This field must be written twice, first with key value 0x55, then OxAA, for a write operation to have an effect.
* CALIB: Calibration value

Calibration value for Bandgap. See Electrical Characteristics for voltage values.

* FCD: Flash Calibration Done
Set to 1 when the CALIB field has been updated by the Flash fuses after power-on reset or when the Flash fuses are

reprogrammed. The CALIB field will not be updated again by the Flash fuses until a new power-on reset or the FCD field is
written to zero.

ATMEL 5

32058H-AVR32-03/09

13.6.14 PM Voltage Regulator Calibration Register

Register name VREGCR

Register access Read/Write
31 30 29 28 27 26 25 24

‘ KEY ‘
23 22 21 20 19 18 17 16

. - - r - r - r - @ - [} - | ro |
15 14 13 12 11 10 9 8
7 6 5 4 3 2 1 0

- r - - @ - [- | caLe |

* KEY: Register Write protection
This field must be written twice, first with key value 0x55, then OxAA, for a write operation to have an effect.
e CALIB: Calibration value
Calibration value for Voltage Regulator. See Electrical Characteristics for voltage values.
* FCD: Flash Calibration Done
Set to 1 when the CALIB field has been updated by the Flash fuses after power-on reset or when the Flash fuses are

reprogrammed. The CALIB field will not be updated again by the Flash fuses until a new power-on reset or the FCD field is
written to zero.

ATMEL o

32058H-AVR32-03/09

13.6.15 General Purpose Low-power register 0/1
Register name GPLPO,1
Register access Read/Write

31 30 29 28 27 26 25 24
‘ GPLP

23 22 21 20 19 18 17 16
‘ GPLP

15 14 13 12 11 10 9 8
‘ GPLP

7 6 5 4 3 2 1 0
‘ GPLP

These registers are general purpose 32-bit registers that are reset only by power-on-reset. Any other reset will keep the

content of these registers untouched.

32058H-AVR32-03/09

ATMEL

85

14. Real Time Counter (RTC)

14.1 Features

14.2 Description

32058H-AVR32-03/09

Rev: 2.3.0.1

* 32-bit real-time counter with 16-bit prescaler
* Clocked from RC oscillator or 32 KHz oscillator
* High resolution: Max count frequency 16 KHz
* Long delays
— Max timeout 272 years
* Extremely low power consumption
* Available in all sleep modes except Static
* Interrupt on wrap

The Real Time Counter (RTC) enables periodic interrupts at long intervals, or accurate mea-
surement of real-time sequences. The RTC is fed from a 16-bit prescaler, which is clocked from
the RC oscillator or the 32 KHz oscillator. Any tapping of the prescaler can be selected as clock
source for the RTC, enabling both high resolution and long timeouts. The prescaler cannot be
written directly, but can be cleared by the user.

The RTC can generate an interrupt when the counter wraps around the value stored in the top
register, producing accurate periodic interrupts.

ATMEL L

AT32UC3A

14.3 Block Diagram

Figure 14-1. Real Time Counter module block diagram

RTC _CTRL RTC _TOP
| | l
CLK32 EN PCLR
Y Y
—32 kHz
16-bit Prescaler —»| 32-bit counter [—®»{ TOPI| [—IRQ—»

—RC OSC

RTC_VAL

14.4 Product Dependencies
1441 Power Management

The RTC is continuously clocked, and remains operating in all sleep modes except Static. Inter-
rupts are not available in DeepStop mode.

14.4.2 Interrupt

The RTC interrupt line is connected to one of the internal sources of the interrupt controller.
Using the RTC interrupt requires the interrupt controller to be programmed first.

14.4.3 Debug Operation

The RTC prescaler is frozen during debug operation, unless the OCD system keeps peripherals
running in debug operation.

14.4.4 Clocks

The RTC can use the internal RC oscillator as clock source. This oscillator is always enabled
whenever these modules are active. Please refer to the Electrical Characteristics chapter for the
characteristic frequency of this oscillator (fz¢).

The RTC can also use the 32 KHz crystal oscillator as clock source. This oscillator must be
enabled before use. Please refer to the Power Manager chapter for details.

14.5 Functional Description
145.1 RTC operation
14511 Source clock

The RTC is enabled by writing the EN bit in the CTRL register to 1. The 16-bit prescaler will then
increment on the selected clock. The prescaler cannot be read or written, but it can be reset by

writing the PCLR strobe.
l“ﬂnEl 87
I)

32058H-AVR32-03/09

The CLK32 bit selects either the RC oscillator or the 32 KHz oscillator as clock source for the
prescaler.

The PSEL bitfield selects the prescaler tapping, selecting the source clock for the RTC:

frre = 2/PSELD * (foc or 32 KHz)

145.1.2 Counter operation

When enabled, the RTC will increment until it reaches TOP, and then wrap to 0x0. The status bit
TOPI in ISR is set when this occurs. From 0x0 the counter will count TOP+1 cycles of the source
clock before it wraps back to 0x0.

The RTC count value can be read from or written to the register VAL. Due to synchronization,
continuous reading of the VAL with the lowest prescaler setting will skip every other value.

14.5.1.3 RTC Interrupt

145.1.4 RTC wakeup

145.1.5 Busy bit

32058H-AVR32-03/09

Writing the TOPI bit in IER enables the RTC interrupt, while writing the corresponding bit in IDR
disables the RTC interrupt. IMR can be read to see whether or not the interrupt is enabled. If
enabled, an interrupt will be generated if the TOPI flag in ISR is set. The flag can be cleared by
writing TOPI in ICR to one.

The RTC interrupt can wake the CPU from all sleep modes except DeepStop and Static mode.

The RTC can also wake up the CPU directly without triggering an interrupt when the TOPI flag in
ISR is set. In this case, the CPU will continue executing from the instruction following the sleep
instruction.

This direct RTC wakeup is enabled by writing the WAKE_EN bit in the CTRL register to one.
When the CPU wakes from sleep, the WAKE_EN bit must be written to zero to clear the internal
wake signal to the sleep controller, otherwise a new sleep instruction will have no effect.

The RTC wakeup is available in all sleep modes except Static mode. The RTC wakeup can be
configured independently of the RTC interrupt.

Due to the crossing of clock domains, the RTC uses a few clock cycles to propagate the values
stored in CTRL, TOP, and VAL to the RTC. The BUSY bit in CTRL indicates that a register write
is still going on and all writes to TOP, CTRL, and VAL will be discarded until BUSY goes low
again.

ATMEL L

14.6 User Interface

Offset Register Register Name Access Reset
0x00 RTC Control CTRL Read/Write 0x0
0x04 RTC Value VAL Read/Write 0x0
0x08 RTC Top TOP Read/Write 0x0
0x10 RTC Interrupt Enable IER Write-only 0x0
0x14 RTC Interrupt Disable IDR Write-only 0x0
0x18 RTC Interrupt Mask IMR Read-only 0x0
0x1C RTC Interrupt Status ISR Read-only 0x0
0x20 RTC Interrupt Clear ICR Write-only 0x0

14.6.1 RTC Control

Name: CTRL

Access Type: Read/Write
31 30 29 28 27 26 25 24

. - r - r - r - r - r - [- [- |
23 22 21 20 19 18 17 16

e e e e O I =t
15 14 13 12 11 10 9 8

. - ! - [- [- | PSEL |
7 6 5 4 3 2 1 0

‘ - ‘ - ‘ - ‘ BUSY ‘ CLK32 WAKE_EN PCLR EN ‘

CLKEN: Clock enable

0: The clock is disabled

1: The clockis enabled
* PSEL: Prescale Select

Selects prescaler bit PSEL as source clock for the RTC.
BUSY: RTC busy

0: The RTC accepts writes to TOP, VAL, and CTRL.

1: The RTC is busy and will discard writes to TOP, VAL, and CTRL.
CLK32: 32 KHz oscillator select

0: The RTC uses the RC oscillator as clock source

1: The RTC uses the 32 KHz oscillator as clock source

ATMEL 5

32058H-AVR32-03/09

* WAKE_EN: Wakeup enable
0: The RTC does not wake up the CPU from sleep modes
1: The RTC wakes up the CPU from sleep modes.
* PCLR: Prescaler Clear
Writing 1 to this strobe clears the prescaler.
* EN: Enable
0: The RTC is disabled
1: The RTC is enabled

ATMEL s

32058H-AVR32-03/09

14.6.2 RTC Value

Name: VAL

Access Type: Read/Write
31 30 29 28 27 26 25 24

‘ VAL[31:24] ‘
23 22 21 20 19 18 17 16

‘ VAL[23:16] ‘
15 14 13 12 11 10 9 8

\ VAL[15:8] \
7 6 5 4 3 2 1 0

‘ VAL[7:0] ‘

* VAL: RTC Value
This value is incremented on every rising edge of the source clock.

ATMEL o

32058H-AVR32-03/09

14.6.3 RTC Top

Name: TOP
Access Type: Read/Write

31 30 29 28 27 26 25 24
‘ TOP[31:24]

23 22 21 20 19 18 17 16
‘ TOP[23:16]

15 14 13 12 11 10 9 8
\ TOP[15:8]

7 6 5 4 3 2 1 0
‘ TOP[7:0]

e TOP: RTC Top Value
VAL wraps at this value.

32058H-AVR32-03/09

ATMEL

92

14.6.4 RTC Interrupt Enable/Disable/Mask/Status/Clear

Name: IER/IDR/IMR/ISR/ICR
Access Type: IER/IDR/ICR: Write-only
IMR/ISR: Read-only

31 30 29 28 27 26 25 24
- r - r - r - r - ;- [- [- |
23 22 21 20 19 18 17 16
- - r-r - r - ;- [- [- |
15 14 13 12 11 10 9 8
- r - r - r - +r - - [- 7 - |
7 6 5 4 3 2 1 0
e R A SO B N -

* TOPI: Top Interrupt
VAL has wrapped at its top value.

The effect of writing or reading this bit depends on which register is being accessed:

* IER (Write-only)
0: No effect
1: Enable Interrupt
* IDR (Write-only)
0: No effect
1: Disable Interrupt
IMR (Read-only)
0: Interrupt is disabled
1: Interrupt is enabled
ISR (Read-only)
0: An interrupt event has occurred
1: An interrupt even has not occurred
ICR (Write-only)
0: No effect
1: Clear interrupt even

ATMEL o

32058H-AVR32-03/09

15. Watchdog Timer (WDT)

Rev: 2.3.0.1
15.1 Features

* Watchdog Timer counter with 16-bit prescaler
* Clocked from RC oscillator

15.2 Description

The Watchdog Timer (WDT) has a prescaler generating a timeout period. This prescaler is
clocked from the RC oscillator. The watchdog timer must be periodically reset by software within
the timeout period, otherwise, the device is reset and starts executing from the boot vector. This
allows the device to recover from a condition that has caused the system to be unstable.

15.3 Block Diagram

Figure 15-1. Watchdog Timer module block diagram

WDT_CLR
~ 32-bit Watchdog
RCOSC - Prescaler — Detector Watchdog Reset—»
EN————— WDT_CTRL

15.4 Product Dependencies
154.1 Power Management

When the WDT is enabled, the WDT remains clocked in all sleep modes, and it is not possible to
enter Static mode.

15.4.2 Debug Operation

The WDT prescaler is frozen during debug operation, unless the OCD system keeps peripherals
running in debug operation.

15.4.3 Clocks
The WDT can use the internal RC oscillator as clock source. This oscillator is always enabled

whenever these modules are active. Please refer to the Electrical Characteristics chapter for the
characteristic frequency of this oscillator (frc).

ATMEL o

32058H-AVR32-03/09

15.5 Functional Description

32058H-AVR32-03/09

The WDT is enabled by writing the EN bit in the CTRL register to one. This also enables the RC
clock for the prescaler. The PSEL bitfield in the same register selects the watchdog timeout
period:

TWDT — 2(PSEL+1) / fRC

The next timeout period will begin as soon as the watchdog reset has occured and count down
during the reset sequence. Care must be taken when selecting the PSEL value so that the time-
out period is greater than the startup time of the chip, otherwise a watchdog reset can reset the
chip before any code has been run.

To avoid accidental disabling of the watchdog, the CTRL register must be written twice, first with
the KEY field set to 0x55, then OXAA without changing the other bitfields. Failure to do so will
cause the write operation to be ignored, and CTRL does not change value.

The CLR register must be written with any value with regular intervals shorter than the watchdog
timeout period. Otherwise, the device will receive a soft reset, and the code will start executing
from the boot vector.

When the WDT is enabled, it is not possible to enter Static mode. Attempting to do so will result
in entering Shutdown mode, leaving the WDT operational.

ATMEL o

15.6 User Interface

Offset Register Register Name Access Reset
0x00 WDT Control CTRL Read/Write 0x0
0x04 WDT Clear CLR Write-only 0x0

ATMEL s

32058H-AVR32-03/09

15.6.1 WDT Control

Name: CTRL

Access Type: Read/Write
31 30 29 28 27 26 25 24

‘ KEY[7:0] ‘
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8

. - ! - [- PSEL |
7 6 5 4 3 2 1 0

I B N B - - - |

* KEY

This bitfield must be written twice, first with key value 0x55, then OxAA, for a write operation to be effective. This bitfield always
reads as zero.

* PSEL: Prescale Select

Prescaler bit PSEL is used as watchdog timeout period.
e EN: WDT Enable

0: WDT is disabled.

1: WDT is enabled.

ATMEL o

32058H-AVR32-03/09

15.6.2 WDT Clear
Name: CLR

Access Type: Write-only

When the watchdog timer is enabled, this register must be periodically written, with any value, within the watchdog timeout
period, to prevent a watchdog reset.

ATMEL o

32058H-AVR32-03/09

16. Interrupt Controller (INTC)

16.1 Description

Rev: 1.0.1.1

The INTC collects interrupt requests from the peripherals, prioritizes them, and delivers an inter-
rupt request and an autovector to the CPU. The AVR32 architecture supports 4 priority levels for
regular, maskable interrupts, and a Non-Maskable Interrupt (NMI).

The INTC supports up to 64 groups of interrupts. Each group can have up to 32 interrupt request
lines, these lines are connected to the peripherals. Each group has an Interrupt Priority Register
(IPR) and an Interrupt Request Register (IRR). The IPRs are used to assign a priority level and
an autovector to each group, and the IRRs are used to identify the active interrupt request within
each group. If a group has only one interrupt request line, an active interrupt group uniquely
identifies the active interrupt request line, and the corresponding IRR is not needed. The INTC
also provides one Interrupt Cause Register (ICR) per priority level. These registers identify the
group that has a pending interrupt of the corresponding priority level. If several groups have an
pending interrupt of the same level, the group with the lowest nhumber takes priority.

16.2 Block Diagram

16.3 Operation

32058H-AVR32-03/09

Figure 16-1 on page 99 gives an overview of the INTC. The grey boxes represent registers that
can be accessed via the Peripheral Bus (PB). The interrupt requests from the peripherals
(IREQn) and the NMI are input on the left side of the figure. Signals to and from the CPU are on
the right side of the figure.

Figure 16-1. Overview of the Interrupt Controller

Interrupt Controller CPU
NMIREQ
B Masks | | SREG
-t masks
v I[3-0]M
GM
o ValRegN
GrpRegN o -
—__»/OR > >
=
[1| ®Rrn INTLEVEL
Request - .
IREQ63 > masking g
OR GrpReql ValReql =:>-> %‘
IREQ34 P [
IREQ33 I > =
IRE§32 T IPR1 AUTOVECTOH
IREQ31 > SroRedd ValReq0 -
reet R By
B T i
[]|mrro L]
IRR registers IPR registers ICR registers

All of the incoming interrupt requests (IREQs) are sampled into the corresponding Interrupt
Request Register (IRR). The IRRs must be accessed to identify which IREQ within a group that
is active. If several IREQs within the same group is active, the interrupt service routine must pri-

ATMEL o

oritize between them. All of the input lines in each group are logically-ORed together to form the
GrpRegN lines, indicating if there is a pending interrupt in the corresponding group.

The Request Masking hardware maps each of the GrpReq lines to a priority level from INTO to
INT3 by associating each group with the INTLEVEL field in the corresponding IPR register. The
GrpReq inputs are then masked by the I0M, 11M, 12M, 13M and GM mask bits from the CPU sta-
tus register. Any interrupt group that has a pending interrupt of a priority level that is not masked
by the CPU status register, gets its corresponding ValReq line asserted.

The Prioritizer hardware uses the ValReq lines and the INTLEVEL field in the IPRs to select the
pending interrupt of the highest priority. If a NMI interrupt is pending, it automatically gets high-
est priority of any pending interrupt. If several interrupt groups of the highest pending interrupt
level have pending interrupts, the interrupt group with the highest number is selected.

Interrupt level (INTLEVEL) and handler autovector offset (AUTOVECTOR) of the selected inter-
rupt are transmitted to the CPU for interrupt handling and context switching. The CPU doesn't
need to know which interrupt is requesting handling, but only the level and the offset of the han-
dler address. The IRR registers contain the interrupt request lines of the groups and can be read
via PB for checking which interrupts of the group are actually active.

Masking of the interrupt requests is done based on five interrupt mask bits of the CPU status
register, namely interrupt level 3 mask (I3M) to interrupt level 0 mask (IOM), and Global interrupt
mask (GM). An interrupt request is masked if either the Global interrupt mask or the correspond-
ing interrupt level mask bit is set.

16.3.1 Non maskable interrupts
A NMI request has priority over all other interrupt requests. NMI has a dedicated exception vec-
tor address defined by the AVR32 architecture, so AUTOVECTOR is undefined when
INTLEVEL indicates that an NMI is pending.

16.3.2 CPU response

When the CPU receives an interrupt request it checks if any other exceptions are pending. If no
exceptions of higher priority are pending, interrupt handling is initiated. When initiating interrupt
handling, the corresponding interrupt mask bit is set automatically for this and lower levels in sta-
tus register. E.qg, if interrupt on level 3 is approved for handling the interrupt mask bits 13M, 12M,
I1M, and I0OM are set in status register. If interrupt on level 1 is approved the masking bits 11M,
and IOM are set in status register. The handler offset is calculated from AUTOVECTOR and
EVBA and a change-of-flow to this address is performed.

Setting of the interrupt mask bits prevents the interrupts from the same and lower levels to be
passed trough the interrupt controller. Setting of the same level mask bit prevents also multiple
request of the same interrupt to happen.

It is the responsibility of the handler software to clear the interrupt request that caused the inter-
rupt before returning from the interrupt handler. If the conditions that caused the interrupt are not
cleared, the interrupt request remains active.

16.3.3 Clearing an interrupt request
Clearing of the interrupt request is done by writing to registers in the corresponding peripheral
module, which then clears the corresponding NMIREQ/IREQ signal.

The recommended way of clearing an interrupt request is a store operation to the controlling
peripheral register, followed by a dummy load operation from the same register. This causes a

AImEl@ 100

32058H-AVR32-03/09

pipeline stall, which prevents the interrupt from accidentally re-triggering in case the handler is
exited and the interrupt mask is cleared before the interrupt request is cleared.

16.4 User Interface
This chapter lists the INTC registers are accessible through the PB bus. The registers are used
to control the behaviour and read the status of the INTC.

16.4.1 Memory Map
The following table shows the address map of the INTC registers, relative to the base address of

the INTC.

Table 16-1. INTC address map
Offset Register Name Access Reset Value
0 Interrupt Priority Register 0 IPRO Read/Write 0x0000_0000
4 Interrupt Priority Register 1 IPR1 Read/Write 0x0000_0000
252 Interrupt Priority Register 63 IPR63 Read/Write 0x0000_0000
256 Interrupt Request Register 0 IRRO Read-only N/A
260 Interrupt Request Register 1 IRR1 Read-only N/A
508 Interrupt Request Register 63 | IRR63 Read-only N/A
512 Interrupt Cause Register 3 ICR3 Read-only N/A
516 Interrupt Cause Register 2 ICR2 Read-only N/A
520 Interrupt Cause Register 1 ICR1 Read-only N/A
524 Interrupt Cause Register 0 ICRO Read-only N/A

16.4.2 Interrupt Request Map
The mapping of interrupt requests from peripherals to INTREQSs is presented in the Peripherals
Section.

AImEl@ 101

32058H-AVR32-03/09

16.4.3 Interrupt Request Registers

Register Name: IRRO...IRR63
Access Type: Read-only
31 30 29 28 27 26 25 24

[TRR(32*x+31) | IRR(32°x+30) | IRR(32°x+29) | IRR(32*x+28) | IRR(32°x+27) | IRR(32°x+26) | IRR(32*x+25) | IRR(32°x+24) |

23 22 21 20 19 18 17 16
[IRR(32x+23) | IRR(32*x+22) | IRR(32*x+21) | IRR(32°x+20) | IRR(32"x+19) | IRR(32°x+18) | IRR(32*x+17) | IRR(32"x+16) |

15 14 13 12 11 10 9 8
[IRR(32°x+15) | IRR(32"x+14) | IRR(32"x+13) | IRR(32*x+12) | IRR(32*x+11) | IRR(32*x+10) | IRR(32'x+9) | IRR(32'x*8) |

7 6 5 4 3 2 1 0
[IRR@2%+7) | IRR(B2x+6) | IRR(32x+5) | IRR(32’x+4) | IRR(32x+3) | IRR(32x+2) | IRR(32'x+1) | IRR(32'x*0) |

* IRR: Interrupt Request line

0 = No interrupt request is pending on this input request input.

1 = An interrupt request is pending on this input request input.

The are 64 IRRs, one for each group. Each IRR has 32 bits, one for each possible interrupt request, for a total of 2048 pos-

sible input lines. The IRRs are read by the software interrupt handler in order to determine which interrupt request is
pending. The IRRs are sampled continuously, and are read-only.

AImEl@ 102

32058H-AVR32-03/09

16.4.4 Interrupt Priority Registers

Register Name: IPRO...IPR63

Access Type: Read/Write
31 30 29 28 27 26 25 24

| INTLEVEL[1:0] - - [- - - - |
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8

| - | - AUTOVECTOR][13:8] |
7 6 5 4 3 2 1 0

AUTOVECTOR[7:0]

* INTLEVEL: Interrupt level associated with this group

Indicates the EVBA-relative offset of the interrupt handler of the corresponding group:

INTLEVEL[1:0]

Priority

INTO

INT1

INT2

k|, |O|O

0
1
0
1

INT3

 AUTOVECTOR: Autovector address for this group
Handler offset is used to give the address of the interrupt handler. The least significant bit should be written to zero to give

halfword alignment

32058H-AVR32-03/09

ATMEL

103

16.4.5 Interrupt Cause Registers

Register Name: ICRO...ICR3

Access Type: Read-only
31 30 29 28 27 26 25 24

I I - I I I I - I I |
23 22 21 20 19 18 17 16

I I - I I I I - I I |
15 14 13 12 11 10 9 8

I I - I I I I - I I |
7 6 5 4 3 2 1 0

| - | - | CAUSE |

» CAUSE: Interrupt group causing interrupt of priority n

ICRn identifies the group with the highest priority that has a pending interrupt of level n. If no interrupts of level n are pend-
ing, or the priority level is masked, the value of ICRn is UNDEFINED.

AImEl@ 104

32058H-AVR32-03/09

17. External Interrupts Controller (EIC)

17.1 Features

17.2 Description

32058H-AVR32-03/09

Rev: 2.3.0.2

* Dedicated interrupt requests for each interrupt

¢ Individually maskable interrupts

* Interrupt on rising or falling edge

¢ Interrupt on high or low level

e Asynchronous interrupts for sleep modes without clock
 Filtering of interrupt lines

* Keypad scan support

* Maskable NMl interrupt

The External Interrupt Module allows pins to be configured as external interrupts. Each pin has
its own interrupt request and can be individually masked. Each pin can generate an interrupt on
rising or falling edge, or high or low level. Every line has a configurable filter too remove spikes
on the interrupt lines. Every interrupt pin can also be configured to be asynchronous to wake up
the part from sleep modes where the clock has been disabled.

A Non-Maskable Interrupt (NMI) is also supported. This has the same properties as the other
external interrupts, but is connected to the NMI request of the CPU, enabling it to interrupt any
other interrupt mode.

The External Interrupt Module has support for keypad scanning for keypads laid out in rows and
columns. Columns are driven by a separate set of scanning outputs, while rows are sensed by
the external interrupt lines. The pressed key will trigger an interrupt, which can be identified
through the user registers of the module.

The External Interrupt Module can wake up the part from sleep modes without triggering an
interrupt. In this mode, code execution starts from the instruction following the sleep instruction.

AImEl@ 105

17.3 Block Diagram

Figure 17-1. External Interrupt Module block diagram

—IRQN»

EIM_LEVEL
EIM_MODE
EIM_EDGE
EM_EN | Polarity - Asynchronus | EIM ICR EIM_IER
EIM_DIS control detector EIM_IDR
EXTINTN | Wake
Enable H ‘ EIM_LEVEL - INTN - Mask
NMI &» able EIM_FILTER EIM_MODE detect as
EIM_EDGE
EIM_CTRL . Edge/Level EIM_ISR EIM_IMR
- Filter
Detector
—RC clk:
Prescaler —»{ Shifter SCAN
LPREsc— ;N PIN

[v

EIM_SCAN

17.4 Product Dependencies

17.4.1 I/O Lines

EIM_WAKE———p

The External Interrupt and keypad scan pins are multiplexed with PIO lines. To act as external
interrupts, these pins must be configured as inputs pins by the PIO controller. It is also possible
to trigger the interrupt by driving these pins from registers in the PI1O controller, or another

peripheral output connected to the same pin.

17.4.2 Power Management

All interrupts are available in every sleep mode. However, in sleep modes where the clock is
stopped, asynchronous interrupts must be selected.

17.4.3 Interrupt

The external interrupt lines are connected to internal sources of the interrupt controller. Using
the external interrutps requires the interrupt controller to be programmed first.

Using the Non-Maskable Interrupt does not require the interrupt controller to be programmed.

ATMEL

32058H-AVR32-03/09

106

17.5 Functional Description

1751

17511

17.51.2

17.5.2

External Interrupts

To enable an external interrupt EXTINTN must be written to 1 in register EN. Similarly, writing
EXTINTnN to 1 in register DIS disables the interrupt. The status of each Interrupt line can be
observed in the CTRL register.

Each external interrupt pin EXTINTn can be configured to produce an interrupt on rising or fall-
ing edge, or high or low level. External interrupts are configured by the MODE, EDGE, and
LEVEL registers. Each interrupt n has a bit INTn in each of these registers.

Similarly, each interrupt has a corresponding bit in each of the interrupt control and status regis-
ters. Writing 1 to the INTn strobe in IER enables the external interrupt on pin EXTINTn, while
writing 1 to INTn in IDR disables the external interrupt. IMR can be read to check which inter-
rupts are enabled. When the interrupt triggers, the corresponding bit in ISR will be set. The flag
remains set until the corresponding strobe bit in ICR is written to 1.

Writing INTn in MODE to 0 enables edge triggered interrupts, while writing the bit to 1 enables
level triggered interrupts.

If EXTINTN is configured as an edge triggered interrupt, writing INTn in EDGE to 0 will trigger the
interrupt on falling edge, while writing the bit to 1 will trigger the interrupt on rising edge.

If EXTINTN is configured as a level triggered interrupt, writing INTn in LEVEL to 0 will trigger the
interrupt on low level, while writing the bit to 1 will trigger the interrupt on high level.

To remove spikes that are longer than the clock period in the current mode each external inter-
rupt contains a filter that can be enabled by writing 1 to INTn to FILTER.

Each interrupt line can be made asynchronous by writing 1 to INTn in the ASYNC register. This
will route the interrupt signal through the asynchronous path of the module. All edge interrupts
will be interpreted as level interrupts and the filter is disabled.

Synchronization of external interrupts

Wakeup

The pin value of the EXTINTN pins is normally synchronized to the CPU clock, so spikes shorter
than a CPU clock cycle are not guaranteed to produce an interrupt. In Stop mode, spikes shorter
than a 32 KHz clock cycle are not guaranteed to produce an interrupt.

In Static mode, only unsynchronized interrupts remain active, and any short spike on this inter-
rupt will wake up the device.

The External interrupts can be used to wake up the part from sleep modes. The wakeup can be
interpreted in two ways. If the corresponding bit in IMR is set, then the execution starts at the
interrupt handler for this interrupt. If the bit in IMR is not set, then the execution starts from the
next instruction after the sleep instruction.

Non-Maskable Interrupt

32058H-AVR32-03/09

The NMI supports the same features as the external interrupts, and is accessed through the
same registers. The description in Section 17.5.1 should be followed, accessing the NMI bit
instead of the INTn bits.

AImEl@ 107

The NMI is non-maskable within the CPU in the sense that it can interrupt any other execution
mode. Still, as for the other external interrupts, the actual NMI input line can be enabled and dis-
abled by accessing the registers in the External Interrupt Module. These interrupts are not
enabled by default, allowing the proper interrupt vectors to be set up by the CPU before the
interrupts are enabled.

17.5.3 Keypad scan support

32058H-AVR32-03/09

The External Interrupt Module also includes support for keypad scanning. The keypad scan fea-
ture is compatible with keypads organized as rows and columns, where a row is shorted against
a column when a key is pressed.

The rows should be connected to the external interrupt pins with pullups enabled in the GPIO
module. These external interrupts should be enabled as low level or falling edge interrupts. The
columns should be connected to the available scan pins. The GPIO must be configured to let the
required scan pins be controlled by the EIC module. Unused external interrupt or scan pins can
be left controlled by the GPIO or other peripherals.

The Keypad Scan function is enabled by writing :EN to 1, which starts the keypad scan counter.
The SCAN outputs are tristated, except SCAN[0], which is driven to zero. After 2(SCAN:PRESC+1)
RC clock cycles this pattern is left shifted, so that SCAN[1] is driven to zero while the other out-
puts are tristated. This sequence repeats infinitely, wrapping from the most significant SCAN pin
to SCAN[O].

When a key is pressed, the pulled-up row is driven to zero by the column, and an external inter-
rupt triggers. The scanning stops, and the software can then identify the key pressed by the
interrupt status register and the SCAN:PINS value.

The scanning stops whenever there is an active interrupt request from the EIC to the CPU.
When the CPU clears the interrupt flags, scanning resumes.

AImEl@ 108

17.6 User Interface

Offset Register Register Name Access Reset
0x00 EIC Interrupt Enable IER Write-only 0x0
0x04 EIC Interrupt Disable IDR Write-only 0x0
0x08 EIC Interrupt Mask IMR Read-only 0x0
0x0C EIC Interrupt Status ISR Read-only 0x0
0x10 EIC Interrupt Clear ICR Write-only 0x0
0x14 External Interrupt Mode MODE Read/Write 0x0
0x18 External Interrupt Edge EDGE Read/Write 0x0
0x1C External Interrupt Level LEVEL Read/Write 0x0
0x20 External Interrupt Filter FILTER Read/Write 0x0
0x24 External Interrupt Test TEST Read/Write 0x0
0x28 External Interrupt Asynchronous ASYNC Read/Write 0x0
0x2C External Interrupt Scan SCAN Read/Write 0x0
0x30 External Interrupt Enable EN Write-only 0x0
0x34 External Interrupt Disable DIS Write-only 0x0
0x38 External Interrupt Control CTRL Read/Write 0x0

AImEl@ 109

32058H-AVR32-03/09

17.6.1 EIC Interrupt Enable/Disable/Mask/Status/Clear
Name: IER/IDR/IMR/ISR/ICR
Access Type: IER/IDR/ICR: Write-only

IMR/ISR: Read-only

31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8
I R I R N AR B B TR
7 6 5 4 3 2 1 0
‘ INT7 ‘ INT6 ‘ INTS ‘ INT4 ‘ INT3 ‘ INT2 ‘ INT1 ‘ INTO ‘

The effect of writing or reading the bits listed above depends on which register is being accessed:

* |ER (Write-only)
0: No effect
1: Enable Interrupt
* IDR (Write-only)
0: No effect
1: Disable Interrupt
IMR (Read-only)
0: Interrupt is disabled
1: Interrupt is enabled
ISR (Read-only)
0: An interrupt event has occurred
1: An interrupt even has not occurred
* ICR (Write-only)
0: No effect
1: Clear interrupt event

AImEl@ 110

32058H-AVR32-03/09

17.6.2 External Interrupt Mode/Edge/Level/Filter/Async

Name: MODE/EDGE/LEVEL/FILTER/ASYNC

Access Type: Read/Write
31 30 29 28 27 26 25 24

. - ! - r - r -+ - ;r - ;@ - [- |
23 22 21 20 19 18 17 16

. - r - -+ -+ - - [- [- |
15 14 13 12 11 10 9 8

e O A A
7 6 5 4 3 2 1 0

‘ INT7 ‘ INT6 ‘ INT5S ‘ INT4 ‘ INT3 ‘ INT2 ‘ INT1 ‘ INTO ‘

The bit interpretation is register specific:

* MODE
0: Interrupt is edge triggered
1: Interrupt is level triggered
EDGE
0: Interrupt triggers on falling edge
1: Interrupt triggers on rising edge
* LEVEL
0: Interrupt triggers on low level
1: Interrupt triggers on high level
* FILTER
0: Interrupt is not filtered
1: Interrupt is filtered

0: Interrupt is synchronized to the clock
1: Interrupt is asynchronous

AImEl@ 111

32058H-AVR32-03/09

17.6.3 External Interrupt Test

Name: TEST
Access Type: Read/Write
31 30 29 28 27 26 25 24
R e
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8
e e e e e
7 6 5 4 3 2 1 0
‘ INT7 ‘ INT6 ‘ INTS ‘ INT4 ‘ INT3 ‘ INT2 ‘ INT1 ‘ INTO ‘
* NMI

If TEST_EN is 1, the value of this bit will be the value to the interrupt detector and the value on the pad will be ignored.
* INTn

If TEST_EN is 1, the value of this bit will be the value to the interrupt detector and the value on the pad will be ignored.
* TEST_EN

0: External interrupt test is disabled

1: External interrupt test is enabled

AImEl@ 112

32058H-AVR32-03/09

17.6.4 External Interrupt Scan

Name: SCAN
Access Type: Read/Write
31 30 29 28 27 26 25 24
- - r - rr - [- | PINI20) |
23 22 21 20 19 18 17 16
I S I B I -]
15 14 13 12 11 10 9 8
‘] ‘] ‘] ‘ PRESC[4:0] ‘
7 6 5 4 3 2 1 0
I I R B - - - |
e EN

0: Keypad scanning is disabled
1: Keypad scanning is enabled
* PRESC
Prescale select for the keypad scan rate:
Scan rate = 2(SCAN:PRESC+1) Tre
The RC clock period can be found in the Electrical Characteristics section.
* PIN
The index of the currently active scan pin. Writing to this bitfield has no effect.

AImEl@ 113

32058H-AVR32-03/09

17.6.5 External Interrupt Enable/Disable/Control
Name: EN/DIS/CTRL

Access Type: EN/DIS: Write-only
CTRL: Read-only

31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8
I S R R IR N B B TR
7 6 5 4 3 2 1 0
‘ INT7 ‘ INT6 ‘ INTS ‘ INT4 ‘ INT3 ‘ INT2 ‘ INT1 ‘ INTO ‘

The bit interpretation is register specific:

* EN

0: No effect

1: Interrupt is enabled
* DIS

0: No effect

1: Interrupt is disabled
* CTRL

0: Interrupt is disabled
1: Interrupt is enabled

AImEl@ 114

32058H-AVR32-03/09

18. Flash Controller (FLASHC)
Rev: 2.0.0.2

18.1 Features

* Controls flash block with dual read ports allowing staggered reads.

* Supports 0 and 1 wait state bus access.

* Allows interleaved burst reads for systems with one wait state, outputting one 32-bit word per
clock cycle.

* 32-bit HSB interface for reads from flash array and writes to page buffer.

* 32-bit PB interface for issuing commands to and configuration of the controller.

* 16 lock bits, each protecting a region consisting of (total number of pages in the flash block /
16) pages.

* Regions can be individually protected or unprotected.

* Additional protection of the Boot Loader pages.

* Supports reads and writes of general-purpose NVM bits.

* Supports reads and writes of additional NVM pages.

* Supports device protection through a security bit.

* Dedicated command for chip-erase, first erasing all on-chip volatile memories before erasing
flash and clearing security bit.

* Interface to Power Manager for power-down of flash-blocks in sleep mode.

18.2 Description
The flash controller (FLASHC) interfaces a flash block with the 32-bit internal HSB bus. Perfor-
mance for uncached systems with high clock-frequency and one wait state is increased by
placing words with sequential addresses in alternating flash subblocks. Having one read inter-
face per subblock allows them to be read in parallel. While data from one flash subblock is
being output on the bus, the sequential address is being read from the other flash subblock
and will be ready in the next clock cycle.

The controller also manages the programming, erasing, locking and unlocking sequences with
dedicated commands.

18.3 Product dependencies

18.3.1 Power management
The HFLASHC has two bus clocks connected: One High speed bus clock
(CLK_FLASHC_HSB) and one Peripheral bus clock (CLK_FLASHC_PB). These clocks are
generated by the Power manager. Both clocks are turned on by default, but the user has to
ensure that CLK_FLASHC_HSB is not turned off before reading the flash or writing the page-
buffer and that CLK_FLASHC_PB is not turned of before accessing the FLASHC configuration
and control registers.

18.3.2 Interrupt
The FLASHC interrupt lines are connected to internal sources of the interrupt controller. Using
FLASHC interrutps requires the interrupt controller to be programmed first.

AImEl@ 115

32058H-AVR32-03/09

18.4 Functional description

18.4.1

18.4.2

18.4.3

18.4.4

Bus interfaces

The FLASHC has two bus interfaces, one High-Speed Bus (HSB) interface for reads from the
flash array and writes to the page buffer, and one Peripheral Bus (PB) interface for writing
commands and control to and reading status from the controller.

Memory organization

User page

Read operations

32058H-AVR32-03/09

To maximize performance for high clock-frequency systems, FLASHC interfaces to a flash
block with two read ports. The flash block has several parameters, given by the design of the
flash block. Refer to the “Memories” chapter for the device-specific values of the parameters.

* p pages (FLASH_P)

» w words in each page and in the page buffer (FLASH_W)
* pw words in total (FLASH_PW)

« f general-purpose fuse bits (FLASH_F)

« 1 security fuse bit

» 1 User Page

The User page is an additional page, outside the regular flash array, that can be used to store
various data, like calibration data and serial numbers. This page is not erased by regular chip
erase. The User page can only be written and erased by proprietary commands. Read
accesses to the User page is performed just as any other read access to the flash. The
address map of the User page is given in Figure 18-1.

The FLASHC provides two different read modes:

» 0 wait state (Ows) for clock frequencies < (access time of the flash plus the bus delay)
« 1 wait state (1ws) for clock frequencies < (access time of the flash plus the bus delay)/2

Higher clock frequencies that would require more wait states are not supported by the flash
controller.

The programmer can select the wait states required by writing to the FWS field in the flash
control register (FCR). It is the responsibility of the programmer to select a number of wait
states compatible with the clock frequency and timing characteristics of the flash block.

In Ows mode, only one of the two flash read ports is accessed. The other flash read port is idle.
In 1ws mode, both flash read ports are active. One read port reading the addressed word, and
the other reading the next sequential word.

If the clock frequency allows, the user should use Ows mode, because this gives the lowest
power consumption for low-frequency systems as only one flash read port is read. Using 1ws
mode has a power/performance ratio approaching Ows mode as the clock frequency
approaches twice the max frequency of Ows mode. Using two flash read ports use twice the
power, but also give twice the performance.

AImEl@ 116

The flash controller supports flash blocks with up to 2721 word addresses, as displayed in Fig-
ure 18-1. Reading the memory space between address pw and 2721-1 returns an undefined
result. The User page is permanently mapped to word address 2/21.

Table 18-1. User row addresses

Memory type Start address, byte sized Size
Main array 0 pw words = 4pw bytes
User 2723 = 8388608 128 words = 512 bytes

Figure 18-1. Memory map for the Flash memories

All addresses are word addresses

2721+12 Unused
2"2? User page
§e)
Q
0
S
c
D
pw-1
g
a
g
]
©
<
]
K
L
0
Flash with

extra page

18.4.5 Quick Page Read
A dedicated command, Quick Page Read (QPR), is provided to read all words in an
addressed page. All bits in all words in this page are AND’ed together, returning a 1-bit result.
This result is placed in the Quick Page Read Result (QPRR) bit in Flash Status Register
(FSR). The QPR command is useful to check that a page is in an erased state. The QPR
instruction is much faster than performing the erased-page check using a regular software
subroutine.

18.4.6 Write page buffer operations
The internal memory area reserved for the embedded flash can also be written through a
write-only page buffer. The page buffer is addressed only by the address bits required to
address w words (since the page buffer is word addressable) and thus wrap around within the
internal memory area address space and appear to be repeated within it.

When writing to the page buffer, the PAGEN field in the FCMD register is updated with the
page number corresponding to page address of the latest word written into the page buffer.

AImEl@ 117

32058H-AVR32-03/09

The page buffer is also used for writes to the User page.

Write operations can be prevented by programming the Memory Protection Unit of the CPU.
Writing 8-bit and 16-bit data to the page buffer is not allowed and may lead to unpredictable
data corruption.

Page buffer write operations are performed with 4 wait states.

Writing to the page buffer can only change page buffer bits from one to zero, ie writing
Oxaaaaaaaa to a page buffer location that has the value 0x00000000, will not change the page
buffer value. The only way to change a bit from zero to one, is to reset the entire page buffer
with the Clear Page Buffer command.

The page buffer is not automatically reset after a page write. The programmer should do this
manually by issuing the Clear Page Buffer flash command. This can be done after a page
write, or before the page buffer is loaded with data to be stored to the flash page.

Example: Writing a word into word address 130 of a flash with 128 words in the page buffer.
PAGEN will be updated with the value 1, and the word will be written into word 2 in the page
buffer.

18.4.7 Writing words to a page that is not completely erased
This can be used for EEPROM emulation, i.e. writes with granularity of one word instead of an
entire page. Only words that are in an completely erased state (OXFFFFFFFF) can be
changed. The procedure is as follows:

1. Clear page buffer

2. Write to the page buffer the result of the logical bitwise AND operation between the
contents of the flash page and the new data to write. Only words that were in an
erased state can be changed from the original page.

3. Write Page.

18.5 Flash commands

The FLASHC offers a command set to manage programming of the flash memory, locking and
unlocking of regions, and full flash erasing. See chapter 18.8.3 for a complete list of
commands.

To run a command, the field CMD of the Flash Command Register (FCMD) has to be written
with the command number. As soon as the FCMD register is written, the FRDY flag is auto-
matically cleared. Once the current command is complete, the FRDY flag is automatically set.
If an interrupt has been enabled by setting the bit FRDY in FCR, the interrupt line of the flash
controller is activated. All flash commands except for Quick Page Read (QPR) will generate an
interrupt request upon completion if FRDY is set.

After a command has been written to FCMD, the programming algorithm should wait until the
command has been executed before attempting to read instructions or data from the flash or
writing to the page buffer, as the flash will be busy. The waiting can be performed either by
polling the Flash Status Register (FSR) or by waiting for the flash ready interrupt. The com-
mand written to FCMD is initiated on the first clock cycle where the HSB bus interface in
FLASHC is IDLE. The user must make sure that the access pattern to the FLASHC HSB inter-
face contains an IDLE cycle so that the command is allowed to start. Make sure that no bus
masters such as DMA controllers are performing endless burst transfers from the flash. Also,
make sure that the CPU does not perform endless burst transfers from flash. This is done by

AImEl@ 118

32058H-AVR32-03/09

letting the CPU enter sleep mode after writing to FCMD, or by polling FSR for command com-
pletion. This polling will result in an access pattern with IDLE HSB cycles.

All the commands are protected by the same keyword, which has to be written in the eight
highest bits of the FCMD register. Writing FCMD with data that does not contain the correct
key and/or with an invalid command has no effect on the flash memory; however, the PROGE
flag is set in the Flash Status Register (FSR). This flag is automatically cleared by a read
access to the FSR register.

Writing a command to FCMD while another command is being executed has no effect on the
flash memory; however, the PROGE flag is set in the Flash Status Register (FSR). This flag is
automatically cleared by a read access to the FSR register.

If the current command writes or erases a page in a locked region, or a page protected by the
BOOTPROT fuses, the command has no effect on the flash memory; however, the LOCKE
flag is set in the FSR register. This flag is automatically cleared by a read access to the FSR
register.

18.5.1 Write/erase page operation
Flash technology requires that an erase must be done before programming. The entire flash
can be erased by an Erase All command. Alternatively, pages can be individually erased by
the Erase Page command.

The User page can be written and erased using the mechanisms described in this chapter.

After programming, the page can be locked to prevent miscellaneous write or erase
sequences. Locking is performed on a per-region basis, so locking a region locks all pages
inside the region. Additional protection is provided for the lowermost address space of the
flash. This address space is allocated for the Boot Loader, and is protected both by the lock
bit(s) corresponding to this address space, and the BOOTPROT[2:0] fuses.

Data to be written are stored in an internal buffer called page buffer. The page buffer contains
w words. The page buffer wraps around within the internal memory area address space and
appears to be repeated by the number of pages in it. Writing of 8-bit and 16-bit data to the
page buffer is not allowed and may lead to unpredictable data corruption.

Data must be written to the page buffer before the programming command is written to the
Flash Command Register FCMD. The sequence is as follows:

» Reset the page buffer with the Clear Page Buffer command.
« Fill the page buffer with the desired contents, using only 32-bit access.

» Programming starts as soon as the programming key and the programming command are
written to the Flash Command Register. The PAGEN field in the Flash Command Register
(FCMD) must contain the address of the page to write. PAGEN is automatically updated
when writing to the page buffer, but can also be written to directly. The FRDY bit in the
Flash Status Register (FSR) is automatically cleared when the page write operation starts.

* When programming is completed, the bit FRDY in the Flash Status Register (FSR) is set. If
an interrupt was enabled by setting the bit FRDY in FCR, the interrupt line of the flash
controller is set.

Two errors can be detected in the FSR register after a programming sequence:

» Programming Error: A bad keyword and/or an invalid comman