10-channel integrated LC-filter network with ESD input protection to IEC 61000-4-2 level 4

Rev. 01 — 13 November 2008

Product data sheet

1. Product profile

1.1 General description

The IP3338CX24 is a 10-channel¹ LC low-pass filter network designed to filter undesired RF signals in the 800 MHz to 3000 MHz frequency band. In addition, the IP3338CX24 incorporates diodes which protect downstream components from ElectroStatic Discharge (ESD) voltages as high as 15 kV.

The IP3338CX24 is fabricated using monolithic silicon technology and integrates 10 inductors and 20 back-to-back diodes in a single Wafer-Level Chip-Scale Package (WLCSP) measuring 2.11 mm by 2.11 mm (typical). These features make the IP3338CX24 ideal for use in applications requiring the utmost in miniaturization such as mobile phone handsets, cordless telephones and personal digital devices.

1.2 Features

- Pb-free, RoHS compliant and halogen free package; Dark Green compliant
- Integrated 10-channel π -type LC filter network with 60 nH channel inductance
- **125** Ω series resistance; 25 pF (typical) capacitance per line
- Integrated ESD protection withstanding ±15 kV contact discharge, far exceeding IEC 61000-4-2, level 4
- WLCSP with 0.4 mm pitch

1.3 Applications

- Cellular and Personal Communication System (PCS) mobile handsets
- Cordless telephones
- Wireless data (WAN/LAN) systems
- PDAs

^{1.} Also available as a 7-channel device (IP3337CX18).

10-channel integrated LC-filter network with ESD input protection

2. Pinning information

2.1 Pinning

Table I. Filling	
Pin	Description
A2 and A5	filter channel 1
A1 and A4	filter channel 2
B2 and B5	filter channel 3
B1 and B4	filter channel 4
C2 and C5	filter channel 5
C1 and C4	filter channel 6
D2 and D5	filter channel 7
D1 and D4	filter channel 8
E2 and E5	filter channel 9
E1 and E4	filter channel 10
A3, C3, D3, E3	ground
B3	no ball

3. Ordering information

Table 2. Ordering information

Type number	Package				
	Name	Description	Version		
IP3338CX24/LF	WLCSP24	wafer level chip-size package; 24 bumps; 2.11 \times 2.11 \times 0.61 mm	IP3338CX24/LF		

10-channel integrated LC-filter network with ESD input protection

4. Functional diagram

5. Limiting values

Table 3.Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions		Min	Max	Unit
VI	input voltage			-4.0	+4.0	V
V _{ESD}	electrostatic discharge voltage	all pins to ground				
		contact discharge	[1]	-15	+15	kV
		air discharge	[1]	-15	+15	kV
		IEC 61000-4-2, level 4; all pins to ground				
		contact discharge		-8	+8	kV
		air discharge		-15	+15	kV
I _{ch}	channel current (DC)	T _{amb} = 70 °C		-	10	mA
I _{ch(M)}	peak channel current	T _{amb} = 70 °C; 60 s		-	50	mA
P _{ch}	channel power dissipation	continuous power; T _{amb} = 70 °C		-	10	mW
P _{tot}	total power dissipation	T _{amb} = 70 °C		-	100	mW
T _{stg}	storage temperature			-55	+150	°C
T _{reflow(peak)}	peak reflow temperature	10 s maximum		-	260	°C
T _{amb}	ambient temperature			-35	+85	°C

[1] Device tested with 1000 pulses of \pm 15 kV contact discharges, according to the IEC 61000-4-2 model, which far exceeds IEC 61000-4-2, level 4 (8 kV contact discharge).

10-channel integrated LC-filter network with ESD input protection

6. Characteristics

Table 4. T _{amb} = 25	Channel characteristics °C; unless otherwise specified	1.				
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
R _{s(ch)}	channel series resistance	f = 0 Hz (DC)	100	125	150	Ω
C _{ch}	channel capacitance	$V_{bias(DC)} = 0 V; f = 1 MHz$	-	25	30 <mark>[1]</mark>	pF
L _{s(ch)}	channel series inductance		<u>[1]</u> _	60	-	nH
V_{BR}	breakdown voltage	I _{test} = 1 mA	6	-	10	V
		$I_{test} = -1 \text{ mA}$	-10	-	-6	V
I _{LR}	reverse leakage current	per channel; $V_I = 3.0 V$	-	-	100	nA

[1] Guaranteed by design.

Table 5. Frequency characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
α_{il} insertion loss	R_{gen} = 50 Ω ; R_{L} = 50 Ω					
		800 MHz < f < 1 GHz	38	40	-	dB
		1 GHz < f < 3 GHz	35	40	-	dB
		at 0 Hz; R _{gen} = 50 Ω ; R _L = 50 Ω ; V _{bias(DC)} = 0 V	6	7	10	dB
f _{-3dB}	cut-off frequency	measured relative to insertion loss at DC; $R_{gen} = 50 \Omega$; $R_L = 50 \Omega$	150	180	-	MHz
α_{ct}	crosstalk attenuation	800 MHz < f < 3 GHz; R _{gen} = 50 Ω; R _L = 50 Ω	35	40	-	dB

7. Application information

7.1 Insertion loss

The setup for measuring insertion loss in a 50 Ω system is shown in Figure 3.

The measured frequency response curves for all channels are shown in Figure 4.

10-channel integrated LC-filter network with ESD input protection

7.2 Crosstalk

The setup for measuring crosstalk in a 50 Ω system is shown in Figure 5.

The crosstalk between adjacent channels within the IP3338CX24 for different channel pairs measured in a 50 Ω NetWork Analyzer (NWA) system, is shown in Figure 6. In all cases, all unused connections are terminated with 50 Ω to ground.

NXP Semiconductors

IP3338CX24

10-channel integrated LC-filter network with ESD input protection

8. Marking

10-channel integrated LC-filter network with ESD input protection

9. Package outline

Fig 8. Package outline IP3338CX24/LF (WLCSP24)

Product data sheet

10-channel integrated LC-filter network with ESD input protection

10. Packing information

Table 6.Tape dimensions

Item	Parameter	Symbol	Specification	Specification (mm)		
			Dimension	Tolerance		
Overall dimensions	tape width	W	8.00	±0.3		
	thickness	K	1.20	maximum		
	distance	G	0.75	minimum		
	outside width	B1	3.70	maximum		
Sprocket holes ^[1]	diameter	D0	1.50	+0.1/-0.0		
	distance	Е	1.75	±0.1		
	pitch	P0	4.00	±0.1		
Distance between center	length direction	P2	2.00	±0.05		
lines	width direction	F	3.50	±0.05		

Product data sheet

10-channel integrated LC-filter network with ESD input protection

Item	Parameter	Symbol	Specification (n	nm)
			Dimension	Tolerance
Compartments	length	A0	1.90	±0.05
	width	B 0	2.35	±0.05
	depth	K0	0.80	±0.05
	hole diameter	D1	0.50	±0.1
	pitch	Р	4.00	±0.1
	radius	R1	0.40	maximum
	radius	R2	0.30	maximum
	radius	R3	0.30	typical
	depth	K1	00.25	-0.1
Device	rotation	θ	±10°	
Carrier tape anti-static ^[2]	film thickness	Т	0.25	±0.07
Cover tape ^[3]	width	W1	5.75	max
	film thickness	T1	0.1	max
Bending pad	in winding direction	R	30	min

Table 6. Tape dimensions ...continued

[1] Cumulative pitch error: ± 0.2 mm per 10 pitches.

[2] Carbon-loaded polystyrene 100 % recyclable.

[3] The cover tape must not overlap the sprocket holes.

10-channel integrated LC-filter network with ESD input protection

11. Design and assembly recommendations

11.1 PCB design guidelines

For optimum performance it is recommended to use a Non-Solder Mask PCB Design (NSMD), also known as a copper-defined design, incorporating laser-drilled micro-vias connecting the ground pads to a buried ground-plane layer. This results in the lowest possible ground inductance and provides the best high frequency and ESD performance. For this case, refer to Table 7 for the recommended PCB design parameters.

Table 7. Recommended PCB design parameters

Parameter	Value or Specification
PCB pad diameter	200 µm
Micro-via diameter	100 μm (0.004 inch)
Solder mask aperture diameter	337 μm
Copper thickness	20 μm to 40 μm
Copper finish	OSP
PCB material	FR4

11.2 PCB assembly guidelines for Pb-free soldering

Table 8. Assembly recommendations	
Parameter	Value or Specification
Solder screen aperture diameter	330 µm
Solder screen thickness	100 μm (0.004 inch)
Solder paste: Pb-free	SnAg (3 % to 4 %) Cu (0.5 % to 0.9 %)
Solder/flux ratio	50/50
Solder reflow profile	see Figure 10

NXP Semiconductors

IP3338CX24

10-channel integrated LC-filter network with ESD input protection

Table 9.	Characteristics					
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
T _{reflow(peak)}	peak reflow temperature		230	-	255	°C
t ₁	time 1	soak time	60	-	180	S
t ₂	time 2	time during T \geq 250 $^{\circ}\text{C}$	-	-	30	S
t ₃	time 3	time during T \geq 230 $^{\circ}\text{C}$	10	-	50	S
t ₄	time 4	time during T > 217 $^{\circ}$ C	30	-	150	S
t ₅	time 5		-	-	540	S
dT/dt rate of change of temperature	rate of change of	cooling rate	-	-	-6	°C/s
	pre-heat	2.5	-	4.0	°C/s	

12. Abbreviations

Table 10.	Abbreviations
Acronym	Description
DUT	Device Under Test
EMI	ElectroMagnetic Interference
ESD	ElectroStatic Discharge
FR4	Flame Retard 4
LAN	Local Area Network
NSMD	Non-Solder Mask Design
OSP	Organic Solderability Preservative
PCB	Printed-Circuit Board
PCS	Personal Communication System
PDA	Personal Digital Assistant
PSU	Power Supply Unit
RoHS	Restriction of Hazardous Substances
WAN	Wide Area Network
WLCSP	Wafer-Level Chip-Scale Package

13. Revision history

Cable 11. Revision history						
Document ID	Release date	Data sheet status	Change notice	Supersedes		
IP3338CX24_1	20081113	Product data sheet	-	-		

14. Legal information

14.1 Data sheet status

Document status[1][2]	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

14.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

14.3 Disclaimers

General — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or

malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability.

Terms and conditions of sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by NXP Semiconductors. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

14.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

15. Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

NXP Semiconductors

IP3338CX24

10-channel integrated LC-filter network with ESD input protection

16. Contents

1	Product profile 1
1.1	General description
1.2	Features
1.3	Applications 1
2	Pinning information 2
2.1	Pinning 2
3	Ordering information 2
4	Functional diagram 3
5	Limiting values 3
6	Characteristics 4
7	Application information 4
7.1	Insertion loss 4
7.2	Crosstalk 5
8	Marking
9	Package outline 7
10	Packing information 8
11	Design and assembly recommendations 10
11.1	PCB design guidelines 10
11.2	PCB assembly guidelines for Pb-free
	soldering 10
12	Abbreviations 11
13	Revision history 11
14	Legal information 12
14.1	Data sheet status 12
14.2	Definitions 12
14.3	Disclaimers
14.4	Irademarks 12
15	Contact information 12
16	Contents 13

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP B.V. 2008.

All rights reserved.

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 13 November 2008 Document identifier: IP3338CX24_1

