DESCRIPTION

Monolithic dual channel high side protected power switch in TOPFET2 technology assembled in a 7 pin plastic surface mount package.

APPLICATIONS

General purpose switch for driving automotive lamps, motors, solenoids, heaters.

FEATURES

- Vertical power TrenchMOS
- Low on-state resistance
- CMOS logic compatible
- Very low quiescent current
- Overtemperature protection
- Load current limiting
- Latched overload and short circuit protection
- Overvoltage and undervoltage shutdown with hysteresis
- Off-state open circuit load detection
- Diagnostic status indication
- Voltage clamping for turn off of inductive loads
- ESD protection on all pins
- Reverse battery, overvoltage and transient protection

PINNING - SOT427

PIN	DESCRIPTION
	load 1
2	ground
3	input 1
4	connected to mb
5	status
6	input 2
7	load 2
mb	battery

QUICK REFERENCE DATA

SYMBOL	PARAMETER	MIN.	UNIT
I_{L}	Nominal load current (ISO)	8	A
SYMBOL	PARAMETER	MAX.	UNIT
$V_{B G}$	Continuous off-state supply voltage		
I_{L}	Continuous load current Continuous junction temperature	16 150	${ }^{\text {A }}$ C
$\mathrm{R}_{\text {ON }}$	On-state resistance, $\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$	40	$\mathrm{m} \Omega$

FUNCTIONAL BLOCK DIAGRAM

Fig.1. Elements of the TOPFET dual HSS with internal ground resistor.

PIN CONFIGURATION

SYMBOL

CONVENTION

Positive currents flow into pins, except for load and ground pins.

TOPFET dual high side switch

LIMITING VALUES

Limiting values in accordance with the Absolute Maximum System (IEC 134)

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
$\mathrm{V}_{\text {BG }}$	Continuous supply voltage		0	50	V
I_{L}	Continuous load current per channel	$\mathrm{T}_{\mathrm{mb}} \leq 135^{\circ} \mathrm{C}$	-	8	A
P_{D}	Total power dissipation	$\mathrm{T}_{\mathrm{mb}} \leq 25^{\circ} \mathrm{C}$	-	83.3	W
$\mathrm{T}_{\text {stg }}$	Storage temperature		-55	175	${ }^{\circ}$
T ${ }_{\text {j }}$	Continuous junction temperature ${ }^{1}$		-40	150	${ }^{\circ} \mathrm{C}$
$\begin{aligned} & V_{G B} \\ & V_{G B} \end{aligned}$	Reverse battery voltages ${ }^{2}$ Continuous reverse voltage Peak reverse voltage		-	$\begin{aligned} & 16 \\ & 32 \end{aligned}$	$\begin{aligned} & \text { v } \\ & \text { v } \end{aligned}$
$\mathrm{R}_{\mathrm{l}}, \mathrm{R}_{\mathrm{S}}$	Application information External resistors ${ }^{3}$	to limit input, status currents	3.2	-	$k \Omega$
$\begin{aligned} & I_{1} \\ & I_{s} \\ & I_{1} \\ & I_{s} \end{aligned}$	Input and status currents Continuous input current Continuous status current Repetitive peak input current Repetitive peak status current	$\begin{aligned} & \delta \leq 0.1, \mathrm{t}_{\mathrm{p}}=300 \mu \mathrm{~s} \\ & \delta \leq 0.1, \mathrm{t}_{\mathrm{p}}=300 \mu \mathrm{~s} \end{aligned}$	$\begin{aligned} & -5 \\ & -5 \\ & -50 \\ & -50 \end{aligned}$	$\begin{gathered} 5 \\ 5 \\ 50 \\ 50 \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$
$\mathrm{E}_{\text {BL }}$	Inductive load clamping Non-repetitive clamping energy (one channel)	$\begin{aligned} & \mathrm{V}_{\mathrm{BG}}=13 \mathrm{~V}, \mathrm{I}_{\mathrm{L}}=8 \mathrm{~A} \\ & \mathrm{~T}_{\mathrm{j}}=150^{\circ} \mathrm{C} \text { prior to turn-off } \end{aligned}$	-	150	mJ

ESD LIMITING VALUE

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V_{C}	Electrostatic discharge capacitor voltage	Human body model; $\mathrm{C}=250 \mathrm{pF} ; \mathrm{R}=1.5 \mathrm{k} \Omega$	-	2	kV

[^0]
TOPFET dual high side switch

THERMAL CHARACTERISTIC

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
$\mathrm{R}_{\text {th } j \text {-mb }}$	Thermal resistance ${ }^{1}$					
		Junction to mounting base	per channel	-	2.4	3
		both channels	K/W			
		-	1.2	1.5	K/W	

STATIC CHARACTERISTICS

Limits are at $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{mb}} \leq 150^{\circ} \mathrm{C}$ and typicals at $\mathrm{T}_{\mathrm{mb}}=25^{\circ} \mathrm{C}$ unless otherwise stated

SYMBOL	PARAMETER	CONDITIONS				MIN.	TYP.	MAX.	UNIT
$\begin{aligned} & \mathrm{V}_{\mathrm{BG}} \\ & \mathrm{~V}_{\mathrm{BL}} \\ & \mathrm{~V}_{\mathrm{GL}} \end{aligned}$	Clamping voltages Battery to ground Battery to load per channel Ground to load ${ }^{2}$	$\begin{aligned} & \mathrm{I}_{\mathrm{G}}=1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{L}}=\mathrm{I}_{\mathrm{G}}=1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{L}}=10 \mathrm{~mA} \\ & \mathrm{~L}_{\mathrm{L}}=10 \mathrm{~A} ; \mathrm{t}_{\mathrm{p}}=300 \mu \mathrm{~s} \end{aligned}$				$\begin{aligned} & 45 \\ & 50 \\ & 18 \\ & 20 \end{aligned}$	$\begin{aligned} & 55 \\ & 55 \\ & 23 \\ & 25 \\ & \hline \end{aligned}$	$\begin{aligned} & 65 \\ & 65 \\ & 28 \\ & 30 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{v} \\ & \mathrm{~V} \end{aligned}$
$V_{B G}$	Supply voltage Operating range ${ }^{3}$	battery to ground				5.5	-	35	V
	Currents Total quiescent current ${ }^{4}$ Off-state load current per channel Operating current Nominal load current ${ }^{5}$	$\begin{array}{\|ll} 9 \mathrm{~V} \leq \mathrm{V}_{\mathrm{BG}} \leq 35 \mathrm{~V} & \\ \mathrm{~V}_{\mathrm{LG}}=0 \mathrm{~V} & \\ \mathrm{~V}_{\mathrm{BL}}=\mathrm{V}_{\mathrm{BG}} & \mathrm{~T}_{\mathrm{mb}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{mb}}=25^{\circ} \mathrm{C} \end{array}$ one channel on both channels on $\mathrm{V}_{\mathrm{BL}}=0.5 \mathrm{~V} ; \mathrm{T}_{\mathrm{mb}}=85^{\circ} \mathrm{C}$				- - - - - 	0.1 - 0.1 1.8 3.6	20 1 10 1 3 6	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$ mA mA A
R_{G}	Effective internal ground resistance ${ }^{6}$	$\mathrm{I}_{\mathrm{G}}=-200 \mathrm{~mA} ; \mathrm{t}_{\mathrm{P}}=300 \mu \mathrm{~s}$				40	75	100	Ω
$\begin{aligned} & \mathrm{R}_{\mathrm{ON}} \\ & \mathrm{R}_{\mathrm{ON}} \end{aligned}$	Resistances per channel On-state resistance	$V_{B G}$	I_{L}	$\mathrm{t}_{\mathrm{p}}{ }^{\text {P }}$	T	- - -	$\begin{gathered} 30 \\ 60 \\ 50 \\ 100 \end{gathered}$	$\begin{gathered} 40 \\ 80 \\ 60 \\ 120 \end{gathered}$	$\begin{gathered} \mathrm{m} \Omega \\ \mathrm{~m} \Omega \\ \mathrm{~m} \Omega \\ \mathrm{~m} \Omega \end{gathered}$
		9 to 35 V 5.5 V	$\begin{aligned} & 10 \mathrm{~A} \\ & 5 \mathrm{~A} \end{aligned}$	$300 \mu \mathrm{~s}$ 300 нs	$\begin{gathered} 25^{\circ} \mathrm{C} \\ 150^{\circ} \mathrm{C} \\ 25^{\circ} \mathrm{C} \\ 150^{\circ} \mathrm{C} \end{gathered}$				

[^1]TOPFET dual high side switch

INPUT CHARACTERISTICS

$5.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{BG}} \leq 35 \mathrm{~V}$. Limits are at $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{mb}} \leq 150^{\circ} \mathrm{C}$ and typicals at $\mathrm{T}_{\mathrm{mb}}=25^{\circ} \mathrm{C}$ unless otherwise stated.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
I_{I}	Input current	$\mathrm{V}_{\mathrm{IG}}=5 \mathrm{~V}$	20	60	160	$\mu \mathrm{~A}$
$\mathrm{~V}_{\mathrm{IG}}$	Input clamping voltage	$\mathrm{I}_{\mathrm{I}}=200 \mu \mathrm{~A}$	5.5	7	8.5	V
$\mathrm{~V}_{\text {IG(ON) }}$	Input turn-on threshold voltage		-	2.1	3	V
$\mathrm{~V}_{\text {IG(OFF) }}$	Input turn-off threshold voltage		1.2	1.8	-	V
$\Delta \mathrm{V}_{\text {IG }}$	Input turn-on hysteresis		0.15	0.3	0.5	V
$\mathrm{I}_{\text {I(ON) }}$	Input turn-on current	$\mathrm{V}_{\mathrm{IG}}=3 \mathrm{~V}$	-	-	100	$\mu \mathrm{~A}$
$\mathrm{I}_{\text {I(OFF) }}$	Input turn-off current	$\mathrm{V}_{\text {IG }}=1.2 \mathrm{~V}$	12	-	-	$\mu \mathrm{A}$

OPEN CIRCUIT DETECTION CHARACTERISTICS

An open circuit load on either channel can be detected in the off-state. Refer to TRUTH TABLE.
This feature requires external load pull-up to a positive supply voltage via a suitable resistor.
Limits are at $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{mb}} \leq 150^{\circ} \mathrm{C}$ and typical is at $\mathrm{T}_{\mathrm{mb}}=25^{\circ} \mathrm{C}$.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
$\begin{aligned} & \mathrm{V}_{\mathrm{LGGOC})} \\ & \mathrm{I}_{\mathrm{BIOCC}} \end{aligned}$	Open circuit detection		1.5	2.5	3.5	
	Load ground threshold voltage	$\mathrm{V}_{\mathrm{BG}} \geq 9 \mathrm{~V}$				
	Supply quiescent current per	$\mathrm{V}_{\mathrm{BG}}=\mathrm{V}_{\mathrm{LG}}=16 \mathrm{~V}$	-	0.8	1.5	mA
	Load ground current per channel	other channel off				
$-\mathrm{I}_{\text {LOC }}$		$\mathrm{V}_{\mathrm{LG}}=16 \mathrm{~V}$		$\begin{gathered} 200 \\ 22 \end{gathered}$	$\begin{gathered} 300 \\ 40 \end{gathered}$	$\mu \mathrm{A}$
		$\mathrm{V}_{\text {LG }}=3.5 \mathrm{~V}$				$\mu \mathrm{A}$
$\mathrm{t}_{\text {d(OC) }}$	Status delay time	input low to status low	-	65	100	$\mu \mathrm{s}$
	Application information					
$\mathrm{R}_{\text {ext }}$	External load pull-up resistance per channel	$\mathrm{V}_{\text {ext }}=5 \mathrm{~V}$	-	10	-	$\mathrm{k} \Omega$

TOPFET dual high side switch

UNDERVOLTAGE \& OVERVOLTAGE CHARACTERISTICS

Limits are at $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{mb}} \leq 150^{\circ} \mathrm{C}$ and typicals at $\mathrm{T}_{\mathrm{mb}}=25^{\circ} \mathrm{C}$. Refer to TRUTH TABLE.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
	Undervoltage					
$\mathrm{V}_{\mathrm{BG}(\mathrm{UV})}$	Low supply threshold voltage ${ }^{1}$		2	4.2	5.3	V
$\Delta \mathrm{~V}_{\mathrm{BG}(\mathrm{UV})}$	Hysteresis		0.1	0.5	1	V
	Overvoltage					
$\mathrm{V}_{\mathrm{BG}(\mathrm{OV})}$	High supply threshold voltage ${ }^{2}$		35	40	45	V
$\Delta \mathrm{~V}_{\mathrm{BG}(\mathrm{OV})}$	Hysteresis		0.4	1	2	V
$\mathrm{I}_{\mathrm{BG}(\mathrm{OV})}$	Operating current per channel	$\mathrm{V}_{\mathrm{BG}}=45 \mathrm{~V}$	-	1	2	mA

OVERLOAD PROTECTION CHARACTERISTICS

Independent protection per channel. Refer to truth table.
$5.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{BG}} \leq 35 \mathrm{~V}$, limits are at $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{mb}} \leq 150^{\circ} \mathrm{C}$ and typicals at $\mathrm{T}_{\mathrm{mb}}=25^{\circ} \mathrm{C}$ unless otherwise stated.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
$\mathrm{L}_{\text {L(im) }}$	Overload protection Load current limiting	$\begin{aligned} & \mathrm{V}_{\mathrm{BL}}=\mathrm{V}_{\mathrm{BG}} ; \mathrm{t}_{\mathrm{p}}=300 \mu \mathrm{~s} \\ & \mathrm{~V}_{\mathrm{BG}} \geq 8 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{BG}}=5.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 18 \\ & 15 \end{aligned}$	$\begin{aligned} & 30 \\ & 27 \end{aligned}$	$\begin{aligned} & 42 \\ & 42 \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$
$\begin{aligned} & \mathrm{P}_{\mathrm{D}(\mathrm{TO})} \\ & \mathrm{T}_{\mathrm{DSC}} \end{aligned}$	Short circuit load protection Overload power threshold Characteristic time	$\mathrm{T}_{\mathrm{mb}} \leq 125^{\circ} \mathrm{C}$ prior to overload ${ }^{3}$ for latched protection ${ }^{4}$ which determines trip time ${ }^{5}$	100			$\begin{aligned} & \mathrm{W} \\ & \mu \mathrm{~s} \end{aligned}$
$\begin{aligned} & \mathrm{T}_{\mathrm{i}(\mathrm{TO})} \\ & \Delta \mathrm{T}_{\mathrm{j}(\mathrm{~T})} \end{aligned}$	Overtemperature protection Threshold junction temperature Hysteresis ${ }^{6}$		150	170 10	190 20	\% - C

[^2]
TOPFET dual high side switch

STATUS CHARACTERISTICS

The status output is an open drain transistor, and requires an external pull-up circuit to indicate a logic high. Limits are at $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{mb}} \leq 150^{\circ} \mathrm{C}$ and typicals at $\mathrm{T}_{\mathrm{mb}}=25^{\circ} \mathrm{C}$ unless otherwise stated. Refer to TRUTH TABLE.

SYMBOL	PARAMETER	CONDITIONS		MIN.	TYP.	MAX.	UNIT
$V_{S G}$	Status clamping voltage Status low voltage	$\mathrm{I}_{\mathrm{S}}=100 \mu \mathrm{~A}$		5.5	7	8.5	V
$\mathrm{V}_{\mathrm{SG} \text { (LO) }}$		$\mathrm{I}_{\mathrm{S}}=100 \mu \mathrm{~A}$		-	0.7	0.9	V
		$\mathrm{I}_{\mathrm{S}}=250 \mu \mathrm{~A}$		-	-	1.1	V
I_{S}	Status leakage current	$\mathrm{V}_{\mathrm{SG}}=5 \mathrm{~V}$	$\mathrm{T}_{\mathrm{mb}}=25^{\circ} \mathrm{C}$	-	-	10	$\mu \mathrm{A}$
				-	0.1	1	$\mu \mathrm{A}$
$\mathrm{I}_{\text {S(SAT) }}$	Status saturation current ${ }^{1}$	$\mathrm{V}_{\mathrm{SG}}=5 \mathrm{~V}$		5	10	15	mA
R_{S}	Application information External pull-up resistor			-	47	-	$\mathrm{k} \Omega$

TRUTH TABLE

INPUT		ABNORMAL CONDITIONS DETECTED								$\begin{aligned} & \text { LOAD } \\ & \text { OUTPUT } \end{aligned}$		STATUS	DESCRIPTION
		SUPPLY		LOAD 1			LOAD 2						
1	2	UV	OV	OC	SC	OT	OC	SC	OT	1	2		
L	L	0	X	0	X	X	0	X	X	OFF	OFF	H	both off \& normal
L	L	0	X	1	X	X	X	X	X	OFF	OFF	L	both off, one/both OC or short to V_{+}
L	H	0	X	1	X	X	0	0	0	OFF	ON	L	one off \& OC, other on \& normal
H	L	0	0	0	0	0	0	0	0	ON	OFF	H	one on \& normal, other off \& normal
H	H	0	0	0	0	0	0	0	0	ON	ON	H	both on \& normal
H	X	1	0	X	X	X	0	X	X	OFF	OFF	H	supply undervoltage lockout
H	X	0	1	X	0	0	X	0	0	OFF	OFF	H	supply overvoltage shutdown
H	X	0	0	0	1	X	X	X	X	OFF	X	L	one SC tripped
H	L	0	0	0	1	X	0	0	X	OFF	OFF	L	one SC tripped, other off \& normal
H	H	0	0	0	1	X	0	0	0	OFF	ON	L	one SC tripped, other on \& normal
H	X	0	0	0	0	1	X	X	X	OFF	X	L	one OT shutdown
H	L	0	0	0	0	1	0	0	X	OFF	OFF	L	one OT shutdown, other off \& normal
H	H	0	0	0	0	1	0	0	0	OFF	ON	L	one OT shutdown, other on \& normal

KEY TO ABBREVIATIONS

L	logic low
H	logic high
X	don't care
0	condition not present
1	condition present

UV	undervoltage
OV	overvoltage
OC	open circuit
SC	short circuit
OT	overtemperature

[^3]TOPFET dual high side switch

SWITCHING CHARACTERISTICS

$T_{m b}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{BG}}=13 \mathrm{~V}$, for resistive load $\mathrm{R}_{\mathrm{L}}=13 \Omega$ per channel.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
$t_{d o n}$ $\mathrm{dV} / \mathrm{dt}_{\text {on }}$ t on	During turn-on Delay time Rate of rise of load voltage Total switching time	from input going high to $10 \% \mathrm{~V}_{\mathrm{L}}$ 30% to $70 \% V_{L}$ to $90 \% \mathrm{~V}_{\mathrm{L}}$	0.5	$\begin{gathered} 30 \\ 1 \\ 100 \end{gathered}$	$\begin{gathered} 2 \\ 400 \end{gathered}$	us V/ $\mu \mathrm{s}$ $\mu \mathrm{s}$
$t_{\text {d off }}$ $\mathrm{dV} / \mathrm{dt}_{\text {off }}$ $t_{\text {off }}$	During turn-off Delay time Rate of fall of load voltage Total switching time	from input going low to $90 \% \mathrm{~V}_{\mathrm{L}}$ 70% to $30 \% \mathrm{~V}_{\mathrm{L}}$ to $10 \% \mathrm{~V}_{\mathrm{L}}$	0.5	$\begin{gathered} 20 \\ 1 \\ 40 \end{gathered}$	$\begin{gathered} 2 \\ 200 \end{gathered}$	$\begin{gathered} \mu \mathrm{s} \\ \mathrm{~V} / \mu \mathrm{s} \\ \mu \mathrm{~s} \end{gathered}$

CAPACITANCES

$\mathrm{T}_{\mathrm{mb}}=25^{\circ} \mathrm{C} ; \mathrm{f}=1 \mathrm{MHz} ; \mathrm{V}_{\mathrm{IG}}=0 \mathrm{~V}$

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
C_{sg}	Status capacitance	$\mathrm{V}_{\mathrm{SG}}=5 \mathrm{~V}$	-	11	15	pF
	per channel					
C_{ig}	Input capacitance	$\mathrm{V}_{\mathrm{BG}}=13 \mathrm{~V}$	-	15	20	pF
C_{bl}	Output capacitance	$\mathrm{V}_{\mathrm{BL}}=13 \mathrm{~V}$	-	265	375	pF

TOPFET dual high side switch

MECHANICAL DATA

Plastic single-ended surface mounted package (Philips version of D²-PAK);
7 leads (one lead cropped)

Fig.4. SOT427 surface mounting package ${ }^{1}$, centre pin connected to mounting base.

[^4]
DEFINITIONS

DATA SHEET STATUS

DATA SHEET STATUS'	PRODUCT STATUS 2	DEFINITIONS
Objective data	Development	This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice
Preliminary data	Qualification	This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in ordere to improve the design and supply the best possible product
Product data	This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Changes will be communicated according to the Customer Product/Process Change Notification (CPCN) procedure SNW-SQ-650A	
Limiting values		
Limiting values are given in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of this specification is not implied. Exposure to limiting values for extended periods may affect device reliability.		
Application information		
Where application information is given, it is advisory and does not form part of the specification.		
© Philips Electronics N.V. 2001		
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.		
The information presented in this document does not form part of any quotation or contract, it is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent or other industrial or intellectual property rights.		

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.

[^5]
[^0]: 1 For normal continuous operation. A higher T_{j} is allowed as an overload condition but at the threshold $T_{j(T))}$ the over temperature trip operates to protect the switch.
 2 Reverse battery voltage is allowed only with external resistors to ensure that the input and status currents do not exceed the limiting values. The internal ground resistor limits the reverse battery ground current. The connected loads must limit the reverse load currents. Power is dissipated and the T_{j} rating must be observed.
 3 To limit currents during reverse battery and transient overvoltages (positive or negative).

[^1]: 1 Of the output Power MOS transistors.
 2 For a high side switch, the load pin voltage goes negative with respect to ground during the turn-off of an inductive load. This negative voltage is clamped by the device.
 3 On-state resistance is increased if the supply voltage is less than 7 V .
 4 This is the continuous current drawn from the battery when both inputs are low and includes leakage currents to the loads.
 5 Per channel but with both channels conducting. Defined as in ISO 10483-1.
 6 Equivalent of the parallel connected resistors for both channels.
 7 The supply and input voltage for the R_{ON} tests are continuous. The specified pulse duration t_{p} refers only to the applied load current.

[^2]: 1 Undervoltage sensors causes each channel to switch off and reset.
 2 Overvoltage sensors causes each output channel to switch off to protect its load.
 3 Above this temperature measurement of these parameters is prevented because OT protection may occur prior to SC protection.
 4 SC protection for $P_{D}>P_{D(T O)}$ is latched. Normal operation may only be resumed after the input is toggled low then high again. Normal operation is maintained as long as $P_{D}<P_{D(T))}$ and $T_{j}<T_{j(T о)}$.
 5 Trip time $t_{d s c}$ varies with overload dissipation P_{D} according to the exponential model formula $t_{d s c} \approx T_{D S C} / L N\left[P_{D} / P_{D(\text { (T) })}\right]$.
 6 After cooling below the reset temperature the channel will resume normal operation.

[^3]: 1 For example with the pull-up resistor short circuited while the status transistor is conducting. This condition should be avoided in order to prevent possible interference with normal operation of the device.

[^4]: 1 Epoxy meets UL94 V0 at 1/8". Net mass: 1.5 g .
 For soldering guidelines and SMD footprint design, please refer to Data Handbook SC18.

[^5]: 1 Please consult the most recently issued datasheet before initiating or completing a design.
 2 The product status of the device(s) described in this datasheet may have changed since this datasheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.

