

Vishay Siliconix

Power MOSFET

PRODUCT SUMMARY				
V _{DS} (V)	50			
$R_{DS(on)}(\Omega)$	V _{GS} = 10 V	0.10		
Q _g (Max.) (nC)	24			
Q _{gs} (nC)	7.1			
Q _{gd} (nC)	7.1			
Configuration	Single			

N-Channel MOSFET

FEATURES

- For Automatic Insertion
- Compact, End Stackable
- Fast Switching
- Ease of Paralleling
- Excellent Temperature Stability
- Compliant to RoHS Directive 2002/95/EC

DESCRIPTION

The HVMDIP technology is the key to Vishay's advanced line of power MOSFET transistors. The efficient geometry and unique processing of the HVMDIP design achieves very low on-state resistance combined with high transconductance and extreme device ruggedness. HVMDIPs feature all of the established advantages of MOSFETs such as voltage control, very fast switching, ease of paralleling, and temperature stability of the electrical parameters.

The HVMDIP 4 pin, dual-in-line package brings the advantages of HVMDIPs to high volume applications where automatic PC board insertion is desireable, such as circuit boards for computers, printers, telecommunications equipment, and consumer products. Their compatibility with automatic insertion equipment, low-profile and end stackable features represent the stat-of-the-art in power device packaging.

ORDERING INFORMATION	
Package	HVMDIP
Lead (Pb)-free	IRFD020PbF
Lead (FD)-life	SiHFD020-E3
SnPb	IRFD020
	SiHFD020

ABSOLUTE MAXIMUM RATINGS (T _C = 25 °C, unless otherwise noted)						
PARAMETER			SYMBOL	LIMIT	UNIT	
Drain-Source Voltage ^a			V _{DS}	50	V	
Gate-Source Voltage			V _{GS}	± 20	7 v	
Continuous Drain Current	\/ at 10.\/	T _C = 25 °C	- I _D	2.4		
	V _{GS} at 10 V	$T_C = 25 ^{\circ}C$ $T_C = 100 ^{\circ}C$		1.5	Α	
Pulsed Drain Current ^b			I _{DM}	19		
Linear Derating Factor				0.0080	W/°C	
Inductive Current, Clamped	L = 1	L = 100 μH		19	^	
Unclamped Inductive Current (Avalanche Current) ^c			IL	2.2	A	
Maximum Power Dissipation	T _C = 25 °C		P_{D}	1.0	W	
Operating Junction and Storage Temperature Range		T _J , T _{stg}	- 55 to + 150	°C		
Soldering Recommendations (Peak Temperature)	for 10 s		-	300 ^d	°C	

Notes

- a. $T_J = 25$ °C to 150 °C
- b. Repetitive rating; pulse width limited by maximum junction temperature.
- c. V_{DD} = 25 V, starting T_J = 25 °C, L = 100 μH , R_q = 25 Ω
- d. 1.6 mm from case.

^{*} Pb containing terminations are not RoHS compliant, exemptions may apply

IRFD020, SiHFD020

Vishay Siliconix

THERMAL RESISTANCE RATINGS					
PARAMETER	SYMBOL	TYP.	MAX.	UNIT	
Maximum Junction-to-Ambient	R_{thJA}	-	120	°C/W	

PARAMETER	SYMBOL	TES	MIN.	TYP.	MAX.	UNIT	
Static						•	,
Drain-Source Breakdown Voltage	V _{DS}	V _{GS} :	V _{GS} = 0 V, I _D = 250 μA			-	V
Gate-Source Threshold Voltage	V _{GS(th)}	V _{DS} =	$V_{DS} = V_{GS}, I_{D} = 250 \mu\text{A}$			4.0	V
Gate-Source Leakage	I _{GSS}		$V_{GS} = \pm 20 \text{ V}$		-	± 500	nA
Zon Oak William Burin Oamal	,	$V_{DS} = m$	$V_{DS} = max. rating, V_{GS} = 0 V$ $V_{DS} = max. rating x 0.8, V_{GS} = 0 V, T_C = 125$		-	250	μА
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} = max. ratio			-	1000	
On-State Drain Current ^b	I _{D(on)}	V _{GS} = 10 V	$V_{DS} > I_{D(on)} \times R_{DS(on)} \max$.	2.4	-	-	Α
Drain-Source On-State Resistance ^b	R _{DS(on)}	V _{GS} = 10 V	I _D = 1.4 A	-	0.080	0.10	Ω
Forward Transconductance ^b	9fs	V _{DS}	= 20 V, I _D = 7.5 A	4.9	7.3	-	S
Dynamic							
Input Capacitance	C _{iss}		$V_{GS} = 0 \text{ V},$ $V_{DS} = 25 \text{ V},$		400	-	pF
Output Capacitance	C _{oss}				260	-	
Reverse Transfer Capacitance	C _{rss}	f = 1.0 MHz		-	44	-	
Total Gate Charge	Qg			-	16	24	nC
Gate-Source Charge	Q_{gs}	V _{GS} = 10 V	$I_D = 15 \text{ A},$ $V_{DS} = \text{max. rating x 0.8}$	-	4.7	7.1	
Gate-Drain Charge	Q_{gd}		VDS = max. rating x 0.0	-	4.7	7.1	
Turn-On Delay Time	t _{d(on)}		V _{DD} = 25 V, I _D = 15 A,		8.7	13	ns ns
Rise Time	t _r	Voo			55	83	
Turn-Off Delay Time	t _{d(off)}	$R_{g} = 18 \Omega, R_{D} = 1.7 \Omega$		-	16	24	
Fall Time	t _f				26	39	
Internal Drain Inductance	L _D	6 mm (0.25")	Between lead, 6 mm (0.25") from		4.0	-	ьЫ
Internal Source Inductance	L _S	package and center of die contact		-	6.0	-	- nH
Drain-Source Body Diode Characteristic	s						
Continuous Source-Drain Diode Current	Is	showing the	MOSFET symbol showing the		-	2.4	
Pulsed Diode Forward Current ^c	I _{SM}	integral reverse p - n junction diode		-	-	19	A
Body Diode Voltage ^a	V _{SD}	T _C = 25 °C	T _C = 25 °C, I _S = 2.4 A, V _{GS} = 0 V		-	1.4	V
Body Diode Reverse Recovery Time	t _{rr}	T 05.00 !			130	310	ns
Body Diode Reverse Recovery Charge	Q _{rr}	$T_J = 25 ^{\circ}\text{C}, I_F = 15 \text{A}, dl/dt = 100 \text{A/}\mu\text{s}$		0.17	0.34	0.85	μC
Forward Turn-On Time	t _{on}	Intrinsic tu	n-on is dominated by L _S and L _D)				

Notes

- a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11).
- b. Pulse width \leq 300 μ s; duty cycle \leq 2 %.
- c. V_{DD} = 25 V, starting T_J = 25 °C, L = 100 $\mu H,~R_g$ = 25 Ω

TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

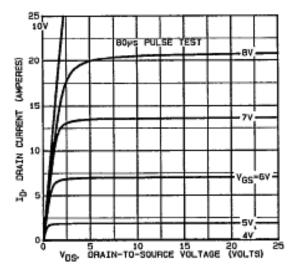


Fig. 1 - Typical Output Characteristics

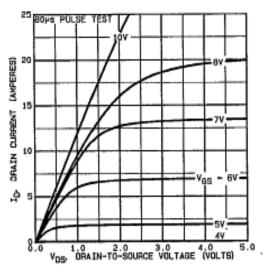


Fig. 2 - Typical Output Characteristics

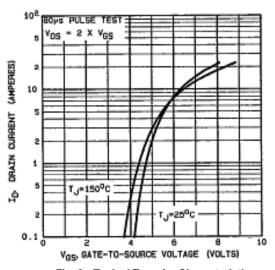


Fig. 3 - Typical Transfer Characteristics

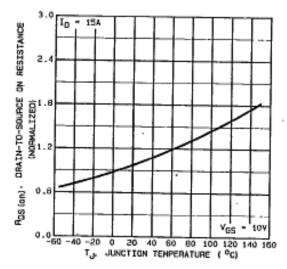


Fig. 4 - Normalized On-Resistance vs. Temperature

Vishay Siliconix

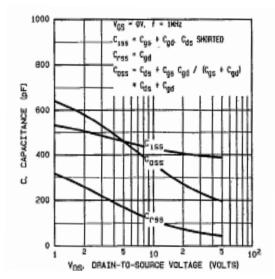


Fig. 5 - Typical Capacitance vs. Drain-to-Source Voltage

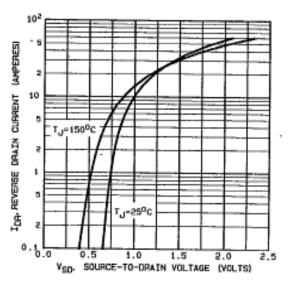


Fig. 7 - Typical Source-Drain Diode Forward Voltage

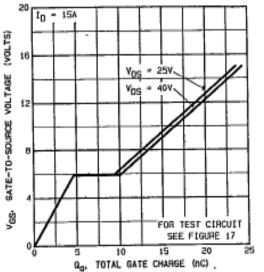


Fig. 6 - Typical Gate Charge vs. Gate-to-Source Voltage

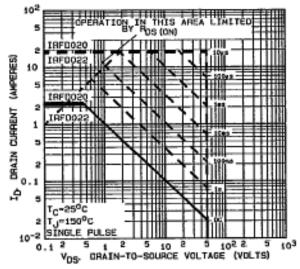


Fig. 8 - Maximum Safe Operating Area

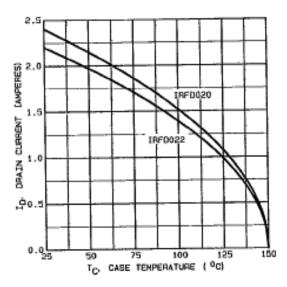


Fig. 9 - Maximum Drain Current vs. Ambient Temperature

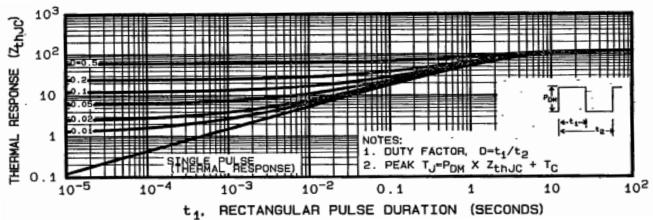


Fig. 10 - Maximum Effective Transient Thermal Impedance, Junction-to-Ambient

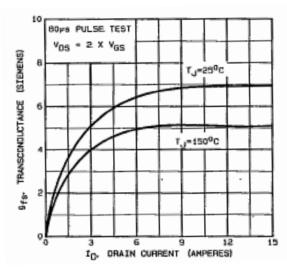


Fig. 11 - Typical Transconductance vs. Drain Current

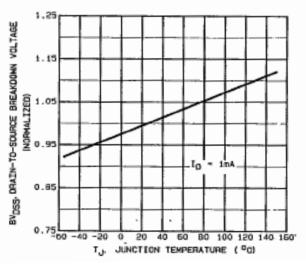


Fig. 12 - Breakdown Voltage vs. Temperature

Vishay Siliconix

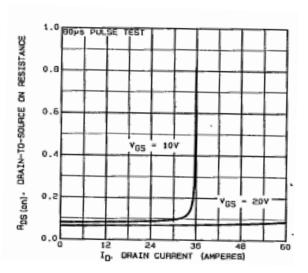


Fig. 13 - Typical on-Resistance vs. Drain Current

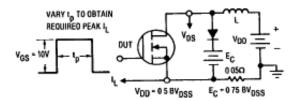


Fig. 14a - Clamped Inductive Test Circuit

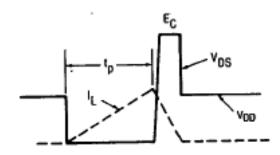


Fig. 14b - Clamped Inductive Waveforms

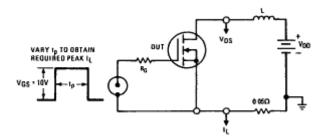


Fig. 15a - Unclamped Inductive Test Circuit

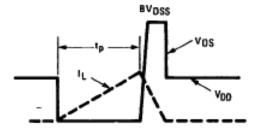


Fig. 15a - Unclamped Inductive Load Test Waveforms

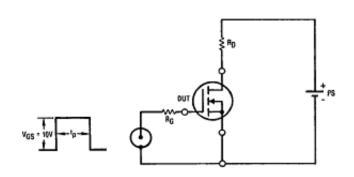


Fig. 16 - Switching Time Test Circuit

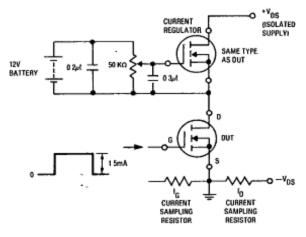
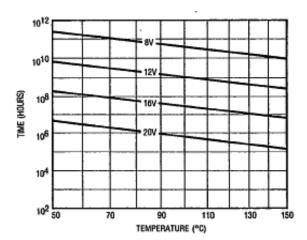



Fig. 17 - Gate Charge Test Circuit

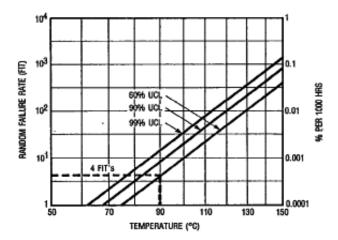


Fig. 18 - Typical Time to Accumulated 1 % Gate Failure

Fig. 19 - Typical High Temperature Reverse Bias (HTRB) Failure Rate

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?91465.

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk and agree to fully indemnify and hold Vishay and its distributors harmless from and against any and all claims, liabilities, expenses and damages arising or resulting in connection with such use or sale, including attorneys fees, even if such claim alleges that Vishay or its distributor was negligent regarding the design or manufacture of the part. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Revision: 11-Mar-11