BYM36AGP THRU BYM36EGP

SINTERED GLASS JUNCTION FAST SWITCHING PLASTIC RECTIFIER VOLTAGE: 200V to 1000V CURRENT: 3.0A

FEATURE

MIL-S-19500

Excellent stability

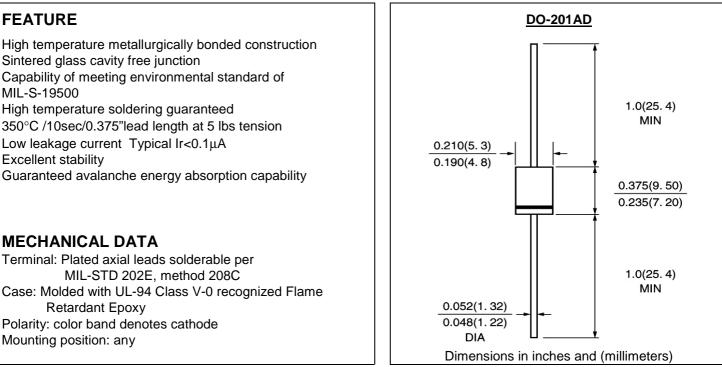
MECHANICAL DATA

Retardant Epoxy Polarity: color band denotes cathode

Sintered glass cavity free junction

High temperature soldering guaranteed

Low leakage current Typical Ir<0.1µA


Terminal: Plated axial leads solderable per

MIL-STD 202E, method 208C

Capability of meeting environmental standard of

350°C /10sec/0.375"lead length at 5 lbs tension

Mounting position: any

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

(single-phase, half-wave, 60HZ, resistive or inductive load rating at 25°C, unless otherwise stated)

	SYMBOL	BYM36 AGP	BYM36 BGP	BYM36 CGP	BYM36 DGP	BYM36 EGP	units
Maximum Recurrent Peak Reverse Voltage	Vrrm	200	400	600	800	1000	V
Maximum RMS Voltage	Vrms	140	280	420	560	700	V
Maximum DC blocking Voltage	Vdc	200	400	600	800	1000	V
reverse avalanche breakdown voltage at IR = 0.1 mA	V(BR)R (min)	300	500	700	900	1100	V
Maximum Average Forward Rectified Current 10mm lead length at Ta =55°C	lf(av)	3.0					А
Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load	lfsm	65					А
Maximum Forward Voltage at rated Forward Current and 25°C IF=3.0A	Vf	1.6 1.78				V	
non-repetitive peak reverse avalanche energy (Note 1)	Ersm	10					mJ
Maximum DC Reverse Current Ta = 25° C	lr 10.0					μΑ	
at rated DC blocking voltage Ta = $125^{\circ}C$		150.0					μΑ
Maximum Reverse Recovery Time (Note 2)	Trr		100		1	50	nS
Typical Junction Capacitance (Note 3)	Cj	75.0					pF
Typical Thermal Resistance (Note 4)	Rθja	20.0					°C //
Storage and Operating Junction Temperature	Tstg, Tj	-65 to +175					°C

Note: 1. L = 120 mH; Tj = Tj max prior to surge; inductive load switched off

2.Reverse Recovery Condition If =0.5A, Ir =1.0A, Irr =0.25A

3.Measured at 1.0 MHz and applied reverse voltage of 4.0Vdc

4. Thermal Resistance from Junction to Ambient at 3/8"lead length, P.C. Board Mounted

www.gulfsemi.com

RATINGS AND CHARACTERISTIC CURVES BYM36EGP

Fig.1 Maximum average forward current as a function of tie-point temperature (including losses due to reverse (eakage).

1

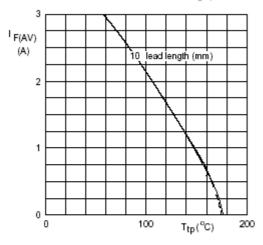


Fig.3 Reverse current as a function of junction temperature; maximum values.

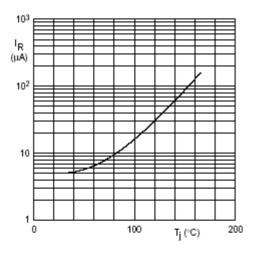


Fig.2 Forward current as a function of forward voltage; maximum values.

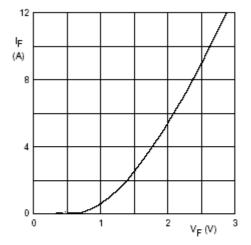
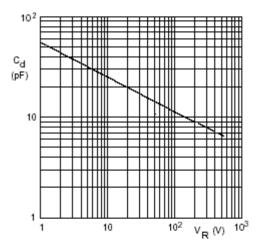



Fig.4 Diode capacitance as a function of reverse voltage; typical values.

