Single 4:1 Low ron Multiplexers

DESCRIPTION

The DG2034 is a low voltage, low ron, high bandwidth single 4 to 1 analog multiplexer designed for high performance switching of analog and video signals. Combining low power; fast switching; low on-resistance, flatness and matching; and small physical size, the DG2034 is ideal for portable and battery applications.

Built on Vishay Siliconix's low voltage CMOS process, the DG2034 has an epitaxial layer which prevents latchup. Break-before-make is guaranteed.

FEATURES

- Low voltage operation (1.8 V to 5.5 V)
- Low on-resistance - $\mathrm{r}_{\mathrm{DS}(o n):}: 4 \Omega$
- Off-isolation and crosstalk: - 55 dB at 10 MHz
- Fast switch - 25 ns ton
- Low charge injection - $\mathrm{Q}_{\mathrm{INJ}}: 4.7 \mathrm{pC}$
- Low power consumption-4 4 W

BENEFITS

- High accuracy
- High bandwidth
- TTL and low voltage logic compatibility
- Low power consumption
- Reduced PCB space

APPLICATIONS

- Mixed signal routing
- Portable and battery operated systems
- Low voltage data acquisition
- Modems
- PCMCIA cards

FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION

TRUTH TABLE			
A1	A0	EN	ON Switch
X	X	0	None
0	0	1	S 1
0	1	1	S 2
1	0	1	S 3
1	1	1	S 4

ORDERING INFORMATION		
Temp Range	Package	Part Number
$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	MSOP-10	DG2034DQ-T1-E3
	$12-$ pin QFN $(3 \times 3 \mathrm{~mm})$	DG2034DN-T1-E4

Vishay Siliconix

ABSOLUTE MAXIMUM RATINGS

Parameter		Limit	Unit
Referenced V+ to GND		-0.3 to + 6	V
$A_{X}, E_{N}, S_{X}, C O M^{\text {a }}$		- 0.3 to (V+ + 0.3)	
Continuous Current (Any Terminal)		± 50	mA
Peak Current (Pulsed at $1 \mathrm{~ms}, 10$ \% duty cycle)		± 100	
Power Dissipation (Packags) ${ }^{\text {b }}$	QFN-12 $(3 \times 3 \mathrm{~mm})^{\text {c }}$	1295	mW
	MSOP-10 ${ }^{\text {d }}$	320	
Storage Temperature (D Suffix)		- 65 to 150	${ }^{\circ} \mathrm{C}$

Notes:

a. Signals on S_{X}, D_{X}, EN or A_{X} exceeding $V+$ or V - will be clamped by internal diodes. Limit forward diode current to maximum current ratings.
b. All leads welded or soldered to PC Board.
c. Derate $16.2 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ above $70^{\circ} \mathrm{C}$.
d. Derate $4.0 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ above $70^{\circ} \mathrm{C}$.

SPECIFICATIONS (V+ = 3 V)									
Parameter	Symbol	Test Conditions Otherwise Unless Specified$\mathrm{V}+=3 \mathrm{~V}, \pm 10 \%, \mathrm{~V}_{\mathrm{AL}}=0.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{AH}}=1.5 \mathrm{~V}^{\mathrm{e}}$		Temp. ${ }^{\text {a }}$	$\begin{gathered} \text { Limits } \\ -40 \text { to } 85{ }^{\circ} \mathrm{C} \end{gathered}$			Unit	
				Min. ${ }^{\text {c }}$	Typ. ${ }^{\text {b }}$	Max. ${ }^{\text {c }}$			
Analog Switch									
Analog Signal Range ${ }^{\text {d }}$	$\mathrm{V}_{\text {ANALOG }}$				Full	0		V+	V
On-Resistance	${ }^{\text {ron }}$	$\begin{gathered} \mathrm{V}+=2.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=0.5 \mathrm{~V} / 1.5 \mathrm{~V} / 2.0 \mathrm{~V} \\ \mathrm{I}_{\mathrm{S}}=10 \mathrm{~mA} \end{gathered}$		$\underset{\substack{\text { Room } \\ \text { Full }}}{\text { Full }}$		4	7	Ω	
$\mathrm{r}_{\text {ON }}$ Match	$\Delta^{\text {ON }}$			Room		0.1	0.3		
ron Flatness ${ }^{\text {d,f }}$	$\underset{\substack{\mathrm{r}_{\mathrm{ON}} \\ \text { Flatness }}}{ }$			Room		0.3	1.5		
Off Leakage Current ${ }^{9}$	$\mathrm{I}_{\text {(off) }}$	$\begin{gathered} \mathrm{V}_{+}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=1 \mathrm{~V} / 3 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{COM}}=3 \mathrm{~V} / 1 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN}}=0 \mathrm{~V} \end{gathered}$		Room Full	$\begin{gathered} -1 \\ -10 \end{gathered}$	0.3	1 10	nA	
COM Off Leakage Current ${ }^{9}$	${ }^{\text {COM (off) }}$			Room Full	$\begin{gathered} -1 \\ -10 \end{gathered}$	0.3	1 10		
Channel-On Leakage Current ${ }^{9}$	$\mathrm{I}_{\text {Com(on) }}$	$\begin{gathered} \mathrm{V}+=3.3 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{COM}} \\ =\mathrm{V}_{\mathrm{S}}=1 \mathrm{~V} / 3 \mathrm{~V} \end{gathered}$		Room Full	$\begin{gathered} -1 \\ -10 \end{gathered}$	0.3	1 10		
Digital Control									
Input Current ${ }^{\text {d }}$	I_{A} or $\mathrm{I}_{\text {EN }}$	$\mathrm{V}_{\text {A/EN }}=0$ or $\mathrm{V}+$, See Truth Table		Full	-1.0		1.0	$\mu \mathrm{A}$	
Input High Voltage ${ }^{\text {d }}$	$\mathrm{V}_{\text {AH }}$ or $\mathrm{V}_{\text {ENH }}$			Full	1.5			V	
Input Low Voltage ${ }^{\text {d }}$	V_{AL} or $\mathrm{V}_{\mathrm{ENL}}$			Full			0.4		
Dynamic Characteristics									
Turn-On Time	t_{ON}	$\mathrm{V}_{\mathrm{S}}=1.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=300 \Omega$		Room Full		25	35 45	ns	
Turn-Off Time	$\mathrm{t}_{\text {OFF }}$			Room Full		15	25 35		
Break-Before-Make Time ${ }^{\text {d }}$	$t_{\text {D }}$			Room		10.5			
Transition Time	$t_{\text {trans }}$	$\mathrm{V}_{\mathrm{S}}=1.5 \mathrm{~V} / 0 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V} / 1.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=300 \Omega$		Room Full		30	45 55		
Charge Injection ${ }^{\text {d }}$	$Q_{\text {INJ }}$	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}, \mathrm{V}_{\text {gen }}=0 \mathrm{~V}, \mathrm{R}_{\text {gen }}=0 \Omega$		Room		-4.7		pC	
Off-Isolation ${ }^{\text {d }}$	OIRR	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$	$\mathrm{f}=1 \mathrm{MHz}$	Room		-73		dB	
			$\mathrm{f}=10 \mathrm{MHz}$	Room		-54			
Channel-to-Channel Crosstalk ${ }^{\text {d }}$	$\mathrm{X}_{\text {TALK }}$	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$	$\mathrm{f}=1 \mathrm{MHz}$	Room		-77			
			$\mathrm{f}=10 \mathrm{MHz}$	Room		-59			
Off Capacitance ${ }^{\text {d }}$	$\mathrm{C}_{\text {S(off) }}$	$\mathrm{V}+=2.7 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$		Room		14		pF	
COM Off Capacitance ${ }^{\text {d }}$	$\mathrm{C}_{\text {com(off) }}$			Room		46			
COM On Capacitance ${ }^{\text {d }}$	$\mathrm{C}_{\text {COM(on) }}$			Room		67			
Power Supply									
Power Supply Range	V+				2.7		3.3	V	
Power Supply Current ${ }^{\text {d }}$	I+	$\mathrm{V}_{+}=3.3 \mathrm{~V}, \mathrm{~V}_{\text {A/EN }}=0$ or 3.3 V , See Truth Table		Full			1.0	$\mu \mathrm{A}$	

Notes:
a. Room $=25^{\circ} \mathrm{C}$, Full $=$ as determined by the operating suffix.
b. Typical values are for design aid only, not guaranteed nor subject to production testing.
c. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.
d. Guarantee by design, not subjected to production test.
e. $\mathrm{V}_{\mathrm{A}}, \mathrm{E}_{\mathrm{N}}=$ input voltage to perform proper function.
f. Difference of min and max values.
g. Guaranteed by 5 V testing.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Vishay Siliconix
TYPICAL CHARACTERISTICS $25^{\circ} \mathrm{C}$, unless otherwise noted

DG2034
Vishay Siliconix
TYPICAL CHARACTERISTICS $25^{\circ} \mathrm{C}$, unless otherwise noted

Switching Time vs. Temperature

Switching Threshold vs. Supply Voltage

Charge Injection vs. Analog Voltage

Transistion Time vs. Temperature

TEST CIRCUITS

Figure 1. Switching Time

Figure 2. Break-Before-Make

Figure 3. Transition Time

TEST CIRCUITS

IN dependent on switch configuration Input polarity determined by sense of switch.

Figure 4. Charge Injection

Figure 5. Crosstalk

Figure 6. Off Isolation

Figure 7. Source/Drain Capacitances

[^0]
Disclaimer

All product specifications and data are subject to change without notice.
Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.

[^0]: Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see http://www.vishay.com/ppg? 72418 .

