3- Ω, High Bandwidth, Dual SPDT Analog Switch

DESCRIPTION

The DG2517, DG2518 are low-voltage dual single-pole/ double-throw monolithic CMOS analog switches. Designed to operate from 1.8 V to 5.5 V power supply, the DG2517, DG2518 achieves a bandwidth of 242 MHz while providing low on-resistance (3Ω), excellent on-resistance matching (0.2Ω) and flatness (1Ω) over the entire signal range.
The DG2517, DG2518 offers the advantage of high linearity that reduces signal distortion, making ideal for audio, video, and USB signal routing applications. Additionally, the DG2517, DG2518 are 1.6 V logic compatible within the full operation voltage range.
Built on Vishay Siliconix's proprietary sub-micron highdensity process, the DG2517, DG2518 brings low power consumption at the same time as reduces PCB spacing with the MSOP10 and DFN10 packages.
As a committed partner to the community and the environment, Vishay Siliconix manufactures this product with the lead (Pb)-free device terminations. The DFN package has a nickel-palladium-gold device termination and is represented by the lead (Pb)-free "-E4" suffix. The MSOP package uses 100% matte Tin device termination and is represented by the lead (Pb)- free "-E3" suffix. Both the matte Tin and nickel-palladium-gold device terminations meet all JEDEC standards for reflow and MSL ratings.

FEATURES

- 1.8 V to 5.5 V single supply operation
- Low $\mathrm{R}_{\mathrm{ON}}: 3 \Omega$ at 4.2 V
- $242 \mathrm{MHz},-3 \mathrm{~dB}$ bandwidth
- Low off-isolation, -51 dB at 10 MHz
- + 1.6 V logic compatible

BENEFITS

- High linearity
- Low power consumption
- High bandwidth
- Full rail signal swing range

APPLICATIONS

- USB/UART signal switching
- Audio/video switching
- Cellular phone
- Media players
- Modems
- Hard drives
- PCMCIA

RoHS COMPLIANT

FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION

TRUTH TABLE		
Logic	NC1 and NC2	NO1 and NO2
0	ON	OFF
1	OFF	ON

ORDERING INFORMATION		
Temp. Range	Package	Part Number
$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	MSOP-10	DG2517DQ-T1-E3
		DG2518DQ-T1-E3
	DFN-10	DG2517DN-T1-E4
		DG2518DN-T1-E4

Vishay Siliconix

ABSOLUTE MAXIMUM RATINGS			
Parameter		Limit	Unit
Reference to GND			
V+		- 0.3 to +6	V
IN, COM, NC, $\mathrm{NO}^{\text {a }}$		-0.3 to (V++0.3)	
Continuous Current (Any terminal)		± 50	mA
Peak Current (Pulsed at $1 \mathrm{~ms}, 10 \%$ duty cycle)		± 200	
Storage Temperature (D Suffix)		- 65 to 150	${ }^{\circ} \mathrm{C}$
Power Dissipation (Packages) ${ }^{\text {b }}$	MSOP-10 ${ }^{\text {c }}$	320	mW
	DFN-10 ${ }^{\text {d }}$	1191	

Notes:

a. Signals on NC, NO, or COM or IN exceeding V+ will be clamped by internal diodes. Limit forward diode current to maximum current ratings. b. All leads welded or soldered to PC board.
c. Derate $4.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $70^{\circ} \mathrm{C}$.
d. Derate $14.9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $70^{\circ} \mathrm{C}$.

SPECIFICATIONS (V+=3 V)									
Parameter	Symbol	Test Conditions Otherwise Unless Specified $\mathrm{V}+=3 \mathrm{~V}, \pm 10 \%, \mathrm{~V}_{\mathrm{IN}}=0.5$ or $1.4 \mathrm{~V}^{\mathrm{e}}$		Temp. ${ }^{\text {a }}$				Unit	
				Min. ${ }^{\text {b }}$	Typ. ${ }^{\text {c }}$	Max. ${ }^{\text {b }}$			
Analog Switch									
Analog Signal Range ${ }^{\text {d }}$	$\mathrm{V}_{\mathrm{NO}}, \mathrm{V}_{\mathrm{NC}}$, $\mathrm{V}_{\mathrm{COM}}$				Full	0		V+	V
On-Resistance	$\mathrm{R}_{\text {ON }}$	$\begin{aligned} \mathrm{V}+=2.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}} \\ \mathrm{I}_{\mathrm{NO} / \mathrm{NC}}=10 \end{aligned}$		Room Full		3.2	$\begin{aligned} & 4.5 \\ & 5.0 \end{aligned}$		
$\mathrm{R}_{\text {ON }}$ Flatness	$\begin{gathered} \mathrm{R}_{\mathrm{ON}} \\ \text { Flatness } \end{gathered}$	$\begin{array}{r} \mathrm{V}+=2.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}= \\ \mathrm{I}_{\mathrm{NO} / \mathrm{NC}}=10 \end{array}$	$\overline{5}, 2 \mathrm{~V}$	$\begin{gathered} \text { Room } \\ \text { Full } \end{gathered}$		1.0	$\begin{aligned} & 1.4 \\ & 16 \end{aligned}$	Ω	
R ON Match Between Channels	$\triangle \mathrm{R}_{\text {ON }}$	$\begin{aligned} & \mathrm{V}+=2.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}} \\ & \mathrm{I}_{\mathrm{NO} / \mathrm{NC}}=10 \mathrm{r} \end{aligned}$		$\begin{aligned} & \text { Room } \\ & \text { Full } \end{aligned}$		0.1	$\begin{aligned} & 0.3 \\ & 0.4 \end{aligned}$		
Switch Off Leakage Current ${ }^{\dagger}$	$\mathrm{I}_{\mathrm{NO} \text { (off), }}$ NC(off)	$\begin{gathered} \mathrm{V}+=3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}}, \mathrm{~V}_{\mathrm{NC}}=0.3 \mathrm{~V} / 3 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{COM}}=3 \mathrm{~V} / 0.3 \mathrm{~V} \end{gathered}$		$\begin{aligned} & \text { Room } \\ & \text { Full } \end{aligned}$	$\begin{gathered} -1 \\ -10 \\ \hline \end{gathered}$		10	nA	
	$\mathrm{I}_{\text {com(off) }}$			$\begin{aligned} & \text { Room } \\ & \text { Full } \end{aligned}$	$\begin{gathered} -1 \\ -10 \end{gathered}$		1		
Channel-On Leakage Current ${ }^{\dagger}$	Icom(on)	$\mathrm{V}+=3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}}, \mathrm{V}_{\mathrm{NC}}=\mathrm{V}_{\mathrm{COM}}=0.3 \mathrm{~V} / 3 \mathrm{~V}$		Room Full	$\begin{gathered} -1 \\ -10 \end{gathered}$		$\begin{gathered} 1 \\ 10 \end{gathered}$		
Digital Control									
Input High Voltage ${ }^{\text {d }}$	$\mathrm{V}_{\text {INH }}$			Full	1.4			V	
Input Low Voltage	$\mathrm{V}_{\text {INL }}$			Full			0.5		
Input Capacitance	$\mathrm{C}_{\text {in }}$			Full		4		pF	
Input Current	$\mathrm{l}_{\text {INL }}$ or $\mathrm{l}_{\text {INH }}$			Full	1		1	$\mu \mathrm{A}$	
Dynamic Characteristics									
Turn-On Time	ton	$\begin{gathered} \mathrm{V}+=2.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=1.5 \mathrm{~V} \\ \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \end{gathered}$		$\begin{gathered} \text { Room } \\ \text { Full } \end{gathered}$		15	$\begin{aligned} & 30 \\ & 50 \end{aligned}$	ns	
Turn-Off Time	$\mathrm{t}_{\text {OFF }}$			Room Full		10	$\begin{aligned} & 25 \\ & 35 \end{aligned}$		
Break-Before-Make Time	t_{d}	V_{NO} or $\mathrm{V}_{\mathrm{NC}}=1.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=3$, $\mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$	Full	1				
Charge Injection ${ }^{\text {d }}$	$\mathrm{Q}_{\text {INJ }}$	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}, \mathrm{V}_{\mathrm{GEN}}=1.5 \mathrm{~V}$	GEN $=0 \Omega$	Room		1		pC	
- 3 dB Bandwidth	BW	$0 \mathrm{dBm}, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{R}$	50Ω	Room		242		MHz	
Off-Isolation ${ }^{\text {d }}$	OIRR	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$	$\mathrm{f}=1 \mathrm{MHz}$	Room		-71		dB	
			$\mathrm{f}=10 \mathrm{MHz}$	Room		-51			
Crosstalk ${ }^{\text {d }}$	$\mathrm{X}_{\text {TALK }}$	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$	$\mathrm{f}=1 \mathrm{MHz}$	Room		-73			
			$\mathrm{f}=10 \mathrm{MHz}$	Room		-55			
$\mathrm{N}_{\mathrm{O}}, \mathrm{N}_{\mathrm{C}}$ Off Capacitance ${ }^{\text {d }}$	$\mathrm{C}_{\mathrm{NO} \text { (off) }}$	$\mathrm{V}_{\mathrm{IN}}=0$ or $\mathrm{V}+, \mathrm{f}=1 \mathrm{MHz}$		Room		8		pF	
	$\mathrm{C}_{\mathrm{NC} \text { (off) }}$			Room		8			
Channel-On Capacitance ${ }^{\text {d }}$	$\mathrm{C}_{\mathrm{NO} \text { (on) }}$			Room		35			
	$\mathrm{C}_{\mathrm{NC} \text { (on) }}$			Room		35			
Power Supply									
Power Supply Current	$1+$	$\mathrm{V}_{\text {IN }}=0$ or V		Full		0.01	1.0	$\mu \mathrm{A}$	

Notes:

a. Room $=25^{\circ} \mathrm{C}$, Full = as determined by the operating suffix
b. Typical values are for design aid only, not guaranteed nor subject to production testing.
c. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.
d. Guarantee by design, nor subjected to production test.
e. $V_{I N}=$ input voltage to perform proper function.
f. Guaranteed by 5 V leakage testing, not production tested.

Notes:

a. Room $=25^{\circ} \mathrm{C}$, Full $=$ as determined by the operating suffix.
b. Typical values are for design aid only, not guaranteed nor subject to production testing.
c. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.
d. Guarantee by design, nor subjected to production test.
e. $\mathrm{V}_{\mathrm{IN}}=$ input voltage to perform proper function.
f. Guaranteed by 5 V leakage testing, not production tested.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

TYPICAL CHARACTERISTICS $25^{\circ} \mathrm{C}$, unless otherwise noted

R $_{\text {ON }}$ vs. $V_{\text {COM }}$ and Supply Voltage

Supply Current vs. Temperature

Leakage Current vs. Temperature

R $_{\text {ON }}$ vs. Analog Voltage and Temperature

Supply Current vs. Input Switching Frequency

Leakage vs. Analog Voltage

Vishay Siliconix
TYPICAL CHARACTERISTICS $25^{\circ} \mathrm{C}$, unless otherwise noted

Switching Time vs. Temperature

Off-Isolation and Crosstalk vs. Frequency

Insertion Loss vs. Frequency

Charge Injection vs. Analog Voltage

Switching Threshold vs. Supply Voltage

TEST CIRCUITS

C_{L} (includes fixture and stray capacitance)

$$
\mathrm{v}_{\text {OUT }}=\mathrm{v}_{\mathrm{COM}}\left(\frac{\mathrm{R}_{\mathrm{L}}}{\mathrm{R}_{\mathrm{L}}+\mathrm{R}_{\mathrm{ON}}}\right)
$$

Logic "1" = Switch On
Logic input waveforms inverted for switches that have the opposite logic sense.

Figure 1. Switching Time

Figure 2. Break-Before-Make Interval

IN depends on switch configuration: input polarity determined by sense of switch.

Figure 3. Charge Injection

TEST CIRCUITS

Figure 4. Off-Isolation

Figure 5. Channel Off/On Capacitance

Disclaimer

All product specifications and data are subject to change without notice.
Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.

