3Ω, High Bandwidth, Dual SPDT Analog Switch

DESCRIPTION

The DG2517/DG2518 are low-voltage dual single-pole/dou-ble-throw monolithic CMOS analog switches. Designed to operate from 1.8 V to 5.5 V power supply, the DG2517/ DG2518 achieves a bandwidth of 157 MHz while providing low on-resistance (3Ω), excellent on-resistance matching (0.2Ω) and flatness (1Ω) over the entire signal range.

The DG2517/DG2518 offers the advantage of high linearity that reduces signal distortion, making ideal for audio, video, and USB signal routing applications. Additionally, the DG2517/DG2518 are 1.6 V logic compatible within the full operation voltage range.
Built on Vishay Siliconix's proprietary sub-micron high-density process, the DG2517/DG2518 brings low power consumption at the same time as reduces PCB spacing with the MSOP10 and DFN10 packages.
As a committed partner to the community and the environment, Vishay Siliconix manufactures this product with the lead (Pb)-free device terminations. The DFN package has a nickel-palladium-gold device termination and is represented by the lead (Pb)-free "-E4" suffix. The MSOP package uses 100 \% matte Tin device termination and is represented by the lead (Pb)- free "-E3" suffix. Both the matte Tin and nickel-palladium-gold device terminations meet all JEDEC standards for reflow and MSL ratings.

FEATURES

- 1.8 to 5.5 V Single Supply Operation
- Low Ron: 3Ω at 4.2 V
- $157 \mathrm{MHz},-3 \mathrm{~dB}$ Bandwidth
- Low Off-Isolation, - 47 dB at 10 MHz
- + 1.6 V Logic Compatible

BENEFITS

- High Linearity
- Low Power Consumption
- High Bandwidth
- Full Rail Signal Swing Range

APPLICATIONS

- USB/UART Signal Switching
- Audio/Video Switching
- Cellular Phone
- Media Players
- Modems
- Hard Drives
- PCMCIA

FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION

Vishay Siliconix

ABSOLUTE MAXIMUM RATINGS			
Parameter		Limit	Unit
Reference to GND			
V+		- 0.3 to +6	V
IN, COM, NC, $\mathrm{NO}^{\text {a }}$		-0.3 to (V++0.3)	
Continuous Current (Any terminal)		± 50	mA
Peak Current (Pulsed at $1 \mathrm{~ms}, 10 \%$ duty cycle)		± 200	
Storage Temperature (D Suffix)		- 65 to 150	${ }^{\circ} \mathrm{C}$
Power Dissipation (Packages) ${ }^{\text {b }}$	MSOP-10 ${ }^{\text {c }}$	320	mW
	DFN-10 ${ }^{\text {d }}$	1191	

Notes:

a. Signals on NC, NO, or COM or IN exceeding V+ will be clamped by internal diodes. Limit forward diode current to maximum current ratings. b. All leads welded or soldered to PC Board.
c. Derate $4.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $70^{\circ} \mathrm{C}$.
d. Derate $14.9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $70^{\circ} \mathrm{C}$.

SPECIFICATIONS	= 3)								
Parameter	Symbol	Test Conditions Otherwise Unless Specified$\mathrm{V}+=3 \mathrm{~V}, \pm 10 \%, \mathrm{~V}_{\mathrm{IN}}=0.5 \text { or } 1.4 \mathrm{~V}^{\mathrm{e}}$		Temp ${ }^{\text {a }}$	$\begin{array}{r} \text { Limits } \\ -40 \text { to } 85^{\circ} \mathrm{C} \\ \hline \end{array}$			Unit	
				Min ${ }^{\text {b }}$	Typ ${ }^{\text {c }}$	Max ${ }^{\text {b }}$			
Analog Switch									
Analog Signal Range ${ }^{\text {d }}$	$\mathrm{V}_{\mathrm{NO}}, \mathrm{V}_{\mathrm{NC}}$, $\mathrm{V}_{\mathrm{COM}}$				Full	0		V+	V
On-Resistance	ron	$\begin{array}{r} \mathrm{V}+=2.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CO}} \\ \mathrm{I}_{\mathrm{NO}} / \mathrm{NC}=10 \end{array}$		$\begin{aligned} & \text { Room } \\ & \text { Full } \end{aligned}$		3.2	4.5 5.0		
$\mathrm{r}_{\text {ON }}$ Flatness	$\begin{gathered} \text { ron } \\ \text { Flatness } \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{V}+= 2.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}} \\ & \mathrm{I}_{\mathrm{NO} / \mathrm{NC}}=10 \end{aligned}$	$\overline{5}, 2 \mathrm{~V}$	$\begin{gathered} \text { Room } \\ \text { Full } \end{gathered}$		1.0	1.4 16	Ω	
${ }^{\text {ron }}$ Match Between Channels	${ }^{\text {r }}$ ON	$\begin{array}{r} \mathrm{V}+=2.7 \mathrm{~V}, \mathrm{~V} \mathrm{VON} \\ \mathrm{I}_{\mathrm{NO} / \mathrm{NC}}=10 \\ \hline \end{array}$		$\begin{aligned} & \text { Room } \\ & \text { Full } \end{aligned}$		0.1	0.3 0.4		
Switch Off Leakage Current ${ }^{\dagger}$	${ }^{\mathrm{NOO}(\text { off }),}$ ${ }^{\mathrm{NC}}$ (off)	$\begin{gathered} \mathrm{V}_{+}=3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}}, \mathrm{~V}_{\mathrm{NC}}=0.3 \mathrm{~V} / 3 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{COM}}=3 \mathrm{~V} / 0.3 \mathrm{~V} \end{gathered}$		$\begin{gathered} \text { Room } \\ \text { Full } \end{gathered}$	$\begin{gathered} -1 \\ -10 \end{gathered}$		1 10	nA	
	$\mathrm{I}_{\text {COM (off) }}$			$\begin{aligned} & \text { Room } \\ & \text { Full } \end{aligned}$	$\begin{gathered} -1 \\ -10 \end{gathered}$		10 10		
Channel-On Leakage Current ${ }^{\dagger}$	$\mathrm{I}_{\text {com(on) }}$	$\mathrm{V}+=3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}}, \mathrm{V}_{\mathrm{NC}}=\mathrm{V}_{\mathrm{COM}}=0.3 \mathrm{~V} / 3 \mathrm{~V}$		$\begin{gathered} \text { Room } \\ \text { Full } \end{gathered}$	$\begin{gathered} -1 \\ -10 \end{gathered}$		1 10		
Digital Control									
Input High Voltage ${ }^{\text {d }}$	$\mathrm{V}_{\text {INH }}$			Full	1.4			V	
Input Low Voltage	$\mathrm{V}_{\text {INL }}$			Full			0.5		
Input Capacitance	$\mathrm{C}_{\text {in }}$			Full		4		pF	
Input Current	$\mathrm{l}_{\mathrm{INL}}$ or $\mathrm{I}_{\mathrm{INH}}$			Full	1		1	$\mu \mathrm{A}$	
Dynamic Characteristics									
Turn-On Time	t_{ON}	$\begin{gathered} \mathrm{V}+=2.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=1.5 \mathrm{~V} \\ \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \end{gathered}$		$\begin{aligned} & \text { Room } \\ & \text { Full } \end{aligned}$		15	30 50	ns	
Turn-Off Time	$\mathrm{t}_{\text {OFF }}$			$\begin{aligned} & \text { Room } \\ & \text { Full } \end{aligned}$		10	25 35		
Break-Before-Make Time	t_{d}	V_{NO} or $\mathrm{V}_{\mathrm{NC}}=1.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$		Full	1				
Charge Injection ${ }^{\text {d }}$	$\mathrm{Q}_{\text {INJ }}$	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}, \mathrm{V}_{\mathrm{GEN}}=1.5 \mathrm{~V}, \mathrm{R}_{\mathrm{GEN}}=0 \Omega$		Room		1		pC	
-3 dB Bandwidth	BW	$0 \mathrm{dBm}, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=50 \Omega$		Room		157		MHz	
Off-Isolation ${ }^{\text {d }}$	OIRR	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$	$\mathrm{f}=1 \mathrm{MHz}$	Room		-67		dB	
			$\mathrm{f}=10 \mathrm{MHz}$	Room		-47			
Crosstalk ${ }^{\text {d }}$	$\mathrm{X}_{\text {TALK }}$	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$	$\mathrm{f}=1 \mathrm{MHz}$	Room		-67			
			$\mathrm{f}=10 \mathrm{MHz}$	Room		-47			
$\mathrm{N}_{\mathrm{O}}, \mathrm{N}_{\mathrm{C}}$ Off Capacitance ${ }^{\text {d }}$	$\mathrm{C}_{\mathrm{NO} \text { (off) }}$	$\mathrm{V}_{\mathrm{IN}}=0$ or $\mathrm{V}+, \mathrm{f}=1 \mathrm{MHz}$		Room		8		pF	
	$\mathrm{C}_{\mathrm{NC} \text { (off) }}$			Room		8			
Channel-On Capacitance ${ }^{\text {d }}$	$\mathrm{C}_{\mathrm{NO} \text { (on) }}$			Room		35			
	$\mathrm{C}_{\mathrm{NC} \text { (on) }}$			Room		35			
Power Supply									
Power Supply Current	I+	$\mathrm{V}_{\text {IN }}=0$ or $\mathrm{V}+$		Full		0.01	1.0	$\mu \mathrm{A}$	

Notes:
a. Room $=25^{\circ} \mathrm{C}$, Full = as determined by the operating suffix
b. Typical values are for design aid only, not guaranteed nor subject to production testing
c. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.
d. Guarantee by design, nor subjected to production test
e. $V_{I N}=$ input voltage to perform proper function.
f. Guaranteed by 5 V leakage testing, not production tested

Notes:
a. Room $=25^{\circ} \mathrm{C}$, Full $=$ as determined by the operating suffix.
b. Typical values are for design aid only, not guaranteed nor subject to production testing.
c. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.
d. Guarantee by design, nor subjected to production test.
e. $\mathrm{V}_{\mathrm{IN}}=$ input voltage to perform proper function.
f. Guaranteed by 5 V leakage testing, not production tested.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

r_{ON} vs. $\mathrm{V}_{\mathrm{COM}}$ and Supply Voltage

Supply Current vs. Temperature

r_{ON} vs. Analog Voltage and Temperature

Supply Current vs. Input Switching Frequency

TYPICAL CHARACTERISTICS $25^{\circ} \mathrm{C}$, unless noted

TEST CIRCUITS

C_{L} (includes fixture and stray capacitance)

$$
v_{\text {OUT }}=v_{\text {COM }}\left(\frac{R_{L}}{R_{L}+R_{\text {ON }}}\right)
$$

Logic "1" = Switch On
Logic input waveforms inverted for switches that have the opposite logic sense.

Figure 1. Switching Time

Vishay Siliconix

TEST CIRCUITS

Figure 2. Break-Before-Make Interval

IN depends on switch configuration: input polarity determined by sense of switch.
Figure 3. Charge Injection

Figure 4. Off-Isolation

Figure 5. Channel Off/On Capacitance

[^0]
Notice

Specifications of the products displayed herein are subject to change without notice. Vishay Intertechnology, Inc., or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Vishay's terms and conditions of sale for such products, Vishay assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of Vishay products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Vishay for any damages resulting from such improper use or sale.

[^0]: Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see http://www.vishay.com/ppg?74333.

