Vishay Siliconix

New Product

0.4- Ω Low-Voltage Dual SPDT Analog Switch

DESCRIPTION

The DG2531/DG2532 is a sub 1- Ω (0.4 Ω at 2.7 V) dual SPDT analog switches designed for low voltage applications.

The DG2531/DG2532 has on-resistance matching (less than 0.05 Ω at 2.7 V) and flatness (less than 0.2 Ω at 2.7 V) that are guaranteed over the entire voltage range. Additionally, low logic thresholds makes the DG2531/DG2532 an ideal interface to low voltage DSP control signals.

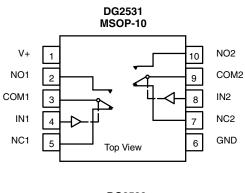
The DG2531/DG2532 has fast switching speed (on/off time at 40 and 35 ns) with break-before-make guaranteed. In the On condition, all switching elements conduct equally in both directions. Off-isolation and crosstalk is - 69 dB at 100 kHz.

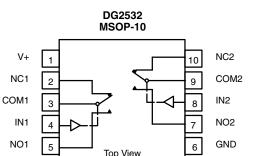
The DG2531/DG2532 is built on Vishay Siliconix's high-density low voltage CMOS process. An eptiaxial layer is built in to prevent latchup. The DG2531/DG2532 contains the additional benefit of 2000 V ESD protection.

Packaged in space saving MSOP-10, the DG2531/DG2532 is a high performance, low $r_{\rm ON}$ switches for battery powered applications.

FEATURES

- Low Voltage Operation (1.8 V to 5.5 V)
- Low On-Resistance r_{ON} : 0.4 Ω at 2.7 V
- 69 dB OIRR at 2.7 V, 100 kHz
- MSOP-10 Package
- ESD Protection > 2000 V


BENEFITS


- Reduced Power Consumption
- High Accuracy
- Reduce Board Space
- 1.6-V Logic Compatible
- High Bandwidth

APPLICATIONS

- Cellular Phones
- Speaker Headset Switching
- Audio and Video Signal Routing
- PCMCIA Cards
- Battery Operated Systems
- Relay Replacement

FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION

TRUTH TABLE					
Logic	NC1 and NC2	NO1 and NO2			
0	ON	OFF			
1	OFF	ON			

ORDERING INFORMATION					
Temp Range	Package	Part Number			
- 40 to 85 °C	MSOP-10	DG2531DQ DG2532DQ			

Vishay Siliconix

New Product

ABSOLUTE MAXIMUM RATINGS $T_A = 25 \degree C$, unless otherwise noted						
Parameter		Symbol	Limit	Unit		
Reference V+ to GND		- 0.3 to + 6	V			
IN, COM, NC, NO ^a			- 0.3 to (V+ + 0.3 V)	v		
Continuous Current (NO, NC, COM)			± 300	mA		
Peak Current (Pulsed at 1 ms, 10 % duty cycle)			± 500	ША		
Storage Temperature	(D Suffix)		- 65 to 150	°C		
PESD per Method 3015.7	·		> 2	kV		
Power Dissipation (Packages) ^b	MSOP-10 ^c		320	mW		

Note

a. Signals on NC, NO, or COM or IN exceeding V+ will be clamped by internal diodes. Limit forward diode current to maximum current ratings. b. All leads welded or soldered to PC Board.

c. Derate 4.0 mW/°C above 70 °C.

SPECIFICATIONS (V+	· = 3 V)						
		Test Conditions Otherwise Unless Specified		Limits - 40 to 85 °C			
Parameter	Symbol	V+ = 3 V, \pm 10 %,V_{IN} = 0.5 V or 1.4 V e	Temp ^a	Min ^b	Тур ^с	Max ^b	Unit
Analog Switch			•	•	•	•	
Analog Signal Range ^d	V _{NO} , V _{NC} , V _{COM}		Full	0		V+	۷
On-Resistance	r _{ON}	V+ = 2.7 V, V _{COM} = 0.6 V/1.5 V I _{NO} , I _{NC} = 100 mA	Room Full		0.4	0.6 0.7	
r _{ON} Flatness ^d	r _{ON} Flatness		Room		0.12	0.2	Ω
On-Resistance Match Between Channels ^d	$\Delta r_{DS(on)}$		Room			0.05	
Switch Off Leakage Current	I _{NO(off)} I _{NC(off)}	V+ = 3.3 V, V _{NO} , V _{NC} = 0.3 V/3 V, V _{COM} = 3 V/0.3 V	Room Full	- 1 - 10		1 10	nA
	I _{COM(off)}		Room Full	- 1 - 10		1 10	
Channel-On Leakage Current	I _{COM(on)}	V+ = 3.3 V, V _{NO} , V _{NC} = V _{COM} = 0.3 V/3 V	Room Full	- 1 - 10		1 10	
Digital Control							
Input High Voltage ^d	V _{INH}		Full	1.4			v
Input Low Voltage	V _{INL}		Full			0.5	
Input Capacitance	C _{in}		Full		7		pF
Input Current	I _{INL} or I _{INH}	V _{IN} = 0 or V+	Full	1		1	μA

New Product

Vishay Siliconix

SPECIFICATIONS (V	+ = 3 V)						
		Test Conditions Otherwise Unless Specified		Limits - 40 to 85 °C			
Parameter	Symbol	V+ = 3 V, \pm 10 %, V_{IN} = 0.5 V or 1.4 V e	Temp ^a	Min ^b	Тур ^с	Max ^b	Unit
Dynamic Characteristics	•						
Turn-On Time	t _{ON}	V _{NO} or V _{NC} = 2.0 V, R _L = 50 Ω, C _L = 35 pF	Room Full		40	70 77	
Turn-Off Time	t _{OFF}		Room Full		35	65 72	ns
Break-Before-Make Time	t _d		Room	1	4		
Charge Injection ^d	Q _{INJ}	C_L = 1 nF, V_{GEN} = 1.5 V, R_{GEN} = 0 Ω	Room		54		рС
Off-Isolation ^d	OIRR		Room		- 69		
Crosstalk ^d	X _{TALK}	$R_L = 50 $ Ω, $C_L = 5 $ pF, f = 100 kHz	Room		- 69		dB
N_{O} , N_{C} Off Capacitance ^d	C _{NO(off)} C _{NC(off)}	V _{IN} = 0 or V+, f = 1 MHz	Room		143		- 5
Channel-On Capacitance ^d	C _{NO(on)} C _{NC(on)}		Room		403		- pF
Power Supply		•	•		-	-	
Power Supply Range	V+			1.8		5.5	V
Power Supply Current	l+	V _{IN} = 0 or V+	Full			1.0	μA

Notes:

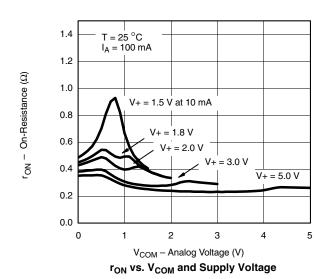
a. Room = 25 °C, Full = as determined by the operating suffix.

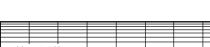
b. Typical values are for design aid only, not guaranteed nor subject to production testing.

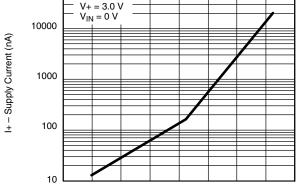
c. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.

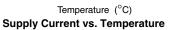
d. Guarantee by design, nor subjected to production test.

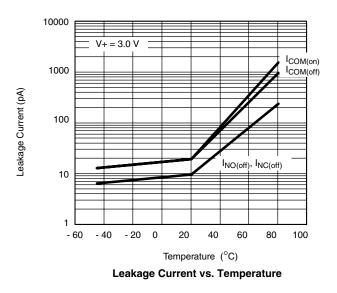
e. V_{IN} = input voltage to perform proper function.

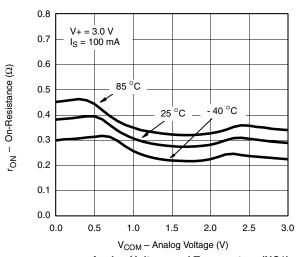

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

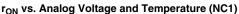

DG2531/DG2532

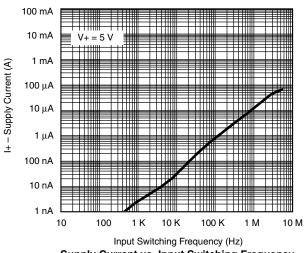

100000

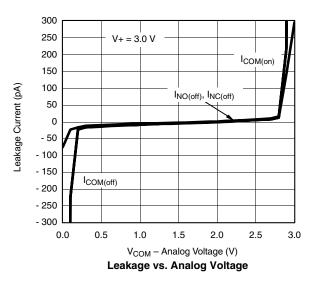

New Product

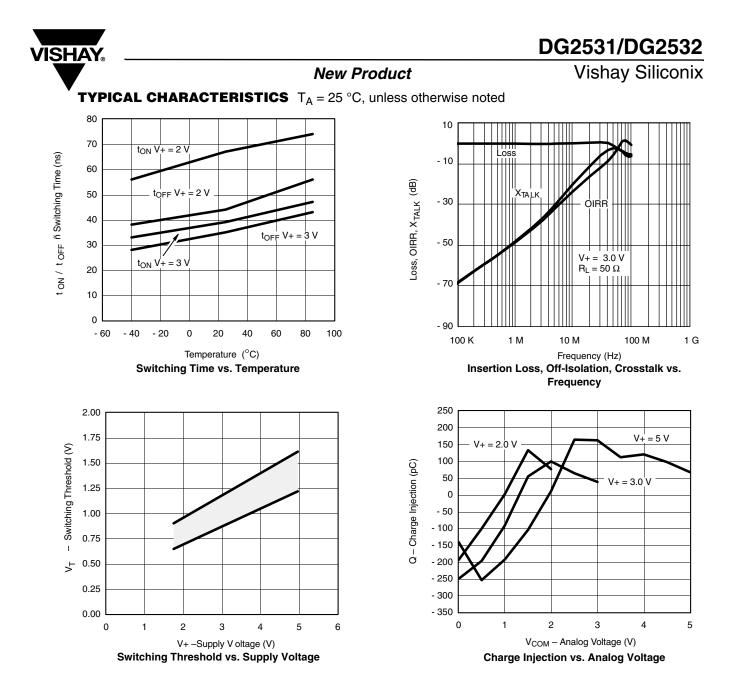

Vishay Siliconix TYPICAL CHARACTERISTICS $T_A = 25 \text{ °C}$, unless otherwise noted



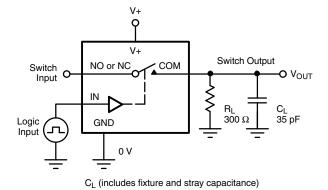


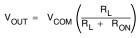






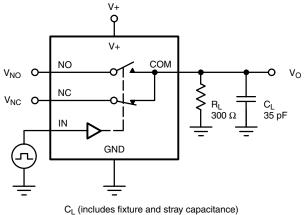
Supply Current vs. Input Switching Frequency

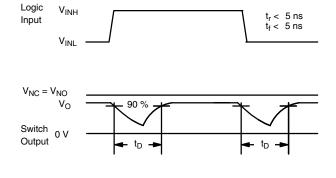


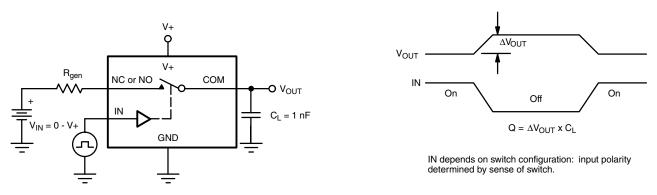

DG2531/DG2532

New Product

Vishay Siliconix TEST CIRCUITS






Logic "1" = Switch On Logic input waveforms inverted for switches that have the opposite logic sense.

New Product

Vishay Siliconix

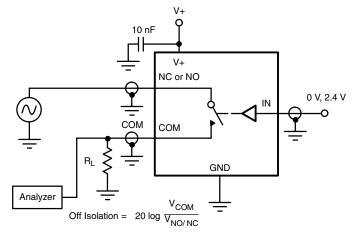


Figure 4. Off-Isolation

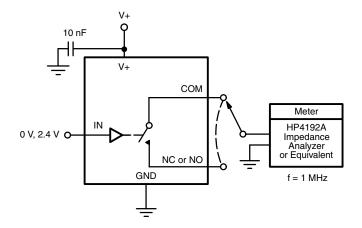


Figure 5. Channel Off/On Capacitance

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see http://www.vishay.com/ppg?72742.

Vishay

Notice

Specifications of the products displayed herein are subject to change without notice. Vishay Intertechnology, Inc., or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Vishay's terms and conditions of sale for such products, Vishay assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of Vishay products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Vishay for any damages resulting from such improper use or sale.