High Speed, Low Voltage, 3Ω, Quad SPDT CMOS Analog Switch

DESCRIPTION

The DG2706 is a high speed, low voltage, low On-resistance, quad SPDT (single pole double throw) analog switch. It operates from a 1.65 V to 4.3 V single power supply and achieves 3Ω switch On-resistance. When turned on, each switch conducts equally in both directions. Its switch on resistance flatness is 0.6Ω and channel to channel matching is of 0.3Ω when powered with single 3.15 V supply. All channels guaranteed break before make switching.
Control logic input has 0.5 V to 1.65 V logic threshold. It features a $190 \mathrm{MHz}-3 \mathrm{~dB}$ bandwidth, -90 dB crosstalk and -70 dB off-isolation at 1 MHz .
The DG2706 is an ideal fit for low voltage battery powered devices switching audio, video, multi-media data streams, and control signals between different functional circuits or ports.
The DG2707 comes in a small miniQFN-16 lead package ($1.8 \mathrm{~mm} \times 2.6 \mathrm{~mm} \times 0.75 \mathrm{~mm}$). As a committed partner to community and the environment, Vishay Siliconix manufactures this product with the lead (Pb)-free device terminations and is 100% RoHS compliant.

FEATURES

- Operation voltage range: 1.65 V to 4.3 V
- Guaranteed On-resistance: 3.0Ω at 3.15 V

- Low voltage logic threshold
- Low crosstalk: - 70 dB
- High off-isolation: - 90 dB
- Ultra small package: miniQFN16 of $1.8 \mathrm{~mm} \times 2.6 \mathrm{~mm}$

APPLICATIONS

- Dual SIM card switch
- A/V and analog signal routing
- Battery operated devices
- Data acquisition systems
- Communications systems
- Medical and ATE equipments

FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION

Device Marking: DXX
Traceability Code:
D is DG2706DN
XX = Date/Lot

ORDERING INFORMATION		
Temp Range	Package	Part Number
$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	miniQFN-16	DG2706DN-T1-E4

TRUTH TABLE DG2706 QUAD SPDT, miniQFN-16L

Select Input		On Switches	
IN1 (Pin 10)	IN2 (Pin 3)	Description (Pin)	Common (Pin)
0	X	NC1 (Pin 1)	
1	X	NO1 (Pin 15)	COM4 (Pin 13)
0	X	NC4 (Pin 14)	
x	0	NO4 (Pin 12)	COM2 (Pin 5)
	1	NC2 (Pin 6)	

ABSOLUTE MAXIMUM RATINGS $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted			
Parameter		Limit	Unit
Reference to GND	V+	- 0.3 to 5.0	V
	IN, COM, NC, $\mathrm{NO}^{\text {a }}$	-0.3 to (V++0.3)	
Current (Any terminal except NO, NC or COM)		30	mA
Continuous Current (NO, NC, or COM)		± 250	
Peak Current (Pulsed at $1 \mathrm{~ms}, 10$ \% Duty Cycle)		± 500	
Storage Temperature (D Suffix)		- 65 to 150	${ }^{\circ} \mathrm{C}$
Thermal Resistance (Package) ${ }^{\text {b }}$	miniQFN-16	152	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Power Dissipation (Package) ${ }^{\text {b }}$	miniQFN-16 ${ }^{\text {c, d }}$	525	mW

Notes:
a. Signals on NC, NO, or COM or IN exceeding V+ will be clamped by internal diodes. Limit forward diode current to maximum current ratings.
b. All leads welded or soldered to PC board.
c. Derate $6.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $70^{\circ} \mathrm{C}$
d. Manual soldering with iron is not recommended for leadless components. The miniQFN-16 is a leadless package. The end of the lead terminal is exposed copper (not plated) as a result of the singulation process in manufacturing. A solder fillet at the exposed copper lip cannot be guaranteed and is not required to ensure adequate bottom side solder interconnection.

SPECIFICATIONS $\mathrm{V}+=3.15 \mathrm{~V}$							
Parameter	Symbol	Test Conditions Otherwise Unless Specified	Temp. ${ }^{\text {b }}$	$\begin{gathered} \text { Limits } \\ -40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C} \end{gathered}$			Unit
				Min. ${ }^{\text {d }}$	Typ. ${ }^{\text {c }}$	Max. ${ }^{\text {d }}$	
Analog Switch							
Analog Signal Range ${ }^{\text {e }}$	$\mathrm{V}_{\text {ANALOG }}$	$\mathrm{R}_{\mathrm{DS} \text { (on) }}$	Full	0		V+	V
On-Resistance	$\mathrm{R}_{\mathrm{DS} \text { (on) }}$	$\mathrm{V}+=3.15 \mathrm{~V}, \mathrm{I}_{\mathrm{NO} / \mathrm{NC}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{COM}}=1.0 \mathrm{~V}$	Room		3	5.5	Ω
			Full			6	
$\mathrm{R}_{\text {ON }}$ Match	$\Delta \mathrm{R}_{(\mathrm{ON})}$	$\mathrm{V}+=3.15 \mathrm{~V}, \mathrm{I}_{\mathrm{NO} / \mathrm{NC}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{COM}}=1.0 \mathrm{~V}$	Room		0.3		
R_{ON} Resistance Flatness	R_{ON} Flatness	$\begin{gathered} \mathrm{V}_{+}=3.15 \mathrm{~V}, \mathrm{I}_{\mathrm{NO} / \mathrm{NC}}=10 \mathrm{~mA}, \\ \mathrm{~V}_{\mathrm{COM}}=0 \mathrm{~V}, 1 \mathrm{~V} \end{gathered}$	Room		0.6		
Channel Off Leakage Current	$\mathrm{I}_{\mathrm{NO} / \mathrm{NC} \text { (off) }}$	$\begin{gathered} \mathrm{V}_{+}=3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO} / \mathrm{NC}}=0.5 \mathrm{~V} / 3 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{COM}}=3 \mathrm{~V} / 0.5 \mathrm{~V} \end{gathered}$	Room	-5		5	nA
			Full	-10		10	
	$\mathrm{I}_{\text {COM(off) }}$		Room	-5		5	
			Full	-10		10	
Channel-On Leakage	$\mathrm{I}_{\text {com(on) }}$	$\mathrm{V}+=3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO} / \mathrm{NC}}, \mathrm{V}_{\mathrm{COM}}=3 \mathrm{~V} / 0.5 \mathrm{~V}$	Room	-10		10	
Current			Full	-20		20	
Digital Control							
Input High Voltage	$\mathrm{V}_{\text {INH }}$		Full	1.65			V
Input Low Voltage	$\mathrm{V}_{\text {INL }}$		Full			0.4	
Input Current	$\mathrm{I}_{\mathrm{INL}}$ or $\mathrm{I}_{\text {INH }}$	$\mathrm{V}_{\text {IN }}=0$ or V^{+}	Full	-1		1	$\mu \mathrm{A}$
Dynamic Characteristics							
Break-Before-Make Time	$\mathrm{t}_{\text {BBM }}$	$\mathrm{V}_{\mathrm{NO}}, \mathrm{V}_{\mathrm{NC}}=1.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$	Room		1		ns
			Full	5			
Enable Turn-On Time	ton(EN)		Room		20	45	
			Full			55	
Enable Turn-Off Time	$\mathrm{t}_{\text {OFF(EN }}$)		Room		15	35	
			Full			45	
Charge Injection ${ }^{\text {d }}$	$\mathrm{Q}_{\text {INJ }}$	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}, \mathrm{R}_{\mathrm{GEN}}=0 \Omega, \mathrm{~V}_{\mathrm{NC} / \mathrm{NO}}=2 \mathrm{~V}$	Room		3		pC
Off-Isolation ${ }^{\text {d }}$	OIRR	$\mathrm{V}+=3.15 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$	Room		-70		dB
Crosstalk ${ }^{\text {d, f }}$	$\mathrm{X}_{\text {TALK }}$		Room		-90		
Bandwidth ${ }^{\text {d }}$	BW	$\mathrm{V}+=3.15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF},-3 \mathrm{~dB}$	Room		190		MHz
Total Harmonic Distortion ${ }^{\text {d }}$	THD	$\mathrm{V}+=3.15 \mathrm{~V}, \mathrm{R}_{\text {LOAD }}=600 \Omega$	Room		0.02		\%
$\mathrm{N}_{\mathrm{O}}, \mathrm{N}_{\mathrm{C}}$ Off Capacitance ${ }^{\text {d }}$	$\mathrm{CS}_{\mathrm{NC} \text { (off) }}$	$\mathrm{V}+=3.15 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	Room		16		pF
	$\mathrm{CS}_{\mathrm{NO} \text { (on) }}$				15		
Channel-On Capacitance ${ }^{\text {d }}$	$\mathrm{C}_{\text {com(on) }}$				31		
Power Supply							
Power Supply Range	V+			1.65		4.3	V
Power Supply Current	I+	$\mathrm{V}_{\text {IN }}=0$ or V_{+}	Full			1	$\mu \mathrm{A}$

Notes:

a. Room $=25^{\circ} \mathrm{C}$, Full = as determined by the operating suffix.
b. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.
c. Typical values are for design aid only, not guaranteed nor subject to production testing.
d. Guarantee by design, not subjected to production test.
e. $\mathrm{V}_{\mathrm{IN}}=$ input voltage to perform proper function.
f. Crosstalk measured between channels.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Vishay Siliconix
TYPICAL CHARACTERISTICS $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted

R_{ON} vs. V_{D} and Single Supply Voltage

$R_{\text {ON }}$ vs. Analog Voltage and Temperature

$\mathbf{R}_{\text {ON }}$ vs. Analog Voltage and Temperature

\mathbf{R}_{ON} vs. Analog Voltage and Temperature

Switching Threshold vs. Supply Voltage

Supply Current vs. Input Switching Frequency

TYPICAL CHARACTERISTICS $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted

Leakage Current vs. Temperature

Insertion Loss, Off-Isolation Crosstalk vs. Frequency

Switching Threshold vs. Supply Voltage

TEST CIRCUITS

C_{L} (includes fixture and stray capacitance)

$$
\mathrm{V}_{\text {OUT }}=\mathrm{v}_{\mathrm{COM}}\left(\frac{\mathrm{R}_{\mathrm{L}}}{\mathrm{R}_{\mathrm{L}}+\mathrm{R}_{\mathrm{ON}}}\right)
$$

Logic "1" = Switch on
Logic input waveforms inverted for switches that have the opposite logic sense.

Figure 1. Switching Time

Figure 2. Break-Before-Make Interval

IN depends on switch configuration: input polarity determined by sense of switch.

Figure 3. Charge Injection

TEST CIRCUITS

Figure 4. Off-Isolation

Figure 5. Channel Off/On Capacitance

Disclaimer

All product specifications and data are subject to change without notice.
Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.

