Low-Voltage, Sub-Ohm, SPDT Analog Switch

DESCRIPTION

The DG2711 is a sub-ohm single-pole/double-throw monolithic CMOS analog switch designed for high performance switching of analog signals. Combining low power, high speed (t_{ON} : $25 \mathrm{~ns}, \mathrm{t}_{\mathrm{OFF}}: 14 \mathrm{~ns}$), low onresistance ($\mathrm{r}_{\mathrm{DS}(o n)}: 0.44 \Omega$) and small physical size (SC70), the DG2711 is ideal for portable and battery powered applications requiring high performance and efficient use of board space.
The DG2711 is built on Vishay Siliconix's low voltage submicron CMOS process. An epitaxial layer prevents latchup. Break-before-make is guaranteed for DG2711.
Each switch conducts equally well in both directions when on, and blocks up to the power supply level when off.
As a committed partner to the community and the environment, Vishay Siliconix manufactures this product with the lead (Pb)-free device terminations. For analog switching products manufactured with 100% matte tin device terminations, the lead (Pb)-free "-E3" suffix is being used as a designator.

FEATURES

- Low Voltage Operation (1.6 V to 3.6 V)
- Low On-Resistance - r $\mathrm{DS}(\mathrm{on}): 0.44 \Omega$ Typ.
- Fast Switching - t_{ON} : $25 \mathrm{~ns}, \mathrm{t}_{\text {OFF }}: 14 \mathrm{~ns}$
- Low Leakage
- TTL/CMOS Compatible
- 6-Pin SC-70 Package

BENEFITS

- Reduced Power Consumption
- Simple Logic Interface
- High Accuracy
- Reduce Board Space

APPLICATIONS

- Cellular Phones
- Communication Systems
- Portable Test Equipment
- Battery Operated Systems
- Sample and Hold Circuits

TRUTH TABLE		
Logic	NC	NO
0	ON	OFF
1	OFF	ON

ORDERING INFORMATION

Temp Range	Package	Part Number
-40 to $85^{\circ} \mathrm{C}$	SC70-6	DG2711DL-T1-E3

Vishay Siliconix

ABSOLUTE MAXIMUM RATINGS			
Parameter		Limit	Unit
Reference V+ to GND		- 0.3 to + 4	V
IN, COM, NC, $\mathrm{NO}^{\text {a }}$		-0.3 to (V++0.3)	
Continuous Current (NO, NC and COM Pins)		± 200	mA
Peak Current (Pulsed at $1 \mathrm{~ms}, 10 \%$ duty cycle)		± 300	
Storage Temperature	(D Suffix)	- 65 to 150	${ }^{\circ} \mathrm{C}$
Power Dissipation (Packages) ${ }^{\text {b }}$	6-Pin SO70 ${ }^{\text {c }}$	250	mW

Notes:

a. Signals on NC, NO, or COM or IN exceeding V+ will be clamped by internal diodes. Limit forward diode current to maximum current ratings.
b. All leads welded or soldered to PC Board.
c. Derate $3.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $70{ }^{\circ} \mathrm{C}$.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

SPECIFICATIONS (V+ = 1.8 V)							
Parameter	Symbol	Test Conditions Otherwise Unless Specified$\mathrm{V}+=1.8 \mathrm{~V}, \pm 10 \%, \mathrm{~V}_{\mathrm{IN}}=0.4 \mathrm{~V} \text { or } 1.0 \mathrm{~V}^{\mathrm{e}}$	Temp ${ }^{\text {a }}$	$\begin{aligned} & \text { Limits } \\ & -40 \text { to } 85^{\circ} \mathrm{C} \\ & \hline \end{aligned}$			Unit
				Min ${ }^{\text {b }}$	Typ ${ }^{\text {c }}$	Max ${ }^{\text {b }}$	
Analog Switch							
Analog Signal Range ${ }^{\text {d }}$	$\begin{gathered} \mathrm{V}_{\mathrm{NO}}, \mathrm{~V}_{\mathrm{NC}}, \\ \mathrm{~V}_{\mathrm{COM}} \end{gathered}$		Full	0		V+	V
On-Resistance	${ }^{\text {ron }}$	$\begin{gathered} \hline \mathrm{V}+=1.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=0.9 \mathrm{~V} \\ \mathrm{I}_{\mathrm{NO}}, \mathrm{I}_{\mathrm{NC}}=100 \mathrm{~mA} \end{gathered}$	Room Full		0.8	$\begin{aligned} & 2.0 \\ & 2.5 \end{aligned}$	Ω
Switch Off Leakage Current ${ }^{\dagger}$	${ }^{\mathrm{NO}} \mathrm{O}$ (off) $I_{\mathrm{NC} \text { (off) }}$	$\begin{gathered} \mathrm{V}_{+}=2.2 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{NO}}, \mathrm{~V}_{\mathrm{NC}}=0.2 \mathrm{~V} / 2 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=2 \mathrm{~V} / 0.2 \mathrm{~V} \end{gathered}$	$\begin{aligned} & \text { Room } \\ & \text { Full }^{\text {d }} \end{aligned}$	$\begin{gathered} \hline-1 \\ -10 \end{gathered}$		$\begin{gathered} \hline 1 \\ 10 \end{gathered}$	nA
	${ }^{\text {com(off) }}$		$\begin{aligned} & \text { Room } \\ & \text { Full }^{\text {d }} \end{aligned}$	$\begin{gathered} -1 \\ -10 \end{gathered}$		$\begin{gathered} 1 \\ 10 \end{gathered}$	
Channel-On Leakage Current ${ }^{\dagger}$	${ }^{\text {COM (on) }}$	$\mathrm{V}+=2.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}}, \mathrm{V}_{\mathrm{NC}}=\mathrm{V}_{\mathrm{COM}}=0.2 \mathrm{~V} / 2 \mathrm{~V}$	$\begin{aligned} & \text { Room } \\ & \text { Full }^{\text {d }} \end{aligned}$	$\begin{gathered} -1 \\ -10 \end{gathered}$		$\begin{gathered} 1 \\ 10 \end{gathered}$	
Digital Control							
Input High Voltage	$\mathrm{V}_{\text {INH }}$		Full	1.0			
Input Low Voltage	$\mathrm{V}_{\text {INL }}$		Full			0.4	V
Input Capacitance ${ }^{\text {d }}$	$\mathrm{C}_{\text {in }}$		Full		5		pF
Input Current ${ }^{\text {f }}$	$\mathrm{I}_{\text {INL }}$ or $\mathrm{I}_{\text {INH }}$	$\mathrm{V}_{\text {IN }}=0$ or V_{+}	Full	-1		1	$\mu \mathrm{A}$
Dynamic Characteristics							
Turn-On Time ${ }^{\text {d }}$	${ }^{\text {ton }}$	$\mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=1.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$ Figures1 and 2	$\begin{aligned} & \hline \text { Room } \\ & \text { Full }^{\text {d }} \end{aligned}$		36	$\begin{aligned} & 60 \\ & 62 \end{aligned}$	ns
Turn-Off Time ${ }^{\text {d }}$	$\mathrm{t}_{\text {OFF }}$		$\begin{aligned} & \text { Room } \\ & \text { Full } \end{aligned}$		22	$\begin{aligned} & 42 \\ & 44 \end{aligned}$	
Break-Before-Make Time ${ }^{\text {d }}$	t_{d}		Room	3			
Charge Injection ${ }^{\text {d }}$	$Q_{\text {INJ }}$	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}, \mathrm{V}_{\mathrm{GEN}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{GEN}}=0 \Omega$, Figure 3	Room		20		pC
Off-Isolation ${ }^{\text {d }}$	OIRR	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$	Room		-56		dB
Crosstalk ${ }^{\text {d }}$	$\mathrm{X}_{\text {TALK }}$		Room		-56		
NO, NC Off Capacitance ${ }^{\text {d }}$	$\mathrm{C}_{\mathrm{NO} \text { (off) }}$ $\mathrm{C}_{\mathrm{NC} \text { (off) }}$	$\mathrm{V}_{\mathrm{IN}}=0$ or $\mathrm{V}+\mathrm{f}=1 \mathrm{MHz}$	Room		73		pF
Channel-On Capacitance ${ }^{\text {d }}$	$\mathrm{Con}^{\text {a }}$		Room		167		

SPECIFICATIONS (V+ = 3.0 V)							
Parameter	Symbol	Test Conditions Otherwise Unless Specified$\mathrm{V}+=3 \mathrm{~V}, \pm 10 \%, \mathrm{~V}_{\mathrm{IN}}=0.5 \mathrm{~V} \text { or } 1.4 \mathrm{~V}^{\mathrm{e}}$	Temp ${ }^{\text {a }}$	$\begin{gathered} \text { Limits } \\ -40 \text { to } 85^{\circ} \mathrm{C} \end{gathered}$			Unit
				Min ${ }^{\text {b }}$	Typ ${ }^{\text {c }}$	Max ${ }^{\text {b }}$	
Analog Switch							
Analog Signal Range ${ }^{\text {d }}$	$\begin{gathered} \mathrm{V}_{\mathrm{NO},}, \mathrm{~V}_{\mathrm{NC}}, \\ \mathrm{~V}_{\mathrm{COM}} \end{gathered}$		Full	0		V+	V
On-Resistance	${ }^{\text {ron }}$	$\begin{gathered} \mathrm{V}+=2.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=1.5 \mathrm{~V} \\ \mathrm{I}_{\mathrm{NO}}, \mathrm{I}_{\mathrm{NC}}=100 \mathrm{~mA} \\ \hline \end{gathered}$	Room Full		0.44	$\begin{aligned} & 0.6 \\ & 0.7 \\ & \hline \end{aligned}$	
$\mathrm{r}_{\text {ON }}$ Flatness	ron Flatness	$\begin{gathered} \hline \mathrm{V}+=2.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=0.6 \mathrm{~V}, 1.5 \mathrm{~V} \\ \mathrm{I}_{\mathrm{NO}}, \mathrm{I}_{\mathrm{NC}}=100 \mathrm{~mA} \end{gathered}$	Room		0.14	0.2	Ω
ron Match	$\Delta^{\text {ON }}$	$\begin{gathered} \hline \mathrm{V}+=2.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=1.5 \mathrm{~V} \\ \mathrm{I}_{\mathrm{NO}}, \mathrm{I}_{\mathrm{NC}}=100 \mathrm{~mA} \end{gathered}$	Room			0.07	
Switch Off Leakage Current	$\mathrm{I}_{\mathrm{NO} \text { (off) }}$ $I_{\mathrm{NC}(\text { off })}$	$\begin{gathered} \mathrm{V}+=3.3 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{NO}}, \mathrm{~V}_{\mathrm{NC}}=0.3 \mathrm{~V} / 3 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=3 \mathrm{~V} / 0.3 \mathrm{~V} \end{gathered}$	Room Full	$\begin{gathered} \hline-1 \\ -10 \\ \hline \end{gathered}$		$\begin{gathered} \hline 1 \\ 10 \\ \hline \end{gathered}$	nA
	$\mathrm{I}_{\text {com(off) }}$		$\begin{aligned} & \text { Room } \\ & \text { Full } \end{aligned}$	$\begin{gathered} \hline-1 \\ -10 \end{gathered}$		$\begin{gathered} \hline 1 \\ 10 \end{gathered}$	
Channel-On Leakage Current	${ }^{\text {COM(on) }}$	$\mathrm{V}+=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}}, \mathrm{V}_{\mathrm{NC}}=\mathrm{V}_{\mathrm{COM}}=0.3 \mathrm{~V} / 3 \mathrm{~V}$	Room Full	$\begin{gathered} \hline-1 \\ -10 \end{gathered}$		$\begin{gathered} \hline 1 \\ 10 \end{gathered}$	
Digital Control							
Input High Voltage	$\mathrm{V}_{\text {INH }}$		Full	1.4			V
Input Low Voltage	$\mathrm{V}_{\text {INL }}$		Full			0.5	
Input Capacitance ${ }^{\text {d }}$	$\mathrm{C}_{\text {in }}$		Full		5		pF
Input Current ${ }^{\dagger}$	$\mathrm{I}_{\text {INL }}$ or $\mathrm{I}_{\text {INH }}$	$\mathrm{V}_{\text {IN }}=0$ or $\mathrm{V}+$	Full	-1		1	$\mu \mathrm{A}$
Dynamic Characteristics							
Turn-On Time	${ }^{\text {ton }}$	$\mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=1.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$ Figures 1 and 2	Room Full		25	$\begin{aligned} & 46 \\ & 48 \end{aligned}$	ns
Turn-Off Time	$\mathrm{t}_{\text {OFF }}$		$\begin{aligned} & \text { Room } \\ & \text { Full } \end{aligned}$		14	$\begin{aligned} & \hline 38 \\ & 40 \end{aligned}$	
Break-Before-Make Time	t_{d}		Room	1			
Charge Injection ${ }^{\text {d }}$	$\mathrm{Q}_{\text {INJ }}$	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}, \mathrm{V}_{\mathrm{GEN}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{GEN}}=0 \Omega$, Figure 3	Room		28		pC
Off-Isolation ${ }^{\text {d }}$	OIRR	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{mHz}$	Room		-56		dB
Crosstalk ${ }^{\text {d }}$	$\mathrm{X}_{\text {TALK }}$		Room		-56		
NO, NC Off Capacitance ${ }^{\text {d }}$	$\mathrm{C}_{\mathrm{NO} \text { (off) }}$ $\mathrm{C}_{\mathrm{NC} \text { (off) }}$	$\mathrm{V}_{\mathrm{IN}}=0$ or $\mathrm{V}+, \mathrm{f}=1 \mathrm{MHz}$	Room		70		pF
Channel-On Capacitance ${ }^{\text {d }}$	$\mathrm{CoN}^{\text {N }}$		Room		163		
Power Supply							
Power Supply Range	V+			1.6		3.6	V
Power Supply Current	I+	$\mathrm{V}+=3.6 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0$ or V_{+}			0.01	1.0	$\mu \mathrm{A}$

Notes:

a. Room $=25^{\circ} \mathrm{C}$, Full = as determined by the operating suffix.
b. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.
c. Typical values are for design aid only, not guaranteed nor subject to production testing.
d. Guarantee by design, nor subjected to production test.
e. $\mathrm{V}_{\mathrm{IN}}=$ input voltage to perform proper function.
f. Guaranteed by 3 V leakage testing, not production tested.

TYPICAL CHARACTERISTICS $25^{\circ} \mathrm{C}$, unless otherwise noted

DG2711
Vishay Siliconix
TYPICAL CHARACTERISTICS $25^{\circ} \mathrm{C}$, unless otherwise noted

Switching Time vs. Temperature

Switching Threshold vs. Supply Voltage

Insertion Loss, Off-Isolation, Crosstalk vs. Frequency

Charge Injection vs. Analog Voltage

TEST CIRCUITS

Logic "1" = Switch On
Logic input waveforms inverted for switches that have the opposite logic sense.

Figure 1. Switching Time

Figure 2. Break-Before-Make Interval

IN depends on switch configuration: input polarity determined by sense of switch.

Figure 3. Charge Injection

DG2711
Vishay Siliconix

TEST CIRCUITS

Figure 4. Off-Isolation

Figure 5. Channel Off/On Capacitance

Disclaimer

All product specifications and data are subject to change without notice.
Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.

