## 6- $\Omega$, Low Voltage, Dual SPST Analog Switch

## DESCRIPTION

The DG2737, DG2738 and DG2739 are high performance, low on-resistance analog switches of dual SPST configuration.
Built on Vishay Siliconix's sub-micro CMOS technology, the DG2737, DG2738, DG2739 achieve switch on-resistance of $6 \Omega$ at $3 V \mathrm{~V}+$. Its -3 dB bandwidth is typically 720 MHz .
It can switch signals with amplitudes of up to $\mathrm{V}_{\mathrm{CC}}$ to be transmitted in either direction.
Combining low power, high speed, low on-resistance and small physical size, the DG2737, DG2738, DG2739 are ideal for portable and battery powered applications requiring high performance and efficient use of board space.
The DG2737, DG2738, DG2739 come in a small miniQFN-8 lead package ( $1.4 \times 1.4 \times 0.55 \mathrm{~mm}$ ). As a committed partner to the community and the environment, Vishay Siliconix manufactures this product with the lead ( Pb )-free device terminations and is 100 \% RoHS compliant.

## FEATURES

- Voltage range: 2.3 V to 4.3 V
- Low on-resistance: $6 \Omega$ typ. at 3 V
-     - 48 dB crosstalk at 240 MHz
- Low power consumption

RoHS

- Ultra small miniQFN8 package of $1.4 \times 1.4 \times 0.55 \mathrm{~mm}$
- > 300 mA latch up current per JESD78
- Switch exceeds 5 kV ESD/HBM


## FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION



Device Marking: Ax for DG2737 x = Date/Lot Traceability Code


Top View


Device Marking: Bx for DG2738 x = Date/Lot Traceability Code


Top View


Device Marking: Cx for DG2739 $x=$ Date/Lot Traceability Code

## Vishay Siliconix

TRUTH TABLE 1

| Input | Logic | DG2737 |  |
| :---: | :---: | :---: | :---: |
|  |  | $\mathbf{S}_{1}$ and $\mathrm{D}_{1}$ | $\mathbf{S}_{\mathbf{2}}$ and $\mathrm{D}_{\mathbf{2}}$ |
| $\mathrm{V}_{\mathrm{IN}}$ | Low | ON | ON |
|  | High | OFF | OFF |


| Input | Logic | DG2738 |  | DG2739 |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\mathrm{S}_{1}$ and $\mathrm{D}_{1}$ | $\mathrm{S}_{2}$ and $\mathrm{D}_{2}$ | $\mathrm{S}_{1}$ and $\mathrm{D}_{1}$ | $\mathrm{S}_{2}$ and $\mathrm{D}_{2}$ |
| $\mathrm{V}_{1 \mathrm{~N} 1}$ | Low | ON | X | ON | X |
|  | High | OFF | X | OFF | X |
| $\mathrm{V}_{\text {IN2 }}$ | Low | X | ON | X | OFF |
|  | High | X | OFF | X | ON |


| ORDERING INFORMATION | Package | Part Number |
| :---: | :---: | :---: |
| Temp. Range |  | DG2737DN-T1-E4 |
| $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ | miniQFN-8L | DG2738DN-T1-E4 |
|  |  | DG2739DN-T1-E4 |


| ABSOLUTE MAXIMUM RATINGS $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted |  |  |  |
| :---: | :---: | :---: | :---: |
| Parameter |  | Limit | Unit |
| Reference to GND | $\mathrm{V}_{+}$ | - 0.3 to 5.0 | V |
|  | $\mathrm{V}_{\text {IN }}, \mathrm{D}, \mathrm{S}^{\text {a }}$ | -0.3 to (V++0.3) |  |
| Current (Any terminal except D or S) |  | 30 | mA |
| Continuous Current (D or S) |  | $\pm 300$ |  |
| Peak Current (Pulsed at $1 \mathrm{~ms}, 10$ \% Duty Cycle) |  | $\pm 500$ |  |
| Storage Temperature (D Suffix) |  | -65 to 150 | ${ }^{\circ} \mathrm{C}$ |
| Power Dissipation (Packages) ${ }^{\text {b }}$ | miniQFN-8L ${ }^{\text {c }}$ | 190 | mW |

Notes:
a. Signals on $\mathrm{V}_{I N}$, D , or $S$ exceeding $\mathrm{V}+$ will be clamped by internal diodes. Limit forward diode current to maximum current ratings.
b. All leads welded or soldered to PC board.
c. Derate $2.4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $70^{\circ} \mathrm{C}$.

| SPECIFICATIONS $\mathrm{V}+=3 \mathrm{~V}$ |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Parameter | Symbol | Test Conditions Unless Otherwise Specified $\mathrm{V}+=3 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0.4 \mathrm{~V}$ or $1.4 \mathrm{~V}^{\mathrm{e}}$ | Temp. ${ }^{\text {a }}$ | $\begin{gathered} \text { Limits } \\ -40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C} \end{gathered}$ |  |  | Unit |
|  |  |  |  | Min. ${ }^{\text {b }}$ | Typ. ${ }^{\text {c }}$ | Max. ${ }^{\text {b }}$ |  |
| Analog Switch |  |  |  |  |  |  |  |
| Analog Signal Range ${ }^{\text {d }}$ | $\mathrm{V}_{\text {analog }}$ | $\mathrm{R}_{\mathrm{ON}}$ | Full | 0 |  | V+ | V |
| On-Resistance |  |  | Room |  | 6 | 8 | $\Omega$ |
|  | RoN | $\mathrm{V}+=3 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=8 \mathrm{~mA}, \mathrm{~V}_{\mathrm{D}}=0.4 \mathrm{~V}$ | Full |  |  | 9 |  |
| $\mathrm{R}_{\text {ON }}$ Match ${ }^{\text {d }}$ | $\Delta \mathrm{R}_{\mathrm{ON}}$ | $\mathrm{V}+=3 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=8 \mathrm{~mA}, \mathrm{~V}_{\mathrm{D}}=0.4 \mathrm{~V}$ | Room |  | 0.1 | 0.5 |  |
| $\mathrm{R}_{\text {ON }}$ Flatness ${ }^{\text {d }}$ | $\begin{gathered} \mathrm{R}_{\mathrm{ON}} \\ \text { Flatness } \end{gathered}$ | $\begin{gathered} \mathrm{V}+=3 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=8 \mathrm{~mA}, \\ \mathrm{~V}_{\mathrm{D}}=0 \mathrm{~V}, 1 \mathrm{~V} \end{gathered}$ | Room |  | 2.6 | 4 |  |


| SPECIFICATIONS $\mathrm{V}+=3 \mathrm{~V}$ |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Parameter | Symbol | Test Conditions Unless Otherwise Specified $\mathrm{V}+=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0.4 \mathrm{~V}$ or $1.4 \mathrm{~V}^{\mathrm{e}}$ | Temp. ${ }^{\text {a }}$ | $\begin{gathered} \text { Limits } \\ -40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C} \end{gathered}$ |  |  | Unit |
|  |  |  |  | Min. ${ }^{\text {b }}$ | Typ. ${ }^{\text {c }}$ | Max. ${ }^{\text {b }}$ |  |
| Analog Switch |  |  |  |  |  |  |  |
| Switch Off Leakage Current |  | $\begin{gathered} \mathrm{V}+=4.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=0.3 \mathrm{~V} / 3.3 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{D}}=3.3 \mathrm{~V} / 0.3 \mathrm{~V} \end{gathered}$ | Room | -10 |  | 10 | nA |
|  | $\mathrm{I}_{\text {S(off) }}$ |  | Full | -100 |  | 100 |  |
|  |  |  | Room | -10 |  | 10 |  |
|  | D(off) |  | Full | -100 |  | 100 |  |
| Channel-On Leakage Current | $I_{\text {(on) }}$ | $\mathrm{V}+=4.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}=4 \mathrm{~V} / 0.3 \mathrm{~V}$ | Room | -10 |  | 10 |  |
|  |  |  | Full | -100 |  | 100 |  |
| Digital Control |  |  |  |  |  |  |  |
| Input High Voltage | $\mathrm{V}_{\text {INH }}$ | $\mathrm{V}+=2.3 \mathrm{~V}$ to 4.3 V | Full | 1.3 |  |  | V |
| Input Low Voltage | $\mathrm{V}_{\text {INL }}$ |  | Full |  |  | 0.5 |  |
| Input Current | $\mathrm{I}_{\text {INL }}$ or $\mathrm{I}_{\mathrm{INH}}$ | $\mathrm{V}_{\text {IN }}=0$ or $\mathrm{V}+$ | Full | -1 |  | 1 | $\mu \mathrm{A}$ |
| Dynamic Characteristics |  |  |  |  |  |  |  |
| Turn-On Time ${ }^{\text {e }}$ | $\mathrm{t}_{\mathrm{ON}}$ | $\begin{gathered} \mathrm{V}_{+}=2.3 \mathrm{~V} \text { to } 3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{S}}=1.5 \mathrm{~V}, \\ \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \end{gathered}$ | Room |  | 23 | 60 | ns |
|  |  |  | Full |  |  | 70 |  |
| Turn-Off Time ${ }^{\text {e }}$ | $\mathrm{t}_{\text {OFF }}$ |  | Room |  | 13 | 50 |  |
|  |  |  | Full |  |  | 60 |  |
| Break-Before-Make Time | $\mathrm{t}_{\text {BBM }}$ | $\mathrm{V}+=2.3 \mathrm{~V}$ to 4.3 V | Room |  | 6 |  | ns |
|  |  |  | Full | 1 |  |  |  |
| Charge Injection ${ }^{\text {d }}$ | Q | $\mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}, \mathrm{R}_{\mathrm{GEN}}=0 \Omega, \mathrm{~V}_{\mathrm{GEN}}=0 \mathrm{~V}$ | Room |  | 10.4 |  | pC |
| Off-Isolation ${ }^{\text {d }}$ | $\mathrm{O}_{\text {IRR }}$ | $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$ | Room |  | - 79 |  | dB |
|  |  | $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=10 \mathrm{MHz}$ |  |  | -59 |  |  |
|  |  | $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=240 \mathrm{MHz}$ |  |  | -28 |  |  |
| Crosstalk ${ }^{\text {d }}$ | $\mathrm{X}_{\text {TALK }}$ | $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$ |  |  | -109 |  |  |
|  |  | $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=10 \mathrm{MHz}$ |  |  | -99 |  |  |
|  |  | $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=240 \mathrm{MHz}$ |  |  | -48 |  |  |
| 3 dB bandwidth ${ }^{\text {d }}$ |  | $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ | Room |  | 720 |  | MHz |
| Channel to Channel skew ${ }^{\text {d }}$ |  | $R_{L}=50 \Omega, C_{L}=5 \mathrm{pF}$ | Room |  | 25 |  | ps |
| Skew of Opposite Transitions of the Same Output ${ }^{\text {d }}$ |  |  |  |  | 20 |  |  |
| Total Jitter ${ }^{\text {d }}$ |  |  |  |  | 200 |  |  |
| Source Off Capacitance ${ }^{\text {d }}$ | $\mathrm{C}_{\mathrm{S}_{\text {(off) }}}$ | $\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}$ | Room |  | 4.4 |  | pF |
| Drain Off Capacitance ${ }^{\text {d }}$ | $\mathrm{C}_{\mathrm{D} \text { (off) }}$ | $\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{D}}=0 \mathrm{~V}$ | Room |  | 3.8 |  |  |
| Drain On Capacitance ${ }^{\text {d }}$ | $\mathrm{C}_{\mathrm{D} \text { (on) }}$ | $\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{D}}=\mathrm{V}_{S}=0 \mathrm{~V}$ | Room |  | 10 |  |  |
| Control Pin Capacitance ${ }^{\text {d }}$ | $\mathrm{C}_{\text {IN }}$ | $\mathrm{f}=1 \mathrm{MHz}$ | Room |  | 8.3 |  |  |
| Power Supply |  |  |  |  |  |  |  |
| Power Supply Range | V+ |  |  | 2.3 |  | 4.3 | V |
| Power Supply Current | I+ | $\mathrm{V}_{\text {IN }}=0$ or $\mathrm{V}+$ | Full |  |  | 1.0 | $\mu \mathrm{A}$ |

Notes:
a. Room $=25^{\circ} \mathrm{C}$, Full $=$ as determined by the operating suffix.
b. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.
c. Typical values are for design aid only, not guaranteed nor subject to production testing.
d. Guarantee by design, not subjected to production test.
e. $\mathrm{V}_{\mathrm{IN}}=$ input voltage to perform proper function.

[^0]TYPICAL CHARACTERISTICS $25^{\circ} \mathrm{C}$, unless otherwise noted

$R_{\text {ON }}$ vs. $V_{D}$ and Supply Voltage


Supply Current vs. Temperature


Leakage Current vs. Temperature

$R_{\text {ON }}$ vs. $\mathbf{V}_{\mathrm{D}}$ and Temperature


Leakage vs. Analog Voltage


Charge Injection vs. Analog Voltage

TYPICAL CHARACTERISTICS $25^{\circ} \mathrm{C}$, unless otherwise noted


Switching Time vs. Temperature


Insertion Loss vs. Frequency


Switching Threshold vs. Supply Voltage


Off-Isolation, Crosstalk vs. Frequency

## TEST CIRCUITS




Logic "1" = Switch On
Logic input waveforms inverted for switches that have the opposite logic sense.

Figure 1. Switching Time


Figure 2. Break-Before-Make (DG2739)


Figure 3. Charge Injection

## TEST CIRCUITS



Figure 4. Off-Isolation

$\mathrm{C}=$ RF bypass
Figure 5. Crosstalk


Figure 6. Channel Off/On Capacitance

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see http://www.vishay.com/ppg?68801

## Disclaimer

All product specifications and data are subject to change without notice.
Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.


[^0]:    Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

