

ISSUED 08/11/2008

7.6 – 7.8 GHz Multi-Stage Power Amplifier

FEATURES

- 7.6–7.8GHz Operating Frequency Range
- 37.0dBm Output Power at 2dB Compression
- 31.0 dB Typical Power Gain @2dB gain compression
- Non-Hermetic Metal Flange Package

APPLICATIONS

- Point-to-point and point-to-multipoint radio
- Military Radar Systems

Caution! ESD sensitive device.

ELECTRICAL CHARACTERISTICS (Tb = 25 °C, 50 ohm, VD1=7V, VD2=10V, Vgg=-5V)

SYMBOL	PARAMETER/TEST CONDITIONS	MIN	ТҮР	MAX	UNITS
F	Operating Frequency Range	7.6		7.8	GHz
P2dB	Output Power at 2dB Gain Compression		37.0		dBm
G2dB	B Gain @2dB gain compression		31		dB
∆Gain	in Gain Flatness		±1.0		dB
Input RL	Input Return Loss		-12	-8	dB
Output RL	Output Return Loss		-15	-10	dB
VD1	Drain Supply Voltage 1		7		V
VD2	Drain Supply Voltage 2		10		V
I _{DQ1}	Quiescent Drain Current 1		200		mA
I _{DQ2}	Quiescent Drain Current 2		2600	3000	mA
Vgg	Gate Supply Voltage		-5		V
Rth	Thermal Resistance		2.4		°C/W
Tb	Operating Base Plate Temperature	- 30		+ 80	°C

ISSUED 08/11/2008

7.6 – 7.8 GHz Multi-Stage Power Amplifier

MAXIMUM RATINGS @25°C^{1,2}

SYMBOL	CHARACTERISTIC	ABSOLUTE	CONTINUOUS ^{1,2}
V _{D1}	Drain Supply Voltage 1	12V	8V
V _{D2}	Drain Supply Voltage 2	14V	10V
V_{gg}	Gate Supply Voltage	-10V	-6 V
l _{gg}	Gate Current	150mA	50 mA
P _{IN}	Input Power	20dBm	@ Pout 2dB compression
Т _{сн}	Channel Temperature	175°C	175°C
T _{STG}	Storage Temperature	-65/175°C	-65/175°C
Ρτ	Total Power Dissipation	37.5W	37.5W

Notes: 1. Operating the device beyond any of the above rating may reduce MTTF and cause permanent damage.

2. Bias conditions must also satisfy the following equation $Vdd^{+}Idd < (T_{CH} - Tb)/R_{TH}$

Package Dimension and Pin Assignment

* NC: No connection inside the package

ISSUED 08/11/2008

7.6 – 7.8 GHz Multi-Stage Power Amplifier

Application Note

- 1. The package should be screwed onto a good heat sink and ground
- 2. Turn on/off sequence is required:

---to turn on: apply -5V first, then +7V and +10V.

---to turn off: turn +7V and +10V off first, then turn -5V off

3. Recommended External Bias Circuit and Internal Block Diagram

Typical Performance: P1dB & G1dB (@Vds=10.0V, Idsq=2700mA)

page 3 of 4 Revised August 2008

ISSUED 08/11/2008

7.6 – 7.8 GHz Multi-Stage Power Amplifier

S11 S21 S12 S22 Freq GHz Mag Mag Mag Ang Mag Ang Ang Ang 6.0 0.2739 -126.02 78.75 0.1621 -92.98 7.8680 157.28 0.0038 6.2 -143.95 14.1273 0.0025 0.1503 -121.39 0.2135 65.93 -121.90 6.4 0.1461 -152.50 23.4034 -28.46 0.0025 -128.06 0.1000 -153.57 -127.90 6.6 0.1155 -139.22 35.9707 0.0027 -59.16 0.0534 -49.77 47.3280 129.69 6.8 0.1449 -135.08 0.0017 45.82 0.1889 -85.17 7.0 0.1663 -148.04 53.8634 28.59 0.0033 45.58 0.2179 -128.727.2 0.1563 -151.11 53.5623 -69.47 0.0004 103.89 0.1500 -142.99 7.4 0.1880 -153.11 49.5049 -160.95 0.0017 -99.64 0.1878 -135.61 7.6 0.2437 -170.31 46.4079 112.81 0.0045 -20.74 0.2598 -156.350.2399 159.50 44.4597 23.45 149.12 0.2348 171.42 7.8 0.0038 142.63 37.8991 -63.19 158.82 163.79 8.0 0.1948 0.0029 0.1796 8.2 0.1805 138.04 32.6948 -142.76 0.0029 24.78 0.1824 165.68 139.44 0.2126 8.4 0.1789 127.05 31.7834 0.0068 59.47 154.82 8.6 0.1849 110.83 33.6484 55.37 0.0014 23.03 0.2254 144.31 8.8 85.62 34.7505 0.0040 0.2497 130.34 0.1373 -39.89 -81.51 9.0 0.0932 91.29 29.2272 -139.08 0.0036 -81.65 0.2166 108.53

S-PARAMETERS (VD1=10V, I_{DQ1} =2700mA, VD2=7V, I_{DQ2} =180mA)

DISCLAIMER

EXCELICS SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. EXCELICS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN.

LIFE SUPPORT POLICY

EXCELICS SEMICONDUCTOR PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF EXCELICS SEMICONDUCTOR, INC.

AS HERE IN:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.