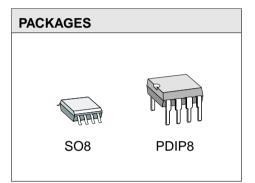
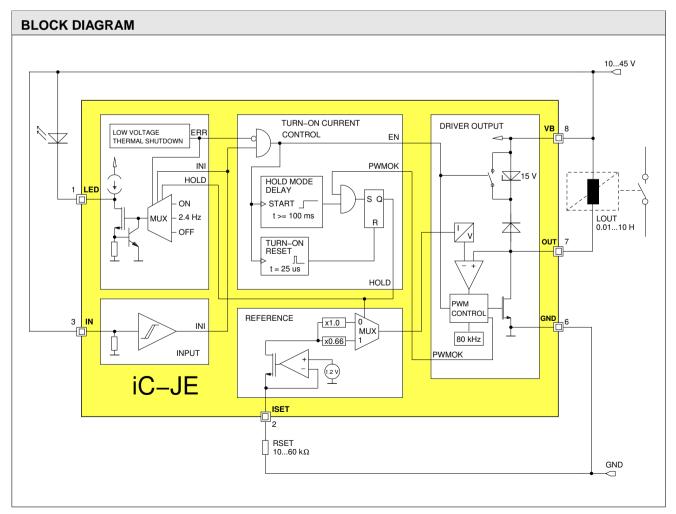
iC-JE

PWM RELAY/SOLENOID DRIVER


Rev F1, Page 1/9


FEATURES

- ♦ Wide operating voltage range of 10 to 45 Vdc
- ♦ PWM control for coil currents of 40 to 300 mA
- Coil current for energise and hold modes set by an external resistor
- ♦ Coil current monitored during energise mode, detection of load breakage and voltage errors
- ♦ Automatic current reduction after 100 ms to reduce the power consumption in hold mode
- ♦ The internal free-wheeling alteration function supports PWM operation and quick demagnetising during shutdown
- ♦ Status signalled at the current-limited LED output
- ♦ Shutdown with excessive temperature and low voltage
- ♦ Integrated oscillator needs no external components
- ♦ PWM frequency is beyond audible range
- ♦ Protective circuitry against damage by ESD
- ♦ Minimum space requirements, few external components

APPLICATIONS

- PWM drive for inductive loads (e.g. relays, electrovalves)
- ♦ Relay low-/high-side switch

Copyright © 2007 iC-Haus http://www.ichaus.com

iC-JE

PWM RELAY/SOLENOID DRIVER

Rev F1, Page 2/9

DESCRIPTION

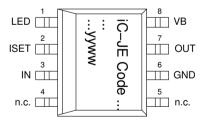
iC-JE is a PWM driver for inductive loads, such as relay coils, solenoid valves and small DC motors.

The setpoint for the coil current is preset with the help of the RSET external resistor. 60 to 300 mA can be set for energise mode which then automatically drop to 2/3 of this value (40 to 200 mA) during hold mode. The device is switched to hold mode after 100 ms provided that the set coil current is obtained during energising (PWMOK = 1).

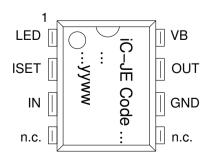
The changeover between energise and hold modes is suitable for typical relay drives which require a powerful initial energising current which can then be reduced after closing the air gap in a magnetic circuit. The quadratic dependence on the current intensity means that the power dissipation of the system is more than halved through this reduction.

The output current is measured with zero loss at the power transistor's ON resistance and compared to the setpoint. In order to maintain this setpoint, the

switch-on time of the coil driver is modulated by the pulse width. The internal flyback diode maintains the current during the switching pauses. The switching frequency of ca. 80 kHz is provided by the internal oscillator.


The device is shutdown by a Low signal at input IN or the removal of the power supply; the current reduction in the coil is supported by the changeover of the free-wheeling circuit. The Zener diode now active permits higher free-wheeling voltages and thus a quicker demagnetising of the coil.

The status indicator LED is constantly ON when hold mode is functioning correctly and flashes with low voltage, excessive temperature or when the coil current in energise mode has not reached the setpoint. The driver output is shutdown with low voltage or excessive temperature.


The device is protected against destruction by ESD.

PACKAGES SO8, PDIP8 to JEDEC

PIN CONFIGURATION SO8 (top view)

PIN CONFIGURATION PDIP8 (top view)

PIN FUNCTIONS

No. Name Function

1 LED State monitor

2 ISET PWM Reference Current (setpoint ad-

justment)

3 IN Input

4 n.c.

5 n.c.

6 GND Ground 7 OUT PWM Output

8 VB +10 to 45 V Supply Voltage

Rev F1, Page 3/9

ABSOLUTE MAXIMUM RATINGS

Beyond these values damage may occur; device operation is not guaranteed.

Item	Symbol	Parameter	Conditions	Fig.			Unit
No.					Min.	Max.	
G001	V(VB)	Voltage at VB			-0.3	48	V
G002	I(VB)	Current in VB			-350	6	mA
G003	V(OUT)	Voltage at OUT			-0.3	60	V
G004	I(OUT)	Output Current in OUT			-6	350	mA
G005	V(LED)	Voltage at LED			-0.3	VB	V
G006	I(LED)	Current in LED			-6	8	mA
G007	V(ISET)	Voltage at ISET			-0.3	48	V
G008	I(ISET)	Current in ISET			-6	6	mA
G009	V(IN)	Voltage at IN			-0.3	48	V
G010	I(IN)	Current in IN			-6	6	mA
G011	Tj	Junction Temperature			-40	150	°C
G012	Ts	Storage Temperature			-40	150	°C

THERMAL DATA

Operating Conditions: VB = 10...45 V, LOUT = 0.01...10 H, RSET = 10...60 k Ω

Item	Symbol	Parameter	Conditions	Fig.				Unit
No.					Min.	Тур.	Max.	
T01	Та	Operating Ambient Temperature Range			-25		80	°C
T02	Rthja	Thermal Resistance Chip/Ambient	PDIP8 package				110	K/W
T03	Rthja	Thermal Resistance Chip/Ambient	SO8 package				140	K/W

Rev F1, Page 4/9

ELECTRICAL CHARACTERISTICS

Operating Conditions: VB = 10...45 V, LOUT = 0.01...10 H, RSET = 10...60 k Ω , Tj = -25...125 °C, unless otherwise noted. LED connected or pin LED linked to GND (via ca. 500 Ω resistor or capacitor).

Item No.	Symbol	Parameter	Conditions	Tj ℃	Fig.	Min.	Тур.	Max.	Unit
Total I	Device								
001	VB	Permissible Supply Voltage Range				10		45	V
002	I(VB)	Supply Current in VB	Outputs OUT, LED disabled			0.5		2	mA
003	I(VB)	Supply Current in VB	Output OUT enabled			0.5		3	mA
004	Vc()lo	Clamp Voltage lo at all Pins	I() = -4 mA, other Pins open			-1.4		-0.3	V
005	Vc()hi	Clamp Voltage hi at VB, IN, ISET	I() = 4 mA, other Pins open			48	57		V
006	Vc()hi	Clamp Voltage hi at OUT	I(OUT) = 4 mA, other Pins open			60	71		V
007	Vc()hi	Clamp Voltage hi at LED vs. VB	Vc()hi = V(LED) - V(VB); I(LED) = 4 mA, other Pins open			0.3		1.4	V
Driver	Output OU	Т							
101	Vs()lo	Saturation Voltage lo	I(OUT) = 200 mA		1		360	600	mV
102	Vs()lo	Saturation Voltage lo	I(OUT) = 300 mA		1		550	850	mV
103	PWMthi	Permissible Energising Current	Increased Energising Current by RC-circuit at ISET, Hold Current 200 mA max.		1 5, 6			300 350	mA mA
104	PWMthi	Permissible Hold Current			1	40			mA
105	Isc()	Short-circuit Current	V(OUT) = VB			0.6	1	1.7	Α
106	Vc()hi	Clamp Voltage hi at PWM-Free-Wheeling	Vc()hi = V(OUT) - VB; IN = hi, I(OUT) = 200 mA		1		1	1.5	V
107	Vc()hi	Clamp Voltage hi at PWM-Free-Wheeling	Vc()hi = V(OUT) - VB; IN = hi, I(OUT) = 300 mA		1		1.4	2	V
108	Vc()off	Clamp Voltage hi at Turn-off	Vc()hi = V(OUT) - VB; IN: $hi \rightarrow lo, I(OUT) = 200 mA$		1	12	15	17	V
109	IIK()	Leakage Current	IN = Io, V(OUT) = 0VB				1	10	μA
110	twon()min	Minimum PWM Turn-on Duration	IN = hi, ISET open		1	250		1000	ns
111	C()	Permissible Load Capacitance						1	nF
Input	IN				•				
201	Vt()on	Threshold Voltage hi				2.6	2.85	3.2	V
202	Vt()off	Threshold Voltage lo				1.7	2.0	2.3	V
203	Vt()hys	Hysteresis	Vt()hys = $Vt()$ on $- Vt()$ off			0.7	0.85	1.1	V
204	lpd()	Pull-down Current	V(IN) = 445 V			50	100	200	μA
205	Rpd()	Pull-down Resistor	V(IN) = 04 V			20	50	80	kΩ
206	tp(IN-OUT)	Turn-on Delay	IN: lo \rightarrow hi					20	μs
207	tp(IN-OUT)	Turn-off Delay	IN: $hi \rightarrow lo$					10	μs
208	tp(VB- OUT)	Turn-on Delay when VB is powered up	$IN = VB, VB = VBoff \to VBon$					40	μs
209	tp(IN-LED)	Delay Time from IN to LED (with light permanently on)	PWMOK = 1 before tpPMWlo			65	100	135	ms
210	tp(IN-LED)	Delay Time from IN to LED (with light flashing)	PWMOK = 0			130	200	270	ms
Status	Monitor LE								
301	lpd()	Pull-down Current	V(LED) = 5 VVB			3	5	8	mA
302	Vs()lo	Saturation Voltage lo	I(LED) = 200 μA					0.4	V
303	lpu()	Pull-up Current	V(LED) = 0 V(VB - 1 V)			-20	-100	-300	μA
304	VBIo	Permissible Supply Voltage for Monitoring Function				6		45	V
305	VBon	Turn-on Threshold at VB				7.6	8	8.4	V
306	VBoff	Undervoltage Threshold at VB	Decreasing voltage VB			7.1	7.5	7.9	V
307	VBhys	Hysteresis	VBhys = VBon - VBoff			200	500	800	mV
308	Toff	Thermal Shutdown Temperature				130	140	150	°C

Rev F1, Page 5/9

ELECTRICAL CHARACTERISTICS

Operating Conditions: VB = 10...45 V, LOUT = 0.01...10 H, RSET = 10...60 k Ω , Tj = -25...125 °C, unless otherwise noted. LED connected or pin LED linked to GND (via ca. 500 Ω resistor or capacitor).

Item	Symbol	Parameter	Conditions	Tj	Fig.				Unit
No.				°ć	- 3	Min.	Тур.	Max.	
309	Ton	Thermal Lock-on Threshold	Decreasing temperature			110	120	130	°C
310	Thys	Thermal Shutdown Hysteresis	Thys = Toff - Ton			10	20	30	°C
311	f()	Flash Frequency on Error	ERR = hi or PWMOK = 0, VB = 645 V			1.8	2.4	3.6	Hz
Refer	ence ISET								
401	V()	Reference Voltage				1.14	1.20	1.26	V
402	Isc()	Short-Circuit Current	V(ISET) = 0 V			-2.5	-1.8	-0.3	mA
403	K1	Transfer Value for Energising Current RSET = K1 / I(OUT)start	I(OUT)start = 60300 mA		1	2900	3400	3900	ΑΩ
404	CRrel	Relative Current Ratio lt(OUT)hold / lt(OUT)start (Trigger Thresholds Ratio: Hold vs. Energise Mode)	I(OUT)start = 60300 mA		1	63	66	71	%
405	K2	Transfer Value for Hold Current RSET = K2 / I(OUT)hold	I(OUT)hold = 40200 mA			1930	2315	2700	ΑΩ
Oscill	lator								
501	fosc	Oscillator Frequency			1	60	80	120	kHz
Turn-	on Current	Control		•					
601	tpPWMlo	Hold Mode Propagation Delay	PWMOK = 1 before tpPWMIo			65	100	135	ms

ELECTRICAL CHARACTERISTICS: Diagrams

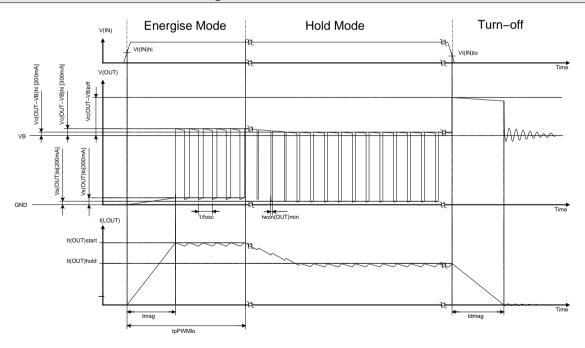


Figure 1: Operation modes: energise mode, hold mode and turn-off

$$t_{mag} pprox rac{It(OUT)_{Start} imes LOUT}{VB}$$
 (1)

$$t_{dmag} \approx \frac{It(OUT)_{hold} \times LOUT}{V_c(OUT - VB)_{hi}}$$
 (2)

Rev F1, Page 6/9

APPLICATIONS INFORMATION

Setting the coil current

The following equations can be given for the energise and hold modes of the PWM control using Electrical Characteristics Nos. 403 to 408:

$$RSET = \frac{K2}{I(OUT)_{hold}}$$
 (4)

Example

For a relay with a starting current of 100 mA (66 mA hold current) RSET is calculated as:

$$RSET = \frac{K1}{I(OUT)_{start}}$$
 (3)

$$RSET = \frac{3250 \,\Omega A}{0.1 \,A} = 32.5 \,k\Omega$$
 (5)

Application circuits

Figure 2: Driver/relay combination activated via the external control input IN

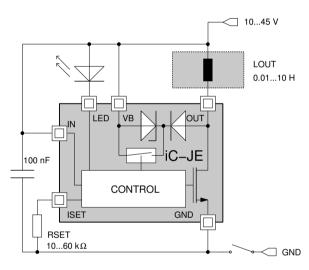


Figure 3: Driver/relay combination activated via the supply pin GND

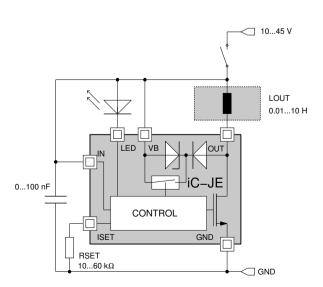


Figure 4: Driver/relay combination activated via the supply pin VB

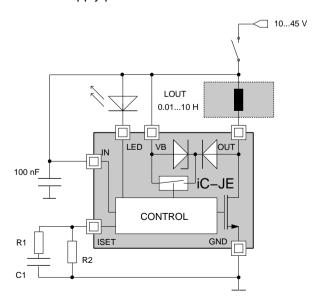


Figure 5: Increased energizing current due to the parallel RC-circuit

iC-JE

PWM RELAY/SOLENOID DRIVER

Rev F1, Page 7/9

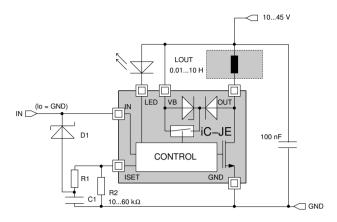


Figure 6: Activation via pin IN with an increased energizing current. An additional Schottky diode discharges C1 if IN is switched to low (GND)

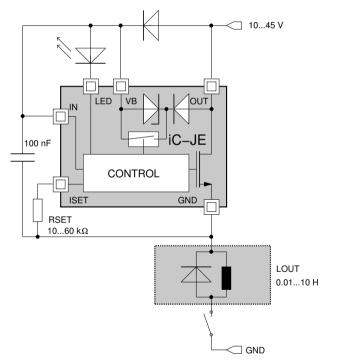


Figure 7: High-side driver for an external relay with a flyback diode

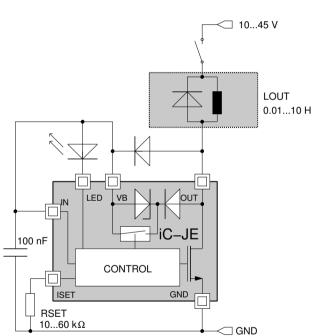


Figure 8: Low-side driver for an external relay with a flyback diode

Rev F1, Page 8/9

VB1

OUT1

GND1

D102

EVALUATION BOARD

The iC-JE is equipped with a Evaluation Board for test purposes. The following figures show the circuit diagram as well as the top and bottom layout of the test PCB.

The board comes with a strap between IN and SENSE1 (application equal to Fig. 4). The actual coil current can be measured by the voltage drop between SENSE1 and SENSE2 (1 mV/mA).

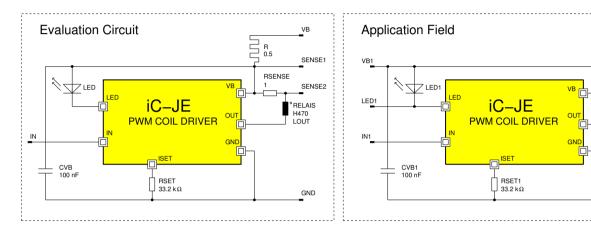
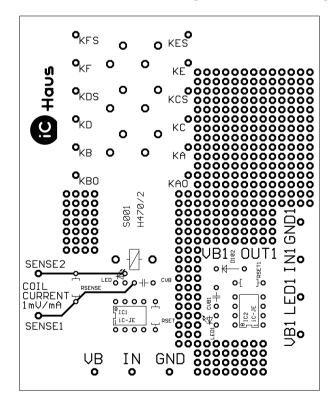



Figure 9: Schematic diagram of the Evaluation Board

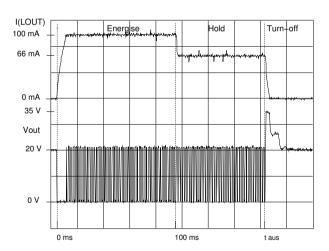


Figure 11: Oscilloscope graph of the evaluation circuit (sampled)

Figure 10: Evaluation Board (components side)

This specification is for a newly developed product. iC-Haus therefore reserves the right to change or update, without notice, any information contained herein, design and specification; and to discontinue or limit production or distribution of any product versions. Please contact iC-Haus to ascertain the current data. Copying – even as an excerpt – is only permitted with iC-Haus approval in writing and precise reference to source.

iC-Haus does not warrant the accuracy, completeness or timeliness of the specification on this site and does not assume liability for any errors or omissions in the materials. The data specified is intended solely for the purpose of product description. No representations or warranties, either express or implied, of merchantability, fitness for a particular purpose or of any other nature are made hereunder with respect to information/specification or the products to which information refers and no guarantee with respect to compliance to the intended use is given. In particular, this also applies to the stated possible applications or areas of applications of the product.

iC-Haus conveys no patent, copyright, mask work right or other trade mark right to this product. iC-Haus assumes no liability for any patent and/or other trade mark rights of a third party resulting from processing or handling of the product and/or any other use of the product.

Rev F1, Page 9/9

ORDERING INFORMATION

Туре	Package	Order Designation
iC-JE	PDIP8 SO8	iC-JE PDIP8 iC-JE SO8
Evaluation Board		iC-JE EVAL JE1D

For information about prices, terms of delivery, other packaging options etc. please contact:

iC-Haus GmbH Tel.: +49 (61 35) 92 92-0
Am Kuemmerling 18 Fax: +49 (61 35) 92 92-192
D-55294 Bodenheim Web: http://www.ichaus.com
GERMANY E-Mail: sales@ichaus.com