Hi-Rel DC/DC CONVERTER MGDM-150 : 150W POWER Hi-Rel Grade ■■ 5:1 Low Input Voltage : 9-45 & 16-80 VDC Single Output Metallic case - 1.500 VDC Isolation - Ultra wide input range 16-80 Vdc, 9-45 Vdc - 28Vdc input compliant with MIL-STD-704A/D/F - · Industry standard half brick package - Power up to 150 W - Wide temperature range : -40°C/+ 105° baseplate - High efficiency (typ. 86%-90%) - · Soft start - Galvanic isolation 1.500 VDC - · Integrated LC EMI filter - Synchronizable - · Load sharing, N+1 redundancy - · No load to full load operation - · Fully protected by independant security - · Under & overvoltage lock-out - Overvoltage protection - Current limitation protection - Over temperature protection - · No optocoupler for high reliability #### 1-General The MGDM-150 low input voltage series is a complete line of high density wide input range DC/DC power modules designed for aerospace, military and high-end industrial applications. These modules use a patented fixed switching topology at 420 KHz providing ultra wide input range, low noise characteristics and high power density. Standard models are available with ultra wide input voltage range of 9-45, 16-80 volts. The series include single output voltage choices of 3,3, 5, 12, 15, 24, 28 volts. The MGDM-150 low input voltage series include synchronization load sharing, trim and sense functions. The synchronization function allows to synchronize more than one converter to one frequency or an external source frequency. The load sharing allows parallel operation to increase power with a true $N_{\pm}1$ All the modules are designed with LC network filters to minimize reflected input current ripple and output voltage ripple. The modules have totally independant security functions including input undervoltage and overvoltage lock-out, output overvoltage protection, output current limitation protection, and temperature protection. Additionnally a soft-start function allows current limitation and eliminates inrush current during start-up. The design has been carried out with surface mount components, planar transformer and is manufactured in a fully automated process to guarantee high quality. The modules are potted with a bi-component thermal conductive compound and used an insulated metallic substrate to ensure optimum power dissipation under harsh environmental conditions. #### 2-Product Selection Single output model (/T) and/or (/S) : MGDS-150- **Г** (/T) : option for -55°C start up operating temperature (/S) : option for screening and serialization Input Voltage Range **Output** B : 3.3 VDC Permanent 5 VDC H: 9-45 VDC : 12 VDC 0 : 16-80 VDC : 15 VDC 24 VDC J : 28 VDC # 2- Product Selection (continued) | Input range | Output | Current | Reference | Options | |-------------|---------|---------|--------------|---------| | | | | | | | 9-45 VDC | 3.3 VDC | 30 A | MGDS-150-H-B | /T , /S | | 9-45 VDC | 5 VDC | 25 A | MGDS-150-H-C | /T , /S | | 9-45 VDC | 12 VDC | 12,5 A | MGDS-150-H-E | /T , /S | | 9-45 VDC | 15 VDC | 10 A | MGDS-150-H-F | /T , /S | | 9-45 VDC | 24 VDC | 6,25 A | MGDS-150-H-I | /T , /S | | 9-45 VDC | 28 VDC | 5,35 A | MGDS-150-H-J | /T , /S | | 16-80 VDC | 3.3 VDC | 30 A | MGDS-150-0-B | /T , /S | | 16-80 VDC | 5 VDC | 30 A | MGDS-150-0-C | /T , /S | | 16-80 VDC | 12 VDC | 12,5 A | MGDS-150-0-E | /T , /S | | 16-80 VDC | 15 VDC | 10 A | MGDS-150-0-F | /T , /S | | 16-80 VDC | 24 VDC | 6,25 A | MGDS-150-0-I | /T , /S | | 16-80 VDC | 28 VDC | 5,35 A | MGDS-150-0-J | /T , /S | # 3- Block Diagram The MGDM-150 low input series DC/DC converter is based on a **constant** 420KHz pulse-width modulated forward topology designed for **ultra large input range**. The output voltage is monitored on the secondary side avoiding the use of optocoupler to optimize **long-term reliability** and provide good immunity against radiations. An auxilliary supply is implemented to feed independently all security functions such as the input undervoltage lock-out (UVLO), overvoltage lock-out (OVLO), the output overload protection (OCP), the output overvoltage protection (OVP) and the thermal protection (OTP). As this auxilliary power is independent from the main power supply, the module features an **extreme wide trim windows from 10% to 110%** of the nominal output voltage. The main power transformer designed for more than 150W power is a multi-layer planar transformer which allows 100% reproductibility for optized module efficiencies. The controlled feedback regulation is located at the secondary side allowing a high regulation bandwidth and a very fast response to load changes. # 4- Electrical Specifications Data are valid at +25°C, unless otherwise specified. | Parameter | Conditions | Limit or
typical | Units | Single Output MGDS-150
150 - H 150 - 0 | | | |---|---|--|--|---|--|--| | Input | | | | | | | | Nominal input voltage | Full temperature range | Nominal | VDC | 24 | 28 | | | Permanent input
voltage range (Ui) | Full temperature range | Min Max. | VDC | 9 - 45 | 16 - 80 | | | Input surge withstand | Above OVLO converter
Turns - off | Maximum | VDC/min. | 50/1 | 100/1 | | | Undervoltage lock-out
(UVLO) | Turn-on voltage
Turn-off voltage | Nominal
Nominal | VDC
VDC | 8,5
7,5 | 15,5
14,5 | | | Overvoltage lock-out (OVLO) | Turn-on voltage
Turn-off voltage | Nominal
Nominal | VDC
VDC | 45
46 | 80
81 | | | Start up time | Ui nominal Nominal output Full load : resistive | Maximum | ms | 30 | 30 | | | Reflected ripple current | Ui nominal, full load
BW = 20MHz | Maximum | mApp | 200 | 500 | | | Input current in short circuit mode (Average) | Ui nominal
Short-circuit | Typical | А | 1 | 1 | | | No load input current | Ui nominal
No load | Maximum | mA | 30 | 30 | | | Input current in inhibit mode | Ui nominal
Inhibit | Maximum | mA | 15 | 15 | | | Output | | | | | | | | Output voltage * | Ui min. to max. | Nominal
Nominal
Nominal
Nominal
Nominal
Nominal | VDC
VDC
VDC
VDC
VDC
VDC | 3,3
5
12
15
24
28 | 3,3
5
12
15
24
28 | | | Set Point accuracy * | Ambient temperature : +25°c
Ui nominal, 75% load | Maximum | % | +/- 2 | +/- 2 | | | Output power ** | At 105°c baseplate
Ui min. to max. | Maximum | W | 100 to 150 | 100 to 150 | | | Output current ** 3,3V output 5V output 12V output 15V output 15V output 24V output 28V output 28V output | | Maximum
Maximum
Maximum
Maximum
Maximum
Maximum | A
A
A
A
A | 30
25
12,5
10
6,25
5,35 | 30
30
12,5
10
6,25
5,35 | | | Ripple output voltage ***
3,3V and 5V output
12V output
15V output
24V and 28V output | Ui nominal
Full load
BW = 20MHz | Typical
Typical
Typical
Typical | mVpp
mVpp
mVpp
mVpp | 50
100
150
250 | 50
100
150
250 | | | Output regulation *
(Line + load + thermal) | Ui min. to max.
0% to full load | Maximum | % | +/- 1 | +/- 1 | | | Output Voltage Trim | As function of output voltage | Minimum
Maximum | %
% | 10 **
110 | 10 **
110 | | | Efficiency | Ui nominal
Full load | Typical | % | see curves p | age 5 and 6 | | Note *: These performances are measured with the sense line connected.. Note **: It is recommended to mount the converter on a heatsink for this test, see section 10-3 and 10-9 for further details. Note ***: The ripple output voltage is the periodic AC component imposed on the output voltage, an aperiodic and random component (noise) has also to be considered. This noise can be reduced by adding 4 external decoupling capacitors connected between inputs and case and between outputs and case. These capacitance should be layed-out as close as possible from the converter. Please refer to page 8 for more details. # 4- Electrical Characteristics (continued) # 4- Electrical Characteristics (continued) # 5- Switching Frequency | Parameter | Conditions | Limit or typical | Specifications | |---------------------|---|------------------|----------------| | Switching frequency | Full temperature range
Ui min. to max.
No load to full load | Nominal, fixed | 420 KHz | # 6- Isolation | Parameter | Conditions | Limit or typical | Specifications | |--------------------------------|-----------------|------------------|-------------------| | | Input to output | Minimum | 1.500 VDC / 1 min | | Electric strength test voltage | Input to case | Minimum | 1.500 VDC / 1 min | | | Output to case | Minimum | 1.500 VDC / 1 min | | Isolation resistance | 500 VDC | Minimum | 100 MOhm | # 7- Protection Functions | Characteristics | Protection Device | Recovery | Limit or typical | Specifications | |--|---|--------------------|-------------------------------------|--------------------------------------| | Input undervoltage lock-out (UVLO) | Turn-on, turn-off circuit with hysteresis cycle | Automatic recovery | Turn-on nominal
Turn-off nominal | See section 4 | | Input overvoltage lock-out (OVLO) | Turn-on, turn-off circuit with hysteresis cycle | Automatic recovery | Turn-on nominal
Turn-off nominal | See section 4 | | Output current limitation protection (OCP) | Foldback current
limitation | Automatic recovery | Maximum | 110% of output current | | Output overvoltage protection (OVP) | Overvoltage protection device with latch-up | Resetable | Typical | 115% to 135%
of output
voltage | | Over temperature protection (OTP) | Thermal device with hysteresis cycle | Automatic recovery | Maximum | 115°C | # 8- Reliability Data | Characteristics | Conditions | Temperature | Specifications | |---|-------------------------------------|------------------------------|----------------------------| | Mean Time Between Failure (MTBF) | Ground fixed (Gf) | Case at 40°C
Case at 85°C | 400.000 Hrs
130.000 Hrs | | According to MIL-HDBK-217F | Airborne, Inhabited,
Cargo (AIC) | Case at 40°C
Case at 85°C | 225.000 Hrs
82.000 Hrs | | Mean Time Between Failure (MTBF)
According to IEC-62380-TR | Avionics Military Cargo | / | Consult factory | # 9- Electromagnetic Interference Electromagnetic Interference requirements according to MIL-STD-461C/D/E standards can be easily achieved as indicated in the following section. The following table resumes the different sections covered by these standards. | Standard Requirements | MIL-STD-461C
Standard | MIL-STD-461D/E
Standard | Compliance with GAIA Converter
Module & common mode capacitance | |--|--------------------------|----------------------------|--| | Conducted emission (CE) :
Low frequency
High frequency | CE 01
CE 03 | CE 101
CE 102 | compliant module stand-alone
compliant with additionnal filter | | Conducted susceptibility (CS) :
Low frequency
High frequency | CS 01
CS 02 | CS 101
CS114 | compliant with additionnal filter
compliant with additionnal filter | | Radiated emission (RE) :
Magnetic field
Electrical field | RE 01
RE 02 | RE 101
RE 102 | compliant module stand-alone compliant module stand-alone | | Radiated susceptibility (RS) :
Magnetic field
Electrical field | RS 01
RS 03 | RS 101
RS 103 | compliant module stand-alone compliant module stand-alone | | Applicability | H, O input module | H, O input module | see EMI datasheet | ### 9-1 Module Compliance with MIL-STD-461C/D/E Standards To meet the latest US military standards MIL-STD-461D/E (and also the MIL-STD-461C) requirements and in particular the conducted noise emission CE102 (and also CE03) requirements, Gaïa Converter can propose a stand-alone ready-to-use EMI filter module. This EMI filter module has to be used together with 4 external decoupling capacitance C_c (10nF/rated voltage depending on isolation requirement) connected between input and case and output and case. Please consult EMI filter datasheet for further details. #### 10- Thermal Characteristics | Characteristics | Conditions | Limit or typical | Performances | |--|---|--------------------|-----------------------------| | Operating ambient temperature range at full load | Ambient temperature * | Minimum
Maximum | - 40°C
see section below | | Baseplate temperature | Base plate temperature | Minimum
Maximum | - 40°C
+ 105°C | | Storage temperature range | Non functionning | Minimum
Maximum | - 55°C
+ 125°C | | Thermal resistance | Baseplate to ambient
Rth(b-a) free air | Typical | 8°C/W | Note *: The upper temperature range depends on configuration, the user must assure a max. baseplate temperature of + 105°C. The MGDM-150 low input series maximum baseplate temperature at full load must not exceed 105°C. Heat can be removed from the baseplate via three basic mechanisms: - Radiation transfert: radiation is counting for less than 5% of total heat transfert in majority of case, for this reason the presence of radient cooling is used as a safety margin and is not considered. - Conduction transfert : in most of the applications, heat will be conducted from the baseplate into an attached heatsink or heat conducting member; heat is conducted thruthe interface. - Convection transfer: convecting heat transfer into air refers to still air or forced air cooling. In majority of the applications, heat will be removed from the baseplate either with : - · heatsink, - · forced air cooling, - · both heatsink and forced air cooling. To calculate a maximum admissible ambient temperature the following method can be used. Knowing the maximum baseplate temparature Tbase = 105° C of the module, the power used Pout and the efficiency h: • determine the power dissipated by the module Pdiss that should be evacuated : $$Pdiss = Pout(1/h - 1) (A)$$ determine the maximum ambient temperature : Ta = 105°C - Rth(b-a) x Pdiss (B) where Rth(b-a) is the thermal resistance from the baseplate to ambient. This thermal Rth(b-a) resistance is the summ of : - the thermal resistance of baseplate to heatsink (Rth(b-h)). The interface between baseplate and heatsink can be nothing or a conducting member, a thermal compound, a thermal pad.... The value of Rth(b-h) can range from 0.4°C/W for no interface down to 0.1°C/W for a thermal conductive member interface. - the thermal resistance of heatsink to ambient air (Rth(h-a)), which is depending of air flow and given by heatsink supplier. The table hereafter gives some example of thermal resistance for different heat transfert configurations. | Heat transfert | Thermal resistance heatsink to air Rt | Thermal resistance
heatsin | | Global
resistance | | |-------------------------------|--|-------------------------------|----------------------|----------------------|----------| | | No Heatsink baseplate only : | 8°C/W | No need of thermal p | oad | 8°C/W | | Free air cooling only | Heatsink Thermalloy 6516B : | 4,4°C/W | Berquist Silpad* : | 0,14°C/W | 4,54°C/W | | | Heatsink Fischer Elektronik SK DC 5159SA: | 3,8°C/W | Berquist Silpad* : | 0,14°C/W | 3,94°C/W | | | No Heatsink baseplate only : | 4,5°C/W | No need of thermal p | oad | 4,5°C/W | | Forced air cooling
200 LFM | Heatsink Thermalloy 6516B : | 3°C/W | Berquist Silpad* : | 0,14°C/W | 3,14°C/W | | | Heatsink Fischer Elektronik SK DC 5159SA: | 2,5°C/W | Berquist Silpad* : | 0,14°C/W | 2,64°C/W | | | No Heatsink baseplate only : | 3,2°C/W | No need of thermal p | oad | 3,2°C/W | | Forced air cooling
400 LFM | Heatsink Thermalloy 6516B : | 1,75°C/W | Berquist Silpad* : | 0,14°C/W | 1,89°C/W | | | Heatsink Fischer Elektronik SK DC 5159SA : | 1,7°C/W | Berquist Silpad* : | 0,14°C/W | 1,84°C/W | | Forced air cooling | No Heatsink baseplate only : | 1,7°C/W | No need of thermal p | oad | 1,7°C/W | | 1000 LFM | Heatsink Fischer Elektronik SK DC 5159SA : | 0,9°C/W | Berquist Silpad* : | 0,14°C/W | 1,04°C/W | Fischer Elektronic and Thermalloy are heasink manufacturers. «Silpad» © is a registered trademark of Berquist. Note*: Silpad performance are for Silpad 400 with pressure conditions of 50 Psi. Surface of MGDS-150 series is 5,5 inch2. # 10- Thermal Characteristics (continued) The two formulas (A) and (B) described in previous page: - Pdiss = Pout(1/h 1) (A) - Ta = 105°C Rth(b-a) x Pdiss (B) conduct to curves determining the ambient temperature admissible as a function of output power for various heat transfert conditions. In particular, as example the following typical curves are calculated with : - no heatsink - a Fischer Elektronik heatsink reference SKDC5159SA and a Berquist «Silpad» for various cooling conditions. # 11- Environmental Qualifications The modules have been subjected to the following environmental qualifications. | Characteristics | Conditions | Severity | Test procedure | |---|---|---|------------------------------| | Climatic Qualification | ns | | | | Life at high
temperature | Duration
Temperature / status of unit | Test D: 1.000 Hrs @ 105°C case, unit operating @ 125°C ambient, unit not operating | MIL-STD-202G
Method 108A | | Altitude | Altitude level C
Duration
Climb up
Stabilization
Status of unit | 40.000 ft@-55°C
30 min.
1.000 ft/min to 70.000 f@-55°C,
30 min.
unit operating | MIL-STD-810E
Method 500.3 | | Humidity cyclic | Number of cycle
Cycle duration
Relative humidity variation
Temperature variation
Status of unit | 10
Cycle I : 24 Hrs
60 % to 88 %
31°C to 41°C
unit not operating | MIL-STD-810E
Method 507.3 | | Humidity steady | Damp heat
Temperature
Duration
Status of unit | 93 % relative humidity
40°C
56 days
unit not operating | MIL-STD-202G
Method 103B | | Salt atmosphere | Temperature
Concentration NaCl
Duration
Status of unit | 35°C
5 %
48 Hrs
unit not operating | MIL-STD-810E
Method 509.3 | | Temperature cycling | Number of cycles Temperature change Transfert time Steady state time Status of unit | 200
-40°C / +85°C
40 min.
20 min.
unit operating | MIL-STD-202A
Method 102A | | Temperature shock | Number of shocks Temperature change Transfert time Steady state time Status of unit | 100
-55°C / +105°C
10 sec.
20 min.
unit not operating | MIL-STD-202G
Method 107G | | Mechanical Qualificat | tions | | | | Vibration (Sinusoidal) Number of cycles Frequency / amplitude Frequency / acceleration Duration Status of unit | | 10 cycles in each axis 10 to 60 Hz / 0.7 mm 60 to 2000 Hz / 10 g 2h 30 min. per axis unit not operating | MIL-STD-810D
Method 514.3 | | Shock
(Half sinus) | Number of shocks Peak acceleration Duration Shock form Status of unit | 3 shocks in each axis 100 g 6 ms 1/2 sinusoidal unit not operating | MIL-STD-810D
Method 516.3 | | Bump
(Half sinus) | Number of bumps
Peak acceleration
Duration
Status of unit | 2000 Bumps in each axis 40 g 6 ms unit not operating | MIL-STD-810D
Method 516.3 | # 12- Description of Protections The MGDM-150 low input series include 5 types of protection devices that are powered and controlled by a fully independent side power stage. # 12-1 Input Undervoltage Lockout (UVLO) and Overvoltage Lockout (OVLO) #### 12-1-1 Undervoltage Lockout (UVLO) An undervoltage protection is implemented to lock off the converter as long as the input voltage has not reached the UVLO turn-on threshold (see section 4 for value) which is the minimum input voltage required to operate without damaging the converter. #### 12-1-2 Overvoltage Lockout (OVLO) An overvoltage protection will inhibit the module when input voltage reaches the overvoltage lockout turn-off threshold (see section 4 for value) and restores to normal operation automatically when the input voltage drops below the overvoltage Lockout turn on threshold. #### 12-2 Output Over Current Protection (OCP) The MGDM-150 low input series incorporates a foldback current limit and protection circuit. When the output current reaches 110% of it's full-rated current (Icurrent limit), the output voltage falls and output current falls along the foldback line as described in the figure herein. The module restart automatically to normal operation when overcurrent is removed. #### 12-3 Output Overvoltage Protection (OVP) Each circuit has an internal overvoltage protection circuit that monitors the voltage accross the output power terminals. It is designed to latch the converter off at 115% to 135% of output voltage. Once in OVP protection, the module will restart with the On/Off function or with the input bus restart. #### 12-4 Over Temperature Protection (OTP) A thermal protection device adjusted at 115° C (+/-5%) internal temperature with 10° C hysteresis cycle will inhibit the module as long as the overheat is present and restores to normal operation automatically when overheat is removed. The efficiency of the OTP function is warranty with the module mounted on a heatsink. # 13- Description of Functions #### 13-1 Trim Function The output voltage Vo may be trimmed in a range of 10%/110% of the nominal output voltage via a single external trimpot or fixed resistor. #### **Trim Up Function** Do not attempt to trim the module higher than 110% of nominal output voltage as the overvoltage protection may occur. Also do not exceed the maximum rated output power when the module is trimmed up. The trim up resistor must be connected to S+ pin. The trim up resistance must be calculated with the following formula: $$Ru = \underbrace{R1 \times (VO-Vref) \times VOnom}_{(VO-V0nom)} - R1 - R2$$ #### **Trim Down Function** Do not trim down more than -90% of nominal output voltage or 1 Vdc. The available output power is reduced by the same percentage that output voltage is trimmed down. The trim down resistor must be connected to S- pin. The trim down resistance must be calculated with the following formula: $$Rd = \frac{(R2 + R1) \times V0 - (R2 \times V0nom)}{V0nom - V0}$$ #### Trim via a voltage The output voltage is given by the following formula : $V0 = (1 + \frac{R1}{(R1 + R2)} \times \frac{(Vcont)}{(Vcont)} - 1) \times Vonom$ | Parameter | Unit | Min. | Тур. | Max. | |----------------|------|------|------|------| | Trim reference | Vdc | 2,45 | 2,5 | 2,55 | | Resistor R1 | Ohm | / | 3800 | / | | Resistor R2 | Ohm | / | 270 | / | | Trim capacitor | μF | / | 1 | 1) | ## 13- Description of Functions (continued) #### 13-2 Sense Function If the load is separated from the output by any line lenght, some of these performance characteristics will be degraded at the load terminals by an amount proportional to the impedance of the load leads. Sense connections enable to compensate the line drop at a maximum of +/-10% of output voltage. The overvoltage protection will be activated and module will shut down if remote sense tries to boost output voltage above 110% of nominal output voltage. Connection is described in figure herein. #### 13-3 On/Off Function The control pin 4 (On/Off) can be used for applications requiring On/Off operation. This may be done with an open collector transistor, a switch, a relay or an optocoupler. Several converters may be disabled with a single switch by connecting all On/Off pins together. - The converter is disabled by pulling low the pin 4. - No connection or high impedance on pin 4 enables the converter. By releasing the On/Off function, the converter will restart within the start up time specifications given in table section 4. For further details please consult "Logic On/Off" application note. | Parameter | Unit | Min. | Тур. | Max. | Notes, conditions | |-------------------------------|------|------|------|------|--| | On/Off module enable voltage | Vdc | 3.5 | / | 4 | Open, the switch must not sink more than 100µA | | On/Off module disable voltage | Vdc | 0 | / | 0.5 | The switch must be able to sink 1mA | | On/Off alarm level | Vdc | 0 | / | 0.5 | UVLO, OVLO, OVP, OTP, faulty module | | On/Off module enable delay | ms | / | / | 30 | The module restarts with the same delay after alarm mode removed | | On/Off module disable delay | μs | / | / | 100 | Vi nominal, full load | #### 13-4 Synchronization Function An external clock with rectangular «Pull Up» signals can be used to lock one or more converters. The external clock signal should have a frequency range from 860KHz to 940KHz, a low level below 0,5V a high level of 4V (+/-0.5V), a rise time of 30 ns max. and a drop time of 100ns max. ## 14- Application Notes #### 14-1 Synchronization of Modules The MGDM-150 low input series provides a synchronization function trough the pin 2 (Synchro) to enable automatic synchronisation between several converters. If several converters are used, they lock themselves into the highest switching frequency. The synchronization signal available on pin 2 is referenced to ground in (Gi) and the signal shape is the double of the switching frequency (i.e 2x420KHz). It is a rectangular signal with 3.5 Vp (+/-0.5V) amplitude with an impedance of 4,7 KOhm on low level. #### 14-2 Connection of Modules in Series The output of single output units can be connected in series without any precautions to provide higher output voltage level. Nevertheless, GAIA Converter recommends to protect each individual output by a low power shottky diode rated with the maximum current of the converter to avoid reverse polarity at any output. Reverse polarity may occur at start up if the output voltages do not rise at the same time. #### 14-3 Connection of Modules in Parallel The MGDM-150 low input series features a «parallel operation function» to increase the output power capability of a single unit by connecting the outputs of 2 or more converters in parallel. By connecting the «Share» pin of each module together, the units will share the load current equally within a few percent. Up to 5 converters can be parallelized. The «Share» signal is a DC voltage which varies between OVdc and 5Vdc referenced to «Sense -» and depending on the output load. #### 15- Dimensions Dimensions are given in mm (inches). Tolerance : \pm 0,2 mm (\pm 0.01 ") unless otherwise indicated. Weight : 110 grams (3,9 Ozs) max. Pin dimensions: Pins: 1, 2, 3, 4, 5, 7, 8, 9: Ø 1 mm (0.04") Pins: 6, 10: Ø 2 mm (0.08") Metallic case alodyned coating solder plated pin # 16- Product marking Side face: Company logo, module reference, option, date code : year and week of manufacturing # 17- Connections Bottom view | Pin | Single Output | | |-----|----------------|--| | 1 | - Input (Gi) | | | 2 | Synchro (Sync) | | | 3 | Share | | | 4 | On/Off | | | 5 | + Input (Vi) | | | 6 | + Output (Vo) | | | 7 | Sense + (S+) | | | 8 | Trim (Trim) | | | 9 | Sense - (S-) | | | 10 | - Output (Go) | | For more detailed specifications and applications information, contact : #### International Headquarters GAÏA Converter - France ZI de la Morandière 33185 LE HAILLAN - FRANCE Tel.: + (33)-5-57-92-12-80 #### North American Headquarters GAÏA Converter Canada, Inc 4038 Le Corbusier Blvd LAVAL, QUEBEC - CANADA H7L 5R2 Tel.: (514)-333-3169 Fax: + (33)-5-57-92-12-89 Fax: (514)-333-4519 | Represented | by | : | |-------------|----|---| |-------------|----|---| | Represented by : | | | | |------------------|--|--|--| |