

SMD1210P050-13.2 PPTC DEVICES

Terminal pad materials: Tin-Plated Nickle-copper

 $Terminal\ pad\ solderability\ :\ Meets\ EIA\ specification$

 $RS\ 186\mbox{-}9E$ and $ANSI/J\mbox{-}STD\mbox{-}002$ Category 3.

Marking:050

1210

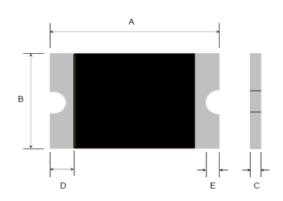


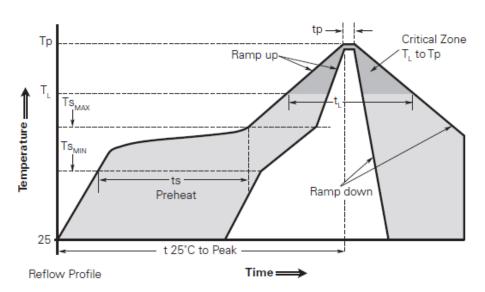
Table1:DIMENTION(Unit:mm)

Contour	A		В		С		D
	Min.	Max.	Min.	Max.	Min.	Max	Min.
1210	3.00	3.43	2.35	2.80	0.35	0.85	0.25

Table2: PERFORMANCE RATINGS:

Model	V _{max} I _{max} (Vdc) (A)	I _{max}	I _{hold} @25℃	I _{trip} @25℃	P _d Typ (W)	Maximum Time To Trip		Resistance		
		(A)	0			Current	Time	Ri_{min}	Ri_{typ}	R1 _{max}
		(A) (A)	(A)	(W)	(A)	(Sec)	(Ω)	(Ω)	(Ω)	
SMD1210P050-13.2	13.2	100	0.50	1.00	0.6	8.0	0.10	0.180	0.400	0.900

Table3:Test Conditons and Standards


of the same of the						
Item	Test Conditon	Standard				
Initial Resistance	25℃	$0.180{\sim}0.900\Omega$				
I_{H}	25℃, 0.50A, 60min	No Trip				
Ttrip	25℃, 8.0A	≤0.10s				
Trip endurance	13.2V, 100A, 60min	No arcing or burning				

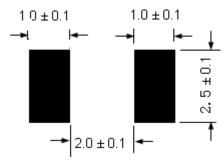
Packaging: Bulk,4000pcs per bag

SMD1210P050-13.2 PPTC DEVICES

Solder reflow conditions

Profile Feature	Pb-Free Assembly				
Average ramp up rate (Ts _{MAX} to Tp)	3°C/second max.				
Preheat					
 Temperature min. (Ts_{MIN}) 	150°C				
 Temperature max. (Ts_{MAX}) 	200°C				
 Time (ts_{MIN} to ts_{MAX}) 	60-120 seconds				
Time maintained above:					
• Temperature (T _L)	217°C				
• Time (t _L)	60-150 seconds				
Peak/Classification temperature (Tp)	260°C				
Time within 5°C of actual peak temperature					
Time (tp)	30 seconds max.				
Ramp down rate	3°C/second max.				
Time 25°C to peak temperature	8 minutes max.				

Note: All temperatures refer to topside of the package, measured on the package body surface.


- Recommended reflow methods: IR, vapor phase oven, hot air oven, N2 environment for lead-free.
- Devices are not designed to be wave soldered to the bottom side of the board.
- Recommended maximum paste thickness is 0.25mm (0.010inch).
- Devices can be cleaned using standard industry methods and solvents.
- Soldering temprature profile meets RoHs leadfree process.

Notes: If reflow temperatures exceed the recommended profile, devices may not meet the performance requirements

SMD1210P050-13.2 PPTC DEVICES

Recommended pad layout (mm)

WARNING

- · Use PPTC beyond the maximum ratings or improper use may result in device damage and possible electrical arcing and flame.
- · PPTC are intended for protection against occasional over current or over temperature fault conditions and should not be used when repeated fault conditions or prolonged trip events are anticipated.
- · Device performance can be impacted negatively if devices are handled in a manner inconsistent with recommended electronic, thermal, and mechanical procedures for electronic components.
- · Use PPTC with a large inductance in circuit will generate a circuit voltage (L di/dt) above the rated voltage of the PPTC.
- · Avoid impact PPTC device its thermal expansion like placed under pressure or installed in limited space.
- · Contamination of the PPTC material with certain silicon based oils or some aggressive solvents can adversely impact the performance of the devices.PPTC SMD can be cleaned by standard methods.
- · Requests that customers comply with our recommended solder pad layouts and recommended reflow profile. Improper board layouts or reflow profilecould negatively impact solderability performance of our devices.