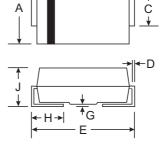


VOLTAGE RANGE: 50-1000V CURRENT: 8.0 A


Features

- Glass Passivated Die Construction
- Ideally Suited for Automatic Assembly
- Low Forward Voltage Drop
- Low Power Loss
- Built-in Strain Relief
- Plastic Case Material has UL Flammability Classification Rating 94V-O

Mechanical Data

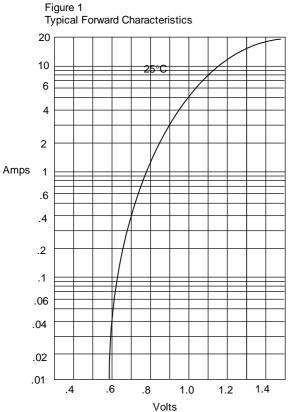
- Case: SMC/DO-214AB, Molded Plastic
- Terminals: Solder Plated, Solderable per MIL-STD-750, Method 2026
- Polarity: Cathode Band or Cathode Notch
- Marking: Type Number
- Weight: 0.21 grams (approx.)

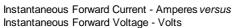
В

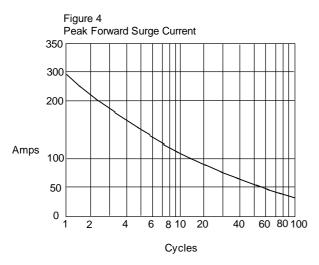
SMC(DO-214AB)						
Dim	Min	Max				
Α	5.59	6.22				
В	6.60	7.11				
С	2.75	3.18				
D	0.15	0.31				
E	7.75	8.13				
G	0.10	0.20				
н	0.76	1.52				
J	2.00	2.62				
All Dimensions in mm						

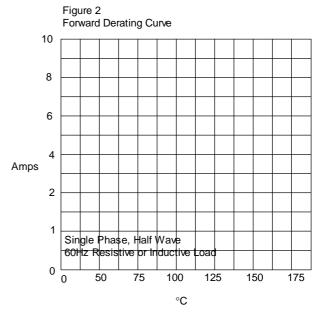
S8A - S8M

Maximum Ratings and Electrical Characteristics T_A = 25°C unless otherwise specified


Single phase, half wave, 60Hz, resistive or inductive load. For capacitive load, derate current by 20%.


Characteristic	Symbol	S8A	S8B	S8D	S8G	S8J	S8K	S8M	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	Vrrm Vrwm Vr	50	100	200	400	600	800	1000	V
RMS Reverse Voltage	VR(RMS)	35	70	140	280	420	560	700	V
Average Rectified Output Current $@T_A = 75^{\circ}C$	lo	8.0						А	
Non-Repetitive Peak Forward Surge Current 8.3ms Single half sine-wave superimposed on rated load (JEDEC Method)	IFSM	300						A	
Forward Voltage $@I_F = 8.0A$	Vfm	1.2						V	
Peak Reverse Current $@T_A = 25^{\circ}C$ At Rated DC Blocking Voltage $@T_A = 100^{\circ}C$	Irm	10 100						μA	
Typical Junction Capacitance (Note 1)	Cj	150						pF	
Typical Thermal Resistance Junction to Ambient	R∂JA	30					°C/W		
Operating Temperature Range	Tj	-50 to +150					°C		
Storage Temperature Range	Tstg	-50 to +150					°C		


Note: 1. Measured at 1.0 MHz and applied reverse voltage of 4.0V D.C.



Peak Forward Surge Current - Amperes versus Number Of Cycles At 60Hz - Cycles

Average Forward Rectified Current - Amperes versus Ambient Temperature $\ \ ^\circ C$