

AXIAL LEADED SILICON RECTIFIER DIODES

VOLTAGE RANGE: 1250V CURRENT: 1.0 A

Features

- Molded case feature for auto insertion
- High current capability
- Low leakage current
- High surge capability
- High temperature soldering guaranteed:
 250 °C/10sec/0.375" (9.5mm) lead length at 5 lbs
- tension

Mechanical Data

- Case:JEDEC DO -41,molded plastic
- Terminals: Axial lead ,solderable per MIL- STD-202,Method 208
- Polarity: Color band denotes cathode
- Weight: 0.012ounces, 0.34 grams
- Mounting position: Any

DO-41			
Dim	Min	Max	
Α	25.40	_	
В	4.06	5.21	
С	0.71	0.864	
D	2.00	2.72	
All Dimensions in mm			

Maximum Ratings and Electrical Characteristics @ TA = 25°C unless otherwise specified

Single phase, half wave, 60Hz, resistive or inductive load. For capacitive load, derate current by 20%.

Characteristic	Symbol	BY127M	Unit	
Maximum recurrent peak reverse voltage	V_{RRM}	1250	V	
Maximum RMS voltage	V _{RMS}	875	V	
Maximum DC blocking voltage	V _{DC}	1250	V	
Maximum average forw ard rectified current 9.5mm lead length, @T _A =75°C	I _{F(AV)}	1.0	А	
Peak forward surge current 8.3ms single half-sine-wave superimposed on rated load @T _J =125°C	I _{FSM}	30.0	А	
Maximum instantaneous forw ard voltage @ 1.0 A	V _F	1.1	V	
Maximum reverse current @T _A =25°C		5.0	Λ	
at rated DC blocking voltage @T _A =100°C	I _R	50.0	μΑ	
Typical junction capacitance (Note1)	С	10	pF	
Typical thermal resistance (Note2)	$R_{\theta JA}$	50	°C/W	
Operating junction temperature range	T _J	- 55 + 150	$^{\circ}\mathbb{C}$	
Storage temperature range	T _{STG}	- 55 + 150	$^{\circ}\mathbb{C}$	

NOTE: 1. Measured at 1.0MHz and applied reverse voltage of 4.0V DC.

^{2.} Thermal resistance from junction to ambient at 0.375"(9.5mm) lead length, P.C.board mounted

FIG.1 - TYPICAL FORWARD CURRENT DERATING CURVE

1.0 AVERAGE FORWARD CURRENT 0.8 **AMPERES** 0.6 0.4 Single Phase Half Wave 60Hz Resistive or Inductive Load 0.2 0 150 75 AMBIENT TEMPERATURE, ℃

FIG.2 - TYPICAL INSTANTANEOUS FORWARD **CHARACTERISTICS**

FIG.3 – MAXIMUM NON-REPETITIVE FORWARD

SURGE CURRENT

CURRENT, MICRO AMPERES INSTANTANEOUS REVERSE .04

FIG.4 - TYPICAL REVERSE CHARACTERISTICS

NUMBER OF CYCLES AT 60Hz

PERCENT OF RATED PEAK REVERSE VOLTAGE, %

FIG.5 - TYPICAL JUNCTION CAPACITANCE

