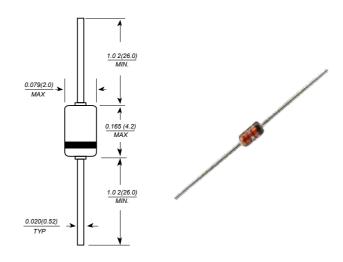


# SURFACE MOUNT SMALL SIGNAL SCHOTTKY DIODES

## Features


- Small foot print, surface mountable
- Very low forward voltage drop
- High frequency operation
- Guard ring for enhanced ruggedness and long term reliability

#### **Mechanical Data**

- Case: DO-35, glass case
- Polarity: Color band denotes cathode
- Weight: 0.004 ounces, 0.13 grams



# DO-35(GLASS)



Dimensions in millimeters

### Maximum Ratings and Electrical Characteristics T<sub>A</sub> = 25°C unless otherwise specified

Single phase, half wave, 60Hz, resistive or inductive load. For capacitive load, derate current by 20%.

| Parameter                                                              |                                   |                 | Symbol              |      | Value       |      | Unit |
|------------------------------------------------------------------------|-----------------------------------|-----------------|---------------------|------|-------------|------|------|
| Repetitive Peak Reverse Voltage                                        |                                   |                 | V <sub>RRM</sub>    |      | 80          |      | V    |
| Forward Continuous Current*<br>$T_a = 70 \degree C$                    |                                   |                 | I <sub>F</sub>      |      | 500         |      | mA   |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                   |                                   |                 | I <sub>FRM</sub>    |      | 3           |      | А    |
| Surge non Repetitive Forward Current* $t_p \leq 10ms$                  |                                   |                 | I <sub>FSM</sub>    |      | 10          |      |      |
| Storage and Junction Temperature Range T <sub>stg</sub> T <sub>j</sub> |                                   |                 | T <sub>stg</sub>    |      | - 65 to 150 |      |      |
|                                                                        |                                   |                 | Tj                  |      | - 65 to 125 |      |      |
| Maximum Lead Temperature for Soldering during 10s at 4mm from Case     |                                   |                 | TL                  |      | 230         |      |      |
| Symbol                                                                 |                                   | Test Conditions |                     | Min. | Тур.        | Max. | Unit |
| I <sub>R</sub> * *                                                     | $T_j = 25^{\circ}C$ $V_R = 80V$   |                 |                     |      |             | 200  | μA   |
| V <sub>F</sub> * *                                                     | $T_j = 25^{\circ}C$ $I_F = 10mA$  |                 |                     |      |             | 0.32 | V    |
|                                                                        | $T_j = 25^{\circ}C$ $I_F = 100mA$ |                 |                     |      |             | 0.42 |      |
|                                                                        | T <sub>j</sub> = 25°C             | $I_F = 1A$      |                     |      |             | 1    |      |
| Symbol                                                                 | Symbol Test Conditions            |                 |                     | Min. | Тур.        | Max. | Unit |
| С                                                                      | T <sub>j</sub> = 25°C             | f = 1MHz        | $V_R = 0V$          |      | 120         |      | pF   |
|                                                                        |                                   |                 | V <sub>R</sub> = 5V |      | 35          |      |      |



Figure 1. Forward current versus forward voltage at low level (typical values).

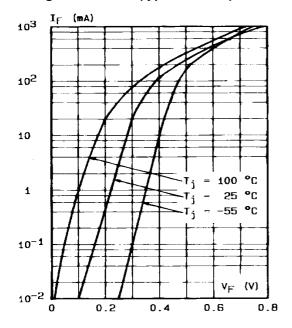



Figure 2. Forward current versus forward voltage at high level (typical values).

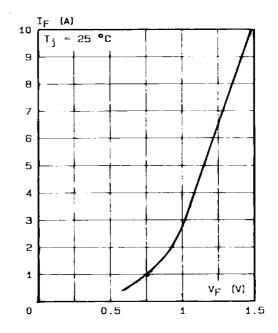



Figure 3. Reverse current versus junction temperature.

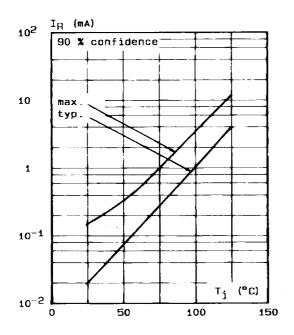



Figure 4. Reverse current versus  $V_{\mbox{\scriptsize RRM}}$  in per cent.

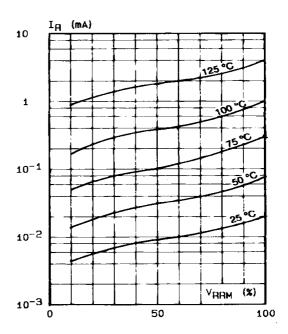





Figure 5. Capacitance C versus reverse applied voltage  $V_R$  (typical values).

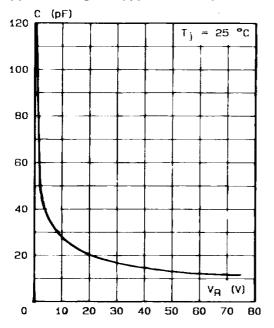



Figure 6. Surge non repetitive forward current for a rectangular pulse with t  $\leq$  10 ms.

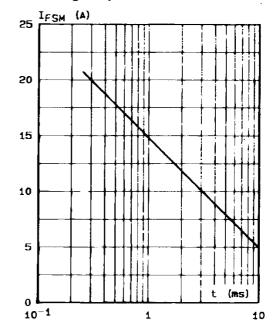
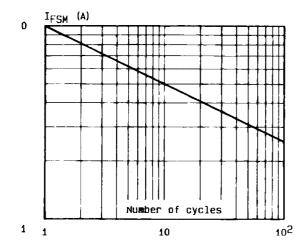
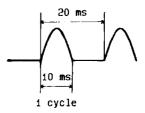





Figure 7. Surge non repetitive forward current versus number of cycles.



