



MOTOROLA INC., 1992

MOTOROLA
MC68030

ENHANCED 32-BIT
MICROPROCESSOR

USER’S MANUAL

Third Edition

MOTOROLA

MC68030 USER’S MANUAL

xxiii

PREFACE

The

MC68030 User's Manual

 describes the capabilities, operation, and programming of the
MC68030 32-bit second-generation enhanced microprocessor. The manual consists of the
following sections and appendix. For detailed information on the MC68030 instruction set
refer to M68000PM/AD,

M68000 Family Programmer's Reference Manual.

Section 1. Introduction

Section 2. Data Organization and Addressing Capabilities

Section 3. Instruction Set Summary

Section 4. Processing States

Section 5. Signal Description

Section 6. On-Chip Cache Memories

Section 7. Bus Operation

Section 8. Exception Processing

Section 9. Memory Management Unit

Section 10. Coprocessor Interface Description

Section 11. Instruction Execution Timing

Section 12. Applications Information

Section 13. Electrical Characteristics

Section 14. Ordering Information and Mechanical Data

Appendix A. M68000 Family Summary

Index

NOTE

In this manual, assertion and negation are used to specify forc-
ing a signal to a particular state. In particular, assertion and as-
sert refer to a signal that is active or true; negation and negate
indicate a signal that is inactive or false. These terms are used
independently of the voltage level (high or low) that they repre-
sent.

The audience of this manual includes systems designers, systems programmers, and
applications programmers. Systems designers need some knowledge of all sections, with
particular emphasis on Sections 1, 5, 6, 7, 13, 14, and Appendix A. Designers who
implement a coprocessor for their system also need a thorough knowledge of Section 10.

xxiv

MC68030 USER’S MANUAL

MOTOROLA

Systems programmers should become familiar with Sections 1, 2, 3, 4, 6, 8, 9, 11, and
Appendix A. Applications programmers can find most of the information they need in
Sections 1, 2, 3, 4, 9, 11, 12, and Appendix A.

From a different viewpoint, the audience for this book consists of users of other M68000
Family members and those who are not familiar with these microprocessors. Users of the
other family members can find references to similarities to and differences from the other
Motorola microprocessors throughout the manual. However, Section 1 and Appendix A
specifically identify the MC68030 within the rest of the family and contrast its differences.

MOTOROLA

MC68030 USER’S MANUAL

xxv

TABLE OF CONTENTS

Paragraph
Number

Title Page
Number

Section 1
Introduction

1.1 Features . 1-3
1.2 MC68030 Extensions to the M68000 Family 1-4
1.3 Programming Model . 1-4
1.4 Data Types and Addressing Modes . 1-10
1.5 Instruction Set Overview . 1-10
1.6 Virtual Memory and Virtual Machine Concepts 1-12
1.6.1 Virtual Memory . 1-12
1.6.2 Virtual Machine . 1-14
1.7 The Memory Management Unit . 1-15
1.8 Pipelined Architecture . 1-16
1.9 The Cache Memories . 1-16

Section 2
Data Organization and Addressing Capabilities

2.1 Instruction Operands . 2-1
2.2 Organization of Data in Registers . 2-2
2.2.1 Data Registers. 2-2
2.2.2 Address Registers . 2-4
2.2.3 Control Registers. 2-4
2.3 Organization of Data in Memory. 2-5
2.4 Addressing Modes . 2-8
2.4.1 Data Register Direct Mode . 2-9
2.4.2 Address Register Direct Mode. 2-10
2.4.3 Address Register Indirect Mode . 2-10
2.4.4 Address Register Indirect with Postincrement Mode. 2-10
2.4.5 Address Register Indirect with Predecrement Mode 2-11
2.4.6 Address Register Indirect with Displacement Mode 2-12
2.4.7 Address Register Indirect with Index (8-Bit Displacement) Mode . . 2-12
2.4.8 Address Register Indirect with Index (Base Displacement) Mode. . 2-13
2.4.9 Memory Indirect Postindexed Mode . 2-14
2.4.10 Memory Indirect Preindexed Mode . 2-15
2.4.11 Program Counter Indirect with Displacement Mode 2-16
2.4.12 Program Counter Indirect with Index (8-Bit Displacement) Mode . . 2-16
2.4.13 Program Counter Indirect with Index (Base Displacement) Mode. . 2-17
2.4.14 Program Counter Memory Indirect Postindexed Mode 2-18
2.4.15 Program Counter Memory Indirect Preindexed Mode 2-19
2.4.16 Absolute Short Addressing Mode . 2-20
2.4.17 Absolute Long Addressing Mode. 2-20
2.4.18 Immediate Data . 2-21
2.5 Effective Address Encoding Summary. 2-22

xxvi

MC68030 USER’S MANUAL

 MOTOROLA

TABLE OF CONTENTS

 (

Continued

)

Paragraph
Number

Title Page
Number

2.6 Programmer`s View of Addressing Modes. 2-24
2.6.1 Addressing Capabilities . 2-25
2.6.2 General Addressing Mode Summary . 2-31
2.7 M68000 Family Addressing Compatibility . 2-36
2.8 Other Data Structures . 2-36
2.8.1 System Stack. 2-36
2.8.2 User Program Stacks . 2-38
2.8.3 Queues . 2-39

Section 3
Instruction Set Summary

3.1 Instruction Format . 3-1
3.2 Instruction Summary . 3-2
3.2.1 Data Movement Instructions . 3-4
3.2.2 Integer Arithmetic Instructions . 3-5
3.2.3 Logical Instructions . 3-6
3.2.4 Shift and Rotate Instructions . 3-7
3.2.5 Bit Manipulation Instructions . 3-8
3.2.6 Bit Field Operations . 3-9
3.2.7 Binary–coded Decimal Instructions . 3-10
3.2.8 Program Control Instructions. 3-11
3.2.9 System Control Instructions. 3-12
3.2.10 Memory Management Unit Instructions. 3-13
3.2.11 Multiprocessor Instructions . 3-13
3.3 Integer Condition Codes. 3-14
3.3.1 Condition Code Computation . 3-15
3.3.2 Conditional Tests. 3-17
3.4 Instruction Set Summary . 3-18
3.5 Instruction Examples . 3-25
3.5.1 Using the CAS and CAS2 Instructions . 3-25
3.5.2 Nested Subroutine Calls . 3-30
3.5.3 Bit Field Operations . 3-31
3.5.4 Pipeline Synchronization with the Nop Instruction. 3-32

Section 4
Processing States

4.1 Privilege Levels . 4-2
4.1.1 Supervisor Privilege Level . 4-2
4.1.2 User Privilege Level. 4-3
4.1.3 Changing Privilege Level. 4-4
4.2 Address Space Types . 4-5
4.3 Exception Processing. 4-6

MOTOROLA

MC68030 USER’S MANUAL

xxvii

TABLE OF CONTENTS

 (

Continued

)

Paragraph
Number

Title Page
Number

4.3.1 Exception Vectors . 4-6
4.3.2 Exception Stack Frame . 4-7

Section 5
Signal Description

5.1 Signal Index . 5-2
5.2 Function Code Signals (FC0–FC2) . 5-4
5.3 Address Bus (A0–A31). 5-4
5.4 Data Bus (D0–D31) . 5-4
5.5 Transfer Size Signals (SIZ0, SIZ1). 5-4
5.6 Bus Control Signals . 5-5
5.6.1 Operand Cycle Start (OCS). 5-5
5.6.2 External Cycle Start (ECS) . 5-5
5.6.3 Read/Write (R/W) . 5-5
5.6.4 Read-Modify-Write Cycle (RMC) . 5-5
5.6.5 Address Strobe (AS) . 5-5
5.6.6 Data Strobe (DS) . 5-6
5.6.7 Data Buffer Enable (DBEN). 5-6
5.6.8 Data Transfer and Size Acknowledge (DSACK0, DSACK1) 5-6
5.6.9 Synchronous Termination (STERM) . 5-6
5.7 Cache Control Signals . 5-7
5.7.1 Cache Inhibit Input (CIIN) . 5-7
5.7.2 Cache Inhibit Output (CIOUT) . 5-7
5.7.3 Cache Burst Request (CBREQ) . 5-7
5.7.4 Cache Burst Acknowledge (CBACK). 5-7
5.8 Interrupt Control Signals. 5-8
5.8.1 Interrupt Priority Level Signals. 5-8
5.8.2 Interrupt Pending (IPEND). 5-8
5.8.3 Autovector (AVEC) . 5-8
5.9 Bus Arbitration Control Signals . 5-8
5.9.1 Bus Request (BR) . 5-8
5.9.2 Bus Grant (BG) . 5-9
5.9.3 Bus Grant Acknowledge (BGACK) . 5-9
5.10 Bus Exception Control Signals . 5-9
5.10.1 Reset (RESET) . 5-9
5.10.2 Halt (HALT) . 5-9
5.10.3 Bus Error (BERR) . 5-9
5.11 Emulator Support Signals. 5-10
5.11.1 Cache Disable (CDIS) . 5-10
5.11.2 MMU Disable (MMUDIS) . 5-10
5.11.3 Pipeline Refill (REFILL) . 5-10
5.11.4 Internal Microsequencer Status (STATUS) 5-10

xxviii

MC68030 USER’S MANUAL

 MOTOROLA

TABLE OF CONTENTS

 (

Continued

)

Paragraph
Number

Title Page
Number

5.12 Clock (CLK) . 5-11
5.13 Power Supply Connections . 5-11
5.14 Signal Summary. 5-11

Section 6
On-Chip Cache Memories

6.1 On-Chip Cache Organization and Operation 6-3
6.1.1 Instruction Cache. 6-4
6.1.2 Data Cache . 6-6
6.1.2.1 Write Allocation . 6-8
6.1.2.2 Read-Modify-Write Accesses. 6-10
6.1.3 Cache Filling . 6-10
6.1.3.1 Single Entry Mode . 6-10
6.1.3.2 Burst Mode Filling . 6-15
6.2 Cache Reset. 6-20
6.3 Cache Control . 6-20
6.3.1 Cache Control Register . 6-20
6.3.1.1 Write Allocate. 6-21
6.3.1.2 Data Burst Enable . 6-21
6.3.1.3 Clear Data Cache . 6-21
6.3.1.4 Clear Entry in Data Cache . 6-21
6.3.1.5 Freeze Data Cache . 6-22
6.3.1.6 Enable Data Cache . 6-22
6.3.1.7 Instruction Burst Enable. 6-22
6.3.1.8 Clear Instruction Cache . 6-22
6.3.1.9 Clear Entry in Instruction Cache . 6-22
6.3.1.10 Freeze Instruction Cache. 6-23
6.3.1.11 Enable Instruction Cache. 6-23
6.3.2 Cache Address Register . 6-23

Section 7
Bus Operation

7.1 Bus Transfer Signals . 7-1
7.1.1 Bus Control Signals . 7-3
7.1.2 Address Bus . 7-4
7.1.3 Address Strobe . 7-4
7.1.4 Data Bus . 7-5
7.1.5 Data Strobe . 7-5
7.1.6 Data Buffer Enable . 7-5
7.1.7 Bus Cycle Termination Signals . 7-5
7.2 Data Transfer Mechanism . 7-6
7.2.1 Dynamic Bus Sizing. 7-6

MOTOROLA

MC68030 USER’S MANUAL

xxix

TABLE OF CONTENTS

 (

Continued

)

Paragraph
Number

Title Page
Number

7.2.2 Misaligned Operands. 7-13
7.2.3 Effects of Dynamic Bus Sizing and Operand Misalignment 7-19
7.2.4 Address, Size, and Data Bus Relationships 7-22
7.2.5 MC68030 versus MC68020 Dynamic Bus Sizing 7-24
7.2.6 Cache Filling . 7-24
7.2.7 Cache Interactions. 7-26
7.2.8 Asynchronous Operation . 7-27
7.2.9 Synchronous Operation with DSACKx . 7-28
7.2.10 Synchronous Operation with STERM . 7-29
7.3 Data Transfer Cycles . 7-30
7.3.1 Asynchronous Read Cycle . 7-31
7.3.2 Asynchronous Write Cycle . 7-37
7.3.3 Asynchronous Read-Modify-Write Cycle. 7-43
7.3.4 Synchronous Read Cycle . 7-48
7.3.5 Synchronous Write Cycle . 7-51
7.3.6 Synchronous Read-Modify-Write Cycle. 7-54
7.3.7 Burst Operation Cycles . 7-59
7.4 CPU Space Cycles. 7-68
7.4.1 Interrupt Acknowledge Bus Cycles . 7-69
7.4.1.1 Interrupt Acknowledge Cycle — Terminated Normally 7-70
7.4.1.2 Autovector Interrupt Acknowledge Cycle 7-71
7.4.1.3 Spurious Interrupt Cycle . 7-74
7.4.2 Breakpoint Acknowledge Cycle . 7-74
7.4.3 Coprocessor Communication Cycles . 7-74
7.5 Bus Exception Control Cycles . 7-75
7.5.1 Bus Errors . 7-82
7.5.2 Retry Operation . 7-89
7.5.3 Halt Operation . 7-91
7.5.4 Double Bus Fault . 7-94
7.6 Bus Synchronization. 7-95
7.7 Bus Arbitration . 7-96
7.7.1 Bus Request . 7-98
7.7.2 Bus Grant . 7-99
7.7.3 Bus Grant Acknowledge . 7-100
7.7.4 Bus Arbitration Control . 7-100
7.8 Reset Operation . 7-103

Section 8
Exception Processing

8.1 Exception Processing Sequence . 8-1
8.1.1 Reset Exception . 8-5
8.1.2 Bus Error Exception. 8-7

xxx

MC68030 USER’S MANUAL

 MOTOROLA

TABLE OF CONTENTS

 (

Continued

)

Paragraph
Number

Title Page
Number

8.1.3 Address Error Exception . 8-8
8.1.4 Instruction Trap Exception. 8-9
8.1.5 Illegal Instruction and Unimplemented Instruction Exceptions 8-9
8.1.6 Privilege Violation Exception . 8-11
8.1.7 Trace Exception. 8-12
8.1.8 Format Error Exception . 8-14
8.1.9 Interrupt Exceptions. 8-14
8.1.10 MMU Configuration Exception. 8-21
8.1.11 Breakpoint Instruction Exception . 8-22
8.1.12 Multiple Exceptions . 8-23
8.1.13 Return from Exception. 8-24
8.2 Bus Fault Recovery . 8-27
8.2.1 Special Status Word (SSW) . 8-28
8.2.2 Using Software to Complete the Bus Cycles. 8-29
8.2.3 Completing the Bus Cycles with Rte . 8-31
8.3 Coprocessor Considerations . 8-32
8.4 Exception Stack Frame Formats . 8-32

Section 9
Memory Management Unit

9.1 Translation Table Structure . 9-6
9.1.1 Translation Control . 9-8
9.1.2 Translation Table Descriptors . 9-10
9.2 Address Translation . 9-13
9.2.1 General Flow for Address Translation . 9-13
9.2.2 Effect of RESET On MMU . 9-15
9.2.3 Effect of MMUDIS On Address Translation 9-15
9.3 Transparent Translation . 9-16
9.4 Address Translation Cache . 9-17
9.5 Translation Table Details . 9-20
9.5.1 Descriptor Details . 9-20
9.5.1.1 Descriptor Field Definitions . 9-20
9.5.1.2 Root Pointer Descriptor . 9-23
9.5.1.3 Short-Format Table Descriptor . 9-24
9.5.1.4 Long-Fomat Table Descriptor . 9-24
9.5.1.5 Short-Format Early Termination Page Descriptor 9-25
9.5.1.6 Long-Format Early Termination Page Descriptor 9-25
9.5.1.7 Short-Format Page Descriptor . 9-26
9.5.1.8 Long-Format Page Descriptor . 9-26
9.5.1.9 Short-Format Invalid Descriptor . 9-26
9.5.1.10 Long-Format Indirect Descriptor . 9-27
9.5.1.11 Short-Format Indirect Descriptor . 9-27

xxxi

MC68030 USER’S MANUAL

MOTOROLA

TABLE OF CONTENTS

 (

Concluded

)

Paragraph
Number

Title Page
Number

9.5.1.12 Long-Format Indirect Descriptor . 9-28
9.5.2 General Table Search . 9-28
9.5.3 Variations in Translation Table Structure . 9-33
9.5.3.1 Early Termination and Contiguous Memory. 9-33
9.5.3.2 Indirection . 9-34
9.5.3.3 Table Sharing Between Tasks. 9-37
9.5.3.4 Paging of Tables . 9-37
9.5.3.5 Dynamic Allocation of Tables. 9-40
9.5.4 Detail of Table Search Operations . 9-40
9.5.5 Protection . 9-43
9.5.5.1 Function Code Lookup. 9-45
9.5.5.2 Supervisor Translation Tree. 9-48
9.5.5.3 Supervisor Only . 9-48
9.5.5.4 Write Protect . 9-48
9.6 MC68030 and MC68851 Mmu Differences . 9-51
9.7 Registers . 9-52
9.7.1 Root Pointer Registers . 9-52
9.7.2 Translation Control Register . 9-54
9.7.3 Transparent Translation Registers . 9-57
9.7.4 MMU Status Register . 9-59
9.7.5 Register Programming Considerations . 9-61
9.7.5.1 Register Side Effects . 9-61
9.7.5.2 MMU Status Register Decoding. 9-61
9.7.5.3 MMU Configuration Exception . 9-62
9.8 Mmu Instructions . 9-63
9.9 Defining and Using Page Tables in An Operating System. 9-65
9.9.1 Root Pointer Registers . 9-65
9.9.2 Task Memory Map Definition. 9-66
9.9.3 Impact of MMU Features On Table Definition 9-68
9.9.3.1 Number of Table Levels. 9-68
9.9.3.2 Initial Shift Count . 9-69
9.9.3.3 Limit Fields. 9-70
9.9.3.4 Early Termination Page Descriptors . 9-70
9.9.3.5 Indirect Descriptors . 9-71
9.9.3.6 Using Unused Descriptor Bits . 9-71
9.10 An Example of Paging Implementation in an Operating System 9-72
9.10.1 System Description . 9-72
9.10.2 Allocation Routines . 9-78
9.10.3 Bus Error Handler Routine . 9-82

Section 10
Coprocessor Interface Description

xxxii

MC68030 USER’S MANUAL

 MOTOROLA

TABLE OF CONTENTS

 (

Continued

)

Paragraph
Number

Title Page
Number

10.1 Introduction. 10-1
10.1.1 Interface Features . 10-2
10.1.2 Concurrent Operation Support . 10-3
10.1.3 Coprocessor Instruction Format . 10-4
10.1.4 Coprocessor System Interface . 10-5
10.1.4.1 Coprocessor Classification . 10-5
10.1.4.2 Processor-Coprocessor Interface . 10-6
10.1.4.3 Coprocessor Interface Register Selection. 10-8
10.2 Coprocessor Instruction Types. 10-9
10.2.1 Coprocessor General Instructions . 10-9
10.2.1.1 Format . 10-10
10.2.1.2 Protocol.. 10-11
10.2.2 Coprocessor Conditional Instructions . 10-12
10.2.2.1 Branch On Coprocessor Condition Instruction. 10-13
10.2.2.1.1 Format. . 10-14
10.2.2.1.2 Protocol. . 10-15
10.2.2.2 Set On Coprocessor Condition Instruction. 10-15
10.2.2.2.1 Format . 10-15
10.2.2.2.2 Protocol. . 10-16
10.2.2.3 Test Coprocessor Condition, Decrement and Branch Instruction 10-17
10.2.2.3.1 Format . 10-17
10.2.2.3.2 Protocol . 10-18
10.2.2.4 Trap On Coprocessor Condition. 10-18
10.2.2.4.1 Format . 10-18
10.2.2.4.2 Protocol . 10-19
10.2.3 Coprocessor Save and Restore Instructions 10-20
10.2.3.1 Coprocessor Internal State Frames. 10-20
10.2.3.2 Coprocessor Format Words. 10-22
10.2.3.2.1 Empty/Reset Format Word. 10-22
10.2.3.2.2 Not Ready Format Word.. 10-23
10.2.3.2.3 Invalid Format Word . 10-23
10.2.3.2.4 Valid Format Word. 10-24
10.2.3.3 Coprocessor Context Save Instruction . 10-24
10.2.3.3.1 Format . 10-24
10.2.3.3.2 Protocol . 10-25
10.2.3.4 Coprocessor Context Restore Instruction. 10-27
10.2.3.4.1 Format . 10-27
10.2.3.4.2 Protocol. . 10-28
10.3 Coprocessor Interface Register Set . 10-29
10.3.1 Response CIR . 10-29
10.3.2 Control CIR . 10-30
10.3.3 Save CIR . 10-30

MOTOROLA

MC68030 USER’S MANUAL

xxxiii

TABLE OF CONTENTS

 (

Continued

)

Paragraph
Number

Title Page
Number

10.3.4 Restore CIR. 10-31
10.3.5 Operation Word CIR . 10-31
10.3.6 Command CIR. 10-31
10.3.7 Condition CIR . 10-31
10.3.8 Operand CIR . 10-32
10.3.9 Register Select CIR . 10-32
10.3.10 Instruction Address CIR. 10-33
10.3.11 Operand Address CIR . 10-33
10.4 Coprocessor Response Primitives . 10-33
10.4.1 ScanPC . 10-34
10.4.2 Coprocessor Response Primitive General Format 10-35
10.4.3 Busy Primitive . 10-36
10.4.4 Null Primitive . 10-37
10.4.5 Supervisor Check Primitive . 10-40
10.4.6 Transfer Operation Word Primitive . 10-40
10.4.7 Transfer from Instruction Stream Primitive 10-41
10.4.8 Evaluate and Transfer Effective Address Primitive 10-42
10.4.9 Evaluate Effective Address and Transfer Data Primitive. 10-43
10.4.10 Write to Previously Evaluated Effective Address Primitive 10-46
10.4.11 Take Address and Transfer Data Primitive 10-48
10.4.12 Transfer to/from Top of Stack Primitive . 10-49
10.4.13 Transfer Single Main Processor Register Primitive 10-50
10.4.14 Transfer Main Processor Control Register Primitive 10-50
10.4.15 Transfer Multiple Main Processor Registers Primitive. 10-52
10.4.16 Transfer Multiple Coprocessor Registers Primitive 10-52
10.4.17 Transfer Status Register and ScanPC Primitive 10-55
10.4.18 Take Pre-Instruction Exception Primitive. 10-56
10.4.19 Take Mid-Instruction Exception Primitive . 10-58
10.4.20 Take Post-Instruction Exception Primitive . 10-60
10.5 Exceptions . 10-61
10.5.1 Coprocessor-Detected Exceptions . 10-61
10.5.1.1 Coprocessor-Detected Protocol Violations 10-62
10.5.1.2 Coprocessor-Detected Illegal Command or Condition Words . . . 10-63
10.5.1.3 Coprocessor Data-Processing Exceptions 10-63
10.5.1.4 Coprocessor System-Related Exceptions 10-64
10.5.1.5 Format Errors. 10-64
10.5.2 Main-Processor-Detected Exceptions . 10-65
10.5.2.1 Protocol Violations . 10-65
10.5.2.2 F-Line Emulator Exceptions. 10-68
10.5.2.3 Privilege Violations. 10-69
10.5.2.4 cpTRAPcc Instruction Traps . 10-69
10.5.2.5 Trace Exceptions . 10-70

xxxiv

MC68030 USER’S MANUAL

 MOTOROLA

TABLE OF CONTENTS

 (

Continued

)

Paragraph
Number

Title Page
Number

10.5.2.6 Interrupts . 10-71
10.5.2.7 Format Errors. 10-71
10.5.2.8 Address and Bus Errors. 10-72
10.5.3 Coprocessor Reset . 10-72
10.6 Coprocessor Summary. 10-72

Section 11
Instruction Execution Timing

11.1 Performance Tradeoffs. 11-1
11.2 Resource Scheduling . 11-2
11.2.1 Microsequencer . 11-2
11.2.2 Instruction Pipe . 11-2
11.2.3 Instruction Cache. 11-4
11.2.4 Data Cache . 11-4
11.2.5 Bus Controller Resources . 11-4
11.2.5.1 Instruction Fetch Pending Buffer . 11-5
11.2.5.2 Write Pending Buffer . 11-5
11.2.5.3 Micro Bus Controller . 11-5
11.2.6 Memory Management Unit . 11-6
11.3 Instruction Execution Timing Calculations . 11-6
11.3.1 Instruction-Cache Case . 11-6
11.3.2 Overlap and Best Case . 11-7
11.3.3 Average No-Cache Case. 11-8
11.3.4 Actual Instruction-Cache-Case Execution Time Calculations 11-11
11.4 Effect of Data Cache . 11-16
11.5 Effect of Wait States. 11-18
11.6 Instruction Timing Tables . 11-24
11.6.1 Fetch Effective Address (fea) . 11-26
11.6.2 Fetch Immediate Effective Address (fiea) . 11-28
11.6.3 Calculate Effective Address (cea) . 11-30
11.6.4 Calculate Immediate Effective Address (ciea). 11-32
11.6.5 Jump Effective Address. 11-35
11.6.6 MOVE Instruction . 11-37
11.6.7 Special-Purpose Move Instruction. 11-39
11.6.8 Arithmetical/Logical Instructions . 11-40
11.6.9 Immediate Arithmetical/Logical Instructions 11-42
11.6.10 Binary-Coded Decimal and Extended Instructions 11-43
11.6.11 Single Operand Instructions . 11-44
11.6.12 Shift/Rotate Instructions . 11-45
11.6.13 Bit Manipulation Instructions . 11-46
11.6.14 Bit Field Manipulation Instructions. 11-47
11.6.15 Conditional Branch Instructions. 11-48

MOTOROLA

MC68030 USER’S MANUAL

xxxv

TABLE OF CONTENTS

 (

Continued

)

Paragraph
Number

Title Page
Number

11.6.16 Control Instructions . 11-49
11.6.17 Exception-Related Instructions and Operations 11-50
11.6.18 Save and Restore Operations . 11-51
11.7 Address Translation Tree Search Timing. 11-51
11.7.1 MMU Effective Address Calculation . 11-58
11.7.2 MMU Instruction Timing. 11-60
11.8 Interrupt Latency . 11-61
11.9 Bus Arbitration Latency . 11-62

Section 12
Applications Information

12.1 Adapting the MC68030 to MC68020 Designs 12-1
12.1.1 Signal Routing . 12-2
12.1.2 Hardware Differences . 12-3
12.1.3 Software Differences . 12-4
12.2 Floating-Point Units . 12-5
12.3 Byte Select Logic for the MC68030 . 12-9
12.4 Memory Interface . 12-11
12.4.1 Access Time Calculations . 12-14
12.4.2 Burst Mode Cycles . 12-17
12.5 Static RAM Memory Banks . 12-18
12.5.1 A Two-Clock Synchronous Memory Bank Using SRAMS 12-18
12.5.2 A 2-1-1-1 Burst Mode Memory Bank Using SRAMS 12-24
12.5.3 A 3-1-1-1 Burst Mode Memory Bank Using SRAMS 12-27
12.6 External Caches. 12-30
12.6.1 Cache Implementation. 12-32
12.6.2 Instruction-Only External Cache Implementations 12-35
12.7 Debugging Aids . 12-35
12.7.1 Status and Refill . 12-36
12.7.2 Real-Time Instruction Trace . 12-39
12.8 Power and Ground Considerations . 12-43

Section 13
Electrical Characteristics

13.1 Maximum Ratings. 13-1
13.2 Thermal Characteristics — PGA Package . 13-1

xxxvi

MC68030 USER’S MANUAL

MOTOROLA

TABLE OF CONTENTS

 (

Concluded

)

Paragraph
Number

Title Page
Number

Section 14
Ordering Information
and Mechanical Data

14.1 Standard MC68030 Ordering Information . 14-1
14.2 Pin Assignments — Pin Grid Array (RC Suffix) 14-2
14.3 Pin Assignments — Ceramic Surface Mount (FE Suffix) 14-3
14.4 Package Dimensions . 14-4

Appendix A
M68000 Family Summary

MOTOROLA

MC68030 USER’S MANUAL

xxxvii

LIST OF ILLUSTRATIONS

Figure
Number

Title Page
Number

1-1 Block Diagram . 1-2
1-2 User Programming Model . 1-6
1-3 Supervisor Programming Model Supplement. 1-7
1-4 Status Register. 1-8

2-1 Memory Operand Address . 2-6
2-2 Memory Data Organization . 2-7
2-3 Single Effective Address . 2-8
2-4 Effective Address Specification Formats . 2-23
2-5 Using SIZE in the Index Selection . 2-25
2-6 Using Absolute Address with Indexes . 2-26
2-7 Addressing Array Items . 2-27
2-8 Using Indirect Absolute Memory Addressing . 2-28
2-9 Accessing an Item in a Structure Using a Pointer 2-28
2-10 Indirect Addressing, Suppressed Index Register . 2-29
2-11 Preindexed Indirect Addressing . 2-29
2-12 Postindexed Indirect Addressing . 2-30
2-13 Preindexed Indirect Addressing with Outer Displacement 2-30
2-14 Postindexed Indirect Addressing with Outer Displacement 2-31
2-15 M68000 Family Address Extension Words . 2-37

3-1 Instruction Word General Format . 3-1
3-2 Linked List Insertion . 3-26
3-3 Linked List Deletion . 3-27
3-4 Doubly Linked List Insertion . 3-29
3-5 Doubly Linked List Deletion . 3-30

4-1 General Exception Stack Frame . 4-7

5-1 Functional Signal Groups . 5-1

6-1 Internal Caches and the MC68030. 6-2
6-2 On-Chip Instruction Cache Organization . 6-5
6-3 On-Chip Data Cache Organization. 6-7
6-4 No-Write-Allocation and Write-Allocation Mode Examples 6-9
6-5 Single Entry Mode Operation — 8-Bit Port . 6-11
6-6 Single Entry Mode Operation — 16-Bit Port . 6-12
6-7 Single Entry Mode Operation — 32-Bit Port . 6-12
6-8 Single Entry Mode Operation — Misaligned Long Word and 8-Bit Port. . . 6-13
6-9 Single Entry Mode Operation — Misaligned Long Word and 16-Bit Port. . 6-14
6-10 Single Entry Mode Operation — Misaligned Long Word and 32-Bit

DSACKx Port . 6-15

xxxviii

MC68030 USER’S MANUAL

MOTOROLA

LIST OF ILLUSTRATIONS (Continued)

Figure
Number

Title Page
Number

6-11 Burst Operation Cycles and Burst Mode . 6-17
6-12 Burst Filling Wraparound Example. 6-17
6-13 Deferred Burst Filling Example. 6-18
6-14 Cache Control Register . 6-21
6-15 Cache Address Register . 6-23

7-1 Relationship between External and Internal Signals 7-2
7-2 Asynchronous Input Sample Window. 7-3
7-3 Internal Operand Representation . 7-8
7-4 MC68030 Interface to Various Port Sizes . 7-9
7-5 Example of Long-Word Transfer to Word Port . 7-11
7-6 Long-Word Operand Write Timing (16-Bit Data Port) 7-12
7-7 Example of Word Transfer to Byte Port . 7-13
7-8 Word Operand Write Timing (8-Bit Data Port) . 7-14
7-9 Misaligned Long-Word Transfer to Word Port Example. 7-15
7-10 Misaligned Long-Word Transfer to Word Port . 7-16
7-11 Misaligned Cachable Long-Word Transfer from Word Port Example 7-17
7-12 Misaligned Word Transfer to Word Port Example 7-17
7-13 Misaligned Word Transfer to Word Port . 7-18
7-14 Example of Misaligned Cachable Word Transfer from Word Bus 7-20
7-15 Misaligned Long-Word Transfer to Long-Word Port. 7-20
7-16 Misaligned Write Cycles to Long-Word Port. 7-21
7-17 Misaligned Cachable Long-Word Transfer from Long-Word Bus. 7-22
7-18 Byte Data Select Generation for 16- and 32-Bit Ports 7-25
7-19 Asynchronous Long-Word Read Cycle Flowchart 7-32
7-20 Asynchronous Byte Read Cycle Flowchart . 7-32
7-21 Asynchronous Byte and Word Read Cycles — 32-Bit Port 7-33
7-22 Long-Word Read — 8-Bit Port with CIOUT Asserted. 7-34
7-23 Long-Word Read — 16-Bit and 32-Bit Port . 7-35
7-24 Asynchronous Write Cycle Flowchart. 7-37
7-25 Asynchronous Read-Write-Read Cycles — 32-Bit Port 7-38
7-26 Asynchronous Byte and Word Write Cycles — 32-Bit Port 7-39
7-27 Long-Word Operand Write — 8-Bit Port. 7-40
7-28 Long-Word Operand Write — 16-Bit Port. 7-41
7-29 Asynchronous Read-Modify-Write Cycle Flowchart 7-44
7-30 Asynchronous Byte Read-Modify-Write Cycle — 32-Bit Port

(TAS Instruction with CIOUT or CIIN Asserted) . 7-45
7-31 Synchronous Long-Word Read Cycle Flowchart —

No Burst Allowed . 7-49
7-32 Synchronous Read with CIIN Asserted and CBACK Negated 7-50
7-33 Synchronous Write Cycle Flowchart . 7-52
7-34 Synchronous Write Cycle with Wait States — CIOUT Asserted 7-53

MOTOROLA

MC68030 USER’S MANUAL

xxxix

Figure
Number

Title Page
Number

LIST OF ILLUSTRATIONS (Continued)

7-35 Synchronous Read-Modify-Write Cycle Flowchart. 7-55
7-36 Synchronous Read-Modify-Write Cycle Timing — CIIN Asserted 7-56
7-37 Burst Operation Flowchart — Four Long Words Transferred. 7-62
7-38 Long-Word Operand Request from $07 with

Burst Request and Wait Cycle . 7-63
7-39 Long-Word Operand Request from $07 with

Burst Request — CBACK Negated Early. 7-64
7-40 Long-Word Operand Request from $0E — Burst Fill Deferred 7-65
7-41 Long-Word Operand Request from $07 with

Burst Request — CBACK and CIIN Asserted . 7-66
7-42 MC68030 CPU Space Address Encoding . 7-69
7-43 Interrupt Acknowledge Cycle Flowchart . 7-71
7-44 Interrupt Acknowledge Cycle Timing . 7-72
7-45 Autovector Operation Timing . 7-73
7-46 Breakpoint Operation Flow. 7-75
7-47 Breakpoint Acknowledge Cycle Timing . 7-76
7-48 Breakpoint Acknowledge Cycle Timing (Exception Signaled) 7-77
7-49 Bus Error without DSACKx. 7-84
7-50 Late Bus Error with DSACKx . 7-85
7-51 Late Bus Error with STERM — Exception Taken. 7-86
7-52 Long-Word Operand Request — Late BERR on Third Access 7-87
7-53 Long-Word Operand Request — BERR on Second Access 7-88
7-54 Asynchronous Late Retry . 7-90
7-55 Synchronous Late Retry. 7-91
7-56 Late Retry Operation for a Burst . 7-92
7-57 Halt Operation Timing . 7-93
7-58 Bus Synchronization Example . 7-96
7-59 Bus Arbitration Flowchart for Single Request. 7-98
7-60 Bus Arbitration Operation Timing . 7-99
7-61 Bus Arbitration State Diagram . 7-101
7-62 Single-Wire Bus Arbitration Timing Diagram . 7-103
7-63 Bus Arbitration Operation (Bus Inactive) . 7-104
7-64 Initial Reset Operation Timing . 7-105
7-65 Processor-Generated Reset Operation . 7-106

8-1 Reset Operation Flowchart. 8-6
8-2 Interrupt Pending Procedure . 8-15
8-3 Interrupt Recognition Examples . 8-17
8-4 Assertion of IPEND . 8-18
8-5 Interrupt Exception Processing Flowchart . 8-19
8-6 Examples of Interrupt Recognition and Instruction Boundaries 8-20
8-7 Breakpoint Instruction Flowchart . 8-23

xl

MC68030 USER’S MANUAL

MOTOROLA

LIST OF ILLUSTRATIONS (Continued)

Figure
Number

Title Page
Number

8-8 RTE Instruction for Throwaway Four-Word Frame 8-26
8-9 Special Status Word (SSW) . 8-28

9-1 MMU Block Diagram . 9-3
9-2 MMU Programming Model . 9-4
9-3 Translation Table Tree . 9-5
9-4 Example Translation Table Tree . 9-7
9-5 Example Translation Tree Layout in Memory. 9-8
9-6 Derivation of Table Index Fields. 9-9
9-7 Example Translation Tree Using Different Format Descriptors 9-12
9-8 Address Translation General Flowchart . 9-14
9-9 Root Pointer Descriptor Format . 9-23
9-10 Short-Format Table Descriptor. 9-24
9-11 Long-Format Table Descriptor . 9-24
9-12 Short-Format Page Descriptor and Short-Format Early

Termination Page Descriptor . 9-25
9-13 Long-Format Early Termination Page Descriptor. 9-25
9-14 Long-Format Page Descriptor . 9-26
9-15 Short-Format Invalid Descriptor . 9-26
9-16 Long-Format Invalid Descriptor . 9-27
9-17 Short-Format Indirect Descriptor . 9-27
9-18 Long-Format Indirect Descriptor. 9-28
9-19 Simplified Table Search Flowchart. 9-29
9-20 Five-Level Table Search . 9-31
9-21 Example Translation Tree Using Contiguous Memory. 9-35
9-22 Example Translation Tree Using Indirect Descriptors 9-36
9-23 Example Translation Tree Using Shared Tables . 9-38
9-24 Example Translation Tree with Nonresident Tables. 9-39
9-25 Detailed Flowchart of MMU Table Search Operation. 9-41
9-26 Table Search Initialization Flowchart . 9-42
9-27 ATC Entry Creation Flowchart . 9-42
9-28 Limit Check Procedure Flowchart . 9-43
9-29 Detailed Flowchart of Descriptor Fetch Operation 9-44
9-30 Logical Address Map Using Function Code Lookup 9-45
9-31 Example Translation Tree Using Function Code Lookup. 9-46
9-32 Example Translation Tree Structure for Two Tasks 9-47
9-33 Exmple Logical Address Map with Shared Supervisor

and User Address Spaces . 9-49
9-34 Exmple Translation Tree Using S and WP Bits to Set Protection 9-50
9-35 Root Pointer Register (CRP, SRP) Format . 9-54
9-36 Translation Control Register (TC) Format . 9-54
9-37 Transparent Translation Register (TT0 and TT1) Format 9-57

MOTOROLA

MC68030 USER’S MANUAL

xli

Figure
Number

Title Page
Number

LIST OF ILLUSTRATIONS (Continued)

9-38 MMU Status Register (MMUSR) Format . 9-59
9-39 MMU Status Interpretation PTEST Level 0 . 9-62
9-40 MMU Status Interpretation PTEST Level 7 . 9-63

10-1 F-Line Coprocessor Instruction Operation Word . 10-4
10-2 Asynchronous Non-DMA M68000 Coprocessor Interface Signal Usage . . 10-6
10-3 MC68030 CPU Space Address Encodings . 10-7
10-4 Coprocessor Address Map in MC68030 CPU Space. 10-8
10-5 Coprocessor Interface Register Set Map . 10-9
10-6 Coprocessor General Instruction Format (cpGEN) 10-10
10-7 Coprocessor Interface Protocol for General Category Instructions 10-11
10-8 Coprocessor Interface Protocol for Conditional Category Instructions. . . . 10-13
10-9 Branch on Coprocessor Condition Instruction (cpBcc.W) 10-14
10-10 Branch On Coprocessor Condition Instruction (cpBcc.L). 10-14
10-11 Set On Coprocessor Condition (cpScc) . 10-15
10-12 Test Coprocessor Condition, Decrement and Branch

Instruction Format (cpDBcc). 10-17
10-13 Trap On Coprocessor Condition (cpTRAPcc) . 10-18
10-14 Coprocessor State Frame Format in Memory . 10-21
10-15 Coprocessor Context Save Instruction Format (cpSAVE) 10-25
10-16 Coprocessor Context Save Instruction Protocol. 10-26
10-17 Coprocessor Context Restore Instruction Format (cpRESTORE) 10-27
10-18 Coprocessor Context Restore Instruction Protocol 10-28
10-19 Control CIR Format . 10-30
10-20 Condition CIR Format. 10-31
10-21 Operand Alignment for Operand CIR Accesses. 10-32
10-22 Coprocessor Response Primitive Format. 10-35
10-23 Busy Primitive Format . 10-36
10-24 Null Primitive Format . 10-37
10-25 Supervisor Check Primitive Format . 10-40
10-26 Transfer Operation Word Primitive Format . 10-41
10-27 Transfer from Instruction Stream Primitive Format 10-41
10-28 Evaluate and Transfer Effective Address Primitive Format 10-42
10-29 Evaluate Effective Address and Transfer Data Primitive 10-43
10-30 Write to Previously Evaluated EffectiveAddress Primitive Format 10-46
10-31 Take Address and Transfer Data Primitive Format 10-48
10-32 Transfer To/From Top of Stack Primitive Format . 10-49
10-33 Transfer Single Main Processor Register Primitive Format 10-50
10-34 Transfer Main Processor Control Register Primitive Format 10-51
10-35 Transfer Multiple Main Processor Registers Primitive Format 10-52
10-36 Register Select Mask Format . 10-52
10-37 Transfer Multiple Coprocessor Registers Primitive Format 10-53

xlii

MC68030 USER’S MANUAL

MOTOROLA

LIST OF ILLUSTRATIONS (Concluded)

Figure
Number

Title Page
Number

10-38 Operand Format in Memory for Transfer to —(An) 10-54
10-39 Transfer Status Register and ScanPC Primitive Format 10-55
10-40 Take Pre-Instruction Exception Primitive Format . 10-56
10-41 MC68030 Pre-Instruction Stack Frame . 10-57
10-42 Take Mid-Instruction Exception Primitive Format. 10-58
10-43 MC68030 Mid-Instruction Stack Frame . 10-59
10-44 Take Post-Instruction Exception Primitive Format 10-60
10-45 MC68030 Post-Instruction Stack Frame . 10-60

11-1 Block Diagram – Eight Independent Resources. 11-3
11-2 Simultaneous Instruction Execution . 11-7
11-3 Derivation of Instruction Overlap Time . 11-8
11-4 Processor Activity – Even Alignment . 11-9
11-5 Processor Activity – Odd Alignment . 11-10

12-1 Signal Routing for Adapting the MC68030 to MC68020 Designs 12-2
12-2 32-Bit Data Bus Coprocessor Connection . 12-6
12-3 Chip-Select Generation PAL . 12-8
12-4 PAL Equations . 12-8
12-5 Bus Cycle Timing Diagram. 12-9
12-6 Example MC68030 Byte Select PAL System Configuration 12-12
12-7 MC68030 Byte Select PAL Equations . 12-13
12-8 Access Time Computation Diagram. 12-15
12-9 Example Two-Clock Read, Three-Clock Write Memory Bank 12-19
12-10 Example PAL Equations for Two-Clock Memory Bank 12-20
12-11 Additional Memory Enable Circuits . 12-21
12-12 Example Two-Clock Read and Write Memory Bank 12-22
12-13 Example PAL Equation for Two-Clock Read and Write Memory Bank . . . 12-23
12-14 Example 2-1-1-1 Burst Mode Memory Bank at 20 MHz, 256K Bytes 12-25
12-15 Example 3-1-1-1 Pipelined Burst Mode Memory Bank at

20 MHz, 256K Bytes. 12-28
12-16 Additional Memory Enable Circuits . 12-29
12-17 Example MC68030 Hardware Configuration with

External Physical Cache . 12-33
12-18 Example Early Termination Control Circuit . 12-34
12-19 Normal Instruction Boundaries . 12-37
12-20 Trace or Interrupt Exception. 12-38
12-21 Other Exceptions . 12-38
12-22 Processor Halted . 12-39
12-23 Trace Interface Circuit . 12-41
12-24 PAL Pin Definition . 12-44
12-25 Logic Equations . 12-45

MOTOROLA

MC68030 USER’S MANUAL

xliii

LIST OF TABLES

Table
Number

Title Page
Number

1-1 Addressing Modes . 1-11
1-2 Instruction Set . 1-13

2-1 IS–I/IS Memory Indirection Encodings. 2-22

3-1 Data Movement Operations . 3-5
3-2 Integer Arithmetic Operations . 3-6
3-3 Logical Operations . 3-7
3-4 Shift and Rotate Operations. 3-8
3-5 Bit Manipulation Operations. 3-9
3-6 Bit Field Operations . 3-9
3-7 BCD Operations. 3-10
3-8 Program Control Operations . 3-11
3-9 System Control Operations . 3-12
3-10 MMU Instructions . 3-13
3-11 Multiprocessor Operations (Read-Modify-Write) . 3-13
3-12 Condition Code Computations (Sheet 1 of 2) . 3-15
3-13 Conditional Tests . 3-17
3-14 Instruction Set Summary (Sheet 1 of 5) . 3-20

4-1 Address Space Encodings. 4-5

5-1 Signal Index (Sheet 1 of 2). 5-2
5-2 Signal Summary. 5-12

7-1 DSACK Codes and Results . 7-7
7-2 Size Signal Encoding . 7-9
7-3 Address OffsetEncodings. 7-9
7-4 Data Bus Requirements for Read Cycles. 7-10
7-5 MC68030 Internal to External Data Bus. 7-11
7-6 Memory Alignment and Port Size Influence on Write Bus Cycles 7-19
7-7 Data Bus Write Enable Signals for Byte, Word, and Long-Word Ports . . . 7-23
7-8 DSACK, BERR, and HALT Assertion Results . 7-79
7-9 STERM, BERR, and HALT Assertion Results . 7-81

8-1 Exception Vector Assignments (Sheet 2 of 2) . 8-2
8-2 Exception Vector Assignments (Sheet 1 of 2) . 8-3
8-3 Microsequencer STATUS Indications . 8-4
8-4 Tracing Control. 8-13
8-5 Interrupt Levels and Mask Values . 8-16
8-6 Exception Priority Groups . 8-24

xliv

MC68030 USER’S MANUAL

MOTOROLA

Table
Number

Title Page
Number

LIST OF TABLES (Continued)

9-1 Size Restrictions . 9-10
9-2 Translation Tree Selection . 9-30
9-3 MMUSR Bit Definitions. 9-60

10-1 cpTRAPcc Opmode . 10-19
10-2 Coprocessor Format Word Encodings. 10-22
10-3 Null Coprocessor Response Primitive Encodings 10-39
10-4 Valid EffectiveAddress Codes . 10-43
10-5 Main Processor Control Register . 10-51
10-6 Exceptions Related to Primitive Processing. 10-66

12-1 Data Bus Activity for Byte, Word, and Long-Word Ports 12-11
12-2 Memory Access Time Equations at 20 MHz . 12-16
12-3 Calculated t

AVDV

 Values for Operation at Frequencies
Less Than or Equal to the CPU Maximum Frequency Rating 12-17

12-4 Microsequencer STATUS Indications . 12-36
12-5 List of Parts . 12-42
12-6 AS and ECSC Indicates. 12-43
12-7 V

CC

 and GND Pin Assignments. 12-46

MOTOROLA

MC68030 USER’S MANUAL

1-1

SECTION 1
INTRODUCTION

The MC68030 is a second-generation full 32-bit enhanced microprocessor from Motorola.
The MC68030 is a member of the M68000 Family of devices that combines a central
processing unit (CPU) core, a data cache, an instruction cache, an enhanced bus controller,
and a memory management unit (MMU) in a single VLSI device. The processor is designed
to operate at clock speeds beyond 20 MHz. The MC68030 is implemented with 32-bit
registers and data paths, 32-bit addresses, a rich instruction set, and versatile addressing
modes.

The MC68030 is upward object code compatible with the earlier members of the M68000
Family and has the added features of an on-chip MMU, a data cache, and an improved bus
interface. It retains the flexible coprocessor interface pioneered in the MC68020 and
provides full IEEE floating-point support through this interface with the MC68881 or
MC68882 floating-point coprocessor. Also, the internal functional blocks of this
microprocessor are designed to operate in parallel, allowing instruction execution to be
overlapped. In addition to instruction execution, the internal caches, the on-chip MMU, and
the external bus controller all operate in parallel.

The MC68030 fully supports the nonmultiplexed bus structure of the MC68020, with 32 bits
of address and 32 bits of data. The MC68030 bus has an enhanced controller that supports
both asynchronous and synchronous bus cycles and burst data transfers. It also supports
the MC68020 dynamic bus sizing mechanism that automatically determines device port
sizes on a cycle-by-cycle basis as the processor transfers operands to or from external
devices.

A block diagram of the MC68030 is shown in Figure 1-1. The instructions and data required
by the processor are supplied from the internal caches whenever possible. The MMU
translates the logical address generated by the processor into a physical address utilizing
its address translation cache (ATC). The bus controller manages the transfer of data
between the CPU and memory or devices at the physical address.

Introduction

1-2

MC68030 USER’S MANUAL

MOTOROLA

Figure 1-1. Block Diagram

 M
IC

R
O

SE
Q

U
EN

C
ER

 A
N

D
C

O
N

TR
O

L

C
O

N
TR

O
L

ST
O

R
E

IN
ST

R
U

C
TI

O
N

C
AC

H
E

ST
AG

E
B

ST
AG

E
C

ST
AG

E
D

IN
TE

R
N

AL
D

AT
A

BU
S

IN
ST

R
U

C
TI

O
N

 P
IP

E

 IN
ST

R
U

C
TI

O
N

AD
D

R
ES

S
BU

S

AD
D

R
ES

S
SE

C
TI

O
N

PR
O

G
R

AM
C

O
U

N
TE

R
SE

C
TI

O
N

D
AT

A
SE

C
TI

O
N

EX
EC

U
TI

O
N

 U
N

IT

M
IS

AL
IG

N
M

EN
T

M
U

LT
IP

LE
XE

R

SI
ZE

M
U

LT
IP

LE
XE

R
D

AT
A

PA
D

S
D

AT
A

BU
S

W
R

IT
E

PE
N

D
IN

G
BU

FF
ER

PR
EF

ET
C

H
 P

EN
D

IN
G

BU
FF

ER

 M
IC

R
O

BU
S

 C
O

N
TR

O
LL

ER

BU
S

C
O

N
TR

O
LL

ER

BU
S

C
O

N
TR

O
L

SI
G

N
AL

S

AD
D

R
ES

S
BU

S

AD
D

R
ES

S
PA

D
S

AD
D

R
ES

S
BU

S

AD
D

R
ES

S

D
AT

A
C

AC
H

E

D
AT

A
AD

D
R

ES
S

BU
S

C
AC

H
E

H
O

LD
IN

G
R

EG
IS

TE
R

(C
AH

R
)

AC
C

ES
S

C
O

N
TR

O
L

U
N

IT

C
O

N
TR

O
L

LO
G

IC

Introduction

MOTOROLA

MC68030 USER’S MANUAL

1-3

1.1 FEATURES

The features of the MC68030 microprocessor are:

• Object Code Compatible with the MC68020 and Earlier M68000 Microprocessors

• Complete 32-Bit Nonmultiplexed Address and Data Buses

• 16 32-Bit General-Purpose Data and Address Registers

• Two 32-Bit Supervisor Stack Pointers and 10 Special-Purpose Control Registers

• 256-Byte Instruction Cache and 256-Byte Data Cache Can Be Accessed Simulta-
neously

• Paged MMU that Translates Addresses in Parallel with Instruction Execution and Inter-
nal Cache Accesses

• Two Transparent Segments Allow Untranslated Access to Physical Memory To Be D
fined for Systems That Transfer Large Blocks of Data between Predefined Physical Ad-
dresses — e.g., Graphics Applications

• Pipelined Architecture with Increased Parallelism Allows Accesses to Internal Caches
To Occur in Parallel with Bus Transfers and Instruction Execution To Be Overlapped

• Enhanced Bus Controller Supports Asynchronous Bus Cycles (three clocks minimum),
Synchronous Bus Cycles (two clocks minimum), and Burst Data Transfers (one clock
minimum) all to the Physical Address Space

• Dynamic Bus Sizing Supports 8-, 16-, 32-Bit Memories and Peripherals

• Support for Coprocessors with the M68000 Coprocessor Interface — e.g., Full IEEE
Floating-Point Support Provided by the MC68881/MC68882 Floating-Point Coproces-
sors

• 4-Gbyte Logical and Physical Addressing Range

• Implemented in Motorola's HCMOS Technology That Allows CMOS and HMOS (High-
Density NMOS) Gates to be Combined for Maximum Speed, Low Power, and Optimum
Die Size

• Processor Speeds Beyond 20 MHz

Both improved performance and increased functionality result from the on-chip
implementation of the MMU and the data and instruction caches. The enhanced bus
controller and the internal parallelism also provide increased system performance. Finally,
the improved bus interface, the reduction in physical size, and the lower power consumption
combine to reduce system costs and satisfy cost/performance goals of the system designer.

Introduction

1-4

MC68030 USER’S MANUAL

MOTOROLA

1.2 MC68030 EXTENSIONS TO THE M68000 FAMILY

In addition to the on-chip instruction cache present in the MC68020, the MC68030 has an
internal data cache. Data that is accessed during read cycles may be stored in the on-chip
cache, where it is available for subsequent accesses. The data cache reduces the number
of external bus cycles when the data operand required by an instruction is already in the
data cache.

Performance is enhanced further because the on-chip caches can be internally accessed in
a single clock cycle. In addition, the bus controller provides a two-clock cycle synchronous
mode and burst mode accesses that can transfer data in as little as one clock per long word.

The MC68030 enhanced microprocessor contains an on-chip MMU that allows address
translation to operate in parallel with the CPU core, the internal caches, and the bus
controller.

Additional signals support emulation and system analysis. External debug equipment can
disable the on-chip caches and the MMU to freeze the MC68030 internal state during
breakpoint processing. In addition, the MC68030 indicates:

1. The start of a refill of the instruction pipe

2. Instruction boundaries

3. Pending trace or interrupt processing

4. Exception processing

5. Halt conditions

This status and control information allows external debugging equipment to trace the
MC68030 activity and interact nonintrusively with the MC68030 to effectively reduce system
debug effort.

1.3 PROGRAMMING MODEL

The programming model of the MC68030 consists of two groups of registers: the user model
and the supervisor model. This corresponds to the user and supervisor privilege levels. User
programs executing at the user privilege level use the registers of the user model. System
software executing at the supervisor level uses the control registers of the supervisor level
to perform supervisor functions.

Introduction

MOTOROLA

MC68030 USER’S MANUAL

1-5

Figure 1-2 shows the user programming model, consisting of 16 32-bit general-purpose reg-
isters and two control registers:

• General-Purpose 32-Bit Registers (D0–D7, A0–A7)

• 32-Bit Program Counter (PC)

• 8-Bit Condition Code Register (CCR)

The supervisor programming model consists of the registers available to the user plus 14
control registers:

• Two 32-Bit Supervisor Stack Pointers (ISP and MSP)

• 16-Bit Status Register (SR)

• 32-Bit Vector Base Register (VBR)

• 32-Bit Alternate Function Code Registers (SFC and DFC)

• 32-Bit Cache Control Register (CACR)

• 32-Bit Cache Address Register (CAAR)

• 64-Bit CPU Root Pointer (CRP)

• 64-Bit Supervisor Root Pointer (SRP)

• 32-Bit Translation Control Register (TC)

• 32-Bit Transparent Translation Registers (TT0 and TT1)

• 16-Bit MMU Status Register (MMUSR)

The user programming model remains unchanged from previous M68000 Family
microprocessors. The supervisor programming model supplements the user programming
model and is used exclusively by the MC68030 system programmers who utilize the
supervisor privilege level to implement sensitive operating system functions, I/O control, and
memory management subsystems. The supervisor programming model contains all the
controls to access and enable the special features of the MC68030. This segregation was
carefully planned so that all application software is written to run at the nonprivileged user
level and migrates to the MC68030 from any M68000 platform without modification. Since
system software is usually modified by system programmers when ported to a new design,
the control features are properly placed in the supervisor programming model. For example,
the transparent translation feature of the MC68030 is new to the family supervisor
programming model for the MC68030 and the two translation registers are new additions to
the family supervisor programming model for the MC68030. Only supervisor code uses this
feature, and user application programs remain unaffected.

Introduction

1-6

MC68030 USER’S MANUAL

MOTOROLA

Registers D0–D7 are used as data registers for bit and bit field (1 to 32 bits), byte (8 bit),
word (16 bit), long-word (32 bit), and quad-word (64 bit) operations. Registers A0–A6 and
the user, interrupt, and master stack pointers are address registers that may be used as
software stack pointers or base address registers. Register A7 (shown as A7' and A7'' in
Figure 1-3) is a register designation that applies to the user stack pointer in the user privilege
level and to either the interrupt or master stack pointer in the supervisor privilege level. In
the supervisor privilege level, the active stack pointer (interrupt or master) is called the
supervisor stack pointer (SSP). In addition, the address registers may be used for word and
long-word operations. All of the 16 general-purpose registers (D0–D7, A0–A7) may be used
as index registers.

Figure 1-2. User Programming Model

31 16 15 8 7

7

0

31 16 15 0

31 16 15

15

0

31 0

0

CCR

PC

A7 (USP)

D0

D1

D2

D3

D4

D5

D6

D7

A0

A1

A2

A3

A4

A5

A6

DATA
REGISTERS

ADDRESS
REGISTERS

USER STACK
POINTER

PROGRAM
COUNTER

CONDITION
CODE
REGISTER

Introduction

MOTOROLA

MC68030 USER’S MANUAL

1-7

The program counter (PC) contains the address of the next instruction to be executed by the
MC68030. During instruction execution and exception processing, the processor
automatically increments the contents of the PC or places a new value in the PC, as
appropriate.

The status register, SR, (see Figure 1-4) stores the processor status. It contains the
condition codes that reflect the results of a previous operation and can be used for
conditional instruction execution in a program. The condition codes are extend (X), negative
(N), zero (Z), overflow (V), and carry (C). The user byte containing the condition codes is the
only portion of the status register information available in the user privilege level, and it is
referenced as the CCR in user programs. In the supervisor privilege level, software can
access the full status register, including the interrupt priority mask (three bits) as well as
additional control bits. These bits indicate whether the processor is in:

1. One of two trace modes (T1, T0)

2. Supervisor or user privilege level (S)

3. Master or interrupt mode (M)

The vector base register (VBR) contains the base address of the exception vector table in
memory. The displacement of an exception vector is added to the value in this register to
access the vector table.

Figure 1-3. Supervisor Programming Model Supplement

31 16 15 0

31 16 15 0

15 8 7 0

(CCR) SR

A7" (MSP)

A7' (ISP)

31 0

VBR

SFC

DFC

CACR

CAAR

INTERRUPT
STACK POINTER

MASTER STACK
POINTER

STATUS REGISTER

VECTOR BASE
REGISTER

ALTERNATE FUNCTION
CODE REGISTERS

CACHE CONTROL
REGISTER

CACHE ADDRESS
REGISTER

0

0

0

31

31

31

AC0
ACCESS
CONTROL
REGISTER 0

031

AC1
ACCESS
CONTROL
REGISTER 1

031

ACUSR
ACU STATUS
REGISTER

015

Introduction

1-8

MC68030 USER’S MANUAL

MOTOROLA

Alternate function code registers, SFC and DFC, contain 3-bit function codes. Function
codes can be considered extensions of the 32-bit linear address that optionally provide as
many as eight 4-Gbyte address spaces. Function codes are automatically generated by the
processor to select address spaces for data and program at the user and supervisor
privilege levels and a CPU address space for processor functions (e.g., coprocessor
communications). Registers SFC and DFC are used by certain instructions to explicitly
specify the function codes for operations.

The cache control register (CACR) controls the on-chip instruction and data caches of the
MC68030. The cache address register (CAAR) stores an address for cache control
functions.

The CPU root pointer (CRP) contains a pointer to the root of the translation tree for the
currently executing task of the MC68030. This tree contains the mapping information for the
task's address space. When the MC68030 is configured to provide a separate address
space for supervisor routines, the supervisor root pointer (SRP) contains a pointer to the root
of the translation tree describing the supervisor's address space.

The translation control register (TC) consists of several fields that control address
translation. These fields enable and disable address translation, enable and disable the use
of SRP for the supervisor address space, and select or ignore the function codes in
translating addresses. Other fields define the size of memory pages, the number of address
bits used in translation, and the translation table structure.

The transparent translation registers, TT0 and TT1, can each specify separate blocks of
memory as directly accessible without address translation. Logical addresses in these areas
become the physical addresses for memory access. Function codes and the eight most
significant bits of the address can be used to define the area of memory and type of access;
either read, write, or both types of memory access can be directly mapped. The transparent
translation feature allows rapid movement of large blocks of data in memory or I/O space
without disturbing the context of the on-chip address translation cache or incurring delays
associated with translation table lookups. This feature is useful to graphics, controller, and
real-time applications.

Figure 1-4. Status Register

T1 T0 S M 0 I2 I1 I0 X N Z V C0 0 0

SYSTEM BYTE
USER BYTE

(CONDITION CODE REGISTER)

TRACE
ENABLE

INTERRUPT
PRIORITY MASK

SUPERVISOR/USER
STATE

MASTER/INTERRUPT
STATE EXTEND

NEGATIVE

ZERO

OVERFLOW

CARRY

15 14 13 12 11 10 9 8 7 56 4 3 2 1 0

Introduction

MOTOROLA

MC68030 USER’S MANUAL

1-9

The MMU status register (MMUSR) contains memory management status information
resulting from a search of the address translation cache or the translation tree for a particular
logical address.

1.4 DATA TYPES AND ADDRESSING MODES

Seven basic data types are supported:

1. Bits

2. Bit Fields (Fields of consecutive bits, 1–32 bits long)

3. BCD Digits (Packed: 2 digits/byte, Unpacked: 1 digit/byte)

4. Byte Integers (8 bits)

5. Word Integers (16 bits)

6. Long-Word Integers (32 bits)

7. Quad-Word Integers (64 bits)

In addition, the instruction set supports operations on other data types such as memory
addresses. The coprocessor mechanism allows direct support of floating-point operations
with the MC68881 and MC68882 floating-point coprocessors as well as specialized user-
defined data types and functions.

The 18 addressing modes, shown in Table 1-1, include nine basic types:

1. Register Direct

2. Register Indirect

3. Register Indirect with Index

4. Memory Indirect

5. Program Counter Indirect with Displacement

6. Program Counter Indirect with Index

7. Program Counter Memory Indirect

8. Absolute

9. Immediate

The register indirect addressing modes can also postincrement, predecrement, offset, and
index addresses. The program counter relative mode also has index and offset capabilities.
As in the MC68020, both modes are extended to provide indirect reference through memory.
In addition to these addressing modes, many instructions implicitly specify the use of the
condition code register, stack pointer, and/or program counter.

1.5 INSTRUCTION SET OVERVIEW

The instructions in the MC68030 instruction set are listed in Table 1-2. The instruction set
has been tailored to support structured high-level languages and sophisticated operating
systems. Many instructions operate on bytes, words, or long words, and most instructions
can use any of the 18 addressing modes.

Introduction

1-10

MC68030 USER’S MANUAL

MOTOROLA

NOTES:
Dn = Data Register, D0–D7
An = Address Register, A0–A7

8,

d

16 = A twos-complement or sign-extended displacement; added as part of the effective address
calculation; size is 8 (d

8

) or 16 (d

16

) bits; when omitted, assemblers use a value of zero.
Xn = Address or data register used as an index register; form is Xn.SIZE*SCALE, where SIZE is .W

or .L indicates index register size) and SCALE is 1, 2, 4, or 8 (index register is multiplied by
SCALE); use of SIZE and/or SCALE is optional.

bd = A twos-complement base displacement;when present, size can be 16 or 32 bits.
od = Outer displacement, added as part of effective address calculation after any memory

indirection; use is optional with asize of 16 or 32 bits.
PC = Program Counter

(data) = Immediate value of 8, 16, or 32 bits
() = Effective Address
[] = Use as indirect access to long-word address.

Table 1-1. Addressing Modes

Addressing Modes Syntax

Register Direct
Data Register Direct
Address Register Direct

Dn
An

Register Indirect
Address Register Indirect
Address Register Indirect with Postincrement
Address Register Indirect with Predecrement
Address Register Indirect with Displacement

(An)
(An)
–(An)
(d

16

,An)

Register Indirect with Index
Address Register Indirect with Index (8-BitDisplacement)
Address Register Indirect with Index (Base Displacement)

(d

8

,An,Xn)
(bd,An,Xn)

Memory Indirect
Memory Indirect Postindexed
Memory Indirect Preindexed

([bd,An],Xn,od)
([bd,An,Xn],od)

Program Counter Indirect with Displacement (d

16

,PC)

Program Cou nter Indirect with IndexPC Indirect with Index (8-Bit
Displacement)
PC Indirect with Index (Base Displacement)

(d

8

,PC,Xn)
(bd,PC,Xn)

Program Counter Memory Indirect
PC Memory Indirect Postindexed
PC Memory Indirect Preindexed

([bd,PC],Xn,od)
([bd,PC,Xn],od)

Absolute
Absolute Short
Absolute Long

(xxx).W
(xxx).L

Immediate #(data)

Introduction

MOTOROLA

MC68030 USER’S MANUAL

1-11

1.6 VIRTUAL MEMORY AND VIRTUAL MACHINE CONCEPTS

The full addressing range of the MC68030 is 4 Gbytes (4,294,967,296 bytes) in each of eight
address spaces. Even though most systems implement a smaller physical memory, the
system can be made to appear to have a full 4 Gbytes of memory available to each user
program by using virtual memory techniques.

In a virtual memory system, a user program can be written as if it has a large amount of
memory available, when the physical memory actually present is much smaller. Similarly, a
system can be designed to allow user programs to access devices that are not physically
present in the system, such as tape drives, disk drives, printers, terminals, and so forth. With
proper software emulation, a physical system can appear to be any other M68000 computer
system to a user program, and the program can be given full access to all of the resources
of that emulated system. Such an emulated system is called a virtual machine.

1.6.1 Virtual Memory

A system that supports virtual memory has a limited amount of high-speed physical memory
that can be accessed directly by the processor and maintains an image of a much larger
virtual memory on a secondary storage device such as a large-capacity disk drive. When
the processor attempts to access a location in the virtual memory map that is not resident in
physical memory, a page fault occurs. The access to that location is temporarily suspended
while the necessary data is fetched from secondary storage and placed in physical memory.
The suspended access is then either restarted or continued.

The MC68030 uses instruction continuation to support virtual memory. When a bus cycle is
terminated with a bus error, the microprocessor suspends the current instruction and
executes the virtual memory bus error handler. When the bus error handler has completed
execution, it returns control to the program that was executing when the error was detected,
reruns the faulted bus cycle (when required), and continues the suspended instruction.

Introduction

1-12

MC68030 USER’S MANUAL

MOTOROLA

Table 1-2. Instruction Set

Mnemonic Description Mnemonic Description

ABCD Add Decimal with Extend MOVE USP Move User Stack Pointer
ADD Add MOVEC Move Control Register
ADDA Add Address MOVEM Move Multiple Registers
ADDI Add Immediate MOVEP Move Periphral
ADDQ Add Quick MOVEQ Move Quick
ADDX Add with Extend MOVES Move Alternate Address Space
AND Logical AND MULS Signed Multiply
ANDI Logical AND Immediate MULU Unsigned Multiply
ASL, ASR Arithmatic Shift Left and Right NBCD Negate Decimal with Extend
Bcc Branch Conditionally NEG Negate
BCHG Test Bit and Change NEGX Negate with Extend
BCLR Test Bit and Clear NOP No Operation
BFCHG Test Bit Feild and Change NOT Logical Compliment
BFCLR Test Bit Feild and Clear OR Logical Inclusive OR
BFEXTS Signed Bit Feild Extract ORI Logical Inclusive OR Immediate
BFEXTU Unsigned Bit Feild Extract ORI CCR Logical Inclusive OR Immediate to
BFFO Bit Feild Find First One Condition Codes
BFINS Bit Feild Insert ORI SR Logical Inclusive OR Immediate to
BFSET Test Bit Feild and Set Status Register
BFTST Test Bit Feild PACK Pack BCD
BKPT Breakpoint PEA Push Effective Address
BRA Branch PFLUSH Flush Entry(ies) in the ATC
BSET Test Bit and Set PFLUSHA Flush All Entries in the ATC
BSR Branch to Subroutine PLOADR, Load Entry into the ATC
BTST Test Bit PLOADW
CAS Compare and Swap Operands PMOVE Move to-from MMU Registers
CAS 2 Compare and Swap Dual Operands PMOVEFD Move to-from MMU Registers with
CHK Check Register Against Bound Flush Disable
CHK2 Check Register Against Upper and PTESTR Test a Logical Address

Lower Bounds PTESTW
CLR Clear RESET Reset External Devices
CMP Compare ROL, ROR Rotate Left and Right
CMPA Compare Address ROXL, ROXR Rotate With Extend Left and Right
CMPI Compare Immediate RTD Return and Deallocate
CMPM Compare Memory to Memory RTE Return from Exception
CMP2 Compare Registre Against Upper and RTR Return and Restore Codes

Lower Bounds RTS Return from Subroutine
DBcc Test Condition, Decrement and Branch SBCD Subtract Decimal With Extend
DIVS, DIVSL Signed Divide Scc Set Conditionally
DIVU, DIVUL Unsigned Divide STOP Stop
EOR Logical Exclusive OR SUB Subtract
EORI Logical Exclusive OR Immediate SUBA Subtract Immediate
EXG Exchange Registers SUBI Subtract Quick
EXT, EXTB Sign Extend SUBQ Subtract with Extend
ILLEGAL Take Illegal Instruction Trap SUBX Swap Register Words
JMP Jump SWAP Test Operand and Set
JSR Jump to Subroutine TAS Trap
LEA Load Effective Address TRAP Trap Conditionally
LINK Link and Allocate TRAPcc Trap on Overflow
LSL, LSR Logical Shift Left and Right TRAPV Test on Overflow
MOVE Move TST Test Operand
MOVEA Move Address UNLK

UNPK
Unlink
Unpack BCD

MOVE CCR Move Condition Code Register
MOVE SR Move Status Register

Introduction

MOTOROLA

MC68030 USER’S MANUAL

1-13

1.6.2 Virtual Machine

A typical use for a virtual machine system is the development of software, such as an
operating system, for a new machine also under development and not yet available for
programming use. In a virtual machine system, a governing operating system emulates the
hardware of the new machine and allows the new software to be executed and debugged
as though it were running on the new hardware. Since the new software is controlled by the
governing operating system, it is executed at a lower privilege level than the governing
operating system. Thus, any attempts by the new software to use virtual resources that are
not physically present (and should be emulated) are trapped to the governing operating
system and performed by its software.

In the MC68030 implementation of a virtual machine, the virtual application runs at the user
privilege level. The governing operating system executes at the supervisor privilege level
and any attempt by the new operating system to access supervisor resources or execute
privileged instructions causes a trap to the governing operating system.

Instruction continuation is used to support virtual I/O devices in memory-mapped input/
output systems. Control and data registers for the virtual device are simulated in the memory
map. An access to a virtual register causes a fault and the function of the register is
emulated by software.

Mnemonic Description Mnemonic Description

cpBcc
cpDBcc

cpGEN

Branch Conditionally
Test Coprocessor Condition,

Decrement and Branch
Coprocessor General Instruction

cpRESTORE
cpSAVE
cpScc
cpTRAPcc

Restore Internal State of Coprocessor
Save Internal State of Coprocessor
Set Conditionally
Trap Conditionally

Introduction

1-14

MC68030 USER’S MANUAL

MOTOROLA

1.7 THE MEMORY MANAGEMENT UNIT

The MMU supports virtual memory systems by translating logical addresses to physical ad-
dresses using translation tables stored in memory. The MMU stores address mappings in
an address translation cache (ATC) that contains the most recently used translations. When
the ATC contains the address for a bus cycle requested by the CPU, a translation table
search is not performed. Features of the MMU include:

• Multiple Level Translation Tables with Short- and Long-Format Descriptors for Efficient
Table Space Usage

• Table Searches Automatically Performed in Microcode

• 22-Entry Fully Associative ATC

• Address Translations and Internal Instruction and Data Cache Accesses Performed in
Parallel

• Eight Page Sizes Available Ranging from 256 to 32K Bytes

• Two Optional Transparent Blocks

• User and Supervisor Root Pointer Registers

• Write Protection and Supervisor Protection Attributes

• Translations Enabled/Disabled by Software

• Translations Can Be Disabled with External MMUDIS Signal

• Used and Modified Bits Automatically Maintained in Tables and ATC

• Cache Inhibit Output (CIOUT) Signal Can Be Asserted on a Page-by-Page Basis

• 32-Bit Internal Logical Address with Capability To Ignore as many as 15 Upper Address
Bits

• 3-Bit Function Code Supports Separate Address Spaces

• 32-Bit Physical Address

The memory management function performed by the MMU is called demand paged memory
management. Since a task specifies the areas of memory it requires as it executes, memory
allocation is supported on a demand basis. If a requested access to memory is not currently
mapped by the system, then the access causes a demand for the operating system to load
or allocate the required memory image. The technique used by the MC68030 is paged
memory management because physical memory is managed in blocks of a specified
number of bytes, called page frames. The logical address space is divided into fixed-size
pages that contain the same number of bytes as the page frames. Memory management
assigns a physical base address to a logical page. The system software then transfers data
between secondary storage and memory one or more pages at a time.

Introduction

MOTOROLA

MC68030 USER’S MANUAL

1-15

1.8 PIPELINED ARCHITECTURE

The MC68030 uses a three-stage pipelined internal architecture to provide for optimum
instruction throughput. The pipeline allows as many as three words of a single instruction or
three consecutive instructions to be decoded concurrently.

1.9 THE CACHE MEMORIES

Due to locality of reference, instructions and data that are used in a program have a high
probability of being reused within a short time. Additionally, instructions and data operands
that reside in proximity to the instructions and data currently in use also have a high
probability of being utilized within a short period. To exploit these locality characteristics, the
MC68030 contains two on-chip logical caches, a data cache, and an instruction cache.

Each of the caches stores 256 bytes of information, organized as 16 entries, each containing
a block of four long words (16 bytes). The processor fills the cache entries either one long
word at a time or, during burst mode accesses, four long words consecutively. The burst
mode of operation not only fills the cache efficiently but also captures adjacent instruction or
data items that are likely to be required in the near future due to locality characteristics of
the executing task.

The caches improve the overall performance of the system by reducing the number of bus
cycles required by the processor to fetch information from memory and by increasing the
bus bandwidth available for other bus masters in the system. Addition of the data cache in
the MC68030 extends the benefits of cache techniques to all memory accesses. During a
write cycle, the data cache circuitry writes data to a cached data item as well as to the item
in memory, maintaining consistency between data in the cache and that in memory.
However, writing data that is not in the cache may or may not cause the data item to be
stored in the cache, depending on the write allocation policy selected in the cache control
register (CACR).

MOTOROLA

MC68030 USER’S MANUAL

2-1

SECTION 2
DATA ORGANIZATION AND ADDRESSING
CAPABILITIES

Most external references to memory by a microprocessor are either program references or
data references; they either access instruction words or operands (data items) for an
instruction. Program references are references to the program space, the section of memory
that contains the program instructions and any immediate data operands that reside in the
instruction stream. Refer to M68000PM/AD,

M68000 Programmer's Reference Manual

, for
descriptions of the instructions in the program space. Data references refer to the data
space, the section of memory that contains the program data. Data items in the instruction
stream can be accessed with the program counter relative addressing modes, and these
accesses are classified as program references. A third type of external reference used for
coprocessor communications, interrupt acknowledge cycles, and breakpoint acknowledge
cycles is classified as a CPU space reference. The MC68030 automatically sets the function
codes to access the program space, the data space, or the CPU space for special functions
as required. The function codes can be used by the memory management unit to organize
separate program (read only) and data (read-write) memory areas.

This section describes the data organization and addressing capabilities of the MC68030. It
lists the types of operands used by instructions and describes the registers and their use as
operands. Next, the section describes the organization of data in memory and the
addressing modes available to access data in memory. Last, the section describes the
system stack and user program stacks and queues.

2.1 INSTRUCTION OPERANDS

The MC68030 supports a general-purpose set of operands to serve the requirements of a
large range of applications. Operands of MC68030 instructions may reside in registers, in
memory, or within the instructions themselves. An instruction operand might also reside in
a coprocessor. An operand may be a single bit, a bit field of from 1 to 32 bits in length, a byte
(8 bits), a word (16 bits), a long word (32 bits), or a quad word (64 bits). The operand size
for each instruction is either explicitly encoded in the instruction or implicitly defined by the
instruction operation. Coprocessors are designed to support special computation models
that require very specific but widely varying data operand types and sizes. Hence,
coprocessor instructions can specify operands of any size.

Data Organization and Addressing Capabilities

2-2

MC68030 USER’S MANUAL

MOTOROLA

2.2 ORGANIZATION OF DATA IN REGISTERS

The eight data registers can store data operands of 1, 8, 16, 32, and 64 bits, addresses of
16 or 32 bits, or bit fields of 1 to 32 bits. The seven address registers and the three stack
pointers are used for address operands of 16 or 32 bits. The control registers (SR, VBR,
SFC, DFC, CACR, CAAR, CRP, SRP, TC, TT0, TT1, and MMUSR) vary in size according
to function. Coprocessors may define unique operand sizes and support them with on-chip
registers accordingly.

2.2.1 Data Registers

Each data register is 32 bits wide. Byte operands occupy the low-order 8 bits, word
operands the low-order 16 bits, and long-word operands the entire 32 bits. When a data
register is used as either a source or destination operand, only the appropriate low-order
byte or word (in byte or word operations, respectively) is used or changed; the remaining
high-order portion is neither used nor changed. The least significant bit of a long-word
integer is addressed as bit zero, and the most significant bit is addressed as bit 31. For bit
fields, the most significant bit is addressed as bit zero, and the least significant bit is
addressed as the width of the field minus one. If the width of the field plus the offset is greater
than 32, the bit field wraps around within the register. The following illustration shows the
organization of various types of data in the data registers.

Quad-word data consists of two long words; for example, the product of 32-bit multiply or
the quotient of 32-bit divide operations (signed and unsigned). Quad words may be
organized in any two data registers without restrictions on order or pairing. There are no
explicit instructions for the managment of this data type, although the MOVEM instruction
can be used to move a quad word into or out of the registers.

Binary-coded decimal (BCD) data represents decimal numbers in binary form. Although
many BCD codes have been devised, the BCD instructions of the M68000 Family support
formats which the four least significant bits consist of a binary number having the numeric
value of the corresponding decimal number. Two BCD formats are used. In the unpacked
BCD format, a byte contains one digit; the four least significant bits contain the binary value
and the four most significant bits are undefined. Each byte of the packed BCD format
contains two digits; the least significant four bits contain the least significant digit.

Data Organization and Addressing Capabilities

MOTOROLA

MC68030 USER’S MANUAL

2-3

Note: If width + offset < 32, bit filed wraps around within the register.

Data Organization in Data Registers

Bit

≤

 (0 Modulo (Offset)<31, Offset of 0 = MSB)

31 30 29 1 0

MSB

• • •

LSB

Byte

31 24 23 16 15 8 7 0

High-Order Byte Middle-High Byte Middle-Low Byte Low-Order Byte

16-Bit Word

31 16 15 0

High-Order Word Low-Order Word

Long Word

31 0

Long Word

Quad Word

63 62 32

MSB Any Dx

31 0

Offset MSB

• • •

LSB

Bit Field (0

≤

 Offset<32, 0<Width

≤

 32)

31 0

Long Word

Unpacked BCD (a = MSB)

31 8 7 6 5 4 3 2 1 0

x x x x a b c d

Packed BCD (a = MSB First Digit, e = MSB Second Digit)

31 8 7 6 5 4 3 2 1 0

a b c d e f g h

Data Organization and Addressing Capabilities

2-4

MC68030 USER’S MANUAL

MOTOROLA

2.2.2 Address Registers

Each address register and stack pointer is 32 bits wide and holds a 32-bit address. Address
registers cannot be used for byte-sized operands. Therefore, when an address register is
used as a source operand, either the low-order word or the entire long-word operand is
used, depending upon the operation size. When an address register is used as the
destination operand, the entire register is affected, regardless of the operation size. If the
source operand is a word size, it is first sign-extended to 32 bits and then used in the
operation to an address register destination. Address registers are used primarily for
addresses and to support address computation. The instruction set includes instructions
that add to, subtract from, compare, and move the contents of address registers. The
following example shows the organization of addresses in address registers.

Address Organization in Address Registers

2.2.3 Control Registers

The control registers described in this section contain control information for supervisor
functions and vary in size. With the exception of the user portion of the status register (CCR),
they are accessed only by instructions at the supervisor privilege level.

The status register (SR), shown in Figure 1–4, is 16 bits wide. Only 12 bits of the status
register are defined; all undefined values are reserved by Motorola for future definition. The
undefined bits are read as zeros and should be written as zeros for future compatibility. The
lower byte of the status register is the CCR. Operations to the CCR can be performed at the
supervisor or user privilege level. All operations to the status register and CCR are word-
sized operations, but for all CCR operations, the upper byte is read as all zeros and is
ignored when written, regardless of privilege level.

31 16 15 0
Sign-Extended 16-Bit Address Operand

31 0
Full 32-Bit Address Operand

Data Organization and Addressing Capabilities

MOTOROLA

MC68030 USER’S MANUAL

2-5

The supervisor programming model (see Figure 1–3) shows the control registers. The cache
control register (CACR) provides control and status information for the on-chip instruction
and data caches. The cache address register (CAAR) contains the address for cache control
functions. The vector base register (VBR) provides the base address of the exception vector
table. All operations involving the CACR, CAAR, and VBR are long-word operations,
whether these registers are used as the source or the destination operand.

The alternate function code registers (SFC and DFC)

 are 32-bit registers with only bits 2:0 implemented that contain the address space values
(FC0-FC2) for the read or write operands of MOVES, PLOAD, PFLUSH, and PTEST
instructions. The MOVEC instruction is used to transfer values to and from the alternate
function code registers. These are long-word transfers; the upper 29 bits are read as zeros
and are ignored when written.

The remaining control registers in the supervisor programming model are used by the
memory management unit (MMU). The CPU root pointer (CRP) and supervisor root pointer
(SRP) contain pointers to the user and supervisor address translation trees. Transfers of
data to and from these 64-bit registers are quad-word transfers. The translation control
register (TC) contains control information for the MMU. The MC68030 always uses long-
word transfers to access this 32-bit register. The transparent translation registers (TT0 and
TT1) also contain 32 bits each; they identify memory areas for direct addressing without
address translation. Data transfers to and from these registers are long-word transfers. The
MMU status register (MMUSR) stores the status of the MMU after execution of a PTEST
instruction. It is a 16-bit register, and transfers to and from the MMUSR are word transfers.
Refer to

Section 9 Memory Management Unit

 for more detail.

2.3 ORGANIZATION OF DATA IN MEMORY

Memory is organized on a byte-addressable basis where lower addresses correspond to
higher order bytes. The address, N, of a long-word data item corresponds to the address of
the most significant byte of the highest order word. The lower order word is located at
address N + 2, leaving the least significant byte at address N + 3 (refer to Figure 2–1). Notice
that the MC68030 does not require data to be aligned on word boundaries (refer to Figure
2–2), but the most efficient data transfers occur when data is aligned on the same byte
boundary as its operand size. However, instruction words must be aligned on word
boundaries.

Data Organization and Addressing Capabilities

2-6

MC68030 USER’S MANUAL

MOTOROLA

The data types supported in memory by the MC68030 are bit and bit field data; integer data
of 8, 16, or 32 bits; 32-bit addresses; and BCD data (packed and unpacked). These data
types are organized in memory as shown in Figure 2–2. Note that all of these data types can
be accessed at any byte address.

Coprocessors can implement any data types and lengths up to 255 bytes. For example, the
MC68881/MC68882 floating-point coprocessors support memory accesses for quad-word-
sized items (double-precision floating-point values).

Figure 2A bit operand is specified by a base address that selects one byte in memory (the
base byte) and a bit number that selects the one bit in this byte. The most significant bit of
the byte is bit 7.

Figure 2-1. Memory Operand Address

31 23 15 7 0

BYTE $00000000

WORD $00000000

LONG WORD $00000000

BYTE $00000001 BYTE $00000002 BYTE $00000003

WORD $00000002

BYTE $00000004

WORD $00000004

LONG WORD $00000004

BYTE $00000005 BYTE $00000006 BYTE $00000007

WORD $00000006

BYTE $FFFFFFFC

WORD $FFFFFFFC

LONG WORD $FFFFFFFC

BYTE $FFFFFFFD BYTE $FFFFFFFE BYTE $FFFFFFFF

WORD $FFFFFFFE

Data Organization and Addressing Capabilities

MOTOROLA

MC68030 USER’S MANUAL

2-7

Figure 2-2. Memory Data Organization

0 77 0 7 0 7 0

0 77 0 7 0 7 0

0 77 0 7 0 7 0

0 77 0 7 0 7 0

0 77 0 7 0 7 0

0 7 0 7 0 7 0

BYTE n - 1 BYTE n + 17 6 5 4 3 2 1 0 BYTE n + 2

BASE ADDRESS BIT NUMBER

BIT DATA

BYTE n - 1

BIT FIELD DATA BASE BIT

BYTE n 0 1 2 3 w - 1

WIDTHOFFSETOFFSET
 ...3-2-1 0 1 2...
BASE ADDRESS

BYTE n - 1 BYTE n + 2

BYTE INTEGER DATA

BYTE n + 1MSB BYTE n LSB

ADDRESS

WORD INTEGER BYTE n + 2 BYTE n + 3

ADDRESS

WORD INTEGER DATA
7077 0

70 0 7 0 7 07077 0

 LONG-WORD INTEGER BYTE n + 4

70 0 7 0 7 07077 0

ADDRESS

BYTE n - 1

 QUAD WORD
BYTE n + 8

BYTE n - 1

QUAD-WORD DATA

BYTE n - 1 BYTE n + 2BYTE n + 1MSD LSD

ADDRESS

PACKED BINARY-CODED DATA

4 3

BYTE n - 1 BYTE n + 2XX MSD

ADDRESS

4 3

XX LSD

4 3

XX = USER DEFINED VALUE

ADDRESS

UNPACKED BINARY-CODED DATA

BYTE n - 1

Data Organization and Addressing Capabilities

2-8

MC68030 USER’S MANUAL

MOTOROLA

A bit field operand is specified by:

1. A base address that selects one byte in memory,

2. A bit field offset that indicates the leftmost (base) bit of the bit field in relation to the
most significant bit of the base byte, and

3. A bit field width that determines how many bits to the right of the base bit are in the bit
field.

The most significant bit of the base byte is bit field offset 0, the least significant bit of the
base byte is bit field offset 7, and the least significant bit of the previous byte in memory is
bit offset –1. Bit field offsets may have values in the range of –2

31

 to 2

31

–1, and bit field
widths may range between 1 and 32 bits.

2.4 ADDRESSING MODES

The addressing mode of an instruction can specify the value of an operand (with an
immediate operand), a register that contains the operand (with the register direct addressing
mode), or how the effective address of an operand in memory is derived. An assembler
syntax has been defined for each addressing mode.

Figure 2–3 shows the general format of the single effective address instruction operation
word. The effective address field specifies the addressing mode for an operand that can use
one of the numerous defined modes. The (eaL designation is composed of two 3-bit fields:
the mode field and the register field. The value in the mode field selects one or a set of
addressing modes. The register field specifies a register for the mode or a submode for
modes that do not use registers.

Figure 2-3. Single Effective Address

Many instructions imply the addressing mode for one of the operands. The formats of these
instructions include appropriate fields for operands that use only one addressing mode.

15 14 13 12 11 10 9 8 7 6 5 0

X X X X X X X X X X
EFFECTIVE ADDRESS

MODE REGISTER

Data Organization and Addressing Capabilities

MOTOROLA

MC68030 USER’S MANUAL

2-9

The effective address field may require additional information to fully specify the operand
address. This additional information, called the effective address extension, is contained in
an additional word or words and is considered part of the instruction. Refer to

 2.5 Effective
Address Encoding Summary

 for a description of the extension word formats.

The notational conventions used in the addressing mode descriptions in this section are:

EA — Effective address
An — Address register n

Example: A3 is address register 3
Dn — Data register n

Example: D5 is data register 5
Xn.SIZE*SCALE — Denotes index register n (data or address), the index size

(W for word, L for long word), and a scale factor (1, 2, 4,
or 8 for no, word, long-word, or quad-word scaling, respectively).

PC — The program counter
d

n

— Displacement value, n bits wide
bd — Base displacement
od — Outer displacement
L — Long-word size

W — Word size
() — Identify an indirect address in a register
[] — Identify an indirect address in memory

When the addressing mode uses a register, the register field of the operation word specifies
the register to be used. Other fields within the instruction specify whether the register
selected is an address or data register and how the register is to be used.

2.4.1 Data Register Direct Mode

In the data register direct mode, the operand is in the data register specified by the effective
address register field.

OPERAND

GENERATION:
ASSEMBLER SYNTAX:
MODE:
REGISTER:
DATA REGISTER:
NUMBER OF EXTENSION WORDS:

EA = Dn
Dn
000
n
Dn
0

31 0

OPERAND

Data Organization and Addressing Capabilities

2-10

MC68030 USER’S MANUAL

MOTOROLA

2.4.2 Address Register Direct Mode

In the address register direct mode, the operand is in the address register specified by the
effective address register field.

2.4.3 Address Register Indirect Mode

In the address register indirect mode, the operand is in memory, and the address of the
operand is in the address register specified by the register field.

2.4.4 Address Register Indirect with Postincrement Mode

In the address register indirect with postincrement mode, the operand is in memory, and the
address of the operand is in the address register specified by the register field. After the
operand address is used, it is incremented by one, two, or four depending on the size of the
operand: byte, word, or long word. Coprocessors may support incrementing for any size of
operand up to 255 bytes. If the address register is the stack pointer and the operand size is
byte, the address is incremented by two rather than one to keep the stack pointer aligned to
a word boundary.

31 0

OPERAND

EA = An
An
001
n
An
0

GENERATION:
ASSEMBLER SYNTAX:
MODE:
REGISTER:
ADDRESS REGISTER:
NUMBER OF EXTENSION WORDS:

31 0

31 0

GENERATION:
ASSEMBLER SYNTAX:
MODE:
REGISTER:
ADDRESS REGISTER:

MEMORY ADDRESS:
NUMBER OF EXTENSION WORDS:

EA = (An)
(An)
010
n
An

OPERAND

MEMORY ADDRESS

0

31 0

31 0

+

MEMORY ADDRESS

OPERANDMEMORY ADDRESS:
NUMBER OF EXTENSION WORDS:

OPERAND LENGTH (1, 2, OR 4):

GENERATION:

ASSEMBLER SYNTAX:
MODE:
REGISTER:
ADDRESS REGISTER:

0

EA = (An)
An = An + SIZE
(An) +
011
n
An

Data Organization and Addressing Capabilities

MOTOROLA

MC68030 USER’S MANUAL

2-11

2.4.5 Address Register Indirect with Predecrement Mode

In the address register indirect with predecrement mode, the operand is in memory, and the
address of the operand is in the address register specified by the register field. Before the
operand address is used, it is decremented by one, two, or four depending on the operand
size: byte, word, or long word. Coprocessors may support decrementing for any operand
size up to 255 bytes. If the address register is the stack pointer and the operand size is byte,
the address is decremented by two rather than one to keep the stack pointer aligned to a
word boundary.

31 0

31 0

MEMORY ADDRESS

OPERANDMEMORY ADDRESS:
NUMBER OF EXTENSION WORDS: 0

OPERAND LENGTH (1, 2, OR 4):

An = An – SIZE
EA = (An)

 – (An)
100
n
An

GENERATION:

ASSEMBLER SYNTAX:
MODE:
REGISTER:
ADDRESS REGISTER:

Data Organization and Addressing Capabilities

2-12

MC68030 USER’S MANUAL

MOTOROLA

2.4.6 Address Register Indirect with Displacement Mode

In the address register indirect with displacement mode, the operand is in memory. The
address of the operand is the sum of the address in the address register plus the sign-
extended 16-bit displacement integer in the extension word. Displacements are always sign-
extended to 32 bits prior to being used in effective address calculations.

2.4.7 Address Register Indirect with Index (8-Bit Displacement) Mode

This addressing mode requires one extension word that contains the index register indicator
and an 8-bit displacement. The index register indicator includes size and scale information.
In this mode, the operand is in memory. The address of the operand is the sum of the
contents of the address register, the sign-extended displacement value in the low-order
eight bits of the extension word, and the sign-extended contents of the index register
(possibly scaled). The user must specify the displacement, the address register, and the
index register in this mode.

31 0

31 0

EA = (An) + d
(d ,An)
101
n
An

GENERATION:
ASSEMBLER SYNTAX:
MODE:
REGISTER:
ADDRESS REGISTER:

MEMORY ADDRESS:
NUMBER OF EXTENSION WORDS: 1

OPERAND

+SIGN EXTENDED INTEGER

031 15

16
16

MEMORY ADDRESS

DISPLACEMENT:

31 0

31 0

31 0

MEMORY ADDRESS

OPERANDMEMORY ADDRESS:
NUMBER OF EXTENSION WORDS:

EA = (An) + (XN) + d
(d ,An,Xn.SIZE*SCALE)
110
n
An

GENERATION:

ASSEMBLER SYNTAX:
MODE:
REGISTER:
ADDRESS REGISTER:

INTEGER

SIGN-EXTENDED VALUE

SCALE VALUE

+
0

0

+X

31

DISPLACEMENT:

INDEX REGISTER

SCALE:

1

7 0

7

SIGN EXTENDED

8
8

31

Data Organization and Addressing Capabilities

MOTOROLA

MC68030 USER’S MANUAL

2-13

2.4.8 Address Register Indirect with Index (Base Displacement) Mode

This addressing mode requires an index register indicator and an optional 16- or 32-bit sign-
extended base displacement. The index register indicator includes size and scaling
information. The operand is in memory. The address of the operand is the sum of the
contents of the address register, the scaled contents of the sign-extended index register,
and the base displacement.

In this mode, the address register, the index register, and the displacement are all optional.
If none is specified, the effective address is zero. This mode provides a data register indirect
address when no address register is specified and the index register is a data register (Dn).

31 0

31 0

31 0

31 0

MEMORY ADDRESS:
NUMBER OF EXTENSION WORDS: 1,2, OR 3

EA = (An) + (Xn) + bd
(bd,An,Xn.SIZE*SCALE)
110
n
An

GENERATION:
ASSEMBLER SYNTAX:
MODE:
REGISTER:
ADDRESS REGISTER:

SIGN-EXTENDED VALUE

SIGN-EXTENDED VALUE

SCALE VALUE

OPERAND

+

+X

BASE DISPLACEMENT:

INDEX REGISTER:

SCALE:

MEMORY ADDRESS

7 0

Data Organization and Addressing Capabilities

2-14

MC68030 USER’S MANUAL

MOTOROLA

2.4.9 Memory Indirect Postindexed Mode

In this mode, the operand and its address are in memory. The processor calculates an
intermediate indirect memory address using the base register (An) and base displacement
(bd). The processor accesses a long word at this address and adds the index operand
(Xn.SIZE*SCALE) and the outer displacement to yield the effective address. Both
displacements and the index register contents are sign-extended to 32 bits.

In the syntax for this mode, brackets enclose the values used to calculate the intermediate
memory address. All four user-specified values are optional. Both the base and outer
displacements may be null, word, or long word. When a displacement is omitted or an
element is suppressed, its value is taken as zero in the effective address calculation.

31 0

31 0

31 0

31 0

31 0

31 0

EFFECTIVE ADDRESS:
NUMBER OF EXTENSION WORDS: 1,2, 3, 4, OR 5

EA = (bd + An) + Xn.SIZE*SCALE + od
([bd,An],Xn.SIZE*SCALE,od)
110
An

GENERATION:
ASSEMBLER SYNTAX:
MODE:
ADDRESS REGISTER:

SIGN-EXTENDED VALUE

SCALE VALUE

OPERAND

+

+

31 0

BASE DISPLACEMENT:

INDEX REGISTER:

SCALE:

MEMORY ADDRESS

INDIRECT MEMORY ADDRESS

VALUE AT INDIRECT MEMORY ADDRESS

POINTS TO

SIGN-EXTENDED VALUE

SIGN-EXTENDED VALUE

+X

OUTER DISPLACEMENT:

07

Data Organization and Addressing Capabilities

MOTOROLA

MC68030 USER’S MANUAL

2-15

2.4.10 Memory Indirect Preindexed Mode

In this mode, the operand and its address are in memory. The processor calculates an
intermediate indirect memory address using the base register (An), a base displacement
(bd), and the index operand (Xn.SIZE * SCALE). The processor accesses a long word at
this address and adds the outer displacement to yield the effective address. Both
displacements and the index register contents are sign-extended to 32 bits.

In the syntax for this mode, brackets enclose the values used to calculate the intermediate
memory address. All four user-specified values are optional. Both the base and outer
displacements may be null, word, or long word. When a displacement is omitted or an
element is suppressed, its value is taken as zero in the effective address calculation.

31 0

SIGN-EXTENDED VALUE

31 0

31 0

31 0

31 0

31 0

31 0

EFFECTIVE ADDRESS:
NUMBER OF EXTENSION WORDS: 1,2, 3, 4, OR 5

EA = (bd + An + Xn.SIZE*SCALE) + od
([bd,An,Xn.SIZE*SCALE],od)
110
An

GENERATION:
ASSEMBLER SYNTAX:
MODE:
ADDRESS REGISTER:

SCALE VALUE

OPERAND

+

7

+BASE DISPLACEMENT:

INDEX REGISTER:

SCALE:

MEMORY ADDRESS

INDIRECT MEMORY ADDRESS

VALUE AT INDIRECT MEMORY ADDRESS

POINTS TO

SIGN-EXTENDED VALUE

SIGN-EXTENDED VALUE

+X

 OUTER DISPLACEMENT:

0

Data Organization and Addressing Capabilities

2-16

MC68030 USER’S MANUAL

MOTOROLA

2.4.11 Program Counter Indirect with Displacement Mode

In this mode, the operand is in memory. The address of the operand is the sum of the
address in the PC and the sign-extended 16-bit displacement integer in the extension word.
The value in the PC is the address of the extension word. The reference is a program space
reference and is only allowed for reads (refer to

4.2 Address Space Types

).

2.4.12 Program Counter Indirect with Index (8-Bit Displacement) Mode

This mode is similar to the address register indirect with index (8-bit displacement) mode
described in

2.4.7 Address Register Indirect with Index (8-Bit Displacement) Mode

, but
the PC is used as the base register. The operand is in memory. The address of the operand
is the sum of the address in the PC, the sign-extended displacement integer in the lower
eight bits of the extension word, and the sized, scaled, and sign-extended index operand.
The value in the PC is the address of the extension word. This reference is a program space
reference and is only allowed for reads. The user must include the displacement, the PC,
and the index register when specifying this addressing mode.

31 0

31 0

EA = (PC) + d
d ,PC)
111
010

GENERATION:
ASSEMBLER SYNTAX:
MODE:
REGISTER:
PROGRAM COUNTER:

MEMORY ADDRESS:
NUMBER OF EXTENSION WORDS: 1

OPERAND

+ SIGN EXTENDED

031 15

16
16

 ADDRESS OF EXTENSION WORD

DISPLACEMENT: INTEGER

31 0

31 0

31 0

31 0

EA = (PC) + (Xn) + d
(d , PC,Xn. SIZE*SCALE)
111
011

+

OPERANDMEMORY ADDRESS:
NUMBER OF EXTENSION WORDS:

GENERATION:
ASSEMBLER SYNTAX:
MODE:
REGISTER:
PROGRAM COUNTER:

INTEGER

SIGN-EXTENDED VALUE

SCALE VALUE +X

DISPLACEMENT:

INDEX REGISTER

SCALE:

1

ADDRESS OF EXTENSION WORD

SIGN EXTENDED

7

8
8

7 0

Data Organization and Addressing Capabilities

MOTOROLA

MC68030 USER’S MANUAL

2-17

2.4.13 Program Counter Indirect with Index (Base Displacement) Mode

This mode is similar to the address register indirect with index (base displacement) mode
described in

2.4.8 Address Register Indirect with Index (Base Displacement) Mode

, but
the PC is used as the base register. It requires an index register indicator and an optional
16- or 32-bit sign-extended base displacement. The operand is in memory. The address of
the operand is the sum of the contents of the PC, the scaled contents of the sign-extended
index register, and the base displacement. The value of the PC is the address of the first
extension word. The reference is a program space reference and is only allowed for reads
(refer to

4.2 Address Space Types

).

In this mode, the PC, the index register, and the displacement are all optional. However, the
user must supply the assembler notation "ZPC'' (zero value is taken for the PC) to indicate
that the PC is not used. This allows the user to access the program space without using the
PC in calculating the effective address. The user can access the program space with a data
register indirect access by placing ZPC in the instruction and specifying a data register (Dn)
as the index register.

31 0

31 0

31 0

31 0

 EA = (PC) + (Xn) + bd
(bd, PC, Xn. SIZE*SCALE)
111
011

+

OPERANDMEMORY ADDRESS:
NUMBER OF EXTENSION WORDS:

GENERATION:
ASSEMBLER SYNTAX:
MODE:
REGISTER:
PROGRAM COUNTER:

SIGN-EXTENDED VALUE

SCALE VALUE +X

 BASE DISPLACEMENT:

INDEX REGISTER

SCALE:

1, 2 OR 3

ADDRESS OF EXTENSION WORD

SIGN-EXTENDED VALUE

07

Data Organization and Addressing Capabilities

2-18 MC68030 USER’S MANUAL MOTOROLA

2.4.14 Program Counter Memory Indirect Postindexed Mode
This mode is similar to the memory indirect postindexed mode described in 2.4.9 Memory
Indirect Postindexed Mode, but the PC is used as the base register. Both the operand and
operand address are in memory. The processor calculates an intermediate indirect memory
address by adding a base displacement (bd) to the PC contents. The processor accesses a
long word at that address and adds the scaled contents of the index register and the optional
outer displacement (od) to yield the effective address. The value of the PC used in the
calculation is the address of the first extension word. The reference is a program space
reference and is only allowed for reads (refer to 4.2 Address Space Types).

In the syntax for this mode, brackets enclose the values used to calculate the intermediate
memory address. All four user-specified values are optional. However, the user must supply
the assembler notation ZPC (zero value is taken for the PC) to indicate that the PC is not
used. This allows the user to access the program space without using the PC in calculating
the effective address. Both the base and outer displacements may be null, word, or long
word. When a displacement is omitted or an element is suppressed, its value is taken as
zero in the effective address calculation.

31 0

31 0

31 0

31 0

31 0

31 0

EFFECTIVE ADDRESS:
NUMBER OF EXTENSION WORDS: 1,2, 3, 4, OR 5

EA = (bd + PC) + Xn.SIZE*SCALE + od
([bd, PC], Xn.SIZE*SCALE,od)
111
011

GENERATION:
ASSEMBLER SYNTAX:
MODE:
REGISTER FIELD:
PROGRAM COUNTER:

SIGN-EXTENDED VALUE

SCALE VALUE

OPERAND

+

+

31 0

BASE DISPLACEMENT:

INDEX REGISTER:

MEMORY ADDRESS

INDIRECT MEMORY ADDRESS

VALUE AT INDIRECT MEMORY
ADDRESS IN PROGRAM SPACE

POINTS TO

SIGN-EXTENDED VALUE

SIGN-EXTENDED VALUE

+X

 OUTER DISPLACEMENT:

07

Data Organization and Addressing Capabilities

MOTOROLA MC68030 USER’S MANUAL 2-19

2.4.15 Program Counter Memory Indirect Preindexed Mode
This mode is similar to the memory indirect preindexed mode described in 2.4.10 Memory
Indirect Preindexed Mode, but the PC is used as the base register. Both the operand and
operand address are in memory. The processor calculates an intermediate indirect memory
address by adding the PC contents, a base displacement (bd), and the scaled contents of
an index register. The processor accesses a long word at that address and adds the optional
outer displacement (od) to yield the effective address. The value of the PC is the address of
the first extension word. The reference is a program space reference and is only allowed for
reads (refer to 4.2 Address Space Types).

In the syntax for this mode, brackets enclose the values used to calculate the intermediate
memory address. All four user-specified values are optional. However, the user must supply
the assembler notation ZPC (zero value is taken for the PC) to indicate that the PC is not
used. This allows the user to access the program space without using the PC in calculating
the effective address. Both the base and outer displacements may be null, word, or long
word. When a displacement is omitted or an element is suppressed, its value is taken as
zero in the effective address calculation.

31 0

31 0

31 0

31 0

31 0

31 0

31 0

 EA = (bd + PC + Xn . SIZE * SCALE) + od
([bd, PC, Xn. SIZE*SCALE],od)
111
011

+

OPERANDEFFECTIVE ADDRESS:
NUMBER OF EXTENSION WORDS:

GENERATION:
ASSEMBLER SYNTAX:
MODE:
REGISTER FIELD:
PROGRAM COUNTER:

SIGN-EXTENDED VALUE

SCALE VALUE +X

 BASE DISPLACEMENT:

INDEX REGISTER

1, 2, 3, 4 OR 5

ADDRESS OF EXTENSION WORD

SIGN-EXTENDED VALUE

INDIRECT MEMORY ADDRESS

POINTS TO

VALUE AT INDIRECT MEMORY
ADDRESS IN PROGRAM SPACE

SIGN-EXTENDED VALUE +OUTER DISPLACEMENT:

07

Data Organization and Addressing Capabilities

2-20 MC68030 USER’S MANUAL MOTOROLA

2.4.16 Absolute Short Addressing Mode
In this addressing mode, the operand is in memory, and the address of the operand is in the
extension word. The 16-bit address is sign-extended to 32 bits before it is used.

2.4.17 Absolute Long Addressing Mode
In this mode, the operand is in memory, and the address of the operand occupies the two
extension words following the instruction word in memory. The first extension word contains
the high-order part of the address; the low-order part of the address is the second extension
word.

31 0

31 0
OPERAND

MEMORY ADDRESSSIGN EXTENDED

15

GENERATION:
ASSEMBLER SYNTAX:
MODE:
REGISTER FIELD:
EXTENSION WORD:

EA GIVEN
(xxx).W
111
000

MEMORY ADDRESS:
NUMBER OF EXTENSION WORDS: 1

31 0

31 0

GENERATION:
ASSEMBLER SYNTAX:
MODE:
REGISTER FIELD:
FIRST EXTENSION WORD:

EA GIVEN
(xxx).L
111
001

CONCATENATION

OPERAND

SECOND EXTENSION WORD:

MEMORY ADDRESS:
NUMBER OF EXTENSION WORDS: 2

ADDRESS HIGH

ADDRESS LOW

0

015

15

Data Organization and Addressing Capabilities

MOTOROLA MC68030 USER’S MANUAL 2-21

2.4.18 Immediate Data
In this addressing mode, the operand is in one or two extension words:

Byte Operation

Operand is in the low-order byte of the extension word

Word Operation

Operand is in the extension word

Long-Word Operation

The high-order 16 bits of the operand are in the first extension word; the low-order 16
bits are in the second extension word.

Coprocessor instructions can support immediate data of any size. The instruction word is
followed by as many extension words as are required.

Generation: Operand given
Assembler Syntax: #xxx
Mode Field: 111
Register Field: 100
Number of Extension Words: 1 or 2, except for coprocessor instructions

Data Organization and Addressing Capabilities

2-22 MC68030 USER’S MANUAL MOTOROLA

2.5 EFFECTIVE ADDRESS ENCODING SUMMARY
Most of the addressing modes use one of the three formats shown in Figure 2–4. The single
effective address instruction is in the format of the instruction word. The encoding of the
mode field of this word selects the addressing mode. The register field contains the general
register number or a value that selects the addressing mode when the mode field contains
"111.'' Table 2–2 shows the encoding of these fields. Some indexed or indirect modes use
the instruction word followed by the brief format extension word. Other indexed or indirect
modes consist of the instruction word and the full format of extension words. The longest
instruction for the MC68030 contains 10 extension words. It is a MOVE instruction with full
format extension words for both source and destination effective addresses and with 32-bit
base displacements and 32-bit outer displacements for both addresses. However,
coprocessor instructions can have any number of extension words. Refer to the coprocessor
instruction formats in Section 10 Coprocessor Interface Description.

For effective addresses that use the full format, the index suppress (IS) bit and the index/
indirect selection (I/IS) field determine the type of indexing and indirection. Table 2–1 lists
the indexing and indirection operations corresponding to all combinations of IS and I/IS
values.

Table 2-1. IS–I/IS Memory Indirection Encodings

IS Index/Indirect Operation
0 000 No Memory Indirection
0 001 Indirect Preindexed with Null Outer Displacement
0 010 Indirect Preindexed with Word Outer Displacement
0 011 Indirect Preindexed with Long Outer Displacement
0 100 Reserved
0 101 Indirect Postindexed with Mull Outer Displacement
0 110 Indirect Postindexed with Word Outer Displacement
0 111 Indirect Postindexed with Long Outer Displacement
1 000 No Memory Indirection
1 001 Memory Indirect with Mull Outer Displacement
1 010 Memory Indirect with Word Outer Displacement
1 011 Memory Indirect with Long Outer Displacement
1 100–111 Reserved

Data Organization and Addressing Capabilities

MOTOROLA MC68030 USER’S MANUAL 2-23

Field Definition Field Definition

Instruction: BS Base Register Suppress:
Register General Register Number 0 = Base Register Added

Extensions: 1 = Base Register Suppressed
Register Index Register Number IS Index Suppress:
D/A Index Register Type 0 = Evaluate and Add Index

0 = Dn Operand
1 = An 1 = Suppress Index Operand

W/L Word/Long-Word Index Size BD SIZE Base Displacement Size:
0 = Sign-Extended Word 00 = Reserved
1 = Long Word 01 = Null Displacement

Scale Scale Factor 10 = Word Displacement
00 =1 11 Long Displacement
01 =2 I/IS Index/Indirect Selection
10 = 4 Indirect and Indexing Operand
11 = 8 Determined in Conjunction with

Bit 6, Index Suppress

Figure 2-4. Effective Address Specification Formats

Effective address modes are grouped according to the use of the mode. They can be
classified as follows:

Data A data addressing effective address mode is one that refers to data operands.

Memory A memory addressing effective address mode is one that refers to memory
operands.

Alterable An alterable addressing effective address mode is one that refers to alterable
(writable) operands.

Control A control addressing effective address mode is one that refers to memory
operands without an associated size.

Single Effective Address Instruction Format

15 14 13 12 11 10 9 8 7 6 5 0

X X X X X X X X X X
EFFECTIVE ADDRESS

MODE REGISTER

Brief Format Extension Word

15 14 12 11 10 9 8 7 0

D/A REGISTER W/L SCALE 0 DISPLACEMENT

Full Format Extension Word(s)

15 14 12 11 10 9 8 7 6 5 4 3 2 0
D/A REGISTER W/L SCALE 1 BS IS BD SIZE 0 I/IS

BASE DISPLACEMENT (0, 1, OR 2 WORDS)
OUTER DISPLACEMENT (0, 1, OR 2 WORDS)

Data Organization and Addressing Capabilities

2-24 MC68030 USER’S MANUAL MOTOROLA

Table 2–2 shows the categories to which each of the effective addressing modes belong.

These categories are sometimes combined, forming new categories that are more
restrictive. Two combined classifications are alterable memory or data alterable. The former
refers to those addressing modes that are both alterable and memory addresses, and the
latter refers to addressing modes that are both data and alterable.

2.6 PROGRAMMER`S VIEW OF ADDRESSING MODES
Extensions to the indexed addressing modes, indirection, and full 32-bit displacements
provide additional programming capabilities for both the MC68020 and the MC68030. This
section describes addressing techniques that exploit these capabilities and summarizes the
addressing modes from a programming point of view.

Addressing Modes Mode Register Data Memory Control Alterable
Assembler

Syntax
Data Register Direct 000 reg. no. X — — X Dn
Address Register Direct 001 reg. no. — — — X An
Address Register Indirect
Address Register Indirect

with Postincrement
Address Register Indirect

with Predecrement
Address Register Indirect

with Displacement

010

011

100

101

reg. no

reg. no.

reg. no.

reg. no.

X

X

X

X

X

X

X

X

X

—

—

X

X

X

X

X

(An)

(An)+

-(An)

(d16,An)

Address Register Indirect with
Index (8-Bit Displacement)

Address Register Indirect with
Index (Base Displacement)

Memory Indirect Postindexed
Memory Indirect Preindexed

110

110
110
110

reg. no.

reg. no.
reg. no
reg. no.

X

X
X
X

X

X
X
X

X

X
X
X

X

X
X
X

(d8,An,Xn)

(bd,An,Xn)
([bd,An],Xn,od)
([bd,An,Xn],od)

Absolute Short
Absolute Long

111
111

000
001

X
X

X
X

X
X

X
X

(xxx).W
(xxx).L

Program Counter Indirect
with Displacement

Program Counter Indirect
with Index (8-Bit) Displacement

Program Counter Indirect
with Index (Base Displacement)

PC Memory Indirect
Postindexed

PC Memory Indirect
Preindexed

111

111

111

111

111

010

011

011

011

011

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

—

—

—

—

—

(d16,PC)

(d8,PC,Xn)

(bd,PC,Xn)

([bd,PC],Xn,od)

([bd,PC,Xn],od)
Immediate 111 100 X X — — #〈data〉

Data Organization and Addressing Capabilities

MOTOROLA MC68030 USER’S MANUAL 2-25

Several of the addressing techniques described in this section use data registers and
address registers interchangeably. While the MC68030 provides this capability, its
performance has been optimized for addressing with address registers. The performance of
a program that uses address registers in address calculations is superior to that of a
program that similarly uses data registers.The performance has been optimized for
addressing registers in address calculations is superior to that of a program that similarly
uses data registers. The specification of addresses with data registers should be used
sparingly (if at all), particularly in programs that require maximum performance.

2.6.1 Addressing Capabilities
In both the MC68020 and the MC68030, setting the base register suppress (BS) bit in the
full format extension word (see Figure 2–4) suppresses use of the base address register in
calculating the effective address. This allows any index register to be used in place of the
base register. Since any of the data registers can be index registers, this provides a data
register indirect form (Dn). The mode could be called register indirect (Rn) since either a
data register or an address register can be used. This addressing mode is an extension to
the M68000 Family because the MC68030 and MC68020 can use both the data registers
and the address registers to address memory. The capabilities of specifying the size and
scale of an index register (Xn.SIZE*SCALE) in these modes provides additional addressing
flexibility. Using the SIZE parameter, either the entire contents of the index register can be
used, or the least significant word can be sign-extended to provide a 32-bit index value (refer
to Figure 2–5).

Figure 2-5. Using SIZE in the Index Selection

D1.L

D1.W

D1

D1

31

16 1531 0

0

USED IN ADDRESS CALCULATION

Data Organization and Addressing Capabilities

2-26 MC68030 USER’S MANUAL MOTOROLA

For both the MC68020 and the MC68030, the register indirect modes can be extended
further. Since displacements can be 32 bits wide, they can represent absolute addresses or
the results of expressions that contain absolute addresses. This allows the general register
indirect form to be (bd,Rn) or (bd,An,Rn) when the base register is not suppressed. Thus,
an absolute address can be directly indexed by one or two registers (refer to Figure 2–6).

Scaling provides an optional shifting of the value in an index register to the left by zero, one,
two, or three bits before using it in the effective address allocation (the actual value in the
index register remains unchanged). This is equivalent to multiplying the register by one, two,
four, or eight or direct subscripting into an array of elements of corresponding size using an
arithmetic value residing in any of the 16 general registers. Scaling does not add to the
effective address calculation time. However, when combined with the appropriate derived
modes, it produces additional capabilities. Arrayed structures can be addressed absolutely
and then subscripted, (bd,Rn*scale). Another variation that can be derived is (An,Rn*scale).
In the first case, the array address is the sum of the contents of a register and a
displacement, as shown in Figure 2–7. In the second example. An contains the address of
an array and Rn contains a subscript.

Figure 2-6. Using Absolute Address with Indexes

An

Rn

bd

SYNTAX (bd,An,Rn)

Data Organization and Addressing Capabilities

MOTOROLA MC68030 USER’S MANUAL 2-27

Figure 2-7. Addressing Array Items

A6 = 1
2

3
4

SIMPLE ARRAY
(SCALE = 1)

RECORD OF 2 WORDS
(SCALE = 2)

A6 = 1

2

2

A6 = 1

2

A6 = 1

15 015 0

SYNTAX: MOVE.W (A5, A6.L*SCALE),(A7)
WHERE:

A5 = ADDRESS OF ARRAY STRUCTURE
A6 = INDEX NUMBER OF ARRAY ITEM
A7 = STACK POINTER

RECORD OF 4 WORDS
(SCALE = 4)

RECORD OF 8 WORDS
(SCALE = 8)

NOTE: Regardless of array structure, software increments
 index by the appropriate amount to point to next record.

15 0 15 0

Data Organization and Addressing Capabilities

2-28 MC68030 USER’S MANUAL MOTOROLA

The memory indirect addressing modes use a long-word pointer in memory to access an
operand. Any of the modes previously described can be used to address the memory
pointer. Because the base and index registers can both be suppressed, the displacement
acts as an absolute address, providing indirect absolute memory addressing (refer to Figure
2–8).

The outer displacement (od) available in the memory indirect modes is added to the pointer
in memory. The syntax for these modes is ([bd,An],Xn,od) and ([bd,An,Xn],od). When the
pointer is the address of a structure in memory and the outer displacement is the offset of
an item in the structure, the memory indirect modes can access the item efficiently (refer to
Figure 2–9).

Memory indirect addressing modes are used with a base displacement in five basic forms:

1. [bd,An] — Indirect, suppressed index register

2. ([bd,An,Xn]) — Preindexed indirect

3. ([bd,An],Xn) — Postindexed indirect

4. ([bd,An,Xn],od) — Preindexed indirect with outer displacement

5. ([bd,An],Xn,od) — Postindexed indirect with outer displacement

The indirect, suppressed index register mode (see Figure 2–10) uses the contents of
register An as an index to the pointer located at the address specified by the displacement.
The actual data item is at the address in the selected pointer.

The preindexed indirect mode (see Figure 2–11) uses the contents of An as an index to the
pointer list structure at the displacement. Register Xn is the index to the pointer, which
contains the address of the data item.

Figure 2-8. Using Indirect Absolute Memory Addressing

POINTER DATA ITEMbd

SYNTAX: ([bd])

Data Organization and Addressing Capabilities

MOTOROLA MC68030 USER’S MANUAL 2-29

Figure 2-9. Accessing an Item in a Structure Using a Pointer

Figure 2-10. Indirect Addressing, Suppressed Index Register

POINTER

DATA ITEM

An

od

MEMORY STRUCTURE

SYNTAX: ([An],od)

POINTER DATA ITEM

bd

POINTER LIST

SYNTAX: ([bd,An])

An

Data Organization and Addressing Capabilities

2-30 MC68030 USER’S MANUAL MOTOROLA

Figure 2-11. Preindexed Indirect Addressing

POINTER

DATA ITEM

bd

POINTER LIST

SYNTAX: ([bd,An,Xn])

Xn

An

Data Organization and Addressing Capabilities

MOTOROLA MC68030 USER’S MANUAL 2-31

The postindexed indirect mode (see Figure 2–12) uses the contents of An as an index to the
pointer list at the displacement. Register Xn is used as an index to the structure of data items
located at the address specified by the pointer. Figure 2–13 shows the preindexed indirect
addressing with outer displacement mode.

Figure 2-12. Postindexed Indirect Addressing

Figure 2-13. Preindexed Indirect Addressing with Outer Displacement

POINTER DATA ITEM

bd

POINTER LIST

SYNTAX: ([bd,An],Xn)

Xn

An

POSTINDEXED STRUCTURE

POINTER DATA ITEM

bd

POINTER LIST

SYNTAX: ([bd,An,Xn],od)

od

An

Xn

STRUCTURE

Data Organization and Addressing Capabilities

2-32 MC68030 USER’S MANUAL MOTOROLA

The postindexed indirect mode with outer displacement (see Figure 2–14) uses the contents
of An as an index to the pointer list at the displacement. Register Xn is used as an index to
the structure of data structures at the address in the pointer. The outer displacement (od) is
the displacement of the data item within the selected data structure.

2.6.2 General Addressing Mode Summary
The addressing modes described in the previous section are derived from specific
combinations of options in the indexing mode or a selection of two alternate addressing
modes. For example, the addressing mode called register indirect (Rn) assembles as the
address register indirect if the register is an address register. If Rn is a data register, the
assembler uses the address register indirect with index mode using the data register as the
indirect register and suppresses the address register by setting the base suppress bit in the
effective address specification. Assigning an address register as Rn provides higher
performance than using a data register as Rn. Another case is (bd,An), which selects an
addressing mode depending on the size of the displacement. If the displacement is 16 bits
or less, the address register indirect with displacement mode (d16,An) is used. When a 32-
bit displacement is required, the address register indirect with index (bd,An,Xn) is used with
the index register suppressed.

Figure 2-14. Postindexed Indirect Addressing with Outer Displacement

POINTER DATA ITEM

bd

POINTER LIST

SYNTAX: ([bd,An],Xn,od)

od
An

POSTINDEXED STRUCTURE
WITH OUTER DISPLACEMENT

Xn

Data Organization and Addressing Capabilities

MOTOROLA MC68030 USER’S MANUAL 2-33

It is useful to examine the derived addressing modes available to a programmer (without
regard to the MC68030 effective addressing mode actually encoded) because the
programmer need not be concerned about these decisions. The assembler can choose the
more efficient addressing mode to encode.

In the list of derived addressing modes that follows, common programming terms are used.
The following definitions apply:

pointer — long-Word value in a register or in memory which represents an
address.

base — A pointer combined with a displacement to represent an address.

index — A constant or variable value added into an effective address calcula-
tion. A constant index is a displacement. A variable index is always
represented by a register containing the value.

disp — Displacement, a constant index.

subscript — The use of any of the data or address registers as a variable index
subscript into arrays of items 1, 2, 4 or 8 bytes in size.

relative — An address calculated from the program counter contents. The
address is position independent and is in program space. All other
addresses but psaddr are in data space.

addr — An absolute address.

psaddr — An absolute address in program space. All other addresses but PC
relative are in data space.

preindexed — All modes from absolute address through program counter relative.

postindexed— Any of the following modes:

addr — Absolute address in data space

psaddr,ZPC — Absolute address in program space

An — Register pointer with constant displacement

disp.An — Register pointer with constant displacement

addr,An — Absolute address with single variable name

disp,Pc — Simple PC relative

The addressing modes defined in programming terms, which are derivations of the
addressing modes provided by the MC68030 architecture, are as follows:

Immediate Data — #data:
The data is a constant located in the instruction stream.

Register Direct — Rn:
The contents of a register contain the operand.

Scanning Modes:
(An)+

Data Organization and Addressing Capabilities

2-34 MC68030 USER’S MANUAL MOTOROLA

Address register pointer automatically incremented after use.

– (An)
Address register pointer automatically decremented before use.

Absolute Address:
(addr)

Absolute address in data space.

(psaddr,ZPC)
Absolute address in program space. Symbol ZPC suppresses the PC,
but retains PC relative mode to directly access the program space.

Register Pointer:
(Rn)

Register as a pointer.

(disp,Rn)
Register as a pointer with constant index (or base address).

Indexing

(An,Rn)

Register pointer An with variable index Rn.

(disp,An,Rn)

Register pointer with constant and variable index (or a base address
with a variable index).

(addr,Rn)

Absolute address with two variable indexes.

Subscripting:

(An,Rn*scale)

Address register pointer subscript.

(disp,An,Rn*scale)

Address register pointer subscript with constant displacement
(or base address with subscript).

(addr,Rn*scale)

Absolute address with subscript.

(addr,An,Rn*scale)

Absolute address subscript with variable index.

Program Relative:

Data Organization and Addressing Capabilities

MOTOROLA MC68030 USER’S MANUAL 2-35

(disp,PC)

Simple PC relative.

(disp,PC,Rn)

PC relative with variable index.

(disp,PC,Rn*scale)

PC relative with subscript.

Memory Pointer:

([preindexed])

Memory pointer directly to data operand.

([preindexed],disp)

Memory pointer as base with displacement to data operand.

([postindexed],Rn)

Memory pointer with variable index.

([postindexed],disp,Rn)

Memory pointer with constant and variable index.

([postindexed],Rn*scale)

Memory pointer subscripted.

([postindexed],disp,Rn*scale)

Memory pointer subscripted with constant index.

Data Organization and Addressing Capabilities

2-36 MC68030 USER’S MANUAL MOTOROLA

2.7 M68000 FAMILY ADDRESSING COMPATIBILITY
Programs can be easily transported from one member of the M68000 Family to another in
an upward compatible fashion. The user object code of each early member of the family is
upward compatible with newer members and can be executed on the newer microprocessor
without change. The address extension word(s) are encoded with the information that allows
the MC68020/MC68030 to distinguish the new address extension words for the early
MC68000/MC68008/MC68010 microprocessors and for the newer 32-bit MC68020/
MC68030 microprocessors are shown in Figure 2–15. Notice the encoding for SCALE used
by the MC68020/MC68030 is a compatible extension of the M68000 architecture. A value
of zero for SCALE is the same encoding for both extension words; hence, software that uses
this encoding is both upward and downward compatible across all processors in the product
line. However, the other values of SCALE are not found in both extension formats; thus,
while software can be easily migrated in an upward compatible direction, only nonscaled
addressing is supported in a downward fashion. If the MC68000 were to execute an
instruction that encoded a scaling factor, the scaling factor would be ignored and not access
the desired memory address. The earlier microprocessors have no knowledge of the
extension word formats implemented by newer processors; while they do detect illegal
instructions, they do not decode invalid encodings of the extension words as exceptions.

2.8 OTHER DATA STRUCTURES
Stacks and queues are widely used data structures. The MC68030 implements a system
stack and also provides instructions that support the use of user stacks and queues.

2.8.1 System Stack
Address register seven (A7) is used as the system stack pointer (SP). Any of the three
system stack registers is active at any one time. The M and S bits of the status register
determine which stack pointer is used. When S = 0 indicating user mode (user privilege
level), the user stack pointer (USP) is the active system stack pointer, and the master and
interrupt stack pointers cannot be referenced. When S = 1 indicating supervisor mode (at
supervisor privilege level) and M = 1, the master stack pointer (MSP) is the active system
stack pointer. When S = 1 and M = 0, the interrupt stack pointer (ISP) is the active system
stack pointer. This mode is the MC68030 default mode after reset and corresponds to the
MC68000, MC68008, and MC68010 supervisor mode. The term supervisor stack pointer
(SSP) refers to the master or interrupt stack pointers, depending on the state of the M bit.
When M = 1, the term SSP (or A7) refers to the MSP address register. When M = 0, the term
is implicitly referenced by all instructions that use the system stack. Each system stack fills
from high to low memory.

Data Organization and Addressing Capabilities

MOTOROLA MC68030 USER’S MANUAL 2-37

A subroutine call saves the program counter on the active system stack, and the return
restores it from the active system stack. During the processing of traps and interrupts, both
the program counter and the status register are saved on the supervisor stack (either master
or interrupt). Thus, the execution of supervisor code is independent of user code and the
condition of the user stack; conversely, user programs use the user stack pointer
independently of supervisor stack requirements.

To keep data on the system stack aligned for maximum efficiency, the active stack pointer
is automatically decremented or incremented by two for all byte-sized operands moved to
or from the stack. In long-word-organized memory, aligning the stack pointer on a long-word
address signed significantly increases the efficiency of stacking exception frames,
subroutine calls and returns, and other stacking operations.

(UNABLE TO LOCATE ART. MUST BE RECREATED.)

Figure 2-15. M68000 Family Address Extension Words

Data Organization and Addressing Capabilities

2-38 MC68030 USER’S MANUAL MOTOROLA

2.8.2 User Program Stacks
The user can implement stacks with the address register indirect with postincrement and
predecrement addressing modes. With address register An (n = 0–6), the user can
implement a stack that is filled wither from high to low memory or from low to high memory.
Important considerations are:

• Use the predecrement mode to decrement the register before its contents are used as
the pointer to the stack.

• Use the postincrement mode to increment the register after its contents are used as the
pointer to the stack.

• Maintain the stack pointer correctly when byte, word, and long-word items are mixed in
these stacks.

To implement stack growth from high to low memory, use:

–(An) to push data on the stack,

(An)+ to pull data from the stack.

For this type of stack, after either a push or a pull operation, register An points to the top item
on the stack. This is illustrated as:

To implement stack growth from low to high memory, use:

(An)+ to push data on the stack,

–An to pull data from the stack.

An

 LOW MEMORY

(FREE)

TOP OF STACK

BOTTOM OF STACK

HIGH MEMORY

Data Organization and Addressing Capabilities

MOTOROLA MC68030 USER’S MANUAL 2-39

In this case, after either a push or pull operation, register An points to the next available
space on the stack. This is illustrated as:

2.8.3 Queues
The user can implement queues with the address register indirect with postincrement or
predecrement addressing modes. Using a pair of address registers (who of A0–A6), the user
can implement a queue which is filled either from high to low memory or from low to high
memory. Two registers are used because queues are pushed from one end and pulled from
the other. One register, An, contains the "put'' pointer; the other, Am, the "get'' pointer.

To implement growth of the queue from low to high memory, use:

(An)+ to put data into the queue,

(Am)+ to get data from the queue.

After a "put'' operation, the "put'' address register points to the next available space in the
queue, and the unchanged "get'' address register points to the next item to be removed from
the queue. After a "get'' operation, the "get'' address register points to the next item to be
removed from the queue, and the unchanged "put'' address register points to the next
available space in the queue. This is illustrated as:

To implement the queue as a circular buffer, the relevant address register should be
checked and adjusted, if necessary, before performing the "put'' or "get'' operation. The
address register is adjusted by subtracting the buffer length (in bytes) from the register.

 LOW MEMORY

TOP OF STACK

HIGH MEMORY

An

BOTTOM OF STACK

(FREE)

GET (Am) +

 LOW MEMORY

(FREE)

HIGH MEMORY

LAST GET (FREE)

LAST PUT

NEXT GET

PUT (An) +

Data Organization and Addressing Capabilities

2-40 MC68030 USER’S MANUAL MOTOROLA

To implement growth of the queue from high to low memory, use:

–(An) to put data into the queue,

–(Am) to get data from the queue.

After a "put'' operation, the "put'' address register points to the last item place din the queue,
and the unchanged "get'' address register points to the last item removed from the queue.
After a "get'' operation, the "get'' address register points to the last item removed from the
queue, and the unchanged "put'' address register points to the last item placed in the queue.
This is illustrated as:

To implement the queue as a circular buffer, the "get'' or "put'' operation should be
performed first, and then the relevant address register should be checkout and adjusted, if
necessary. The address register is adjusted by adding the buffer length (in bytes) to the
register contents.

 LOW MEMORY

(FREE)

HIGH MEMORY

LAST GET (FREE)

LAST PUT

NEXT GET

PUT - (An)

GET - (Am)

MOTOROLA

MC68030 USER’S MANUAL

3-1

SECTION 3
INSTRUCTION SET SUMMARY

This section briefly describes the MC68030 instruction set. Refer to the MC68000PM/AD,

MC68000 Programmer's Reference Manual

, for complete details on the MC68030
instruction set.

The following paragraphs include descriptions of the instruction format and the operands
used by instructions, followed by a summary of the instruction set. The integer condition
codes and floating-point details are discussed. Programming examples for selected
instructions are also presented.

3.1 INSTRUCTION FORMAT

All MC68030 instructions consist of at least one word; some have as many as 11 words (see
Figure 3–1). The first word of the instruction, called the operation word, specifies the length
of the instruction and the operation to be performed. The remaining words, called extension
words, further specify the instruction and operands. These words may be floating-point
command words, conditional predicates, immediate operands, extensions to the effective
address mode specified in the operation word, branch displacements, bit number or bit field
specifications, special register specifications, trap operands, pack/unpack constants, or
argument counts.

Figure 3-1. Instruction Word General Format

15 0
OPERATION WORD(ONE WORD,

SPECIFIES OPERATION AND MODES)
SPECIAL OPERAND SPECIFIERS
(IF ANY, ONE OR TWO WORDS)

IMMEDIATE OPERAND OR SOURCE EFFECTIVE ADDRESS EXTENSION(
IF ANY, ONE TO SIX WORDS)

DESTINATION EFFECTIVE ADDRESS EXTENSION
(IF ANY, ONE TO SIX WORDS)

Instruction Set Summary

3-2

MC68030 USER’S MANUAL

MOTOROLA

Besides the operation code, which specifies the function to be performed, an instruction
defines the location of every operand for the function. Instructions specify an operand
location in one of three ways:

1. Register Specification — A register field of the instruction contains the number of the
register.

2. Effective Address — An effective address field of the instruction contains address
mode information.

3. Implicit Reference — The definition of an instruction implies the use of specific regis-
ters.

The register field within an instruction specifies the register to be used. Other fields within
the instruction specify whether the register selected is an address or data register and how
the register is to be used.

Section 1 Introduction

 contains register information.

Effective address information includes the registers, displacements, and absolute
addresses for the effective address mode.

Section 2 Data Organization and Addressing
Capabilities

 describes the effective address modes in detail.

Certain instructions operate on specific registers. These instructions imply the required
registers.

3.2 INSTRUCTION SUMMARY

The instructions form a set of tools to perform the following operations:

Each instruction type is described in detail in the following paragraphs

Data Movement
Integer Arithmetic
Logical
Shift and Rotate
Bit Manipulation

Bit Field Manipulation
Binary-Coded Decimal Arithmetic
Program Control
System Control
Multiprocessor Communications

Instruction Set Summary

MOTOROLA

MC68030 USER’S MANUAL

3-3

The following notations are used in this section. In the operand syntax statements of the
instruction definitions, the operand on the right is the destination operand.

An = any address register, A7–A0
Dn = any data register, D7–D0
Rn = any address or data register

CCR = condition code register (lower byte of status register)
cc = condition codes from CCR

SR = status register
SP = active stack pointer

USP = user stack pointer
ISP = supervisor/interrupt stack pointer

MSP = supervisor/master stack pointer
SSP = supervisor (master or interrupt) stack pointer
DFC = destination function code register
SFC = source function code register

Rc = control register (VBR, SFC, DFC, CACR)

MRc
= MMU control register (SRP, URP, TC, DTT0, DTT1, ITT0,

ITT1, MMUSR)
MMUSR = MMU status register
B, W, L = specifies a signed integer data type (twos complement) of

byte, word, or long word
S = single-precision real data format (32 bits)
D = double-precision real data format (64 bits)
X = extended-precision real data format (96 bits, 16 bits unused)
P = packed BCD real data format (96 bits, 12 bytes)

FPm, FPn = any floating-point data register, FP7-FP0

PFcr
= floating-point system control register (FPCR, FPSR, or

FPIAR)
k = a twos-complement signed integer (–64 to +17) that specifies

the format of a number to be stored in the packed BCD format
d = displacement; d

16

 is a 16-bit displacement

〈

ea

〉

= effective address
list = list of registers, for example D3 — D0

#

〈

data

〉

= immediate data; a literal integer
{offset:width} = bit field selection

label = assemble program label
[m] = bit m of an operand

[m:n] = bits m through n of operand

Instruction Set Summary

3-4

MC68030 USER’S MANUAL

MOTOROLA

3.2.1 Data Movement Instructions

The MOVE instructions with their associated addressing modes are the basic means of
transferring and storing addresses and data. MOVE instructions transfer byte, word, and
long-word operands from memory to memory, memory to register, register to memory, and
register to register. Address movement instructions (MOVE or MOVEA) transfer word and
long-word operands and ensure that only valid address manipulations are executed. In
addition to the general MOVE instructions, there are several special data movement
instructions: move multiple registers (MOVEM), move peripheral data (MOVEP), move
quick (MOVEQ), exchange registers (EXG), load effective address (LEA), push effective
address (PEA), link stack (LINK), and unlink stack (UNLK).

X = extend (X) bit in CCR
N = negative (N) bit in CCR
Z = Zero (Z) bit in CCR
V = overflow (V) bit in CCR
C = carry (C) bit in CCR
+ = arithmetic addition or postincrement indicator
– = arithmetic subtraction or predecrement indicator
x = arithmetic multiplication

÷

= arithmetic division or conjunction symbol
~ = invert; operand is logically complemented

Λ

= logical AND
V = logical OR

⊕

= logical exclusive OR
Dc = data register, D7-D0 used during compare
Du = data register, D7-D0 used during update

Dr, Dq = data registers, remainder or quotient of divide
Dh, Dl = data registers, high or lo

•

order 32 bits of product
MSW = most significant word
LSW = least significant word
MSB = most significant bit

FC = function code
{R/W} = read or write indicator

[An] = address extensions

Instruction Set Summary

MOTOROLA

MC68030 USER’S MANUAL

3-5

Table 3–1 is a summary of the integer and floating-point data movement operations.

3.2.2 Integer Arithmetic Instructions

The integer arithmetic operations include the four basic operations of add (ADD), subtract
(SUB), multiply (MUL), and divide (DIV) as well as arithmetic compare (CMP, CMPM,
CMP2), clear (CLR), and negate (NEG). The instruction set includes ADD, CMP, and SUB
instructions for both address and data operations with all operand sizes valid for data
operations. Address operands consist of 16 or 32 bits. The clear and negate instructions
apply to all sizes of data operands.

Signed and unsigned MUL and DIV instructions include:

• Word multiply to produce a long-word product

• Long-word multiply to produce and long-word or quad-word product

• Division of a long word divided by a word divisor (word quotient and word remainder)

• Division of a long word or quad word dividend by a long-word divisor (long-word quo-
tient and long-word remainder)

A set of extended instructions provides multiprecision and mixed-size arithmetic. These
instructions are add extended (ADDX), subtract extended (SUBX), sign extended (EXT),
and negate binary with extend (NEGX). Refer to Table 3–2 for a summary of the integer
arithmetic operations.

Table 3-1. Data Movement Operations

Instruction Operand Syntax Operand Size Operation

EXG Rn,Rn 32 Rn

↔

 Rn
LEA

〈

ea

〉

,An 32

〈

ea

〉

→

 An
LINK An,#

〈

d

〉

 16, 32 Sp - 4

→

 SP; An

→

 (SP); SP

→

 An, SP + D

→

 SP
MOVE

MOVEA

〈

ea

〉

,

〈

ea

〉

,An 8, 16, 32
16, 32

→

 32
source

→

 destination

MOVEM list,

〈

ea

〉

,list 16, 32
16, 32

→

 32
listed registers

→

 destination
source

→

 listed registers
MOVEP

 Dn,(d

16

,An)

(d

16

,An),Dn

16, 32

Dn[31:24]

→

 (An + d); Dn[23:16]

→

 An + d + 2);
Dn[15:8]

→

 (An + d + 4); Dn[7:0]

→

 (An + d + 6)
(An + d)

→

 Dn[31:24]; (An + d + 2)

→

 Dn[23:16];
(An + d + 4)

→

 Dn[15:8]; (An + d + 6)

→

 Dn[7:0]

MOVEQ #

〈

data

〉

,Dn 8

→

 32 immediate data

→

 destination
PEA

〈

ea

〉

 32 SP — 4

→

 SP;

〈

ea

〉

→

 (SP)
UNLK An 32 An

→

 SP; (SP)

→

 An; SP + 4

→

 SP

Instruction Set Summary

3-6

MC68030 USER’S MANUAL

MOTOROLA

3.2.3 Logical Instructions

The logical operation instructions (AND, OR, EOR, and NOT) perform logical operations
with all sizes of integer data operands. A similar set of immediate instructions (ANDI, ORI,
and EORI) provide these logical operations with all sizes of immediate data. The TST
instruction compares the operand with zero arithmetically, placing the result in the condition
code register. Table 3–3 summarizes the logical operations.

Table 3-2. Integer Arithmetic Operations

Instruction Operand Syntax Operand Size Operation

ADD

ADDA

Dn,

〈

ea

〉
〈

ea

〉

,Dn

〈

ea

〉

,An

 8, 16, 32
 8, 16, 32
 16, 32

source + destination

→

 destination

ADDI
ADDQ

#

〈

data

〉

,

〈

ea

〉

#

〈

data

〉

,

〈

ea

〉

 8, 16, 32
 8, 16, 32

immediate data + destination

→

 destination

ADDX Dn,Dn

 –(An),–(An)
 8, 16, 32
 8, 16, 32

source + destination + X

→

 destination

CLR

〈

ea

〉

 8, 16, 32 0

→

 destination
CMP
CMPA

〈

ea

〉

,Dn

〈

ea

〉

,An
 8, 16, 32
 16, 32

destination - source

CMPI #

〈

data

〉

,

〈

ea

〉

 8, 16, 32 destination - immediate data
CMPM (An) +,(An) + 8, 16, 32 destination - source
CMP2

〈

ea

〉

,Rn 8, 16, 32 lower bound < = Rn < = upper bound
DIVS/DIVU

DIVSL/DIVUL

〈

ea〉,Dn
〈ea〉,Dr:Dq

〈ea〉,Dq
〈ea〉,Dr:Dq

32/16 → 16:16
64/32 → 32:32

32/32 → 32
32/32 → 32:32

destination/source → destination (signed or unsigned)

EXT

EXTB

 Dn
 Dn
 Dn

8 → 16
16 → 32
8 → 32

sign-extended destination → destination

MULS/MULU 〈ea〉,Dn
〈ea〉,Dl

(ea〉,Dh:Dl

16x16 → 32
32x32 → 32
32x32 → 64

source y destination → destination (signed or unsigned)

NEG 〈ea〉 8, 16, 32 0 - destination → destination
NEGX 〈ea〉 8, 16, 32 0 - destination - X → destination
SUB

SUBA

〈ea〉,Dn
Dn,〈ea〉
〈ea〉,An

 8, 16, 32
 8, 16, 32
 16, 32

destination = source → destination

SUBI
SUBQ

#〈data〉,〈ea〉
#〈data〉,〈ea〉

 8, 16, 32
 8, 16, 32

destination - immediate data → destination

SUBX Dn,Dn
 –(An),–(An)

 8, 16, 32
 8, 16, 32

destination - source — X → destination

Instruction Set Summary

MOTOROLA MC68030 USER’S MANUAL 3-7

3.2.4 Shift and Rotate Instructions
The arithmetic shift instructions (ASR and ASL) and logical shift instructions (LSR and LSL)
provide shift operations in both directions. The ROR, ROL, ROXR, and ROXL instructions
perform rotate (circular shift) operations, with and without the extend bit. All shift and rotate
operations can be performed on either registers or memory.

Register shift and rotate operations shift all operand sizes. The shift count may be specified
in the instruction operation word (to shift from 1–8 places) or in a register (modulo 64 shift
count).

Memory shift and rotate operations shift word-length operands one bit position only. The
SWAP instruction exchanges the 16-bit halves of a register. Performance of shift/rotate
instructions is enhanced so that use of the ROR and ROL instructions with a shift count of
eight allows fast byte swapping. Table 3–4 is a summary of the shift and rotate operations.

Table 3-3. Logical Operations

Instruction Operand Syntax Operand Size Operation
AND 〈ea〉,Dn

Dn,〈ea〉
 8, 16, 32
 8, 16, 32

source Λ destination → destination

ANDI #〈data〉,〈ea〉 8, 16, 32 immediate data Λ destination → destination
EOR Dn,〈data〉,〈ea〉 8, 16, 32 source ⊕ destination → destination
EORI #〈data〉,〈ea〉 8, 16, 32 immediate data x destination → destination
NOT 〈ea〉 8, 16, 32 ∼ destination → destination
OR 〈ea〉,Dn

Dn,〈ea〉
 8, 16, 32
 8, 16, 32

source V destination → destination

ORI #〈data〉,〈ea〉 8, 16, 32 immediate data V destination → destination
TST #〈ea〉 8, 16, 32 source — 0 to set condition codes

Instruction Set Summary

3-8 MC68030 USER’S MANUAL MOTOROLA

Table 3-4. Shift and Rotate Operations.

3.2.5 Bit Manipulation Instructions
Bit manipulation operations are accomplished using the following instructions: bit test
(BTST), bit test and set (BSET), bit test and clear (BCLR), and bit test and change (BCHG).
All bit manipulation operations can be performed on either registers or memory. The bit
number is specified as immediate data or in a data register. Register operands are 32 bits
long, and memory operands are 8 bits long. In Table 3–5, the summary of the bit
manipulation operations, Z refers to bit 2, the zero bit of the status register.

 X/C

 X/C 0

 X/C0

C

C

XC

 X/C 0

X C

MSW LSW

Instruction Set Summary

MOTOROLA MC68030 USER’S MANUAL 3-9

3.2.6 Bit Field Operations
The MC68030 supports variable-length bit field operations on fields of up to 32 bits. The bit
field insert (BFINS) instruction inserts a value into a bit field. Bit field extract unsigned
(BFEXTU) and bit field extract signed (BFEXTS) extract a value from the field. Bit field find
first one (BFFFO) finds the first bit that is set in a bit field. Also included are instructions that
are analogous to the bit manipulation operations; bit field test (BFTST), bit field test and set
(BFSET), bit field test and clear (BFCLR), and bit field test and change (BFCHG). Table 3–
6 is a summary of the bit field operations.

NOTE: All bit field instructions set the N and Z bits as shown for BFTST before performing the specified operation.

Table 3-5. Bit Manipulation Operations

 Instruction Operand Syntax Operand Size Operation
BCHG Dn,〈ea〉

#〈data〉,ea
 8, 32
 8, 32

∼ (〈bit number〉 of destination) → Z → bit of destination

BCLR Dn,〈ea〉
#〈data〉,ea

 8, 32
 8, 32

∼ (〈bit number〉 of destination) → Z;
 — 0 → bit of destination

BSET Dn,〈ea〉
#〈data〉,〈ea〉

 8, 32
 8, 32

∼ (〈bit number〉 of destination) → Z;
 — 1 → bit of destination

BTST Dn,〈ea〉
#〈data〉,ea

 8, 32
 8, 32

∼ (〈bit number〉 of destination) → Z

Table 3-6. Bit Field Operations

 Instruction Operand Syntax Operand Size Operation
BFCHG 〈ea〉 {offset:width} 1 — 32 ∼ Field → Field
BFCLR 〈ea〉 {offset:width} 1 — 32 0's → Field
BFEXTS 〈ea〉 {offset:width},Dn 1—32 Field → Dn; Sign Extended
BFEXTU 〈ea〉 {offset:width},Dn 1 — 32 Field → Dn; Zero Extended
BFFFO 〈ea〉 {offset:width},Dn 1 — 32 Scan for first bit set in field; offset → Dn
BFINS Dn,〈ea〉 {offset:width} 1 — 32 Dn → Field
BFSET 〈ea〉 {offset:width} 1 — 32 1's → Field
BFTST 〈ea〉 {offset:width} 1 — 32 Field MSB → N; ∼ (OR of all bits in field) → Z

Instruction Set Summary

3-10 MC68030 USER’S MANUAL MOTOROLA

3.2.7 Binary–coded Decimal Instructions
Five instructions support operations on binary-coded decimal (BCD) numbers. The
arithmetic operations on packed BCD numbers are add decimal with extend (ABCD),
subtract decimal with extend (SBCD), and negate decimal with extend (NBCD). PACK and
UNPACK instructions aid in the conversion of byte encoded numeric data, such as ASCII or
EBCDIC strings, to BCD data and vice versa. Table 3–7 is a summary of the BCD
operations.

Table 3-7. BCD Operations

Instruction Operand Syntax Operand Size Operation
ABCD Dn,Dn

–(An)
8
 8

source10 + destination10 + X → destination

NBCD 〈ea〉 8 0 - destination10 –X → destination

PACK –(An),–(An)
#〈data〉

Dn,Dn,# 〈data〉

16→8

16→8

unpackaged source + immediate data → packed
destination

SBCD Dn,Dn
 –(An),–(An)

 8
 8

destination10 - source10 – X → destination

UNPK –(An)
#〈data〉

Dn,Dn,#〈data〉

8→16

8→16

packed source → unpacked source
unpacked source + immediate data →

unpacked destination

Instruction Set Summary

MOTOROLA MC68030 USER’S MANUAL 3-11

3.2.8 Program Control Instructions
A set of subroutine call and return instructions and conditional and unconditional branch
instructions perform program control operations. The no operation instruction (NOP) may be
used to force synchronization of the internal pipelines. Table 3–8 summarizes these
instructions.

Letters cc in the integer instruction mnemonics Bcc, DBcc, and Scc specify testing one of the following conditions:
CC — Carry clear GE — Greater or equal
LS — Lower or same PL — Plus
CS — Carry set GT — Greater than
LT — Less than T — Always true*
EQ — Equal HI — Higher
MI — Minus VC — Overflow clear
F — Never true* LE — -Less or equal
NE — Not equal VS — Overflow set
*Not applicable to the Bcc instructions.

Table 3-8. Program Control Operations

Instruction Operand Syntax Operand Size Operation
Integer and Floating-Point Conditional

Bcc 〈 label〉 8, 16, 32 if condition true, then PC + d → PC
DBcc Dn,〈 label〉 16 if condition false, then Dn — 1 → Dn

if Dn ≠ -1, then PC + d → PC
Scc 〈ea〉 8 if condition true, then 1's → destination;

else 0's → destination
Unconditional

BRA 〈 label〉 8, 16, 32 PC + d → PC
BSR 〈 label〉 8, 16, 32 SP — 4 → SP; PC→(SP); PC + d → PC
JMP 〈ea〉 none destination → PC
JSR 〈ea〉 none SP — 4 → SP; PC→ (SP); destination → PC
NOP none none PC + 2 → PC

Returns
RTD #〈d〉 16 (SP) → PC; SP + 4 + d → SP
RTR none none (SP) → CCR; SP + 2 → SP; (SP) → PC; SP + 4 → SP
RTS none none (SP) → PC; SP + 4→ SP

Instruction Set Summary

3-12 MC68030 USER’S MANUAL MOTOROLA

3.2.9 System Control Instructions
Privileged instructions, trapping instructions, and instructions that use or modify the
condition code register (CCR) provide system control operations. Table 3–9 summarizes
these instructions. The TRAPcc instruction uses the same conditional tests as the
corresponding program control instructions. All of these instructions cause the processor to
flush the instruction pipe.

Table 3-9. System Control Operations

Instruction Operand Syntax Operand Size Operation

Privileged

ANDI #〈data〉,SR 16 immediate data Λ SR → SR

EORI #〈data〉,SR 16 immediate data x SR → SR

MOVE 〈ea〉,SR
 SR,〈ea〉

 16
 16

source → SR
SR → destination

MOVE USP,An
 An,USP

 32
 32

USP → An
An → USP

MOVEC Rc,Rn
 Rn,Rc

 32
 32

Rc → Rn
Rn → Rc

MOVES Rn, 〈ea〉
 〈ea〉,Rn

 8, 16, 32 Rn → destination using DFC
source using SFC → Rn

ORI #〈data〉,SR 16 immediate data V SR → SR

RESET none none assert RESET line

RTE none none (SP) → SR; SP + 2 → SP; (SP) → PC; SP + 4 → SP;
Restore stack according to format

STOP #〈data〉 16 immediate data → SR; STOP

Trap Generating

BKPT #〈data〉 none run breakpoint cycle, then trap as illegal instruction

CHK 〈ea〉,Dn 16, 32 if Dn < 0 or Dn > (ea), then CHK exception

CHK2 〈ea〉,Rn 8, 16, 32 if Rn < -lower bound or Rn > -upper bound, then CHK
exception

ILLEGAL none none SSP — 2 → SSP; Vector Offset→ (SSP);
SSP — 4 → SSP; PC→ (SSP);
SSP — 2 → SSP; SR→ (SSP);
Illegal Instruction Vector Address → PC

TRAP #〈data〉 none SSP — 2 → SSP; Format and Vector Offset→(SSP)
SSP — 4 → SSP; PC→(SSP); SSP — 2 → SSP;
SR→(SSP); Vector Address → PC

TRAPcc none
 #〈data〉

 none
 16, 32

if cc true, then TRAP exception

TRAPV none none if V, then take overflow TRAP exception

Condition Code Register

ANDI #〈data〉,CCR 8 immediate data Λ CCR → CCR

EORI #〈data〉,CCR 8 immediate data ⊕ CCR → CCR

MOVE 〈ea〉,CCR
 CCR,〈ea〉

 16
 16

source → CCR
CCR → destination

ORI #〈data〉,CCR 8 immediate data V CCR → CCR

Instruction Set Summary

MOTOROLA MC68030 USER’S MANUAL 3-13

3.2.10 Memory Management Unit Instructions
The PFLUSH instructions flush the address translation caches (ATCs) and can optionally
select only nonglobal entries for flushing. PTEST performs a search of the address
translation tables, storing results in the MMU status register and loading the entry into the
ATC. Table 3–10 summarizes these instructions.

3.2.11 Multiprocessor Instructions
The TAS, CAS, and CAS2 instructions coordinate the operations of processors in
multiprocessing systems. These instructions use read-modify-write bus cycles to ensure
uninterrupted updating of memory. Coprocessor instructions control the coprocessor
operations. Table 3–11 lists these instructions.

Table 3-10. MMU Instructions

Instruction Operand Syntax Operand Size Operation
PFLUSHA none none Invalidate all ATC entries
PFLUSHA.N none none Invalidate all nonglobal ATC entries
PFLUSH (An) none Invalidate ATC entries at effective address
PFLUSH.N (An) none Invalidate nonglobal ATC entries at effective address
PTEST (An) none Information about logical address → MMU status register

Table 3-11. Multiprocessor Operations (Read-Modify-Write)

Instruction Operand Syntax Operand Size Operation
Read-Modify-Write

CAS Dc,Du,〈ea〉 8, 16, 32 destination — Dc → CC; if Z then Du → destination
else destination→Dc

CAS2 Dc1:Dc2,Du1:Du2,(
Rn):(Rn)

8, 16, 32 dual operand CAS

TAS 〈ea〉 8 destination — 0; set condition codes; 1 → destination [7]
Coprocessor

cpBcc 〈 label〉 16, 32 if cpcc true, then PC + d → PC
cpDBcc label,Dn 16 if cpcc false then Dn –1 → Dn

if Dn ≠ –1, then PC + d → PC
cpGEN User Defined User Defined operand → coprocessor
cpRESTORE 〈ea〉 none restore coprocessor state from 〈ea〉
cpSAVE 〈ea〉 none save coprocessor state at 〈ea〉
cpScc 〈ea〉 8 if cpcc true, then 1's → destination; else 0's → destination
cpTRAPcc none

#〈data〉
none
16, 32

if cpc true, then TRAPcc exception

Instruction Set Summary

3-14 MC68030 USER’S MANUAL MOTOROLA

3.3 INTEGER CONDITION CODES
The CCR portion of the SR contains five bits which indicate the results of many integer
instructions. Program and system control instructions use certain combinations of these bits
to control program and system flow.

The first four bits represent a condition resulting from a processor operation. The X bit is an
operand for multiprecision computations; when it is used, it is set to the value of the C bit.
The carry bit and the multiprecision extend bit are separate in the M68000 Family to simplify
programming techniques that use them (refer to Table 3–8 as an example).

The condition codes were developed to meet two criteria:

• Consistency across instructions, uses, and instances

• Meaningful Results no change unless it provides useful information

Consistency across instructions means that all instructions that are special cases of more
general instructions affect the condition codes in the same way. Consistency across
instances means that all instances of an instruction affect the condition codes in the same
way. Consistency across uses means that conditional instructions test the condition codes
similarly and provide the same results, regardless of whether the condition codes are set by
a compare, test, or move instruction.

In the instruction set definitions, the CCR is shown as follows:

where:

X (extend)

Set to the value of the C bit for arithmetic operations. Otherwise not affected or set to
a specified result.

N (negative)

Set if the most significant bit of the result is set. Cleared otherwise.

Z (zero)

Set if the result equals zero. Cleared otherwise.

V (overflow)

Set if arithmetic overflow occurs. This implies that the result cannot be represented in
the operand size. Cleared otherwise.

C (carry)

Set if a carry out of the most significant bit of the operand occurs for an addition. Also
set if a borrow occurs in a subtraction. Cleared otherwise.

X N Z V C

Instruction Set Summary

MOTOROLA MC68030 USER’S MANUAL 3-15

3.3.1 Condition Code Computation
Most operations take a source operand and a destination operand, compute, and store the
result in the destination location. Single-operand operations take a destination operand,
compute, and store the result in the destination location. Table 3–12 lists each instruction
and how it affects the condition code bits.

Table 3-12. Condition Code Computations (Sheet 1 of 2)

Operations X N Z V C Special Definition

ABCD * U ? U ? C =-Decimal Carry
Z =-Z Λ Rm Λ . . . Λ R0

ADD, ADDI, ADDQ * * * ? ? V = Sm Λ Dm Λ Rm V Sm Λ Dm Λ Rm
C = Sm Λ Dm V Rm Λ Dm V Sm Λ Rm

ADDX * * ? ? ? V = Sm Λ Dm Λ Rm V Sm Λ Dm Λ Rm
C = Sm Λ Dm V Rm Λ Dm V Sm Λ Rm
Z = Z Λ Rm Λ . . . Λ R0

AND, ANDI, EOR, EORI,
MOVEQ, MOVE, OR, ORI
CLR, EXT, NOT, TAS, TST

— * * 0 0

CHK — * U U U

CHK2, CMP2 — U ? U ? Z = (R = LB) V (R = UB)
C = (LB < = UB) Λ (IR < LB) V (R > UB))
V = (UB <LB) Λ (R >UB) Λ (R <LB)

SUB, SUBI, SUBQ * * * ? ? V = Sm Λ Dm Λ Rm V Sm Λ Dm Λ Rm
C = Sm Λ Dm V Rm Λ Dm V Sm Λ Rm

SUBX * * ? ? ? V = Sm Λ Dm Λ Rm V Sm Λ Dm Λ Rm
C = Sm Λ Dm V Rm Λ Dm V Sm Λ Rm
Z = Z Λ Rm Λ . . . Λ R0

CAS, CAS2, CMP, CMPI,
CMPM

— * * ? ? V = Sm Λ Dm Λ Rm V Sm Λ Dm Λ Rm
C = Sm Λ Dm V Rm Λ Dm V Sm Λ Rm

DIVS, DUVI — * * ? 0 V = Division Overflow

MULS, MULU — * * ? 0 V = Multiplication Overflow

SBCD, NBCD * U U ? C = Decimal Borrow
Z = Z Λ Rm Λ . . . Λ R0

NEG * * * ? ? V = Dm Λ Rm
C = Dm V Rm

NEGX * * ? ? ? V = Dm Λ Rm
C = Dm V Rm
Z = Z Λ Rm Λ . . . Λ R0

Instruction Set Summary

3-16 MC68030 USER’S MANUAL MOTOROLA

— = Not Affected Rm = Result Operand — Most Significant Bit
U = Undefined, Result Meaningless R = Register Tested
? = Other — See Special Definition n = Bit Number
* = General Case r = Shift Count

X = C LB = Lower Bound
N = Rm UB = Upper Bound
Z = Rm Λ . . . Λ R0 Λ = Boolean AND

Sm = Destination Operand — Most Significant Bit V = Boolean OR
Dm = Destination Operand — Most Significant Bit Rm = NOT Rm

Table 3-12. Condition Code Computations (Continued)

Operations X N Z V C Special Definition

BTST, BCHG, BSET, BCLR — — ? — — Z = Dn

BFTST, BFCHG, BFSET,
BFCLR

 — ? ? 0 0 N = Dm
Z = Dm Λ DM –1 Λ . . . Λ D0

BFEXTS, BFEXTU, BFFFO — ? ? 0 0 N = Sm
Z = Sm Λ Sm –1 Λ . . . Λ S0

BFINS — ? ? 0 0 N = Dm
Z = Dm Λ DM–1 Λ . . . Λ D0

ASL * * * V = Dm Λ (Dm –1 V . . . V Dm –r) V Dm Λ
(Dm –1 V . . . + Dm –r)

C = Dm –r + 1

ASL (R = 0) * * 0 0

LSL, ROXL * * * 0 ? C = Dm –r + 1

LSR (r = 0) — * * 0 0

ROXL (r = 0) — * * 0 ? C = X

ROL — * * 0 ? C = Dm –r + 1

ROL (r = 0) — * * 0 0

ASR, LSR, ROXR * * * 0 ? C = Dr –1

ASR, LSR (r = 0) — * * 0 0

ROXR (r = 0) — * * 0 ? C = X

ROR — * * 0 ? C = Dr –1

ROR (r = 0) — * * 0 0

Instruction Set Summary

MOTOROLA MC68030 USER’S MANUAL 3-17

3.3.2 Conditional Tests
Table 3–13 lists the condition names, encodings, and tests for the conditional branch and
set instructions. The test associated with each condition is a logical formula using the current
states of the condition codes. If this formula evaluates to one, the condition is true. If the
formula evaluates to zero, the condition is false. For example, the T condition is always true,
and the EQ condition is true only if the Z bit condition code is currently true.

• = Boolean AND
+ = Boolean OR
N = Boolean NOT N
*Not available for the Bcc instruction.

Table 3-13. Conditional Tests

Mnemonic Condition Encoding Test

T* True 0000 1

F* False 0001 0

HI High 0010 C •Z

LS Low or Same 0011 C + Z

CC(HS) Carry Clear 0100 C

CS(LO) Carry Set 0101 C

NE Not Equal 0110 Z

EQ Equal 0111 Z

VC Overflow Clear 1000 V

VS Overflow Set 1001 V

PL Plus 1010 N

MI Minus 1011 N

 GE Greater or Equal 1100 N •V + N •V

 LT Less Than 1101 N •V + N •V

 GT Greater Than 1110 N •V •Z + N • V •Z

 LE Less or Equal 1111 Z + N •V + N • V

Instruction Set Summary

3-18 MC68030 USER’S MANUAL MOTOROLA

3.4 INSTRUCTION SET SUMMARY
Table 3–14 provides a alphabetized listing of the MC68030 instruction set listed by opcode,
operation, and syntax.

Table 3–14 use notational conventions for the operands, the subfields and qualifiers, and
the operations performed by the instructions. In the syntax descriptions, the left operand is
the source operand, and the right operand is the destination operand. The following list
contains the notations used in Table 3–14.

Notation for operands:

PC — Program counter

SR — Status register

V — Overflow condition code

Immediate Data — Immediate data from the instruction

Source — Source contents

Destination — Destination contents

Vector — Location of exception vector

+ inf — Positive infinity

–inf — Negative infinity

〈fmt〉 — Operand data format: byte (B) word (W), long
(L), single (S), double (D), extended (X), or
packed (P)

FPm — One of eight floating-point data registers (always
specifies the source register)

FPn — One of eight floating-point data registers (always
specifies the destination register)

Notation for subfields and qualifiers:

〈bit〉 of (operand〉 — Selects a single bit of the operand

〈ea〉 {offset:width} — Selects a bit field

(〈operand〉) — The contents of the referenced location

〈operand〉 10 — The operand is binary-coded decimal; operations are per-
formed in decimal

(〈address register〉) — The register indirect operation

–(〈address register〉) — Indicates that the operand register points to the memory

(〈address register〉) + — Location of the instruction operand — the optional mode
qualifiers are -, +, (d), and (d,ix)

#xxx or #〈data〉 — Immediate data that follows the instruction word(s)

Instruction Set Summary

MOTOROLA MC68030 USER’S MANUAL 3-19

Notations for operations that have two operands, written 〈operand〉 〈op〉 〈operand〉 , where
〈op〉 is one of the following:

→ — The source operand is moved to the destination operand

↔ — The two operands are exchanged

+ — The operands are added

– — The destination operand is subtracted from the source
operand

x — The operands are multiplied

÷ — The source operand is divided by the destination operand

< — Relational test, true if source operand is less than destina-
tion operand

> — Relational test, true if source operand is greater than des-
tination operand

V — Logical OR

⊕ — Logical exclusive OR

Λ — Logical AND

shifted by, rotated by — The source operand is shifted or rotated by the number of
positions specified by the second operand

Notation for single-operand operations:
~〈operand〉 — The operand is logically complemented

〈operand〉 sign-extended— The operand is sign extended; all bits of the upper portion
are made equal to the high-order bit of the lower portion

〈operand〉 tested — The operand is compared to zero and the condition codes
are set appropriately

Notation for other operations:
TRAP — Equivalent to Format/Offset Word→ (SSP); SSP –2

→ SSP; PC→ (SSP); SSP – 4 → SSP; SR→ (SSP);
SSP–2 → SSP; (vector) → PC

STOP — Enter the stopped state, waiting for the interrupts

If 〈condition〉 then — The condition is tested. If true, the operations

〈operations〉 else — after "then'' are performed. If the condition is

〈operations〉 — false and the optional "else'' clause is present, the opera-
tions after "else" are performed. If the condition is false and
else is omitted, the instruction performs no operation. Refer
to the Bcc instruction description as an example.

Instruction Set Summary

3-20 MC68030 USER’S MANUAL MOTOROLA

Table 3-14. Instruction Set Summary (Sheet 1 of 5)

Opcode Operation Syntax
 ABCD Source10 + Destination10 + X → Destination ABCD Dy,Dx

ABCD –(Ay),–(Ax)
 ADD Source + Destination → -Destination ADD 〈ea〉,Dn

ADD Dn,〈ea〉
 ADDA Source + Destination → Destination ADDA 〈ea〉,An
 ADDI Immediate Data + Destination → Destination ADDI #〈data〉,〈ea〉
 ADDQ Immediate Data + Destination → Destination ADDQ #〈data〉,〈ea〉
 ADDX Source + Destination + X → Destination ADDX Dy,Dx

ADDX –(Ay),–(Ax)
 AND Source Λ Destination → Destination AND 〈ea〉,Dn

AND Dn,〈ea〉
 ANDI Immediate Data Λ Destination → Destination ANDI #〈data〉,〈ea〉
 ANDI

to CCR
Source Λ CCR → CCR ANDI #〈data〉,CCR

 ANDI
to SR

If supervisor state
then Source Λ SR → SR

else TRAP

ANDI #〈data〉,SR

 ASL,ASR Destination Shifted by 〈count〉 → Destination ASd Dx,Dy
ASd #〈data〉,Dy
ASd 〈ea〉

Bcc If (condition true) then PC + d → PC Bcc (label〉
 BCHG ∼ (〈number〉 of Destination) → Z;

∼ (〈number〉 of Destination) → 〈bit number〉 of Destination
BCHG Dn,〈ea〉BCHG #〈data〉,〈ea〉

 BCLR ∼ (〈bit number〉 of Destination) → Z;
0 → 〈bit number〉 of Destination

BCLR Dn,〈ea〉BCLR #〈data〉,〈ea〉

 BFCHG ∼ (〈bit field〉 of Destination) → 〈bit field〉 of Destination BFCHG 〈ea〉{offset:width}
 BFCLR 0 → 〈bit field〉 of Destination BFCLR 〈ea〉{offset:width}
BFEXTS 〈bit field〉 of Source → Dn BFEXTS 〈ea〉{offset:width},Dn
BFEXTU (bit offset〉 of Source → Dn BFEXTU 〈ea〉{offset:width},Dn
BFFFO (bit offset〉 of Source Bit Scan → Dn BFFFO 〈ea〉{offset:width},Dn
BFINS Dn → 〈bit field〉 of Destination BFINS Dn,〈ea〉{offset:width}
BFSET 1s → 〈bit field〉 of Destination BFSET 〈ea〉{offset:width}
BFTST 〈bit field〉 of Destination BFTST 〈ea〉{offset:width}

 BKPT Run breakpoint acknowledge cycle;
TRAP as illegal instruction

BKPT # 〈data〉

BRA PC + d → PC BRA (label〉
 BSET ~ (〈bit number〉 of Destination) → Z;

1 → 〈bit number〉 of Destination
BSET Dn,〈ea〉BSET #〈data〉,〈ea〉

 BSR SP – 4 → SP; PC → (SP); PC + d → PC BSR (label〉
 BTST –(〈bit number〉 of Destination) → Z; BTST Dn,〈ea〉BTST #〈data〉,〈ea〉

Instruction Set Summary

MOTOROLA MC68030 USER’S MANUAL 3-21

Table 3-14. Instruction Set Summary (Sheet 2 of 5)

Opcode Operation Syntax
 CAS
 CAS2

CAS Destination Compare Operand → cc;
if Z, Update Operand → Destination
else Destination → Compare Operand

CAS2 Destination 1 Compare 1 → cc;
if Z, Destination 2 Compare → cc;
if Z, Update 1 → Destination 1; Update 2 → Destination 2
else Destination 1 → Compare 1; Destination 2 →Compare 2

CAS Dc,Du,〈ea〉CAS2
Dc1:Dc2,Du1:Du2,(Rn1):(Rn2)

 CHK If Dn < 0 or >-Source then TRAP CHK 〈ea〉,Dn
 CHK2 If Rn < lower bound or

Rn > upper bound
then TRAP

CHK2 〈ea〉,Rn

 CLR 0 → Destination CLR 〈ea〉
 CMP Destination — Source → cc CMP 〈ea〉,Dn

 CMPA Destination — Source CMPA 〈ea〉,An
 CMPI Destination — Immediate Data CMPI #〈data〉,〈ea〉
 CMPM Destination — Source → cc CMPM (Ay) +,(Ax) +
 CMP2 Compare Rn < lower-bound or

Rn > upper-bound
and Set Condition Codes

CMP2 〈ea〉,Rn

cpBcc If cpcc true then scanPC + d → PC cpBcc (label〉
cpDBcc If cpcc false then (Dn –1 → Dn;

if Dn ≠ –1 then scanPC + d → PC
cpDBcc Dn,(label〉

cpGEN Pass Command Word to Coprocessor cpGEN (parameters as defined by
coprocessorL

cpRESTORE If supervisor state
then Restore Internal State of Coprocessor

else TRAP

cpRESTORE 〈ea〉

cpSAVE If supervisor state
the Save Internal State of Coprocessor

else TRAP

cpSAVE 〈save〉

cpScc If cpcc true then 1s → Destination
else 0s → Destination

cpTRAPcc If cpcc true then TRAP cpTRAPcc
cpTRAPcc #〈data〉

 DBcc If condition false then (Dn–1 → Dn;
If Dn ≠ –1 then PC + d → PC)

DBcc Dn,(label〉

 DIVS
 DIVSL

Destination/Source → Destination DIVS.W 〈ea〉,Dn32/16 → 16r:16q
DIVS.L 〈ea〉,Dq 32/32 → 32q
DIVS.L 〈ea〉,Dr:Dq 64/32 → 32r:32q
DIVSL.L 〈ea〉,Dr:Dq32/32 → 32r:32q

 DIVU
 DIVUL

Destination/Source → Destination DIVU.W 〈ea〉,Dn32/16 → 16r:16q
DIVU.L 〈ea〉,Dq 32/32 → 32q
DIVU.L 〈ea〉,Dr:Dq 64/32 → 32r:32q
DIVUL.L 〈ea〉,Dr:Dq32/32 → 32r:32q

 EOR Source ⊕ Destination → Destination EOR Dn,〈ea〉
 EORI Immediate Data ⊕ Destination → Destination EORI #〈data〉,〈ea〉

Instruction Set Summary

3-22 MC68030 USER’S MANUAL MOTOROLA

Table 3-14. Instruction Set Summary (Sheet 3 of 5)

Opcode Operation Syntax
 EORI
to CCR

Source ⊕ CCR → CCR EORI #〈data〉,CCR

 EORI
to SR

If supervisor state
then Source ⊕ SR → SR

else TRAP

EORI #〈data〉,SR

 EXG Rx ↔ Ry EXG Dx,Dy
EXG Ax,Ay
EXG Dx,Ay
EXG Ay,Dx

 EXT
EXTB

Destination Sign-Extended → Destination EXT.W Dn extend byte to word
EXT.L L Dn extend word to long word
EXTB.L Dn extend byte to long word

 ILLEGAL SSP–2 → SSP; Vector Offset → (SSP);
SSP–4 → SSP; PC → (SSP);
SSP–2 → SSP; SR → (SSP);
Illegal Instruction Vector Address → PC

ILLEGAL

 JMP Destination Address → PC JMP 〈ea〉
 JSR SP–4 → SP; PC → (SP)

Destination Address → PC
JSR 〈ea〉

 LEA 〈ea〉 → An LEA 〈ea〉,An
 LINK SP — 4 → SP; An → (SP)

SP → An, SP + d → SP
LINK An, #(displacement〉

 LSL,LSR Destination Shifted by 〈count〉 → Destination LSd5 Dx,Dy

LSd5 #〈data〉,Dy

LSd5 〈ea〉
 MOVE Source → Destination MOVE 〈ea〉,〈ea〉

 MOVEA Source → Destination MOVEA 〈ea〉,An
 MOVE

from CCR
CCR → Destination MOVE CCR,〈ea〉

 MOVE
to CCR

Source → CCR MOVE 〈ea〉,CCR

 MOVE
from SR

If supervisor state
then SR → Destination

else TRAP

MOVE SR,〈ea〉

 MOVE
to SR

If supervisor state
then Source → SR

else TRAP

MOVE 〈ea〉,SR

 MOVE
USP

If supervisor state
then USP → An or An → USP

 else TRAP

MOVE USP,An
MOVE An,USP

 MOVEC If supervisor state
then Rc → Rn or Rn → Rc

else TRAP

MOVEC Rc,Rn
MOVEC Rn,Rc

 MOVEM Registers → Destination
Source → Registers

MOVEM register list,〈ea〉MOVEM
〈ea〉,register list

 MOVEP Source → Destination MOVEP Dx,(d,Ay)
MOVEP (d,Ay),Dx

 MOVEQ Immediate Data → Destination MOVEQ #〈data〉,Dn

Instruction Set Summary

MOTOROLA MC68030 USER’S MANUAL 3-23

Table 3-14. Instruction Set Summary (Sheet 4 of 5)

Opcode Operation Syntax
 MOVES If supervisor state

then Rn → Destination [DFC] or Source [SFC] → Rn
else TRAP

MOVES Rn,〈ea〉MOVES 〈ea〉,Rn

 MULS Source y-Destination → Destination MULS.W 〈ea〉,Dn 16 x 16 → 32
MULS.L 〈ea〉,Dl 32 x 32 → 32
MULS.L 〈ea〉,Dh:Dl 32 x 32 → 64

 MULU Source y-Destination → Destination MULU.W 〈ea〉,Dn 16 x 16 → 32
MULU.L 〈ea〉,Dl 32 x 32 → 32
MULU.L 〈ea〉,Dh:Dl 32 x 32 → 64

 NBCD 0 — (Destination10) — X → Destination NBCD 〈ea〉
 NEG 0 — (Destination) → Destination NEG 〈ea〉

 NEGX 0 — (Destination) — X → Destination NEGX 〈ea〉
 NOP None NOP
 NOT ∼ Destination → Destination NOT 〈ea〉
 OR Source V Destination → Destination OR 〈ea〉,Dn

OR Dn,〈ea〉
 ORI Immediate Data V Destination → Destination ORI #〈data〉,〈ea〉
 ORI

to CCR
Source V CCR → CCR ORI #〈data〉,CCR

 ORI
to SR

If supervisor state
then Source V SR → SR

else TRAP

ORI #〈data〉,SR

 PACK Source (Unpacked BCD) + adjustment → Destintion
 (Packed BCD)

PACK –(Ax),–(Ay),#(adjustment〉
PACK Dx,Dy,#(adjustment〉

 PEA Sp –4 → SP; 〈ea〉 → (SP) PEA 〈ea〉
PFLUSH If supervisor state

then invalidate instruction and data ATC entries for
destination address

else TRAP
PLOAD If supervisor state

then entry → ATC
else TRAP

PMOVE If supervisor state
then (Source) → MRn or MRn → (Destination)

PTEST If supervisor state
then logical address status → MMUSR; entry → ATC

else TRAP
 RESET If supervisor state

then Assert RSTO Line
else TRAP

RESET

ROL,ROR Destination Rotated by 〈count〉 → Destination ROd5 Rx,Dy

ROd5 #〈data〉,Dy

ROd5 〈ea〉
 ROXL,
ROXR

Destination Rotated with X by 〈count〉 → Destination ROXd5 Dx,Dy

ROXd5 #〈data〉,Dy

ROXd5 〈ea〉

Instruction Set Summary

3-24 MC68030 USER’S MANUAL MOTOROLA

NOTES:
1. Specifies either the instruction (IC), data (DC), or IC/DC caches.
2. Where r is rounding precision, S or D.
3. A list of any combination of the eight floating-point data registers, with individual register names separated by a

slash (/) and/or contiguous blocks of registers specified by the first and last register names separated by a dash
(–).

4. A list of any combination of the three floating-point system control registers (FPCR, FPSR, and FPIAR) with
indvidual register names separated by a slash (/).

5. Where d is direction, L or R.

Table 3-14. Instruction Set Summary (Concluded)

Opcode Operation Syntax
 RTD (SP) → PC; SP + 4 + d → SP RTD #〈displacement〉
RTE If-supervisor-state

then (SP) → SR; SP+2 → SP; (SP) → PC;
SP + 4 → SP;
restore state and deallocate stack according to (SP)

else TRAP

RTE

 RTM Reload Saved Module State from Stack RTM Rn
 RTR (SP) → CCR; SP + 2 → SP;

(SP) → PC; SP + 4 → SP
RTR

 RTS (SP) → PC; SP + 4 → SP RTS
 SBCD Destination10 --Source10 –X → Destination SBCD Dx,Dy

SBCD –(Ax),–(Ay)
 Scc If condition true

then 1s → Destination
else 0s → Destination

Scc 〈ea〉

 STOP If supervisor state
then Immediate Data → SR; STOP

else TRAP

STOP #〈data〉

 SUB Destination — Source → Destination SUB 〈ea〉,Dn
SUB Dn,〈ea〉

 SUBA Destination — Source → Destination SUBA 〈ea〉,An
 SUBI Destination — Immediate Data → Destination SUBI #〈data〉,〈ea〉
 SUBQ Destination — Immediate Data → Destination SUBQ #〈data〉,〈ea〉
 SUBX Destination — Source – X → Destination SUBX Dx,Dy

SUBX –(Ax),–(Ay)
 SWAP Register [31:16] ↔ Register [15:0] SWAP Dn
 TAS Destination Tested → Condition Codes; 1 → bit 7 of Destination TAS 〈ea〉

 TRAP SSP –2 → SSP; Format/Offset → (SSP);
SSP – 4 → SSP; PC → (SSP); SSP – 2 → SSP;

SR → (SSP); Vector Address → PC

TRAP # (vector〉

 TRAPcc If cc then TRAP TRAPcc
TRAPcc.W # 〈data〉TRAPcc.L # 〈data〉

 TRAPV If V then TRAP TRAPV
 TST Destination Tested → Condition Codes TST 〈ea〉

 UNLK An → SP; (SP) → An; SP + 4 → SP UNLK An
 UNPK Source (Packed BCD) + adjustment → Destination (Unpacked BCD) UNPACK –(Ax),–(Ay),#(adjustment〉

UNPACK Dx,Dy,#(adjustment〉

Instruction Set Summary

MOTOROLA MC68030 USER’S MANUAL 3-25

3.5 INSTRUCTION EXAMPLES
The following paragraphs provide examples of how to use selected instructions.

3.5.1 Using the CAS and CAS2 Instructions
The CAS instruction compares the value in a memory location with the value in a data
register, and copies a second data register into the memory location if the compared values
are equal. This provides a means of updating system counters, history information, and
globally shared pointers. The instruction uses an indivisible read-modify-write cycle; after
CAS reads the memory location, no other instruction can change that location before CAS
has written the new value. This provides security in single-processor systems, in
multitasking environments, and in multiprocessor environments. In a single-processor
system, the operation is protected from instructions of an interrupt routine. In a multitasking
environment, no other task can interfere with writing the new value of a system variable. In
a multiprocessor environment, the other processors must wait until the CAS instruction
completes before accessing a global pointer.

The following code fragment shows a routine to maintain a count, in location SYS_CNTR,
of the executions of an operation that may be performed by any process or processor in a
system. The routine obtains the current value of the count in register D0 and stores the new
count value in register D1. The CAS instruction copies the new count into SYS_CNTR if it
is valid. However, if another user has incremented the counter between the time the count
was stored and the read-modify-write cycle of the CAS instruction, the write portion of the
cycle copies the new count in SYS_CNTR into D0, and the routine branches to repeat the
test. The following code sequence guarantees that SYS_CNTR is correctly incremented.

MOVE.W SYS_CNTR,D0 get the old value of the counter
INC_LOOP MOVE.W D0,D1 make a copy of it

ADDQ.W #1,D1 and increment it
CAS.W D0,D1,SYS_CNTR if countr value is still the same, update it
BNE INC_LOOP if not, try again

Instruction Set Summary

3-26 MC68030 USER’S MANUAL MOTOROLA

The CAS and CAS2 instructions together allow safe operations in the manipulation of
system linked lists. Controlling a single location, HEAD in the example, manages a last-in-
first-out linked list (see Figure 3–2). If the list is empty, HEAD contains the NULL pointer (0);
otherwise, HEAD contains the address of the element most recently added to the list. The
code fragment shown in Figure 3–2 illustrates the code for inserting an element. The MOVE
instructions load the address in location HEAD into D0 and into the NEXT pointer in the
element being inserted, and the address of the new element into D1. The CAS instruction
stores the address of the inserted element into location HEAD if the address in HEAD
remains unaltered. If HEAD contains a new address, the instruction loads the new address
into D0 and branches to the second MOVE instruction to try again.

The CAS2 instruction is similar to the CAS instruction except that it performs two
comparisons and updates two variables when the results of the comparisons are equal. If
the results of both comparisons are equal, CAS2 copies new values into the destination
addresses. If the result of either comparison is not equal, the instruction copies the values
in the destination addresses into the compare operands.

Figure 3-2. Linked List Insertion

SINSERT
MOVE.L HEAD.D0
MOVE.L D0, (NEXT, A1)
MOVE.L A1, D1
CAS.L D0, D1, HEAD
BNE SILOOP

ALLOCATE NEW ENTRY, ADDRESS IN A1
MOVE HEAD POINTER VALUE TO D0
ESTABLISH FORWARD LINK IN NEW ENTRY
MOVE NEW ENTRY POINTER VALUE TO D1
IF WE STILL POINT TO TOP OF STACK, UPDATE THE HEAD POINTER
IF NOT, TRY AGAIN

SILOOP

ENTRY

+ NEXT

ENTRY

+ NEXT

ENTRY

+ NEXT

ENTRY

+ NEXT

NEW
HEAD

NEW HEAD

AFTER INSERTING AN ELEMENT:

BEFORE INSERTING AN ELEMENT:

ENTRY

+ NEXT

ENTRY

+ NEXT

?

Instruction Set Summary

MOTOROLA MC68030 USER’S MANUAL 3-27

The next code (see Figure 3–3) fragment shows the use of a CAS2 instruction to delete an
element from a linked list. The first LEA instruction loads the effective address of HEAD into
A0. The MOVE instruction loads the address in pointer HEAD into D0. The TST instruction
checks for an empty list, and the BEQ instruction branches to a routine at label SDEMPTY
if the list is empty. Otherwise, a second LEA instruction loads the address of the NEXT
pointer in the newest element on the list into A1, and the following MOVE instruction loads
the pointer contents into D1. The CAS2 instruction compares the address of the newest
structure to the value in HEAD and the address in D1 to the pointer in the address in A1. If
no element has been inserted or deleted by another routine while this routine has been
executing, the results of these comparisons are equal, and the CAS2 instruction stores the
new value into location HEAD. If an element has been inserted or deleted, the CAS2
instruction loads the new address in location HEAD into D0, and the BNE instruction
branches to the TST instruction to try again.

Figure 3-3. Linked List Deletion

HEAD

AFTER DELETING AN ELEMENT:

BEFORE DELETING AN ELEMENT:

SDELETE

SDLOOP

SDEMPTY

LEA HEAD, A0
MOVE.L (A0), D0
TST.L D0
BEQ SDEMPTY
LEA (NEXT, D0), A1
MOVE.L (A1), D1
CAS2.L D0:D1, D1:D1, (A0):(A1)

BNE SDLOOP

LOAD ADDRESS OF HEAD POINTER INTO A0
MOVE VALUE OF HEAD POINTER INTO D0
CHECK FOR NULL HEAD POINTER
IF EMPTY, NOTHING TO DELETE
LOAD ADDRESS OF FORWARD LINK INTO A1
PUT FORWARD LINK VALUE IN D1
IF STILL POINT TO ENTRY TO BE DELETED, THEN UPDATE HEAD
AND FORWARD POINTERS
IF NOT, TRY AGAIN
SUCCESSFUL DELETION, ADDRESS OF DELETED ENTRY IN D0
(MAY BE NULL)

ENTRY

+ NEXT

ENTRY

+ NEXT

ENTRY

+ NEXT

ENTRY

+ NEXT

HEAD

ENTRY

+ NEXT

ENTRY

+ NEXT

Instruction Set Summary

3-28 MC68030 USER’S MANUAL MOTOROLA

The CAS2 instruction can also be used to correctly maintain a first-in-first-out doubly linked
list. A doubly linked list needs two controlled locations, LIST_PUT and LIST_GET, which
contain pointers to the last element inserted in the list and the next to be removed,
respectively. If the list is empty, both pointers are NULL (0).

The code fragment shown in Figure 3–4 illustrates the insertion of an element in a doubly
linked list. The first two instructions load the effective addresses of LIST_PUT and
LIST_GET into registers A0 and A1, respectively. The next instruction moves the address
of the new element into register D2. Another MOVE instruction moves the address in
LIST_PUT into register D0. At label DILOOP, a TST instruction tests the value in D0, and
the BEQ instruction branches to the MOVE instruction when D0 is equal to zero. Assuming
the list is empty, this MOVE instruction is executed next; it moves the zero in D0 into the
NEXT and LAST pointers of the new element. Then the CAS2 instruction moves the address
of the new element into both LIST_PUT and LIST_GET, assuming that both of these
pointers still contain zero. If not, the BNE instruction branches to the TST instruction at label
DILOOP to try again. This time, the BEQ instruction does not branch, and the following
MOVE instruction moves the address in D0 to the NEXT pointer of the new element. The
CLR instruction clears register D1 to zero, and the MOVE instruction moves the zero into
the LAST pointer of the new element. The LEA instruction loads the address of the LAST
pointer of the most recently inserted element into register A1. Assuming the LIST_PUT
pointer and the pointer in A1 have not been changed, the CAS2 instruction stores the
address of the new element into these pointers.

The code fragment to delete an element from a doubly linked list is similar (see Figure 3–5).
The first two instructions load the effective addresses of pointers LIST_PUT and LIST_GET
into registers A0 and A1, respectively. The MOVE instruction at label DDLOOP moves the
LIST_GET pointer into register D1. The BEQ instruction that follows branches out of the
routine when the pointer is zero. The MOVE instruction moves the LAST pointer of the
element to be deleted into register D2. Assuming this is not the last element in the list, the
Z condition code is not set, and the branch to label DDEMPTY does not occur. The LEA
instruction loads the address of the NEXT pointer of the element at the address in D2 into
register A2. The next instruction, a CLR instruction, clears register D0 to zero. The CAS2
instruction compares the address in D1 to the LIST-GET pointer and to the address in
register A2. If the pointers have not been updated, the CAS2 instruction loads the address
in D2 into the LIST_GET pointer and zero into the address in register A2.

Instruction Set Summary

MOTOROLA MC68030 USER’S MANUAL 3-29

When the list contains only one element, the routine branches to the CAS2 instruction at
label DDEMPTY after moving a zero pointer value into D2. This instruction checks the
addresses in LIST_PUT and LIST_GET to verify that no other routine has inserted another
element or deleted the last element. Then the instruction moves zero into both pointers, and
the list is empty.

Figure 3-4. Doubly Linked List Insertion

BEFORE INSERTING NEW ENTRY:

DINSERT

DILOOP

DIEMPTY

DIDONE

LEA LIST_PUT, A0
LEA LIST_GET, A1
MOVE.L A2, D2
MOVE.L (A0), D0
TST.L D0
BEQ DIEMPTY
MOVE.L D0, (NEXT, A2)
CLR.L D1
MOVE.L D1, (LAST, A2)
LEA (LAST, D0), A1
CAS2.L D0:D1,D2:D2,(A0):(A1)
BNE DILOOP
BRA DIDONE
MOVE.L D0, (NEXT, A2)
MOVE.L D0, (LAST, A2)
CAS2.L D0:D0,D2:D2,(A0):(A1)
BNE DILOOP

(ALLOCATE NEW LIST ENTRY, LOAD ADDRESS INTO A2)
LOAD ADDRESS OF HEAD POINTER INTO A0
LOAD ADDRESS OF TAIL POINTER INTO A1
LOAD NEW ENTRY POINTER INTO D2
LOAD POINTER TO HEAD ENTRY INTO D0
IS HEAD POINTER NULL, (0 ENTRIES IN LIST)?
IF SO, WE NEED ONLY TO ESTABLISH POINTERS
PUT HEAD POINTER INTO FORWARD POINTER OF NEW ENTRY
PUT NULL POINTER VALUE INTO D1
PUT NULL POINTER IN BACKWARD POINTER OF NEW ENTRY
LOAD BACKWARD POINTER OF OLD HEAD ENTRY INTO A1
IF WE STILL POINT TO OLD HEAD ENTRY, UPDATE POINTERS
IF NOT, TRY AGAIN

PUT NULL POINTER IN FORWARD POINTER OF NEW ENTRY
PUT NULL POINTER IN BACKWARD POINTER OF NEW ENTRY
IF WE STILL HAVE NO ENTRIES, SET BOTH POINTERS TO THIS ENTRY
IF NOT, TRY AGAIN
SUCCESSFUL LIST ENTRY INSERTION

ENTRY ENTRY ENTRY

+ NEXT + NEXT + NEXT

AFTER INSERTING NEW ENTRY:

+ LAST+ LAST+ LAST

NEW ENTRY LIST_PUT LIST_GET

LIST_PUT

ENTRY ENTRY

+ NEXT + NEXT+ LAST+ LAST

LIST_GET

ENTRY

+ NEXT+ LAST

Instruction Set Summary

3-30 MC68030 USER’S MANUAL MOTOROLA

3.5.2 Nested Subroutine Calls
The LINK instruction pushes an address onto the stack, saves the stack address at which
the address is stored, and reserves an area of the stack. Using this instruction in a series of
subroutine calls results in a linked list of stack frames.

The UNLK instruction removes a stack frame from the end of the list by loading an address
into the stack pointer and pulling the value at that address from the stack. When the operand
of the instruction is the address of the link address at the bottom of a stack frame, the effect
is to remove the stack frame from the stack and from the linked list.

Figure 3-5. Doubly Linked List Deletion

AFTER DELETING ENTRY:

BEFORE DELETING ENTRY:

DDELETE

DDLOOP

DDEMPTY

DDDONE

LEA LIST_PUT, A0
LEA LIST_GET, A1
MOVE.L (A1),D1
BEQ DDDONE
MOVE.L (LAST,D1),D2
BEQ DDEMPTY
LEA (NEXT,D2),A2
CLR.L D0
CAS2.L D1:D1,D2:D0,(A1):(A2)
BNE DDLOOP
BRA DDDONE
CAS2.L D1:D1,D2:D2,(A1):(A0)
BNE DDLOOP

GET ADDRESS OF HEAD POINTER IN A0
GET ADDRESS OF TAIL POINTER IN A1
MOVE TAIL POINTER INTO D1
IF NO LIST, QUIT
PUT BACKWARD POINTER IN D2
IF ONLY ONE ELEMENT, UPDATE POINTERS
PUT ADDRESS OF FORWARD POINTER IN A2
PUT NULL POINTER VALUE IN D0
IF BOTH POINTERS STILL POINT TO THIS ENTRY , UPDATE THEM
IF NOT, TRY AGAIN

IF STILL FIRST ENTRY, SET HEAD AND TAIL POINTERS TO NULL
IF NOT, TRY AGAIN
SUCCESSFUL ENTRY DELETION, ADDRESS OF DELETED ENTRY IN D1
(MAY BE NULL)

ENTRY ENTRY ENTRY

+ NEXT + NEXT + NEXT+ LAST+ LAST+ LAST

LIST_PUT LIST_GET

LIST_PUT

ENTRY ENTRY

+ NEXT + NEXT+ LAST+ LAST

DELETED ENTRYLIST_GET

ENTRY

+ NEXT+ LAST

Instruction Set Summary

MOTOROLA MC68030 USER’S MANUAL 3-31

3.5.3 Bit Field Operations
One data type provided by the MC68030 is the bit field, consisting of as many as 32
consecutive bits. A bit field is defined by an offset from an effective address and a width
value. The offset is a value in the range of 231 through 231 1 from the most significant bit
(bit 7) at the effective address. The width is a positive number, 1–32. The most significant
bit of a bit field is bit 0; the bits number in a direction opposite to the bits of an integer.

The instruction set includes eight instructions that have bit field operands. The insert bit field
(BFINS) instruction inserts a bit field stored in a register into a bit field. The extract bit field
signed (BFEXTS) instruction loads a bit field into the least significant bits of a register and
extends the sign to the left, filling the register. The extract bit field unsigned (BFEXTU) also
loads a bit field, but zero fills the unused portion of the destination register.

The set bit field (BFSET) instruction sets all the bits of a field to ones. The clear bit field
(BFCLR) instruction clears a field. The change bit field (BFCHG) instruction complements
all the bits in a bit field. These three instructions all test the previous value of the bit field,
setting the condition codes accordingly. The test bit field (BFTST) instruction tests the value
in the field, setting the condition codes appropriately without altering the bit field. The find
first one in bit field (BFFFO) instruction scans a bit field from bit 0 to the right until it finds a
bit set to one and loads the bit offset of the first set bit into the specified data register. If no
bits in the field are set, the field offset and the field width is loaded into the register.

An important application of bit field instructions is the manipulation of the exponent field in a
floating-point number. In the IEEE standard format, the most significant bit is the sign bit of
the mantissa. The exponent value begins at the next most significant bit position; the
exponent field does not begin on a byte boundary. The extract bit field (BFEXTU) instruction
and the BFTST instruction are the most useful for this application, but other bit field
instructions can also be used.

Programming of input and output operations to peripherals requires testing, setting, and
inserting of bit fields in the control registers of the peripherals, which is another application
for bit field instructions. However, control register locations are not memory locations;
therefore, it is not always possible to insert or extract bit fields of a register without affecting
other fields within the register.

Instruction Set Summary

MOTOROLA MC68030 USER’S MANUAL 3-32

Another widely used application for bit field instructions is bit-mapped graphics. Because
byte boundaries are ignored in these areas of memory, the field definitions used with bit field
instructions are very helpful.

3.5.4 Pipeline Synchronization with the Nop Instruction
Although the no operation (NOP) instruction performs no visible operation, it serves an
important purpose. It forces synchronization of the integer unit pipeline by waiting for all
pending bus cycles to complete. All previous integer instructions and floating-point external
operand accesses complete execution before the NOP begins. The NOP instruction does
not synchronize the FPU pipeline; floating-point instructions with floating-point register
operand destinations can be executing when the NOP begins.

MOTOROLA

MC68030 USER’S MANUAL

4-1

SECTION 4
PROCESSING STATES

This section describes the processing states of the MC68030. It describes the functions of
the bits in the supervisor portion of the status register and the actions taken by the processor
in response to exception conditions.

Unless the processor has halted, it is always in either the normal or the exception processing
state. Whenever the processor is executing instructions or fetching instructions or operands,
it is in the normal processing state. The processor is also in the normal processing state
while it is storing instruction results or communicating with a coprocessor.

NOTE

Exception processing refers specifically to the transition from
normal processing of a program to normal processing of system
routines, interrupt routines, and other exception handlers. Ex-
ception processing includes all stacking operations, the fetch of
the exception vector, and filling of the instruction pipe caused by
an exception. It has completed when execution of the first in-
struction of the exception handler routine begins.

The processor enters the exception processing state when an interrupt is acknowledged,
when an instruction is traced or results in a trap, or when some other exceptional condition
arises. Execution of certain instructions or unusual conditions occurring during the execution
of any instructions can cause exceptions. External conditions, such as interrupts, bus errors,
and some coprocessor responses, also cause exceptions. Exception processing provides
an efficient transfer of control to handlers and routines that process the exceptions.

A catastrophic system failure occurs whenever the processor receives a bus error or
generates an address error while in the exception processing state. This type of failure halts
the processor. For example, if during the exception processing of one bus error another bus
error occurs, the MC68030 has not completed the transition to normal processing and has
not completed saving the internal state of the machine, so the processor assumes that the
system is not operational and halts. Only an external reset can restart a halted processor.
(When the processor executes a STOP instruction, it is in a special type of normal
processing state, one without bus cycles. It is stopped, not halted.)

Processing States

4-2

MC68030 USER’S MANUAL

MOTOROLA

4.1 PRIVILEGE LEVELS

The processor operates at one of two levels of privilege: the user level or the supervisor
level. The supervisor level has higher privileges than the user level. Not all processor or
coprocessor instructions are permitted to execute in the lower privileged user level, but all
are available at the supervisor level. This allows a separation of supervisor and user so the
supervisor can protect system resources from uncontrolled access. The processor uses the
privilege level indicated by the S bit in the status register to select either the user or
supervisor privilege level and either the user stack pointer or a supervisor stack pointer for
stack operations. The processor identifies a bus access (supervisor or user mode) via the
function codes so that differentiation between supervisor and user can be maintained. The
memory management unit uses the indication of privilege level to control and translate
memory accesses to protect supervisor code, data, and resources from access by user
programs.

In many systems, the majority of programs execute at the user level. User programs can
access only their own code and data areas and can be restricted from accessing other
information. The operating system typically executes at the supervisor privilege level. It has
access to all resources, performs the overhead tasks for the user level programs, and
coordinates their activities.

4.1.1 Supervisor Privilege Level

The supervisor level is the higher privilege level. The privilege level is determined by the S
bit of the status register; if the S bit is set, the supervisor privilege level applies, and all
instructions are executable. The bus cycles for instructions executed at the supervisor level
are normally classified as supervisor references, and the values of the function codes on
FC0–FC2 refer to supervisor address spaces.

In a multitasking operating system, it is more efficient to have a supervisor stack space
associated with each user task and a separate stack space for interrupt associated tasks.
The MC68030 provides two supervisor stacks, master and interrupt; the M bit of the status
register selects which of the two is active. When the M bit is set to one, supervisor stack
pointer references (either implicit or by specifying address register A7) access the master
stack pointer (MSP). The operating system sets the MSP for each task to point to a task-
related area of supervisor data space. This separates task-related supervisor activity from
asynchronous, I/O-related supervisor tasks that may be only coincidental to the currently
executing task. The master stack (MSP) can separately maintain task control information for
each currently executing user task, and the software updates the MSP when a task switch
is performed, providing an efficient means for transferring task-related stack items. The
other supervisor stack (ISP) can be used for interrupt control information and workspace
area as interrupt handling routines require.

Processing States

MOTOROLA

MC68030 USER’S MANUAL

4-3

When the M bit is clear, the MC68030 is in the interrupt mode of the supervisor privilege
level, and operation is the same as in the MC68000, MC68008, and MC68010 supervisor
mode. (The processor is in this mode after a reset operation.) All supervisor stack pointer
references access the interrupt stack pointer (ISP) in this mode.

The value of the M bit in the status register does not affect execution of privileged
instructions; both master and interrupt modes are at the supervisor privilege level.
Instructions that affect the M bit are MOVE to SR, ANDI to SR, EORI to SR, ORI to SR, and
RTE. Also, the processor automatically saves the M-bit value and clears it in the SR as part
of the exception processing for interrupts.

All exception processing is performed at the supervisor privilege level. All bus cycles
generated during exception processing are supervisor references, and all stack accesses
use the active supervisor stack pointer.

4.1.2 User Privilege Level

The user level is the lower privilege level. The privilege level is determined by the S bit of
the status register; if the S bit is clear, the processor executes instructions at the user
privilege level.

Most instructions execute at either privilege level, but some instructions that have important
system effects are privileged and can only be executed at the supervisor level. For instance,
user programs are not allowed to execute the STOP instruction or the RESET instruction.
To prevent a user program from entering the supervisor privilege level, except in a controlled
manner, instructions that can alter the S bit in the status register are privileged. The TRAP
#n instruction provides controlled access to operating system services for user programs.

Processing States

4-4

MC68030 USER’S MANUAL

MOTOROLA

The bus cycles for an instruction executed at the user privilege level are classified as user
references, and the values of the function codes on FC0-FC2 specify user address spaces.
The memory management unit of the processor, when it is enabled, uses the value of the
function codes to distinguish between user and supervisor activity and to control access to
protected portions of the address space. While the processor is at the user level, references
to the system stack pointer implicitly, or to address register seven (A7) explicitly, refer to the
user stack pointer (USP).

4.1.3 Changing Privilege Level

To change from the user to the supervisor privilege level, one of the conditions that causes
the processor to perform exception processing must occur. This causes a change from the
user level to the supervisor level and can cause a change from the master mode to the
interrupt mode. Exception processing saves the current values of the S and M bits of the
status register (along with the rest of the status register) on the active supervisor stack, and
then sets the S bit, forcing the processor into the supervisor privilege level. When the
exception being processed is an interrupt and the M bit is set, the M bit is cleared, putting
the processor into the interrupt mode. Execution of instructions continues at the supervisor
level to process the exception condition.

To return to the user privilege level, a system routine must execute one of the following
instructions: MOVE to SR, ANDI to SR, EORI to SR, ORI to SR, or RTE. The MOVE, ANDI,
EORI, and ORI to SR and RTE instructions execute at the supervisor privilege level and can
modify the S bit of the status register. After these instructions execute, the instruction
pipeline is flushed and is refilled from the appropriate address space. This is indicated
externally by the assertion of the REFILL signal.

The RTE instruction returns to the program that was executing when the exception occurred.
It restores the exception stack frame saved on the supervisor stack. If the frame on top of
the stack was generated by an interrupt, trap, or instruction exception, the RTE instruction
restores the status register and program counter to the values saved on the supervisor
stack. The processor then continues execution at the restored program counter address and
at the privilege level determined by the S bit of the restored status register. If the frame on
top of the stack was generated by a bus fault (bus error or address error exception), the RTE
instruction restores the entire saved processor state from the stack.

Processing States

MOTOROLA

MC68030 USER’S MANUAL

4-5

4.2 ADDRESS SPACE TYPES

The processor specifies a target address space for every bus cycle with the function code
signals according to the type of access required. In addition to distinguishing between
supervisor/user and program/data, the processor can identify special processor cycles,
such as the interrupt acknowledge cycle, and the memory management unit can control
accesses and translate addresses appropriately. Table 4-1 lists the types of accesses
defined for the MC68030 and the corresponding values of function codes FC0–FC2.

*Address space 3 is reserved for user definition; whereas, 0 and 4
are reserved for future use by Motorola.

The memory locations of user program and data accesses are not predefined. Neither are
the locations of supervisor data space. During reset, the first two long words beginning at
memory location zero in the supervisor program space are used for processor initialization.
No other memory locations are explicitly defined by the MC68030.

A function code of $7 ([FC2:FC0] = 111) selects the CPU address space. This is a special
address space that does not contain instructions or operands but is reserved for special
processor functions. The processor uses accesses in this space to communicate with
external devices for special purposes. For example, all M68000 processors use the CPU
space for interrupt acknowledge cycles. The MC68020 and MC68030 also generate CPU
space accesses for breakpoint acknowledge and coprocessor operations.

Supervisor programs can use the MOVES instruction to access all address spaces,
including the user spaces and the CPU address space. Although the MOVES instruction can
be used to generate CPU space cycles, this may interfere with proper system operation.
Thus, the use of MOVES to access the CPU space should be done with caution.

Table 4-1. Address Space Encodings

FC2 FC1 FC0 Address Space

0 0 0 (Undefined, Reserved)*
0 0 1 User Data Space
0 1 0 User Program Space
0 1 1 (Undefined, Reserved)*
1 0 0 (Undefined, Reserved)*
1 0 1 Supervisor Data Space
1 1 0 Supervisor Program Space
1 1 1 CPU Space

Processing States

4-6

MC68030 USER’S MANUAL

MOTOROLA

4.3 EXCEPTION PROCESSING

An exception is defined as a special condition that pre-empts normal processing. Both
internal and external conditions cause exceptions. External conditions that cause
exceptions are interrupts from external devices, bus errors, coprocessor detected errors,
and reset. Instructions, address errors, tracing, and breakpoints are internal conditions that
cause exceptions. The TRAP, TRAPcc, TRAPV, cpTRAPcc, CHK, CHK2, RTE, and DIV
instructions can all generate exceptions as part of their normal execution. In addition, illegal
instructions, privilege violations, and coprocessor protocol violations cause exceptions.

Exception processing, which is the transition from the normal processing of a program to the
processing required for the exception condition, involves the exception vector table and an
exception stack frame. The following paragraphs describe the vector table and a
generalized exception stack frame. Exception processing is discussed in detail in

Section
8 Exception Processing

.

Coprocessor detected exceptions are discussed in detail in

Section 10 Coprocessor Interface Description

.

4.3.1 Exception Vectors

The vector base register (VBR) contains the base address of the 1024-byte exception vector
table, which consists of 256 exception vectors. Exception vectors contain the memory
addresses of routines that begin execution at the completion of exception processing. These
routines perform a series of operations appropriate for the corresponding exceptions.
Because the exception vectors contain memory addresses, each consists of one long word,
except for the reset vector. The reset vector consists of two long words: the address used
to initialize the interrupt stack pointer and the address used to initialize the program counter.

The address of an exception vector is derived from an 8-bit vector number and the VBR. The
vector numbers for some exceptions are obtained from an external device; others are
supplied automatically by the processor. The processor multiplies the vector number by four
to calculate the vector offset, which it adds to the VBR. The sum is the memory address of
the vector. All exception vectors are located in supervisor data space, except the reset
vector, which is located in supervisor program space. Only the initial reset vector is fixed in
the processor's memory map; once initialization is complete, there are no fixed
assignments. Since the VBR provides the base address of the vector table, the vector table
can be located anywhere in memory; it can even be dynamically relocated for each task that
is executed by an operating system. Details of exception processing are provided in

Section
8 Exception Processing

, and Table 8-1 lists the exception vector assignments.

Processing States

MOTOROLA

MC68030 USER’S MANUAL

4-7

4.3.2 Exception Stack Frame

Exception processing saves the most volatile portion of the current processor context on the
top of the supervisor stack. This context is organized in a format called the exception stack
frame. This information always includes a copy of the status register, the program counter,
the vector offset of the vector, and the frame format field. The frame format field identifies
the type of stack frame. The RTE instruction uses the value in the format field to properly
restore the information stored in the stack frame and to deallocate the stack space. The
general form of the exception stack frame is illustrated in Figure 4-1. Refer to

Section 8
Exception Processing

 for a complete list of exception stack frames.

Figure 4-1. General Exception Stack Frame

STATUS REGISTER

FORMAT VECTOR OFFSET

15 12 0

SP

PROGRAM COUNTER

ADDITIONAL PROCESSOR STATE INFORMATION
 (2, 6, 12, OR 42 WORDS, IF NEEDED)

MOTOROLA

MC68030 USER’S MANUAL

5-1

SECTION 5
SIGNAL DESCRIPTION

This section contains brief descriptions of the input and output signals in their functional
groups, as shown in Figure 5-1. Each signal is explained in a brief paragraph with reference
to other sections that contain more detail about the signal and the related operations.

Figure 5-1. Functional Signal Groups

DSACK0

FUNCTION CODES

ADDRESS BUS

TRANSFER
SIZE

ASYNCHRONOUS
BUS CONTROL

CACHE
CONTROL

EMULATOR
SUPPORT

SYNCHRONOUS
BUS CONTROL

BUS EXCEPTION
CONTROL

BUS ARBITRATION
CONTROL

INTERRUPT
CONTROL

FC2-FC0

A31-A0

D31-D0

SIZ0
SIZ1

OCS

ECS
R/W

RMC

AS
DS

DBEN

DSACK1

CIIN
CIOUT

CBREQ

CBACK GND (14)

CLK

CDIS
STATUS

REFILL

STERM

BERR
HALT

RESET

IPL0
IPL1

IPL2
IPEND
AVEC

BR
BG

BGACK

V (10)CC

DATA BUS

MC68EC030

Signal Description

5-2

MC68030 USER’S MANUAL

MOTOROLA

NOTE

In this section and in the remainder of the manual,

assertion

and

negation

 are used to specify forcing a signal to a particular
state. In particular, assertion and assert refer to a signal that is
active or true; negation and negate indicate a signal that is inac-
tive or false. These terms are used independently of the voltage
level (high or low) that they represent.

5.1 SIGNAL INDEX

The input and output signals for the MC68030 are listed in Table 5-1. Both the names and
mnemonics are shown along with brief signal descriptions. For more detail on each signal,
refer to the paragraph in this section named for the signal and the reference in that
paragraph to a description of the related operations.

Guaranteed timing specifications for the signals listed in Table 5-1 can be found in
M68030EC/D,

MC68030 Electrical Specifications

.

Table 5-1. Signal Index (Sheet 1 of 2)

Signal Name Mnemonic Function

Function Codes FC0–FC2 3-bit function code used to identify the address space of each bus cycle.

Address Bus A0–A31 32-bit address bus.

Data Bus D0–D31 32-bit data bus used to transfer 8, 16, 24, or 32 bits of data per bus cycle.

Size SIZ0/SIZ1 Indicates the number of bytes remaining to be transferred for this cycle.
These signals, together with A0 and A1, define the active sections of the
data bus.

Operand Cycle Start OCS Identical operation to that of ECS except that OCS is asserted only
during the first bus cycle of an operand transfer.

External Cycle Start ECS Provides an indication that a bus cycle is beginning.

Read/Write R/W Defines the bus transfer as a processor read or write.

Read-Modify-Write Cycle RMC Provides an indicator that the current bus cycle is part of an indivisible
read-modify-write operation.

Address Strobe AS Indicates that a valid address is on the bus.

Data Strobe DS Indicates that valid data is to be placed on the data bus by an external
device or has been placed on the data bus by the MC68030.

Data Buffer Enable DBEN Provides an enable signal for external data buffers.

Signal Description

MOTOROLA

MC68030 USER’S MANUAL

5-3

Table 5-1. Signal Index (Sheet 2 of 2)

Signal Name Mnemonic Function

Data Transfer and
Size Acknowledge

DSACK0/
DSACK1

Bus response signals that indicate the requested data transfer operation
is completed. In addition, these two lines indicate the size of the external
bus port on a cycle-by-cycle basis and are used for asynchronous
transfers.

Synchronous
Termination

STERM Bus response signal that indicates a port size of 32 bits and that data
may be latched on the next falling clock edge.

Cache Inhibit In CIIN Prevents data from being loaded into the MC68030 instruction and data
caches.

Cache Inhibit Out CIOUT Reflects the CI bit in ATC entries or TTx register; indicates that external
caches should ignore these accesses

Cache Burst Request CBREQ Indicates a burst request for the instruction or data cache.

Cache Burst
Acknowledge

CBACK Indicates that the accessed device can operate in burst mode.

Interrupt Priority Level IPL0–IPL2 Provides an encoded interrupt level to the processor.

Interrupt Pending IPEND Indicates that an interrupt is pending.

Autovector AVEC Requests an autovector during an interrupt acknowledge cycle.

Bus Request BR Indicates that an external device requires bus mastership.

Bus Grant BG Indicates that an external device may assume bus mastership.

Bus Grant Acknowledge BGACK Indicates that an external device has assumed bus mastership.

Reset RESET System reset.

Halt HALT Indicates that the processor should suspend bus activity.

Bus Error BERR Indicates that an erroneous bus operation is being attempted.

Cache Disable CDIS Dynamically disables the on-chip cache to assist emulator support.

MMU Disable MMUDIS Dynamically disables the translation mechanism of the MMU.

Pipe Refill REFILL Indicates when the MC68030 is beginning to fill pipeline.

Microsequencer Status STATUS Indicates the state of the microsequencer

Clock CLK Clock input to the processor.

Power Supply V

CC

Power supply.

Ground GND Ground connection

Signal Description

5-4

MC68030 USER’S MANUAL

MOTOROLA

5.2 FUNCTION CODE SIGNALS (FC0

–

FC2)

These three-state outputs identify the address space of the current bus cycle. Table 4-1
shows the relationship of the function code signals to the privilege levels and the address
spaces. Refer to

4.2 Address Space Types

 for more information.

5.3 ADDRESS BUS (A0

–

A31)

These three-state outputs provide the address for the current bus cycle, except in the CPU
address space. Refer to

4.2 Address Space Types

 for more information on the CPU
address space. A31 is the most significant address signal. Refer to

7.1.2 Address Bus

 for
information on the address bus and its relationship to bus operation.

5.4 DATA BUS (D0

–

D31)

These three-state bidirectional signals provide the general-purpose data path between the
MC68030 and all other devices. The data bus can transfer 8, 16, 24, or 32 bits of data per
bus cycle. D31 is the most significant bit of the data bus. Refer to

7.1.4 Data Bus

 for more
information on the data bus and its relationship to bus operation.

5.5 TRANSFER SIZE SIGNALS (SIZ0, SIZ1)

These three-state outputs indicate the number of bytes remaining to be transferred for the
current bus cycle. With A0, A1, DSACK0, DSACK1, and STERM, SIZ0 and SIZ1 define the
number of bits transferred on the data bus. Refer to

7.2.1 Dynamic Bus Sizing

for more
information on the size signals and their use in dynamic bus sizing.

Signal Description

MOTOROLA

MC68030 USER’S MANUAL

5-5

5.6 BUS CONTROL SIGNALS

The following signals control synchronous bus transfer operations for the MC68030.

5.6.1 Operand Cycle Start (OCS)

This output signal indicates the beginning of the first external bus cycle for an instruction
prefetch or a data operand transfer. OCS is not asserted for subsequent cycles that are
performed due to dynamic bus sizing or operand misalignment.

7.1.1 Bus Control Signals

for information about the relationship of OCS to bus operation.

5.6.2 External Cycle Start (ECS)

This output signal indicates the beginning of a bus cycle of any type.

7.1.1 Bus Control
Signals

 for information about the relationship of ECS to bus operation.

5.6.3 Read/Write (R/W)

This three-state output signal defines the type of bus cycle. A high level indicates a read
cycle; a low level indicates a write cycle. Refer to

7.1.1 Bus Control Signals

 for information
about the relationship of R/W to bus operation.

5.6.4 Read-Modify-Write Cycle (RMC)

This three-state output signal identifies the current bus cycle as part of an indivisible read-
modify-write operation; it remains asserted during all bus cycles of the read-modify-write
operation. Refer to

7.1.1 Bus Control Signals

 for information about the relationship of RMC
to bus operation.

5.6.5 Address Strobe (AS)

This three-state output indicates that a valid address is on the address bus. The function
code, size, and read/write signals are also valid when AS is asserted. Refer to

7.1.3
Address Strobe

 for information about the relationship of AS to bus operation.

Signal Description

5-6

MC68030 USER’S MANUAL

MOTOROLA

5.6.6 Data Strobe (DS)

During a read cycle, this three-state output indicates that an external device should place
valid data on the data bus. During a write cycle, the data strobe indicates that the MC68030
has placed valid data on the bus. During two-clock synchronous write cycles, the MC68030
does not assert DS. Refer to

7.1.5 Data Strobe

for more information about the relationship
of DS to bus operation.

5.6.7 Data Buffer Enable (DBEN)

This output is an enable signal for external data buffers. This signal may not be required in
all systems. The timing of this signal may preclude its use in a system that supports two-
clock synchronous bus cycles. Refer to

7.1.6 Data Buffer Enable

 for more information
about the relationship of DBEN to bus operation.

5.6.8 Data Transfer and Size Acknowledge (DSACK0, DSACK1)

These inputs indicate the completion of a requested data transfer operation. In addition, they
indicate the size of the external bus port at the completion of each cycle. These signals apply
only to asynchronous bus cycles. Refer to

7.1.7 Bus Cycle Termination Signals

for more
information on these signals and their relationship to dynamic bus sizing.

5.6.9 Synchronous Termination (STERM)

This input is a bus handshake signal indicating that the addressed port size is 32 bits and
that data is to be latched on the next falling clock edge for a read cycle. This signal applies
only to synchronous operation. Refer to

7.1.7 Bus Cycle Termination Signals

 for more
information about the relationship of STERM to bus operation.

Signal Description

MOTOROLA

MC68030 USER’S MANUAL

5-7

5.7 CACHE CONTROL SIGNALS

The following signals relate to the on-chip caches.

5.7.1 Cache Inhibit Input (CIIN)

This input signal prevents data from being loaded into the MC68030 instruction and data
caches. It is a synchronous input signal and is interpreted on a bus-cycle-by-bus-cycle
basis. CIIN is ignored during all write cycles. Refer to

6.1 On-Chip Cache Organization
and Operation

 for information on the relationship of CIIN to the on-chip caches.

5.7.2 Cache Inhibit Output (CIOUT)

This three-state output signal reflects the state of the CI bit in the address translation cache
entry for the referenced logical address, indicating that an external cache should ignore the
bus transfer. When the referenced logical address is within an area specified for transparent
translation, the CI bit of the appropriate transparent translation register controls the state of
CIOUT. Refer to

Section 9 Memory Management Unit

 for more information about the
address translation cache and transparent translation. Also, refer to

Section 6 On-Chip
Cache Memories

 for the effect of CIOUT on the internal caches.

5.7.3 Cache Burst Request (CBREQ)

This three-state output signal requests a burst mode operation to fill a line in the instruction
or data cache. Refer to

6.1.3 Cache Filling

 for filling information and

7.3.7 Burst Operation
Cycles

for bus cycle information pertaining to burst mode operations.

5.7.4 Cache Burst Acknowledge (CBACK)

This input signal indicates that the accessed device can operate in the burst mode and can
supply at least one more long word for the instruction or data cache. Refer to

7.3.7 Burst
Operation Cycles

for information about burst mode operation.

Signal Description

5-8

MC68030 USER’S MANUAL

MOTOROLA

5.8 INTERRUPT CONTROL SIGNALS

The following signals are the interrupt control signals for the MC68030.

5.8.1 Interrupt Priority Level Signals

These input signals provide an indication of an interrupt condition and the encoding of the
interrupt level from a peripheral or external prioritizing circuitry. IPL2 is the most significant
bit of the level number. For example, since the IPLn signals are active low, IPL0–IPL2 equal
to $5 corresponds to an interrupt request at interrupt level 2. Refer to

8.1.9 Interrupt
Exceptions

for information on MC68030 interrupts.

5.8.2 Interrupt Pending (IPEND)

This output signal indicates that an interrupt request has been recognized internally and
exceeds the current interrupt priority mask in the status register (SR). This output is for use
by external devices (coprocessors and other bus masters, for example) to predict processor
operation on the following instruction boundaries. Refer to

8.1.9 Interrupt Exceptions

 for
interrupt information. Also, refer to

7.4.1 Interrupt Acknowledge Bus Cycles

 for bus
information related to interrupts.

5.8.3 Autovector (AVEC)

This input signal indicates that the MC68030 should generate an automatic vector during an
interrupt acknowledge cycle. Refer to

7.4.1.2 Autovector Interrupt Acknowledge Cycle

for more information about automatic vectors.

5.9 BUS ARBITRATION CONTROL SIGNALS

The following signals are the three bus arbitration control signals used to determine which
device in a system is the bus master.

5.9.1 Bus Request (BR)

This input signal indicates that an external device needs to become the bus master. This is
typically a "wire-ORed” input (but does not need to be constructed from open-collector
devices). Refer to

7.7 Bus Arbitration

 for more information.

Signal Description

MOTOROLA

MC68030 USER’S MANUAL

5-9

5.9.2 Bus Grant (BG)

This output indicates that the MC68030 will release ownership of the bus master when the
current processor bus cycle completes. Refer to

7.7.2 Bus Grant

 for more information.

5.9.3 Bus Grant Acknowledge (BGACK)

This input indicates that an external device has become the bus master. Refer to

 7.7.3 Bus
Grant Acknowledge

for more information.

5.10 BUS EXCEPTION CONTROL SIGNALS

The following signals are the bus exception control signals for the MC68030.

5.10.1 Reset (RESET)

This bidirectional open-drain signal is used to initiate a system reset. An external reset signal
resets the MC68030 as well as all external devices. A reset signal from the processor
(asserted as part of the RESET instruction) resets external devices only; the internal state
of the processor is not altered. Refer to

7.8 Reset Operation

 for a description of reset bus
operation and 8.1.1 Reset Exception for information about the reset exception.

5.10.2 Halt (HALT)
The halt signal indicates that the processor should suspend bus activity or, when used with
BERR, that the processor should retry the current cycle. Refer to 7.5 Bus Exception
Control Cycles for a description of the effects of HALT on bus operations.

5.10.3 Bus Error (BERR)
The bus error signal indicates that an invalid bus operation is being attempted or, when used
with HALT, that the processor should retry the current cycle. Refer to 7.5 Bus Exception
Control Cycles for a description of the effects of BERR on bus operations.

Signal Description

5-10 MC68030 USER’S MANUAL MOTOROLA

5.11 EMULATOR SUPPORT SIGNALS
The following signals support emulation by providing a means for an emulator to disable the
on-chip caches and memory management unit and by supplying internal status information
to an emulator. Refer to Section 12 Applications Information for more detailed
information on emulation support.

5.11.1 Cache Disable (CDIS)
The cache disable signal dynamically disables the on-chip caches to assist emulator
support. Refer to 6.1 On-Chip Cache Organization and Operation for information about
the caches; refer to Section 12 Applications Information for a description of the use of
this signal by an emulator. CDIS does not flush the data and instruction caches; entries
remain unaltered and become available again when CDIS is negated.

5.11.2 MMU Disable (MMUDIS)
The MMU disable signal dynamically disables the translation of addresses by the MMU.
Refer to 9.4 Address Translation Cache for a description of address translation; refer to
Section 12 Applications Information for a description of the use of this signal by an
emulator. The assertion of MMUDIS does not flush the address translation cache (ATC);
ATC entries become available again when MMUDIS is negated.

5.11.3 Pipeline Refill (REFILL)
The pipeline refill signal indicates that the MC68030 is beginning to refill the internal
instruction pipeline. Refer to Section 12 Applications Information for a description of the
use of this signal by an emulator.

5.11.4 Internal Microsequencer Status (STATUS)
The microsequencer status signal indicates the state of the internal microsequencer. The
varying number of clocks for which this signal is asserted indicates instruction boundaries,
pending exceptions, and the halted condition. Refer to Section 12 Applications
Information for a description of the use of this signal by an emulator.

Signal Description

5-11 MC68030 USER’S MANUAL MOTOROLA

5.12 CLOCK (CLK)
The clock signal is the clock input to the MC68030. It is a TTL-compatible signal. Refer to
Section 12 Applications Information for suggestions on clock generation.

5.13 POWER SUPPLY CONNECTIONS
The MC68030 requires connection to a VCC power supply, positive with respect to ground.
The VCC connections are grouped to supply adequate current for the various sections of the
processor. The ground connections are similarly grouped. Section 14 Ordering
Information and Mechanical Data describes the groupings of VCC and ground
connections, and Section 12 Applications Information describes a typical power supply
interface.

5.14 SIGNAL SUMMARY
Table 5-2 provides a summary of the electrical characteristics of the signals discussed in
this section.

Signal Description

5-12 MC68030 USER’S MANUAL MOTOROLA

Table 5-2. Signal Summary

Signal Function Signal Name Input/Output Active State Three-State

Function Codes FC0–FC2 Output High Yes

Address Bus A0–A31 Output High Yes

Data Bus D0–D31 Input/Output High Yes

Transfer Size SIZ0/SIZ1 Output High Yes

Operand Cycle Start OCS Output Low No

External Cycle Start ECS Output Low No

Read/Write R/W Output High/Low Yes

Read-Modify-Write Cycle RMC Output Low Yes

Address Strobe AS Output Low Yes

Data Strobe DS Output Low Yes

Data Buffer Enable DBEN Output Low Yes

Data Transfer and Size
Acknowledge

DSACK0/
DSACK1

Input Low —

Synchronous Termination STERM Input Low —

Cache Inhibit In CIIN Input Low —

Cache Inhibit Out CIOUT Output Low Yes

Cache Burst Request CBREQ Output Low Yes

Cache Burst Acknowledge CBACK Input Low —

Interrupt Priority Level IPL0–IPL2 Input Low —

Interrupt Pending IPEND Output Low No

Autovector AVEC Input Low —

Bus Request BR Input Low —

Bus Grant BG Output Low No

Bus Grant Acknowledge BGACK Input Low —

Reset RESET Input/Output Low No

Halt HALT Input Low —

Bus Error BERR Input Low —

Cache Disable CDIS Input Low —

MMU Disable MMUDIS Input Low —

Pipeline Refill REFILL Output Low No

Microsequencer Status STATUS Output Low No

Clock CLK Input — —

Power Supply VCC Input — —

Ground GND Input — —

MOTOROLA

MC68030 USER’S MANUAL

6-1

SECTION 6
ON-CHIP CACHE MEMORIES

The MC68030 microprocessor includes a 256-byte on-chip instruction cache and a 256-byte
on-chip data cache that are accessed by logical (virtual) addresses. These caches improve
performance by reducing external bus activity and increasing instruction throughput.

Reduced external bus activity increases overall performance by increasing the availability
of the bus for use by external devices (in systems with more than one bus master, such as
a processor and a DMA device) without degrading the performance of the MC68030. An
increase in instruction throughput results when instruction words and data required by a
program are available in the on-chip caches and the time required to access them on the
external bus is eliminated. Additionally, instruction throughput increases when instruction
words and data can be accessed simultaneously.

As shown in Figure 6-1, the instruction cache and the data cache are connected to separate
on-chip address and data buses. The address buses are combined to provide the logical
address to the memory management unit (MMU). The MC68030 initiates an access to the
appropriate cache for the requested instruction or data operand at the same time that it
initiates an access for the translation of the logical address in the address translation cache
of the MMU. When a hit occurs in the instruction or data cache and the MMU validates the
access on a write, the information is transferred from the cache (on a read) or to the cache
and the bus controller (on a write). When a hit does not occur, the MMU translation of the
address is used for an external bus cycle to obtain the instruction or operand. Regardless
of whether or not the required operand is located in one of the on-chip caches, the address
translation cache of the MMU performs logical-to-physical address translation in parallel
with the cache lookup in case an external cycle is required.

On-Chip Cache Memories

6-2

MC68030 USER’S MANUAL

MOTOROLA

Figure 6-1. Internal Caches and the MC68030

 M
IC

R
O

SE
Q

U
EN

C
ER

 A
N

D
C

O
N

TR
O

L

C
O

N
TR

O
L

ST
O

R
E

IN
ST

R
U

C
TI

O
N

C
AC

H
E

ST
AG

E
B

ST
AG

E
C

ST
AG

E
D

IN
TE

R
N

AL
D

AT
A

BU
S

IN
ST

R
U

C
TI

O
N

 P
IP

E

 IN
ST

R
U

C
TI

O
N

AD
D

R
ES

S
BU

S

AD
D

R
ES

S
SE

C
TI

O
N

PR
O

G
R

AM
C

O
U

N
TE

R
SE

C
TI

O
N

D
AT

A
SE

C
TI

O
N

EX
EC

U
TI

O
N

 U
N

IT

M
IS

AL
IG

N
M

EN
T

M
U

LT
IP

LE
XE

R

SI
ZE

M
U

LT
IP

LE
XE

R
D

AT
A

PA
D

S
D

AT
A

BU
S

W
R

IT
E

PE
N

D
IN

G
BU

FF
ER

PR
EF

ET
C

H
 P

EN
D

IN
G

BU
FF

ER

 M
IC

R
O

BU
S

 C
O

N
TR

O
LL

ER

BU
S

C
O

N
TR

O
LL

ER

BU
S

C
O

N
TR

O
L

SI
G

N
AL

S

AD
D

R
ES

S
BU

S

AD
D

R
ES

S
PA

D
S

AD
D

R
ES

S
BU

S

AD
D

R
ES

S

D
AT

A
C

AC
H

E

D
AT

A
AD

D
R

ES
S

BU
S

C
AC

H
E

H
O

LD
IN

G
R

EG
IS

TE
R

(C
AH

R
)

AC
C

ES
S

C
O

N
TR

O
L

U
N

IT

C
O

N
TR

O
L

LO
G

IC

On-Chip Cache Memories

MOTOROLA

MC68030 USER’S MANUAL

6-3

6.1 ON-CHIP CACHE ORGANIZATION AND OPERATION

Both on-chip caches are 256-byte direct-mapped caches, each organized as 16 lines. Each
line consists of four entries, and each entry contains four bytes. The tag field for each line
contains a valid bit for each entry in the line; each entry is independently replaceable. When
appropriate, the bus controller requests a burst mode operation to replace an entire cache
line. The cache control register (CACR) is accessible by supervisor programs to control the
operation of both caches.

System hardware can assert the cache disable (CDIS) signal to disable both caches. The
assertion of CDIS disables the caches, regardless of the state of the enable bits in CACR.
CDIS is primarily intended for use by in-circuit emulators.

Another input signal, cache inhibit in (CIIN), inhibits caching of data reads or instruction
prefetches on a bus-cycle by bus-cycle basis. Examples of data that should not be cached
are data for I/O devices and data from memory devices that cannot supply a full port width
of data, regardless of the size of the required operand.

Subsequent paragraphs describe how CIIN is used during the filling of the caches.

An output signal, cache inhibit out (CIOUT), reflects the state of the cache inhibit (CI) bit from
the MMU of either the address translation cache entry that corresponds to a specified logical
address or the transparent translation register that corresponds to that address. Whenever
the appropriate CI bit is set for either a read or a write access and an external bus cycle is
required, CIOUT is asserted and the instruction and data caches are ignored for the access.
This signal can also be used by external hardware to inhibit caching in external caches.

Whenever a read access occurs and the required instruction word or data operand is
resident in the appropriate on-chip cache (no external bus cycle is required), the MMU is
completely ignored, unless an invalid translation resides in the MMU at that time (see next
two paragraphs). Therefore, the state of the corresponding CI bits in the MMU are also
ignored. The MMU is used to validate all accesses that require external bus cycles; an
address translation must be available and valid, protections are checked, and the CIOUT
signal is asserted appropriately.

On-Chip Cache Memories

6-4

MC68030 USER’S MANUAL

MOTOROLA

An external access is defined as “cachable” for either the instruction or data cache when all
the following conditions apply:

• The cache is enabled with the appropriate bit in the CACR set.

• The CDIS signal is negated.

• The CIIN signal is negated for the access.

• The CIOUT signal is negated for the access.

• The MMU validates the access.

Because both the data and instruction caches are referenced by logical addresses, they
should be flushed during a task switch or at any time the logical-to-physical address
mapping changes, including when the MMU is first enabled. In addition, if a page descriptor
is currently marked as valid and is later changed to the invalid type (due to a context switch
or a page replacement operation)

entries in the on-chip instruction or data cache
corresponding to the physical page must be first cleared (invalidated)

. Otherwise, if on-chip
cache entries are valid for pages with descriptors in memory marked invalid, processor
operation is unpredictable.

Data read and write accesses to the same address should also have consistent cachability
status to ensure that the data in the cache remains consistent with external memory. For
example, if CIOUT is negated for read accesses within a page and the MMU configuration
is changed so that CIOUT is subsequently asserted for write accesses within the same
page, those write accesses do not update data in the cache, and stale data may result.
Similarly, when the MMU maps multiple logical addresses to the same physical address, all
accesses to those logical addresses should have the same cachability status.

6.1.1 Instruction Cache

The instruction cache is organized with a line size of four long words, as shown in Figure 6-
2. Each of these long words is considered a separate cache entry as each has a separate
valid bit. All four entries in a line have the same tag address. Burst filling all four long words
can be advantageous when the time spent in filling the line is not long relative to the
equivalent bus-cycle time for four nonburst long-word accesses, because of the probability
that the contents of memory adjacent to or close to a referenced operand or instruction is
also required by subsequent accesses. Dynamic RAMs supporting fast access modes
(page, nibble, or static column) are easily employed to support the MC68030 burst mode.

On-Chip Cache Memories

MOTOROLA

MC68030 USER’S MANUAL

6-5

When enabled, the instruction cache is used to store instruction prefetches (instruction
words and extension words) as they are requested by the CPU. Instruction prefetches are
normally requested from sequential memory addresses except when a change of program
flow occurs (e.g., a branch taken) or when an instruction is executed that can modify the
status register, in which cases the instruction pipe is automatically flushed and refilled. The
output signal REFILL indicates this condition. For more information on the operation of this
signal, refer to

Section 12 Applications Information

.

In the instruction cache, each of the 16 lines has a tag consisting of the 24 most significant
logical address bits, the FC2 function code bit (used to distinguish between user and
supervisor accesses), and the four valid bits (one corresponding to each long word). Refer
to Figure 6-2 for the instruction cache organization. Address bits A7–A4 select one of 16
lines and its associated tag. The comparator compares the address and function code bits
in the selected tag with address bits A31–A8 and FC2 from the internal prefetch request to
determine if the requested word is in the cache. A cache hit occurs when there is a tag match
and the corresponding valid bit (selected by A3–A2) is set. On a cache hit, the word selected
by address bit A1 is supplied to the instruction pipe.

When the address and function code bits do not match or the requested entry is not valid, a
miss occurs. The bus controller initiates a long-word prefetch operation for the required

Figure 6-2. On-Chip Instruction Cache Organization

F F F
C C C 3 2 2 2 2 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
2 1 0 1 3 2 01 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0

COMPARATOR

TAG

1 OF 16
SELECT

VALIDTAG REPLACE

INDEXTAG

LINE HIT

DATA FROM INSTRUCTION
CACHE DATA BUS

CACHE CONTROL LOGIC

V V VV

ACCESS ADDRESS

DATA TO INSTRUCTION
CACHE HOLDING REGISTER

ENTRY HIT

A

LONG-WORD
SELECT

CACHE SIZE = 64 (LONG WORDS)
 LINE SIZE = 4 (LONG WORDS)
 SET SIZE = 1

A A

On-Chip Cache Memories

6-6

MC68030 USER’S MANUAL

MOTOROLA

instruction word and loads the cache entry, provided the entry is cachable. A burst mode
operation may be requested to fill an entire cache line. If the function code and address bits
match and the corresponding long word is not valid (but one or more of the other three valid
bits for that line are set) a single entry fill operation replaces the required long word only,
using a normal prefetch bus cycle or cycles (no burst).

6.1.2 Data Cache

The data cache stores data references to any address space except CPU space (FC=$7),
including those references made with PC relative addressing modes and accesses made
with the MOVES instruction. Operation of the data cache is similar to that of the instruction
cache, except for the address comparison and cache filling operations. The tag of each line
in the data cache contains function code bits FC0, FC1, and FC2 in addition to address bits
A31–A8. The cache control circuitry selects the tag using bits A7–A4 and compares it to the
corresponding bits of the access address to determine if a tag match has occurred. Address
bits A3–A2 select the valid bit for the appropriate long word in the cache to determine if an
entry hit has occurred. Misaligned data transfers may span two data cache entries. In this
case, the processor checks for a hit one entry at a time. Therefore, it is possible that a
portion of the access results in a hit and a portion results in a miss. The hit and miss are
treated independently. Figure 6-3 illustrates the organization of the data cache.

The operation of the data cache differs for read and write cycles. A data read cycle operates
exactly like an instruction cache read cycle; when a miss occurs, an external cycle is initiated
to obtain the operand from memory, and the data is loaded into the cache if the access is
cachable. In the case of a misaligned operand that spans two cache entries, two long words
are required from memory. Burst mode operation may also be initiated to fill an entire line of
the data cache. Read accesses from the CPU address space and address translation table
search accesses are not stored in the data cache.

The data cache on the MC68030 is a writethrough cache. When a hit occurs on a write cycle,
the data is written both to the cache and to external memory (provided the MMU validates
the access), regardless of the operand size and even if the cache is frozen. If the MMU
determines that the access is invalid, the write is aborted, the corresponding entry is
invalidated, and a bus error exception is taken. Since the write to the cache completes
before the write to external memory, the cache contains the new value even if the external
write terminates in a bus error. The value in the data cache might be used by another
instruction before the external write cycle has completed, although this should not have any
adverse consequences. Refer to

7.6 Bus Synchronization

 for the details of bus
synchronization.

On-Chip Cache Memories

MOTOROLA

MC68030 USER’S MANUAL

6-7

6.1.2.1 WRITE ALLOCATION.

The supervisor program can configure the data cache for
either of two types of allocation for data cache entries that miss on write cycles. The state
of the write allocation (WA) bit in the cache control register specifies either no write
allocation or write allocation with partial validation of the data entries in the cache on writes.

When no write allocation is selected (WA=0), write cycles that miss do not alter the data
cache contents. In this mode, the processor does not replace entries in the cache during
write operations. The cache is updated only during a write hit.

When write allocation is selected (WA=1), the processor always updates the data cache on
cachable write cycles, but only validates an updated entry that hits or an entry that is
updated with long-word data that is long-word aligned. When a tag miss occurs on a write
of long-word data that is long-word aligned, the corresponding tag is replaced, and only the
long word being written is marked as valid. The other three entries in the cache line are
invalidated when a tag miss occurs on a misaligned long-word write or on a byte or word
write, the data is not written in the cache, the tag is unaltered, and the valid bit(s) are cleared.
Thus, an aligned long-word data write may replace a previously valid entry; whereas, a
misaligned data write or a write of data that is not long word may invalidate a previously valid
entry or entries.

Figure 6-3. On-Chip Data Cache Organization

DATA FROM DATA
CACHE DATA BUS

CACHE CONTROL LOGIC

DATA TO
EXECUTION UNIT

F F F
C C C 3 2 2 2 2 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
2 1 0 1 3 2 01 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0

COMPARATOR

TAG

1 OF 16
SELECT

VALIDTAG REPLACE

INDEXTAG

LINE HIT

V V VV

ACCESS ADDRESS

ENTRY HIT

A

LONG-WORD
SELECT

CACHE SIZE = 64 (LONG WORDS)
 LINE SIZE = 4 (LONG WORDS)
 SET SIZE = 1

A A

On-Chip Cache Memories

6-8

MC68030 USER’S MANUAL

MOTOROLA

Write allocation eliminates stale data that may reside in the cache because of either of two
unique situations: multiple mapping of two or more logical addresses to one physical
address within the same task or allowing the same physical location to be accessed by both
supervisor and user mode cycles. Stale data conditions can arise when operating in the no-
write-allocation mode and all the following conditions are satisfied:

• Multiple mapping (object aliasing) is allowed by the operating system.

• A read cycle loads a value for an “aliased” physical address into the data cache.

• A write cycle occurs, referencing the same aliased physical object as above but using
a different logical address, causing a cache miss and no update to the cache (has the
same page offset).

• The physical object is then read using the first alias, which provides stale data from the
cache.

In this case, the data in the cache no longer matches that in physical memory and is stale.
Since the write-allocation mode updates the cache during write cycles, the data in the cache
remains consistent with physical memory. Note that when CIOUT is asserted, the data
cache is completely ignored, even on write cycles operating in the write-allocation mode.
Also note that since the CIIN signal is ignored on write cycles, cache entries may be created
for noncachable data (when CIIN is asserted on a write) when operating in the write-
allocation mode. Figure 6-4 shows the manner in which each mode operates in five different
situations.

Figure 6-4. No-Write-Allocation and Write-Allocation Mode Examples

USER DATA, $000010 b0-b3, V0 = 1 b4-b7, V1 = 0 b8-bB, V2 = 1 bC-bF, V3 = 1
LINE

SELECT
($5)

LOGICAL ADDRESS = FC2-FC0, A31-A8, A7-A4, A3-A2

TAG'

TAG

EXAMPLE 1:
 USER WORD WRITE OF b2'-b3' to $00001052
 (CACHE HIT, ALWAYS UPDATE CACHE AND MEMORY)

EXAMPLE 2:
 USER LONG-WORD WRITE OF b6'-b9' to $00001056
 (TAG MATCH, LONG-WORD DATA, MISALIGNED,
 b6-b7 RESULT IN A CACHE MISS,
 b8-b9 RESULT IN A CACHE HIT)

 A) START EXTERNAL CYCLE
 B) b2-b3 b2'-b3'

NO WRITE ALLOCATE

 A) START EXTERNAL CYCLE
 B) b8-b9 b8'-b9'

 A) START EXTERNAL CYCLE
 B) b2-b3 b2'-b3'

 WRITE ALLOCATE

 A) START EXTERNAL CYCLE
 B) b8-b9 b8'-b9'

On-Chip Cache Memories

MOTOROLA

MC68030 USER’S MANUAL

6-9

6.1.2.2 READ-MODIFY-WRITE ACCESSES.

The read portion of a read-modify-write cycle
is always forced to miss in the data cache. However, if the system allows internal caching
of read-modify-write cycle operands (CIOUT and CIIN both negated), the processor either
uses the data read from memory to update a matching entry in the data cache or creates a
new entry with the read data in the case of no matching entry. The write portion of a read-
modify-write operation also updates a matching entry in the data cache. In the case of a
cache miss on the write, the allocation of a new cache entry for the data being written is
controlled by the WA bit. Table search accesses, however, are completely ignored by the
data cache; it is never updated for a table search access.

6.1.3 Cache Filling

The bus controller can load either cache in either of two ways:

• Single entry mode

• Burst fill mode

In the single entry mode, the bus controller loads a single long-word entry of a cache line.
In the burst fill mode, an entire line (four long words) can be filled. Refer to

Section 7 Bus
Operation

for detailed information about the bus cycles required for both modes.

6.1.3.1 SINGLE ENTRY MODE.

When a cachable access is initiated and a burst mode
operation is not requested by the MC68030 or is not supported by external hardware, the
bus controller transfers a single long word for the corresponding cache entry. An entire long
word is required. If the port size of the responding device is smaller than 32 bits, the
MC68030 executes all bus cycles necessary to fill the long word.

When a device cannot supply its entire port width of data, regardless of the size of the
transfer, the responding device must consistently assert the cache inhibit input (CIIN) signal.
For example, a 32-bit port must always supply 32 bits, even for 8- and 16-bit transfers; a 16-
bit port must supply 16 bits, even for 8-bit transfers. The MC68030 assumes that a 32-bit
termination signal for the bus cycle indicates availability of 32 valid data bits, even if only 16
or 8 bits are requested. Similarly, the processor assumes that a 16-bit termination signal
indicates that all 16 bits are valid. If the device cannot supply its full port width of data, it must
assert CIIN for all bus cycles corresponding to a cache entry.

On-Chip Cache Memories

6-10

MC68030 USER’S MANUAL

MOTOROLA

When a cachable read cycle provides data with both CIIN and BERR negated, the MC68030
attempts to fill the cache entry. Figure 6-5 shows the organization of a line of data in the
caches. The notation b0, b1, b2, and so forth identifies the bytes within the line. For each
entry in the line, a valid bit in the associated tag corresponds to a long-word entry to be
loaded. Since a single valid bit applies to an entire long word, a single entry mode operation
must provide a full 32 bits of data. Ports less than 32 bits wide require several read cycles
for each entry.

Figure 6-5 shows an example of a byte data operand read cycle starting at byte address $03
from an 8-bit port. Provided the data item is cachable, this operation results in four bus
cycles. The first cycle requested by the MC68030 reads a byte from address $03. The 8-bit
DSACKx response causes the MC68030 to fetch the remainder of the long word starting at
address $00. The bytes are latched in the following order: b3, b0, b1, and b2. Note that
during cache loading operations, devices must indicate the same port size consistently
throughout all cycles for that long-word entry in the cache.

Figure 6-6 shows the access of a byte data operand from a 16-bit port. This operation
requires two read cycles. The first cycle requests the byte at address $03. If the device
responds with a 16-bit DSACKx encoding, the word at address $02 (including the requested
byte) is accepted by the MC68030. The second cycle requests the word at address $00.
Since the device again responds with a 16-bit DSACKx encoding, the remaining two bytes
of the long word are latched, and the cache entry is filled.

With a 32-bit port, the same operation is shown in Figure 6-7. Only one read cycle is
required. All four bytes (including the requested byte) are latched during the cycle.

If a requested access is misaligned and spans two cache entries, the bus controller attempts
to fill both associated long-word cache entries. An example of this is an operand request for
a long word on an odd-word boundary. The MC68030 first fetches the initial byte(s) of the
operand (residing in the first long word) and then requests the remaining bytes to fill that
cache entry (if the port size is less than 32 bits) before it requests the remainder of the
operand and corresponding long word to fill the second cache entry. If the port size is 32
bits, the processor performs two accesses, one for each cache entry.

(UNABLE TO LOCATE ART)

Figure 6-5. Single Entry Mode Operation — 8-Bit Port

(UNABLE TO LOCATE ART)

Figure 6-6. Single Entry Mode Operation — 16-Bit Port

(UNABLE TO LOCATE ART)

Figure 6-7. Single Entry Mode Operation — 32-Bit Port

On-Chip Cache Memories

MOTOROLA

MC68030 USER’S MANUAL

6-11

Figure 6-8 shows a misaligned access of a long word at address $06 from an 8-bit port
requiring eight bus cycles to complete. Reading this long-word operand requires eight read
cycles, since accesses to all eight addresses return 8-bit port-size encodings. These cycles
fetch the two cache entries that the requested long-word spans. The first cycle requests a
long word at address $06 and accepts the first requested byte (b6). The subsequent
transfers of the first long word are performed in the following order: b7, b4, b5. The
remaining four read cycles transfer the four bytes of the second cache entry. The sequence
of access for the entire operation is b6, b7, b4, b5, b8, b9, bA, and bB.

The next example, shown in Figure 6-9, is a read of a misaligned long-word operand from
devices that return 16-bit DSACKx encodings. The processor accepts the first portion of the
operand, the word from address $06, and requests a word from address $04 to fill the cache
entry. Next, the processor reads the word at address $08, the second portion of the operand,
and stores it in the cache also. Finally, the processor accesses the word at $0A to fill the
second long-word cache entry.

Two read cycles are required for a misaligned long-word operand transfer from devices that
return 32-bit DSACKx encodings. As shown in Figure 6-10, the first read cycle requests the
long word at address $06 and latches the long word at address $04. The second read cycle
requests and latches the long word corresponding to the second cache entry at address
$08. Two read cycles are also required if STERM is used to indicate a 32-bit port instead of
the 32-bit DSACKx encoding.

If all bytes of a long word are cachable, CIIN must be negated for all bus cycles required to
fill the entry. If any byte is not cachable, CIIN must be asserted for all corresponding bus
cycles. The assertion of the CIIN signal prevents the caches from being updated during read
cycles. Write cycles (including the write portion of a read-modify-write cycle) ignore the
assertion of the CIIN signal and may cause the data cache to be altered, depending on the
state of the cache (whether or not the write cycle hits), the state of the WA bit in the CACR,
and the conditions indicated by the MMU.

The occurrence of a bus error while attempting to load a cache entry aborts the entry fill
operation but does not necessarily cause a bus error exception. If the bus error occurs on a
read cycle for a portion of the required operand (not the remaining bytes of the cache entry)
to be loaded into the data cache, the processor immediately takes a bus error exception. If

(UNABLE TO LOCATE ART)

Figure 6-8. Single Entry Mode Operation —
Misaligned Long Word and 8-Bit Port

(UNABLE TO LOCATE ART)

Figure 6-9. Single Entry Mode Operation —
Misaligned Long Word and 16-Bit Port

(UNABLE TO LOCATE ART)

Figure 6-10. Single Entry Mode Operation —
Misaligned Long Word and 32-Bit DSACKx Port

On-Chip Cache Memories

6-12

MC68030 USER’S MANUAL

MOTOROLA

the read cycle in error is made only to fill the data cache (the data is not part of the target
operand), no exception occurs, but the corresponding entry is marked invalid. For the
instruction cache, the processor marks the entry as invalid, but only takes an exception if
the execution unit attempts to use the instruction word(s).

6.1.3.2 BURST MODE FILLING.

Burst mode filling is enabled by bits in the cache control
register. The data burst enable bit must be set to enable burst filling of the data cache.
Similarly, the instruction burst enable bit must be set to enable burst filling of the instruction
cache. When burst filling is enabled and the corresponding cache is enabled, the bus
controller requests a burst mode fill operation in either of these cases:

• A read cycle for either the instruction or data cache misses due to the indexed tag not
matching.

• A read cycle tag matches, but all long words in the line are invalid.

The bus controller requests a burst mode fill operation by asserting the cache burst request
signal (CBREQ). The responding device may sequentially supply one to four long words of
cachable data, or it may assert the cache inhibit input signal (CIIN) when the data in a long
word is not cachable. If the responding device does not support the burst mode and it
terminates cycles with STERM, it should not acknowledge the request with the assertion of
the cache burst acknowledge (CBACK) signal. The MC68030 ignores the assertion of
CBACK during cycles terminated with DSACKx.

The cache burst request signal (CBREQ) requests burst mode operation from the
referenced external device. To operate in the burst mode, the device or external hardware
must be able to increment the low-order address bits if required, and the current cycle must
be a 32-bit synchronous transfer (STERM must be asserted) as described in

Section 7 Bus
Operation

. The device must also assert CBACK (at the same time as STERM) at the end
of the cycle in which the MC68030 asserts CBREQ. CBACK causes the processor to
continue driving the address and bus control signals and to latch a new data value for the
next cache entry at the completion of each subsequent cycle (as defined by STERM), for a
total of up to four cycles (until four long words have been read).

When a cache burst is initiated, the first cycle attempts to load the cache entry
corresponding to the instruction word or data item explicitly requested by the execution unit.
The subsequent cycles are for the subsequent entries in the cache line. In the case of a
misaligned transfer when the operand spans two cache entries within a cache line, the first
cycle corresponds to the cache entry containing the portion of the operand at the lower
address.

Figure 6-11 illustrates the four cycles of a burst operation and shows that the second, third,
and fourth cycles are run in burst mode. A distinction is made between the first cycle of a
burst operation and the subsequent cycles because the first cycle is requested by the
microsequencer and the burst fill cycles are requested by the bus controller. Therefore,
when data from the first cycle is returned, it is immediately available for the execution unit
(EU). However, data from the burst fill cycles is not available to the EU until the burst
operation is complete. Since the microsequencer makes two separate requests for
misaligned data operands, only the first portion of the misaligned operand returned during a

On-Chip Cache Memories

MOTOROLA

MC68030 USER’S MANUAL

6-13

burst operation is available to the EU after the first cycle is complete. The microsequencer
must wait for the burst operation to complete before requesting the second portion of the
operand. Normally, the request for the second portion results in a data cache hit unless the
second cycle of the burst operation terminates abnormally.

The bursting mechanism allows addresses to wrap around so that the entire four long words
in the cache line can be filled in a single burst operation, regardless of the initial address and
operand alignment. Depending on the structure of the external memory system, address bits
A2 and A3 may have to be incremented externally to select the long words in the proper
order for loading into the cache. The MC68030 holds the entire address bus constant for the
duration of the burst cycle. Figure 6-12 shows an example of this address wraparound. The
initial cycle is a long-word access from address $6. Because the responding device returns
CBACK and STERM (signaling a 32-bit port), the entire long word at base address $04 is
transferred. Since the initial address is $06 when CBREQ is asserted, the next entry to be
burst filled into the cache should correspond to address $08, then $0C, and last, $00. This
addressing is compatible with existing nibble-mode dynamic RAMs, and can be supported
by page and static column modes with an external modulo 4 counter for A2 and A3.

The MC68030 does not assert CBREQ during the first portion of a misaligned access if the
remainder of the access does not correspond to the same cache line. Figure 6-13 shows an
example in which the first portion of a misaligned access is at address $0F. With a 32-bit
port, the first access corresponds to the cache entry at address $0C, which is filled using a
single-entry load operation. The second access, at address $10 corresponding to the
second cache line, requests a burst fill and the processor asserts CBREQ. During this burst
operation, long words $10, $14, $18, and $1C are all filled in that order.

Figure 6-11. Burst Operation Cycles and Burst Mode

(UNABLE TO LOCATE ART)

Figure 6-12. Burst Filling Wraparound Example

(UNABLE TO LOCATE ART)

Figure 6-13. Deferred Burst Filling Example

FIRST ACCESS OF BURST
OPERATION REQUIRED

OPERAND OR PREFETCH
BURST FILL CYCLE BURST FILL CYCLE BURST FILL CYCLE

CYCLE 1 CYCLE 2 CYCLE 3 CYCLE 4

BURST MODE
REQUESTED AND
ACKNOWLEDGED

BURST MODE BEGINS HERE

BURST OPERATION

On-Chip Cache Memories

6-14

MC68030 USER’S MANUAL

MOTOROLA

The processor does not assert CBREQ if any of the following conditions exist:

• The appropriate cache is not enabled

• Burst filling for the cache is not enabled

• The cache freeze bit for the appropriate cache is set

• The current operation is the read portion of a read-modify-write operation

• The MMU has inhibited caching for the current page

• The cycle is for the first access of an operand that spans two cache lines (crosses a
modulo 16 boundary)

Additionally, the assertion of CIIN and BERR and the premature negation of CBACK affect
burst operation as described in the following paragraphs.

The assertion of CIIN during the first cycle of a burst operation causes the data to be latched
by the processor, and if the requested operand is aligned (the entire operand is latched in
the first cycle), the data is passed on to the instruction pipe or execution unit. However, the
data is not loaded into its corresponding cache. In addition, the MC68030 negates CBREQ,
and the burst operation is aborted. If a portion of the requested operand remains to be read
(due to misalignment), a second read cycle is initiated at the appropriate address with
CBREQ negated.

The assertion of CIIN during the second, third, or fourth cycle of a burst operation prevents
the data during that cycle from being loaded into the appropriate cache and causes CBREQ
to negate, aborting the burst operation. However, if the data for the cycle contains part of
the requested operand, the execution unit uses that data.

The premature negation of the CBACK signal during the burst operation causes the current
cycle to complete normally, loading the data successfully transferred into the appropriate
cache. However, the burst operation aborts and CBREQ negates.

A bus error occurring during a burst operation also causes the burst operation to abort. If the
bus error occurs during the first cycle of a burst (i.e., before burst mode is entered), the data
read from the bus is ignored, and the entire associated cache line is marked “invalid”. If the
access is a data cycle, exception processing proceeds immediately. If the cycle is for an
instruction fetch, a bus error exception is made pending. This bus error is processed only if
the execution unit attempts to use either instruction word. Refer to

11.2.2 Instruction Pipe

for more information about pipeline operation.

For either cache, when a bus error occurs after the burst mode has been entered (that is,
on the second cycle or later), the cache entry corresponding to that cycle is marked invalid,
but the processor does not take an exception (the microsequencer has not yet requested
the data). In the case of an instruction cache burst, the data from the aborted cycle is
completely ignored. Pending instruction prefetches are still pending and are subsequently
run by the processor. If the second cycle is for a portion of a misaligned data operand fetch
and a bus error occurs, the processor terminates the burst operation and negates CBREQ.
Once the burst terminates, the microsequencer requests a read cycle for the second portion.
Since the burst terminated abnormally for the second cycle of the burst, the data cache

On-Chip Cache Memories

MOTOROLA

MC68030 USER’S MANUAL

6-15

results in a miss, and a second external cycle is required. If BERR is again asserted, the
MC68030 then takes an exception.

On the initial access of a burst operation, a “retry'“(indicated by the assertion of BERR and
HALT) causes the processor to retry the bus cycle and assert CBREQ again. However,
signaling a retry with simultaneous BERR and HALT during the second, third, or fourth cycle
of a burst operation does not cause a retry operation, even if the requested operand is
misaligned. Assertion of BERR and HALT during burst fill cycles of a burst operation causes
independent bus error and halt operations. The processor remains halted until HALT is
negated, and then handles the bus error as described in the previous paragraphs.

6.2 CACHE RESET

When a hardware reset of the processor occurs, all valid bits of both caches are cleared.
The cache enable bits, burst enable bits, and the freeze bits in the cache control register
(CACR) for both caches (refer to Figure 6-14) are also cleared, effectively disabling both
caches. The WA bit in the CACR is also cleared.

6.3 CACHE CONTROL

Only the MC68030 cache control circuitry can directly access the cache arrays, but the
supervisor program can set bits in the CACR to exercise control over cache operations. The
supervisor also has access to the cache address register (CAAR), which contains the
address for a cache entry to be cleared.

6.3.1 Cache Control Register

The CACR, shown in Figure 6-14, is a 32-bit register that can be written or read by the
MOVEC instruction or indirectly modified by a reset. Five of the bits (4-0) control the
instruction cache; six other bits (13-8) control the data cache. Each cache is controlled
independently of the other, although a similar operation can be performed for both caches
by a single MOVEC instruction. For example, loading a long word in which bits 3 and 11 are
set into the CACR clears both caches. Bits 31-14 and 7-5 are reserved for Motorola
definition. They are currently read as zeros and are ignored when written. For future
compatibility, writes should not set these bits.

WA = Write Allocate
DBE = Data Burst Enable

CD = Clear Data Cache
CED = Clear Entry in Data Cache

FD = Freeze Data Cache
ED = Freeze Data Cache
IBE = Instruction Burst Enable

CI = Clear Instruction Cache
CEI = Clear Entry in Instruction Cache

FI = Freeze Instruction Cache
EI = Enable Instruction Cache

Figure 6-14. Cache Control Register

31 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 000000000000000000 WA DBE CD CED FD ED 0 0 0 IBE CI CEI FI EI

On-Chip Cache Memories

6-16

MC68030 USER’S MANUAL

MOTOROLA

6.3.1.1 WRITE ALLOCATE.

Bit 13, the WA bit, is set to select the write-allocation mode
(refer to

6.1.2.1 Write Allocation

) for write cycles. Clearing this bit selects the no-write-
allocation mode. A reset operation clears this bit. The supervisor should set this bit when it
shares data with the user task or when any task maps multiple logical addresses to one
physical address. If the data cache is disabled or frozen, the WA bit is ignored.

6.3.1.2 DATA BURST ENABLE.

Bit 12, the DBE bit, is set to enable burst filling of the data
cache. Operating systems and other software set this bit when burst filling of the data cache
is desired. A reset operation clears the DBE bit.

6.3.1.3 CLEAR DATA CACHE.

Bit 11, the CD bit, is set to clear all entries in the data cache.
Operating systems and other software set this bit to clear data from the cache prior to a
context switch. The processor clears all valid bits in the data cache at the time a MOVEC
instruction loads a one into the CD bit of the CACR. The CD bit is always read as a zero.

6.3.1.4 CLEAR ENTRY IN DATA CACHE.

Bit 10, the CED bit, is set to clear an entry in the
data cache. The index field of the CAAR (see Figure 6-15) corresponding to the index and
long-word select portion of an address specifies the entry to be cleared. The processor
clears only the specified long word by clearing the valid bit for the entry at the time a MOVEC
instruction loads a one into the CED bit of the CACR, regardless of the states of the ED and
FD bits. The CED bit is always read as a zero.

On-Chip Cache Memories

MOTOROLA

MC68030 USER’S MANUAL

6-17

6.3.1.5 FREEZE DATA CACHE.

Bit 9, the FD bit, is set to freeze the data cache. When the
FD bit is set and a miss occurs during a read or write of the data cache, the indexed entry
is not replaced. However, write cycles that hit in the data cache cause the entry to be
updated even when the cache is frozen. When the FD bit is clear, a miss in the data cache
during a read cycle causes the entry (or line) to be filled, and the filling of entries on writes
that miss are then controlled by the WA bit. A reset operation clears the FD bit.

6.3.1.6 ENABLE DATA CACHE.

Bit 8, the ED bit, is set to enable the data cache. When it
is cleared, the data cache is disabled. A reset operation clears the ED bit. The supervisor
normally enables the data cache, but it can clear ED for system debugging or emulation, as
required. Disabling the data cache does not flush the entries. If it is enabled again, the
previously valid entries remain valid and can be used.

6.3.1.7 INSTRUCTION BURST ENABLE.

Bit 4, the IBE bit, is set to enable burst filling of
the instruction cache. Operating systems and other software set this bit when burst filling of
the instruction cache is desired. A reset operation clears the IBE bit.

6.3.1.8 CLEAR INSTRUCTION CACHE.

Bit 3, the CI bit, is set to clear all entries in the
instruction cache. Operating systems and other software set this bit to clear instructions from
the cache prior to a context switch. The processor clears all valid bits in the instruction cache
at the time a MOVEC instruction loads a one into the CI bit of the CACR. The CI bit is always
read as a zero.

6.3.1.9 CLEAR ENTRY IN INSTRUCTION CACHE.

Bit 2, the CEI bit, is set to clear an
entry in the instruction cache. The index field of the CAAR (see Figure 6-15) corresponding
to the index and long-word select portion of an address specifies the entry to be cleared.
The processor clears only the specified long word by clearing the valid bit for the entry at the
time a MOVEC instruction loads a one into the CEI bit of the CACR, regardless of the states
of the EI and FI bits. The CEI bit is always read as a zero.

On-Chip Cache Memories

6-18

MC68030 USER’S MANUAL

MOTOROLA

6.3.1.10 FREEZE INSTRUCTION CACHE.

Bit 1, the FI bit, is set to freeze the instruction
cache. When the FI bit is set and a miss occurs in the instruction cache, the entry (or line)
is not replaced. When the FI bit is cleared to zero, a miss in the instruction cache causes the
entry (or line) to be filled. A reset operation clears the FI bit.

6.3.1.11 ENABLE INSTRUCTION CACHE.

Bit 0, the EI bit, is set to enable the instruction
cache. When it is cleared, the instruction cache is disabled. A reset operation clears the EI
bit. The supervisor normally enables the instruction cache, but it can clear EI for system
debugging or emulation, as required. Disabling the instruction cache does not flush the
entries. If it is enabled again, the previously valid entries remain valid and may be used.

6.3.2 Cache Address Register

The CAAR is a 32-bit register shown in Figure 6-15. The index field (bits 7-2) contains the
address for the “clear cache entry” operations. The bits of this field correspond to bits 7-2 of
addresses; they specify the index and a long word of a cache line. Although only the index
field is used currently, all 32 bits of the register are implemented and are reserved for use
by Motorola.

Figure 6-15. Cache Address Register

31 8 7 2 1 0
CACHE FUNCTION ADDRESS INDEX

MOTOROLA

MC68030 USER’S MANUAL

7-1

SECTION 7
BUS OPERATION

This section provides a functional description of the bus, the signals that control it, and the
bus cycles provided for data transfer operations. It also describes the error and halt
conditions, bus arbitration, and the reset operation. Operation of the bus is the same
whether the processor or an external device is the bus master; the names and descriptions
of bus cycles are from the point of view of the bus master. For exact timing specifications,
refer to

Section 13 Electrical Characteristics

.

The MC68030 architecture supports byte, word, and long-word operands, allowing access
to 8-, 16-, and 32-bit data ports through the use of asynchronous cycles controlled by the
data transfer and size acknowledge inputs (DSACK0 and DSACK1).

Synchronous bus cycles controlled by the synchronous termination signal (STERM) can
only be used to transfer data to and from 32-bit ports.

The MC68030 allows byte, word, and long-word operands to be located in memory on any
byte boundary. For a misaligned transfer, more than one bus cycle may be required to
complete the transfer, regardless of port size. For a port less than 32 bits wide, multiple bus
cycles may be required for an operand transfer due to either misalignment or a port width
smaller than the operand size. Instruction words and their associated extension words must
be aligned on word boundaries. The user should be aware that misalignment of word or
long-word operands can cause the MC68030 to perform multiple bus cycles for the operand
transfer; therefore, processor performance is optimized if word and long-word memory
operands are aligned on word or long-word boundaries, respectively.

7.1 BUS TRANSFER SIGNALS

The bus transfers information between the MC68030 and an external memory, coprocessor,
or peripheral device. External devices can accept or provide 8 bits, 16 bits, or 32 bits in
parallel and must follow the handshake protocol described in this section. The maximum
number of bits accepted or provided during a bus transfer is defined as the port width. The
MC68030 contains an address bus that specifies the address for the transfer and a data bus
that transfers the data. Control signals indicate the beginning of the cycle, the address space
and the size of the transfer, and the type of cycle. The selected device then controls the
length of the cycle with the signal(s) used to terminate the cycle. Strobe signals, one for the
address bus and another for the data bus, indicate the validity of the address and provide
timing information for the data.

Bus Operation

7-2

MC68030 USER’S MANUAL

MOTOROLA

The bus can operate in an asynchronous mode identical to the MC68020 bus for any port
width. The bus and control input signals used for asynchronous operation are internally
synchronized to the MC68030 clock, introducing a delay. This delay is the time period
required for the MC68030 to sample an asynchronous input signal, synchronize the input to
the internal clocks of the processor, and determine whether it is high or low. Figure 7-1
shows the relationship between the clock signal and the associated internal signal of a
typical asynchronous input.

Furthermore, for all asynchronous inputs, the processor latches the level of the input during
a sample window around the falling edge of the clock signal. This window is illustrated in
Figure 7-2. To ensure that an input signal is recognized on a specific falling edge of the
clock, that input must be stable during the sample window. If an input makes a transition
during the window time period, the level recognized by the processor is not predictable;
however, the processor always resolves the latched level to either a logic high or low before
using it. In addition to meeting input setup and hold times for deterministic operation, all input
signals must obey the protocols described in this section.

Figure 7-1. Relationship between External and Internal Signals

SYNC DELAY

CLK

EXT

INT

Bus Operation

MOTOROLA

MC68030 USER’S MANUAL

7-3

A device with a 32-bit port size can also provide a synchronous mode transfer. In
synchronous operation, input signals are externally synchronized to the processor clock,
and the synchronizing delay is not incurred.

Synchronous inputs (STERM, CBACK, and CIIN) must remain stable during a sample
window for all rising edges of the clock during a bus cycle (i.e., while address strobe (AS) is
asserted), regardless of when the signals are asserted or negated, to ensure proper
operation. This sample window is defined by the synchronous input setup and hold times
(see MC68030EC/D,

MC68030 Electrical Specifications

).

7.1.1 Bus Control Signals

The external cycle start (ECS) signal is the earliest indication that the processor is initiating
a bus cycle. The MC68030 initiates a bus cycle by driving the address, size, function code,
read/write, and cache inhibit-out outputs and by asserting ECS. However, if the processor
finds the required program or data item in an on-chip cache, if a miss occurs in the address
translation cache (ATC) of the memory management unit (MMU), or if the MMU finds a fault
with the access, the processor aborts the cycle before asserting AS. ECS can be used to
initiate various timing sequences that are eventually qualified with AS. Qualification with AS
may be required since, in the case of an internal cache hit, an ATC miss, or an MMU fault,
a bus cycle may be aborted after ECS has been asserted. The assertion of AS ensures that
the cycle has not been aborted by these internal conditions.

During the first external bus cycle of an operand transfer, the operand cycle start (OCS)
signal is asserted with ECS. When several bus cycles are required to transfer the entire
operand, OCS is asserted only at the beginning of the first external bus cycle. With respect
to OCS, an "operand'' is any entity required by the execution unit, whether a program or data
item.

The function code signals (FC0–FC2) are also driven at the beginning of a bus cycle. These
three signals select one of eight address spaces (refer to Table 4-1) to which the address
applies. Five address spaces are presently defined. Of the remaining three, one is reserved

Figure 7-2. Asynchronous Input Sample Window

t su

th

SAMPLE
WINDOW

CLK

EXT

Bus Operation

7-4

MC68030 USER’S MANUAL

MOTOROLA

for user definition and two are reserved by Motorola for future use. The function code signals
are valid while AS is asserted.

At the beginning of a bus cycle, the size signals (SIZ0 and SIZ1) are driven along with ECS
and the FC0–FC2. SIZ0 and SIZ1 indicate the number of bytes remaining to be transferred
during an operand cycle (consisting of one or more bus cycles) or during a cache fill
operation from a device with a port size that is less than 32 bits. Table 7-2 shows the
encoding of SIZ0 and SIZ1. These signals are valid while AS is asserted.

The read/write (R/W) signal determines the direction of the transfer during a bus cycle. This
signal changes state, when required, at the beginning of a bus cycle and is valid while AS
is asserted. R/W only transitions when a write cycle is preceded by a read cycle or vice
versa. The signal may remain low for two consecutive write cycles.

The read-modify-write cycle signal (RMC) is asserted at the beginning of the first bus cycle
of a read-modify-write operation and remains asserted until completion of the final bus cycle
of the operation. The RMC signal is guaranteed to be negated before the end of state 0 for
a bus cycle following a read-modify-write operation.

7.1.2 Address Bus

The address bus signals (A0–A31) define the address of the byte (or the most significant
byte) to be transferred during a bus cycle. The processor places the address on the bus at
the beginning of a bus cycle. The address is valid while AS is asserted.

7.1.3 Address Strobe

AS is a timing signal that indicates the validity of an address on the address bus and of many
control signals. It is asserted one-half clock after the beginning of a bus cycle.

Bus Operation

MOTOROLA

MC68030 USER’S MANUAL

7-5

7.1.4 Data Bus

The data bus signals (D0–D31) comprise a bidirectional, nonmultiplexed parallel bus that
contains the data being transferred to or from the processor. A read or write operation may
transfer 8, 16, 24, or 32 bits of data (one, two, three, or four bytes) in one bus cycle. During
a read cycle, the data is latched by the processor on the last falling edge of the clock for that
bus cycle. For a write cycle, all 32 bits of the data bus are driven, regardless of the port width
or operand size. The processor places the data on the data bus one-half clock cycle after
AS is asserted in a write cycle.

7.1.5 Data Strobe

The data strobe (DS) is a timing signal that applies to the data bus. For a read cycle, the
processor asserts DS to signal the external device to place data on the bus. It is asserted at
the same time as AS during a read cycle. For a write cycle, DS signals to the external device
that the data to be written is valid on the bus. The processor asserts DS one full clock cycle
after the assertion of AS during a write cycle.

7.1.6 Data Buffer Enable

The data buffer enable signal (DBEN) can be used to enable external data buffers while data
is present on the data bus. During a read operation, DBEN is asserted one clock cycle after
the beginning of the bus cycle and is negated as DS is negated. In a write operation, DBEN
is asserted at the time AS is asserted and is held active for the duration of the cycle. In a
synchronous system supporting two-clock bus cycles, DBEN timing may prevent its use.

7.1.7 Bus Cycle Termination Signals

During asynchronous bus cycles, external devices assert the data transfer and size
acknowledge signals (DSACK0 and/or DSACK1) as part of the bus protocol. During a read
cycle, the assertion of DSACKx signals the processor to terminate the bus cycle and to latch
the data. During a write cycle, the assertion of DSACKx indicates that the external device
has successfully stored the data and that the cycle may terminate. These signals also
indicate to the processor the size of the port for the bus cycle just completed, as shown in
Table 7-1. Refer to

7.3.1 Asynchronous Read Cycle

for timing relationships of DSACK0
and DSACK1.

Bus Operation

7-6

MC68030 USER’S MANUAL

MOTOROLA

For synchronous bus cycles, external devices assert the synchronous termination signal
(STERM) as part of the bus protocol. During a read cycle, the assertion of STERM causes
the processor to latch the data. During a write cycle, it indicates that the external device has
successfully stored the data. In either case, it terminates the cycle and indicates that the
transfer was made to a 32-bit port. Refer to

7.3.2 Asynchronous Write Cycle

 for timing
relationships of STERM.

The bus error (BERR) signal is also a bus cycle termination indicator and can be used in the
absence of DSACKx or STERM to indicate a bus error condition. It can also be asserted in
conjunction with DSACKx or STERM to indicate a bus error condition, provided it meets the
appropriate timing described in this section and in MC68030EC/D,

MC68030 Electrical
Specifications

. Additionally, the BERR and HALT signals can be asserted together to
indicate a retry termination. Again, the BERR and HALT signals can be asserted
simultaneously in lieu of or in conjunction with the DSACKx or STERM signals.

Finally, the autovector (AVEC) signal can be used to terminate interrupt acknowledge
cycles, indicating that the MC68030 should internally generate a vector number to locate an
interrupt handler routine. AVEC is ignored during all other bus cycles.

7.2 DATA TRANSFER MECHANISM

The MC68030 architecture supports byte, word, and long-word operands allowing access
to 8-, 16-, and 32-bit data ports through the use of asynchronous cycles controlled by
DSACK0 and DSACK1. It also supports synchronous bus cycles to and from 32-bit ports,
terminated by STERM. Byte, word, and long-word operands can be located on any byte
boundary, but misaligned transfers may require additional bus cycles, regardless of port
size.

When the processor requests a burst mode fill operation, it asserts the cache burst request
(CBREQ) signal to attempt to fill four entries within a line in one of the on-chip caches. This
mode is compatible with nibble, static column, or page mode dynamic RAMs. The burst fill
operation uses synchronous bus cycles, each terminated by STERM, to fetch as many as
four long words.

7.2.1 Dynamic Bus Sizing

The MC68030 dynamically interprets the port size of the addressed device during each bus
cycle, allowing operand transfers to or from 8-, 16-, and 32-bit ports. During an
asynchronous operand transfer cycle, the slave device signals its port size (byte, word, or
long word) and indicates completion of the bus cycle to the processor through the use of the
DSACKx inputs. Refer to Table 7-1 for DSACKx encodings and assertion results.

Bus Operation

MOTOROLA

MC68030 USER’S MANUAL

7-7

For example, if the processor is executing an instruction that reads a long-word operand
from a long-word aligned address, it attempts to read 32 bits during the first bus cycle. (Refer
to

7.2.2 Misaligned Operands

 for the case of a word or byte address.) If the port responds
that it is 32 bits wide, the MC68030 latches all 32 bits of data and continues with the next
operation. If the port responds that it is 16 bits wide, the MC68030 latches the 16 bits of valid
data and runs another bus cycle to obtain the other 16 bits. The operation for an 8-bit port
is similar, but requires four read cycles. The addressed device uses the DSACKx signals to
indicate the port width. For instance, a 32-bit device

always

 returns DSACKx for a 32-bit port
(regardless of whether the bus cycle is a byte, word, or long-word operation).

Dynamic bus sizing requires that the portion of the data bus used for a transfer to or from a
particular port size be fixed. A 32-bit port must reside on data bus bits 0–31, a 16-bit port
must reside on data bus bits 16-32, and an 8-bit port must reside on data bus bits 24-31.
This requirement minimizes the number of bus cycles needed to transfer data to 8- and 16-
bit ports and ensures that the MC68030 correctly transfers valid data. The MC68030 always
attempts to transfer the maximum amount of data on all bus cycles; for a long-word
operation, it always assumes that the port is 32 bit wide when beginning the bus cycle.

The bytes of operands are designated as shown in Figure 7-3. The most significant byte of
a long-word operand is OP0, and OP3 is the least significant byte. The two bytes of a word-
length operand are OP2 (most significant) and OP3. The single byte of a byte-length
operand is OP3. These designations are used in the figures and descriptions that follow.

Table 7-1. DSACK Codes and Results

DSACK1 DSACK0

Result

H H Insert Wait States in Current Bus Cycle

H L Complete Cycle — Data Bus Port Size is 8 Bits

L H Complete Cycle — Data Bus Port Size is 16 Bits

L L Complete Cycle — Data Bus Port Size is 32 Bits

Bus Operation

7-8

MC68030 USER’S MANUAL

MOTOROLA

Figure 7-4 shows the required organization of data ports on the MC68030 bus for 8, 16, and
32-bit devices. The four bytes shown in Figure 7-4 are connected through the internal data
bus and data multiplexer to the external data bus. This path is the means through which the
MC68030 supports dynamic bus sizing and operand misalignment. Refer to

7.2.2
Misaligned Operands

 for the definition of misaligned operand. The data multiplexer
establishes the necessary connections for different combinations of address and data sizes.

The multiplexer takes the four bytes of the 32-bit bus and routes them to their required
positions. For example, OP0 can be routed to D24–D31, as would be the normal case, or it
can be routed to any other byte position to support a misaligned transfer. The same is true
for any of the operand bytes. The positioning of bytes is determined by the size (SIZ0 and
SIZ1) and address (A0 and A1) outputs.

The SIZ0 and SIZ1 outputs indicate the remaining number of bytes to be transferred during
the current bus cycle, as shown in Table 7-2.

The number of bytes transferred during a write or noncachable read bus cycle is equal to or
less than the size indicated by the SIZ0 and SIZ1 outputs, depending on port width and
operand alignment. For example, during the first bus cycle of a long-word transfer to a word
port, the size outputs indicate that four bytes are to be transferred, although only two bytes
are moved on that bus cycle. Cachable read cycles must always transfer the number of
bytes indicated by the port size.

A0 and A1 also affect operation of the data multiplexer. During an operand transfer, A2–A31
indicate the long-word base address of that portion of the operand to be accessed; A0 and
A1 indicate the byte offset from the base. Table 7-3 shows the encodings of A0 and A1 and
the corresponding byte offsets from the long-word base.

Figure 7-3. Internal Operand Representation

OP0 OP1 OP2 OP3

31 0

15 0

OP2 OP3

7 0

LONG WORD OPERAND

WORD OPERAND

BYTE OPERAND OP3

Bus Operation

MOTOROLA

MC68030 USER’S MANUAL

7-9

Table 7-4 lists the bytes required on the data bus for read cycles that are cachable. The
entries shown as OPn are portions of the requested operand that are read or written during
that bus cycle and are defined by SIZ0, SIZ1, A0, and A1 for the bus cycle. The PRn and
the Nn bytes correspond to the previous and next bytes in memory, respectively, that must
be valid on the data bus for the specified port size (long word or word) so that the internal
caches operate correctly. (For cachable accesses, the MC68030 assumes that all portions
of the data bus for a given port size are valid.) This same table applies to noncachable read
cycles except that the bytes labeled PRn and Nn are not required and can be replaced by
“don't cares”.

Figure 7-4. MC68030 Interface to Various Port Sizes

Table 7-2. Size Signal
Encoding

Table 7-3. Address Offset
Encodings

SIZ1 SIZ0 Size A1 A0 Offset

0 1 Byte 0 0 +0 Bytes
1 0 Word 0 1 +1 Byte
1 1 3 Bytes 1 0 +2 Bytes
0 0 Long Word 1 1 +3 Bytes

0 1 2 3

ROUTING AND DUPLICATION

BYTE 0

BYTE 2

BYTE 1

BYTE 3
16-BIT PORT

REGISTER

MULTIPLEXER

EXTERNAL
DATA BUS

ADDRESS
xxxxxxxx0

xxxxxxxx0

2

INCREASING
MEMORY

ADDRESSES

D31- D24 D23-D16 D15-D8 D7-D0

BYTE 0 BYTE 1 BYTE 2 BYTE 3

BYTE 0

BYTE 1

BYTE 2

BYTE 3

8-BIT PORT
2

3

1

xxxxxxxx0

EXTERNAL BUS

INTERNAL TO
THE MC68EC030

32-BIT PORT

OP0 OP1 OP2 OP3

FIG 7-4

a b

Bus Operation

7-10

MC68030 USER’S MANUAL

MOTOROLA

Table 7-4. Data Bus Requirements for Read Cycles.

Table 7-5 lists the combinations of SIZ0, SIZ1, A0, and A1 and the corresponding pattern of
the data transfer for write cycles from the internal multiplexer of the MC68030 to the external
data bus.

Figure 7-5 shows the transfer of a long-word operand to a word port. In the first bus cycle,
the MC68030 places the four operand bytes on the external bus. Since the address is long-
word aligned in this example, the multiplexer follows the pattern in the entry of Table 7-5
corresponding to SIZ0_SIZ1_A0_A1=0000. The port latches the data on bits D16–D31 of
the data bus, asserts DSACK1 (DSACK0 remains negated), and the processor terminates
the bus cycle. It then starts a new bus cycle with SIZ0_SIZ1_A0_A1=1010 to transfer the
remaining 16 bits. SIZ0 and SIZ1 indicate that a word remains to be transferred; A0 and A1
indicate that the word corresponds to an offset of two from the base address. The
multiplexer follows the pattern corresponding to this configuration of the size and address
signals and places the two least significant bytes of the long word on the word portion of the
bus (D16–D31). The bus cycle transfers the remaining bytes to the word-size port. Figure 7-
6 shows the timing of the bus transfer signals for this operation.

(Table did not make it over in the conversion from Word)

Bus Operation

MOTOROLA

MC68030 USER’S MANUAL

7-11

Table 7-5. MC68030 Internal to External Data Bus.

(Table did not make it over in the conversion from Word)

Figure 7-5. Example of Long-Word Transfer to Word Port

DATA BUSD31 D16

LONG WORD OPERAND

OP0 OP1 OP2 OP3

31 0

WORD MEMORY

MSB LSB

OP0 OP1

OP2 OP3

MC68EC030

SIZ1 SIZ0 A1 A0
0 0 0 0

1 0 1 0

MEMORY CONTROL

DSACK1 DSACK0
L H

L H

Bus Operation

7-12

MC68030 USER’S MANUAL

MOTOROLA

Figure 7-7 shows a word transfer to an 8-bit bus port. Like the preceding example, this
example requires two bus cycles. Each bus cycle transfers a single byte. The size signals
for the first cycle specify two bytes; for the second cycle, one byte. Figure 7-8 shows the
associated bus transfer signal timing.

Figure 7-6. Long-Word Operand Write Timing (16-Bit Data Port)

WORD WRITE

 LONG WORD OPERAND WRITE TO 16-BIT PORT

S0 S2 S4 S0 S2 S4

CLK

A31-A2

A1

A0

FC2-FC0

SIZ1

SIZ0

R/W

ECS

OCS

AS

DS

DSACK1

DSACK0

DBEN

D31-D24

D23-D16

WORD WRITE

OP0

OP1

OP2

OP3

Bus Operation

MOTOROLA

MC68030 USER’S MANUAL

7-13

7.2.2 Misaligned Operands

Since operands may reside at any byte boundaries, they may be misaligned. A byte
operand is properly aligned at any address; a word operand is misaligned at an odd address;
a long word is misaligned at an address that is not evenly divisible by four. The MC68000,
MC68008, and MC68010 implementations allow long-word transfers on odd-word
boundaries but force exceptions if word or long-word operand transfers are attempted at
odd-byte addresses. Although the MC68030 does not enforce any alignment restrictions for
data operands (including PC relative data addresses), some performance degradation
occurs when additional bus cycles are required for long-word or word operands that are
misaligned. For maximum performance, data items should be aligned on their natural
boundaries. All instruction words and extension words must reside on word boundaries.
Attempting to prefetch an instruction word at an odd address causes an address error
exception.

Figure 7-7. Example of Word Transfer to Byte Port

DATA BUSD31 D24

WORD OPERAND

OP2 OP3

15 0

BYTE MEMORY

OP2

OP3

MC68EC030

SIZ1 SIZ0 A1 A0
1 0 0 0

0 1 0 1

MEMORY CONTROL

DSACK1 DSACK0
LH

LH

Bus Operation

7-14

MC68030 USER’S MANUAL

MOTOROLA

Figure 7-8. Word Operand Write Timing (8-Bit Data Port)

BYTE WRITE

 WORD OPERAND WRITE

S0 S2 S4 S0 S2 S4

CLK

A31-A2

A1

A0

FC2-FC0

SIZ1

SIZ0

R/W

ECS

OCS

AS

DS

DSACK1

DSACK0

DBEN

D31-D24

D23-D16

BYTE WRITE

 D15-D8

D7-D0 OP3

OP2

OP3

OP2

OP3

OP3

OP3

OP3

Bus Operation

MOTOROLA

MC68030 USER’S MANUAL

7-15

Figure 7-9 shows the transfer of a long-word operand to an odd address in word-organized
memory, which requires three bus cycles. For the first cycle, the size signals specify a long-
word transfer, and the address offset (A2:A0) is 001. Since the port width is 16 bits, only the
first byte of the long word is transferred. The slave device latches the byte and
acknowledges the data transfer, indicating that the port is 16 bits wide. When the processor
starts the second cycle, the size signals specify that three bytes remain to be transferred
with an address offset (A2:A0) of 010. The next two bytes are transferred during this cycle.
The processor then initiates the third cycle, with the size signals indicating one byte
remaining to be transferred. The address offset (A2:A0) is now 100; the port latches the final
byte; and the operation is complete. Figure 7-10 shows the associated bus transfer signal
timing.

Figure 7-11 shows the equivalent operation for a cachable data read cycle.

Figures 7-12 and 7-13 show a word transfer to an odd address in word-organized memory.
This example is similar to the one shown in Figures 7-9 and 7-10 except that the operand is
word sized and the transfer requires only two bus cycles.

Figure 7-14 shows the equivalent operation for a cachable data read cycle.

Figure 7-9. Misaligned Long-Word Transfer to Word Port Example

DATA BUSD31 D16

LONG WORD OPERAND

OP0 OP1 OP2 OP3

31 0

WORD MEMORY

MSB LSB

XXX OP0

OP1 OP2

MC68EC030

SIZ1 SIZ0 A1 A0
0 0 0 0

1 1 0 1

MEMORY CONTROL

DSACK1 DSACK0
L H

L H

XXXOP3

L H

A0
1

0

0 1 1 0 0

Bus Operation

7-16

MC68030 USER’S MANUAL

MOTOROLA

Figure 7-10. Misaligned Long-Word Transfer to Word Port

BYTE WRITE

 LONG WORD OPERAND WRITE

S0 S2 S4 S0 S2 S4

CLK

A31-A2

A1

A0

FC2-FC0

SIZ1

SIZ0

R/W

ECS

OCS

AS

DS

DSACK1

DSACK0

DBEN

D31-D24

D23-D16

WORD WRITE

 D15-D8

D7-D0

S0 S2 S4

OP0

OP0

OP1

OP2

OP1

OP2

OP1

OP2

OP3

OP3

OP3

OP3

BYTE WRITE

Bus Operation

MOTOROLA

MC68030 USER’S MANUAL

7-17

Figure 7-11. Misaligned Cachable Long-Word Transfer from Word Port Example

Figure 7-12. Misaligned Word Transfer to Word Port Example

LONG WORD OPERAND (REGISTER)

OP0 OP1 OP2 OP3

31 0

WORD MEMORY

MSB LSB

PR OP0

OP1 OP2

MC68EC030

SIZ1 SIZ0 A1 A0
0 0 0 0

1 1 0 1

MEMORY CONTROL

DSACK1 DSACK0
L H

L H

NOP3

L H

A0
1

0

0 1 1 0 0

CACHE ENTRIES

PR OP0 OP1 OP2

31 0

OP3 N N1 N2

31 0

DATA BUS

D31 D16

N2N1

1 0 1 1 0 L H

MC68030

SIZ1 SIZ0 A2 A1

1 0 0 0 1

0 1 0 1 0

A0

MEMORY CONTROL

DSACK1 DSACK0

L H

L H

OP2 OP3

15 0WORD OPERAND

DATA BUSD31 D16

WORD MEMORY

MSB LSB

XXX

OP3

OP2

XXX

Bus Operation

7-18

MC68030 USER’S MANUAL

MOTOROLA

Figure 7-13. Misaligned Word Transfer to Word Port

 WORD OPERAND WRITE TO A1/A0=01

S0 S2 S4 S0 S2 S4

CLK

A31-A2

A1

A0

FC2-FC0

SIZ1

SIZ0

R/W

ECS

OCS

AS

DS

DSACK1

DSACK0

DBEN

D31-D24

D23-D16

WORD WRITE

 D15-D8

D7-D0

OP2

OP2

OP3

OP2

OP3

OP3

OP3

OP3

BYTE WRITE

Bus Operation

MOTOROLA

MC68030 USER’S MANUAL

7-19

Figures 7-15 and 7-16 show an example of a long-word transfer to an odd address in long-
word-organized memory. In this example, a long-word access is attempted beginning at the
least significant byte of a long-word-organized memory. Only one byte can be transferred in
the first bus cycle. The second bus cycle then consists of a three-byte access to a long-word
boundary. Since the memory is long-word organized, no further bus cycles are necessary.

Figure 7-17 shows the equivalent operation for a cachable data read cycle.

7.2.3 Effects of Dynamic Bus Sizing and Operand Misalignment

The combination of operand size, operand alignment, and port size determines the number
of bus cycles required to perform a particular memory access. Table 7-6 shows the number
of bus cycles required for different operand sizes to different port sizes with all possible
alignment conditions for write cycles and noncachable read cycles.

Data Port Size — 32 Bits:16 Bits:8 Bits
*Instruction prefetches are always two words from a long-word boundary.

This table shows that bus cycle throughput is significantly affected by port size and
alignment. The MC68030 system designer and programmer should be aware of and
account for these effects, particularly in time-critical applications.

Table 7-6. Memory Alignment and Port Size Influence on Write Bus Cycles

A1/A0 Number of Bus Cycles
00 01 10 11

Instruction* 1:2:4 N/A N/A N/A
Byte Operand 1:1:1 1:1:1 1:1:1 1:1:1
Word Operand 1:1:2 1:2:2 1:1:2 2:2:2
Long-Word Operand 1:2:4 2:3:4 2:2:4 2:3:4

Bus Operation

7-20

MC68030 USER’S MANUAL

MOTOROLA

Table 7-6 shows that the processor always prefetches instructions by reading a long word
from a long-word address (A1:A0=00), regardless of port size or alignment. When the
required instruction begins at an odd-word boundary, the processor attempts to fetch the
entire 32 bits and loads both words into the instruction cache, if possible, although the
second one is the required word. Even if the instruction access is not cached, the entire 32
bits are latched into an internal cache holding register from which the two instructions words
can subsequently be referenced. Refer to

Section 11 Instruction Execution Timing

 for a
complete description of the cache holding register and pipeline operation.

Figure 7-14. Example of Misaligned Cachable Word Transfer from Word Bus

Figure 7-15. Misaligned Long-Word Transfer to Long-Word Port

MC68EC030

SIZ1 SIZ0 A2 A1

1 0 0 0 1

0 1 0 1 0

A0

MEMORY CONTROL

DSACK1 DSACK0

L H

L H

OP2 OP3

15 0WORD OPERAND (REGISTER)

DATA BUS
D31 D16

WORD MEMORY

MSB LSB

XXX

OP3

OP2

XXX

PR OP2

31 0CACHE ENTRY

OP3 N

MC68EC030

SIZ1 SIZ0 A2 A1

0 0 0 1 1

1 1 1 0 0

A0

MEMORY CONTROL

DSACK1 DSACK0

L

L L

OP0 OP1

15 0LONG WORD OPERAND

DATA BUSD31 D0

LONG WORD MEMORY

MSB UMB

XXX

OP1 OP2

XXX XXX

OP2 OP3

OP3

OP0

XXX

LMB LSB

L

Bus Operation

MOTOROLA

MC68030 USER’S MANUAL

7-21

Figure 7-16. Misaligned Write Cycles to Long-Word Port

 LONG WORD OPERAND WRITE

S0 S2 S4 S0 S2 S4

CLK

A31-A2

A1

A0

FC2-FC0

SIZ1

SIZ0

R/W

ECS

OCS

AS

DS

DSACK1

DSACK0

DBEN

D31-D24

D23-D16

BYTE WRITE

 D15-D8

D7-D0

OP0

OP0

OP1

OP0

OP1

OP2

OP3

OP1

3 - BYTE WRITE

Bus Operation

7-22

MC68030 USER’S MANUAL

MOTOROLA

7.2.4 Address, Size, and Data Bus Relationships

The data transfer examples show how the MC68030 drives data onto or receives data from
the correct byte sections of the data bus. Table 7-7 shows the combinations of the size
signals and address signals that are used to generate byte enable signals for each of the
four sections of the data bus for noncachable read cycles and all write cycles if the
addressed device requires them. The port size also affects the generation of these enable
signals as shown in the table. The four columns on the right correspond to the four byte
enable signals. Letters B, W, and L refer to port sizes: B for 8-bit ports, W for 16-bit ports,
and L for 32-bit ports. The letters B, W, and L imply that the byte enable signal should be
true for that port size. A dash (—) implies that the byte enable signal does not apply.

The MC68030 always drives all sections of the data bus because, at the start of a write
cycle, the bus controller does not know the port size. The byte enable signals in the table
apply only to read operations that are not to be internally cached and to write operations.
For cachable read cycles, during which the data is cached, the addressed port must drive
all sections of the bus on which it resides.

Figure 7-17. Misaligned Cachable Long-Word Transfer from Long-Word Bus

MC68EC030

SIZ1 SIZ0 A2 A1

0 0 0 1 1

1 1 1 0 0

A0

MEMORY CONTROL

DSACK1 DSACK0

L

L L

OP0 OP1

31 0LONG WORD OPERAND (REGISTER)

DATA BUS
D31 D0

LONG WORD MEMORY

MSB UMB

PR2

OP1 OP2

PR1

OP2 OP3

PR

OP3

OP0

N

LMB LSB

L

PR2 PR1

31 0CACHE ENTRIES

PR OP0

OP1 OP2

31 0

OP3 N

Bus Operation

MOTOROLA MC68030 USER’S MANUAL 7-23

The table shows that the MC68030 transfers the number of bytes specified by the size
signals to or from the specified address unless the operand is misaligned or the number of
bytes is greater than the port width. In these cases, the device transfers the greatest number
of bytes possible for the port. For example, if the size is four bytes and the address offset
(A1:A0) is 01, a 32-bit slave can only receive three bytes in the current bus cycle. A 16- or
8-bit[lz slave can only receive one byte. The table defines the byte enables for all port sizes.
Byte data strobes can be obtained by combining the enable signals with the data strobe
signal. Devices residing on 8-bit ports can use the data strobe by itself since there is only
one valid byte for every transfer. These enable or strobe signals select only the bytes
required for write cycles or for noncachable read cycles. The other bytes are not selected,
which prevents incorrect accesses in sensitive areas such as I/O.

Figure 7-18 shows a logic diagram for one method for generating byte data enable signals
for 16- and 32-bit ports from the size and address encodings and the read/write signal.

Table 7-7. Data Bus Write Enable Signals for
Byte, Word, and Long-Word Ports

Transfer
Size

SIZ1 SIZ0 A1 A0
Data Bus Active Sections

Byte (B) - Word (W) - Long-Word (L) Ports
D31:D24 D23:D16 D15:D8 D7:D0

Byte 0
0
0
0

1
1
1
1

0
0
1
1

0
1
0
1

BWL
B
BW
B

—
WL
—
W

—
—
L
—

—
—
—
L

Word 1
1
1
1

0
0
0
0

0
0
1
1

0
1
0
1

BWL
B
BW
B

WL
WL
W
W

—
L
L
—

—
—
L
L

3 Byte 1
1
1
1

1
1
1
1

0
0
1
1

0
1
0
1

BWL
B
BW
B

WL
WL
W
W

L
L
L
—

—
L
L
L

Long Word 0
0
0
0

0
0
0
0

0
0
1
1

0
1
0
1

BWL
B
BW
B

WL
WL
W
W

L
L
L
—

L
L
L
L

Bus Operation

7-24 MC68030 USER’S MANUAL MOTOROLA

7.2.5 MC68030 versus MC68020 Dynamic Bus Sizing
The MC68030 supports the dynamic bus sizing mechanism of the MC68020 for
asynchronous bus cycles (terminated with DSACKx) with two restrictions. First, for a
cachable access within the boundaries of an aligned long word, the port size must be
consistent throughout the transfer of each long word. For example, when a byte port resides
at address $00, addresses $01, $02, and $03 must also correspond to byte ports. Second,
the port must supply as much data as it signals as port size, regardless of the transfer size
indicated with the size signals and the address offset indicated by A0 and A1 for cachable
accesses. Otherwise, dynamic bus sizing is identical in the two processors.

7.2.6 Cache Filling
The on-chip data and instruction caches, described in Section 6 On-Chip Cache
Memories, are each organized as 16 lines of four long-word entries each. For each line, a
tag contains the most significant bits of the logical address, FC2 (instruction cache) or FC0–
FC2 (data cache), and a valid bit for each entry in the line. An entry fill operation loads an
entire long word accessed from memory into a cache entry. This type of fill operation is
performed when one entry of a line is not valid and an access is cachable. A burst fill
operation is requested when a tag miss occurs for the current cycle or when all four entires
in the cache line are invalid (provided the cache is enabled and burst filling for the cache is
enabled). The burst fill operation attempts to fill all four entries in the line. To support burst
filling, the slave device must have a 32-bit port and must have a burst mode capability; that
is, it must acknowledge a burst request with the cache burst acknowledge (CBACK) signal.
It must also terminate the burst accesses with STERM and place a long word on the data
bus for each transfer. The device may continue to supply successive long words, asserting
STERM with each one, until the cache line is full. For further information about filling the
cache, both entry fills and burst mode fills, refer to 6.1.3 Cache Filling, 7.3.4 Synchronous
Read Cycle, 7.3.5 Synchronous Write Cycle, and 7.3.7 Burst Operation Cycles, which
discuss in detail the required bus cycles.

Bus Operation

MOTOROLA MC68030 USER’S MANUAL 7-25

7.2.7 Cache Interactions
The organization and requirements of the on-chip instruction and data caches affect the
interpretation of the DSACKx and STERM signals. Since the MC68030 attempts to load all
data operands and instructions that are cachable into the on-chip caches, the bus may
operate differently when caching is enabled. Specifically, on cachable read cycles that
terminate normally, the low-order address signals (A0 and A1) and the size signals do not
apply.

The slave device must supply as much aligned data on the data bus as its port size allows,
regardless of the requested operand size. This means that an 8-bit port must supply a byte,
a 16-bit port must supply a word, and a 32-bit port must supply an entire long word. This
data is loaded into the cache. For a 32-bit port, the slave device ignores A0 and A1 and
supplies the long word beginning at the long-word boundary on the data bus. For a 16-bit[lz
port, the device ignores A0 and supplies the entire word beginning at the lower word
boundary on D16–D31 of the data bus. For a byte port, the device supplies the addressed
byte on D24–D31.

If the addressed device cannot supply port-sized data or if the data should not be cached,
the device must assert cache inhibit in (CIIN) as it terminates the read cycle. If the bus cycle
terminates abnormally, the MC68030 does not cache the data. For details of interactions of
port sizes, misalignments, and cache filling, refer to 6.1.3 Cache Filling.

The caches can also affect the assertion of AS and the operation of a read cycle. The search
of the appropriate cache by the processor begins when the microsequencer requires an
instruction or a data item. At this time, the bus controller may also initiate an external bus
cycle in case the requested item is not resident in the instruction or data cache. If the bus is
not occupied with another read or write cycle, the bus controller asserts the ECS signal (and
the OCS signal, if appropriate). If an internal cache hit occurs, the external cycle aborts, and
AS is not asserted. This makes it possible to have ECS asserted on multiple consecutive
clock cycles. Notice that there is a minimum time specified from the negation of ECS to the
next assertion of ECS (refer to MC68030EC/D, MC68030 Electrical Specifications.

Instruction prefetches can occur every other clock so that if, after an aborted cycle due to an
instruction cache hit, the bus controller asserts ECS on the next clock, this second cycle is
for a data fetch. However, data accesses that hit in the data cache can also cause the
assertion of ECS and an aborted cycle. Therefore, since instruction and data accesses are
mixed, it is possible to see multiple successive ECS assertions on the external bus if the
processor is hitting in both caches and if the bus controller is free. Note that, if the bus
controller is executing other cycles, these aborted cycles due to cache hits may not be seen
externally. Also, OCS is asserted for the first external cycle of an operand transfer.
Therefore, in the case of a misaligned data transfer where the first portion of the operand
results in a cache hit (but the bus controller did not begin an external cycle and then abort
it) and the second portion in a cache miss, OCS is asserted for the second portion of the
operand.

Bus Operation

7-26 MC68030 USER’S MANUAL MOTOROLA

Figure 7-18. Byte Data Select Generation for 16- and 32-Bit Ports

A1

SIZ0

SIZ1

R/W

LD

UD

LLD

LMD

UMD

UUD

UUD = UPPER UPPER DATA (32-BIT PORT)
UMD = UPPER MIDDLE DATA (32-BIT PORT)
LMD = LOWER MIDDLE DATA (32-BIT PORT)
LLD = LOWER LOWER DATA (32-BIT PORT)
UD = UPPER DATA (16-BIT PORT)
LD = LOWER DATA (16-BIT PORT)

NOTE: These select lines can be combined with the address decode circuitry or all can be generated within the same
 programmed array logic unit.

A0

Bus Operation

MOTOROLA MC68030 USER’S MANUAL 7-27

7.2.8 Asynchronous Operation
The MC68030 bus may be used in an asynchonous manner. In that case, the external
devices connected to the bus can operate at clock frequencies different from the clock for
the MC68030. Asynchronous operation requires using only the handshake line (AS, DS,
DSACK1, DSACK0, BERR, and HALT) to control data transfers. Using this method, AS
signals the start of a bus cycle, and DS is used as a condition for valid data on a write cycle.
Decoding the size outputs and lower address lines (A0 and A1) provides strobes that select
the active portion of the data bus. The slave device (memory or peripheral) then responds
by placing the requested data on the correct portion of the data bus for a read cycle or
latching the data on a write cycle, and asserting the DSACK1/DSACK0 combination that
corresponds to the port size to terminate the cycle. If no slave responds or the access is
invalid, external control logic asserts the BERR or BERR and HALT signal(s) to abort or retry
the bus cycle, respectively.

The DSACKx signals can be asserted before the data from a slave device is valid on a read
cycle. The length of time that DSACKx may precede data is given by parameter #31, and it
must be met in any asynchronous system to insure that valid data is latched into the
processor. (Refer to MC68030EC/D, MC68030 Electrical Specifications for timing
parameters.) Notice that no maximum time is specified from the assertion of AS to the
assertion of DSACKx. Although the processor can transfer data in a minimum of three clock
cycles when the cycle is terminated with DSACKx, the processor inserts wait cycles in clock
period increments until DSACKx is recognized.

The BERR and/or HALT signals can be asserted after the DSACKx signal(s) is asserted.
BERR and/or HALT must be asserted within the time given as parameter #48, after DSACKx
is asserted in any asynchronous system. If this maximum delay time is violated, the
processor may exhibit erratic behavior.

Bus Operation

7-28 MC68030 USER’S MANUAL MOTOROLA

For asynchronous read cycles, the value of CIIN is internally latched on the rising edge of
bus cycle state 4. Refer to 7.3.1 Asynchronous Read Cycle for more details on the states
for asynchonous read cycles.

During any bus cycle terminated by DSACKx or BERR, the assertion of CBACK is
completely ignored.

7.2.9 Synchronous Operation with DSACKx
Although cycles terminated with the DSACKx signals are classified as asynchronous and
cycles terminated with STERM are classified as synchronous, cycles terminated with
DSACKx can also operate synchronously in that signals are interpreted relative to clock
edges.

The devices that use these cycles must synchronize the responses to the MC68030 clock
to be synchronous. Since they terminate bus cycles with the DSACKx signals, the dynamic
bus sizing capabilities of the MC68030 are available. In addition, the minimum cycle time for
these cycles is also three clocks.

To support those systems that use the system clock to generate DSACKx and other
asynchronous inputs, the asynchronous input setup time (parameter #47A) and the
asynchronous input hold time (parameter #47B) are given. If the setup and hold times are
met for the assertion or negation of a signal, such as DSACKx, the processor can be
guaranteed to recognize that signal level on that specific falling edge of the system clock. If
the assertion of DSACKx is recognized on a particular falling edge of the clock, valid data is
latched into the processor (for a read cycle) on the next falling clock edge provided the data
meets the data setup time (parameter #27). In this case, parameter #31 for asynchronous
operation can be ignored. The timing parameters referred to are described in MC68030EC/
D, MC68030 Electrical Specifications. If a system asserts DSACKx for the required window
around the falling edge of S2 and obeys the proper bus protocol by maintaining DSACKx
(and/or BERR/HALT) until and throughout the clock edge that negates AS (with the
appropriate asynchronous input hold time specified by parameter #47B), no wait states are
inserted. The bus cycle runs at its maximum speed (three clocks per cycle) for bus cycles
terminated with DSACKx.

Bus Operation

MOTOROLA MC68030 USER’S MANUAL 7-29

To assure proper operation in a synchronous system when BERR or BERR and HALT is
asserted after DSACKx, BERR (and HALT) must meet the appropriate setup time
(parameter #27A) prior to the falling clock edge one clock cycle after DSACKx is recognized.
This setup time is critical, and the MC68030 may exhibit erratic behavior if it is violated.

When operating synchronously, the data-in setup and hold times for synchronous cycles
may be used instead of the timing requirements for data relative to the DS signal.

The value of CIIN is latched on the rising edge of bus cycle state 4 for all cycles terminated
with DSACKx.

7.2.10 Synchronous Operation with STERM
The MC68030 supports synchronous bus cycles terminated with STERM. These cycles, for
32-bit ports only, are similar to cycles terminated with DSACKx. The main difference is that
STERM can be asserted (and data can be transferred) earlier than for a cycle terminated
with DSACKx, causing the processor to perform a minimum access time transfer in two
clock periods. However, wait cycles can be inserted by delaying the assertion of STERM
appropriately.

Using STERM instead of DSACKx in any bus cycle makes the cycle synchronous. Any bus
cycle is synchronous if:

1. Neither DSACKx nor AVEC is recognized during the cycle.

2. The port size is 32 bits.

3. Synchronous input setup and hold time requirements (specifications #60 and #61) for
STERM are met.

Burst mode operation requires the use of STERM to terminate each of its cycles. The first
cycle of any burst transfer must be a synchronous cycle as described in the preceding
paragraph. The exact timing of this cycle is controlled by the assertion of STERM, and wait
cycles can be inserted as necessary. However, the minimum cycle time is two clocks. If a
burst operation is initiated and allowed to terminate normally, the second, third, and fourth
cycles latch data on successive falling edges of the clock at a minimum. Again, the exact
timing for these subsequent cycles is controlled by the timing of STERM for each of these
cycles, and wait cycles can be inserted as necessary.

Bus Operation

7-30 MC68030 USER’S MANUAL MOTOROLA

Although the synchronous input signals (STERM, CIIN, and CBACK) must be stable for the
appropriate setup and hold times relative to every rising edge of the clock during which AS
is asserted, the assertion or negation of CBACK and CIIN is internally latched on the rising
edge of the clock for which STERM is asserted in a synchronous cycle.

The STERM signal can be generated from the address bus and function code value and
does not need to be qualified with the AS signal. If STERM is asserted and no cycle is in
progress (even if the cycle has begun, ECS is asserted and then the cycle is aborted),
STERM is ignored by the MC68030.

Similarly, CBACK can be asserted independently of the assertion of CBREQ. If a cache
burst is not requested, the assertion of CBACK is ignored.

The assertion of CIIN is ignored when the appropriate cache is not enabled or when cache
inhibit out (CIOUT) is asserted. It is also ignored during write cycles or translation table
searches.

NOTE

STERM and DSACKx should never be asserted during the same
bus cycle.

7.3 DATA TRANSFER CYCLES
The transfer of data between the processor and other devices involves the following signals:

• Address Bus A0–A31

• Data Bus D0–D31

• Control Signals

The address and data buses are both parallel nonmultiplexed buses. The bus master moves
data on the bus by issuing control signals, and the asynchronous/synchronous bus uses a
handshake protocol to insure correct movement of the data. In all bus cycles, the bus master
is responsible for de-skewing all signals it issues at both the start and the end of the cycle.
In addition, the bus master is responsible for de-skewing the acknowledge and data signals
from the slave devices. The following paragraphs define read, write, and read-modify-write
cycle operations. An additional paragraph describes burst mode transfers.

Bus Operation

MOTOROLA MC68030 USER’S MANUAL 7-31

Each of the bus cycles is defined as a succession of states. These states apply to the bus
operation and are different from the processor states described in Section 4 Processing
States. The clock cycles used in the descriptions and timing diagrams of data transfer
cycles are independent of the clock frequency. Bus operations are described in terms of
external bus states.

7.3.1 Asynchronous Read Cycle
During a read cycle, the processor receives data from a memory, coprocessor, or peripheral
device. If the instruction specifies a long-word operation, the MC68030 attempts to read four
bytes at once. For a word operation, it attempts to read two bytes at once, and for a byte
operation, one byte. For some operations, the processor requests a three-byte transfer. The
processor properly positions each byte internally. The section of the data bus from which
each byte is read depends on the operand size, address signals (A0–A1), CIIN and CIOUT,
whether the internal caches are enabled, and the port size. Refer to 7.2.1 Dynamic Bus
Sizing, 7.2.2 Misaligned Operands, and 7.2.6 Cache Filling for more information on
dynamic bus sizing, misaligned operands, and cache interactions.

Figure 7-19 is a flowchart of an asynchronous long-word read cycle. Figure 7-20 is a
flowchart of a byte read cycle. The following figures show functional read cycle timing
diagrams specified in terms of clock periods. Figure 7-21 corresponds to byte and word read
cycles from a 32-bit port. Figure 7-22 corresponds to a long-word read cycle from an 8-bit
port. Figure 7-23 also applies to a long-word read cycle, but from a 16-bit port.

State 0
The read cycle starts in state 0 (S0). The processor drives ECS low, indicating the
beginning of an external cycle. When the cycle is the first external cycle of a read operand
operation, operand cycle start (OCS) is driven low at the same time. During S0, the
processor places a valid address on A0–A31 and valid function codes on FC0–FC2. The
function codes select the address space for the cycle. The processor drives R/W high for
a read cycle and drives DBEN inactive to disable the data buffers. SIZ0–SIZ1 become
valid, indicating the number of bytes requested to be transferred. CIOUT also becomes
valid, indicating the state of the MMU CI bit in the address translation descriptor or in the
appropriate TTx register.

Bus Operation

7-32 MC68030 USER’S MANUAL MOTOROLA

Figure 7-19. Asynchronous Long-Word Read Cycle Flowchart

Figure 7-20. Asynchronous Byte Read Cycle Flowchart

CONTROLLER

ADDRESS DEVICE

1) ASSERT ECS/OCS FOR ONE-HALF CLOCK
2) SET R/W TO READ
3) DRIVE ADDRESS ON A31-A0
4) DRIVE FUNCTION CODE ON FC2-FC0
5) DRIVE SIZE (SIZ1-SIZ0) (FOUR BYTES)
6) CACHE INHIBIT OUT (CIOUT) BECOMES VALID
7) ASSERT ADDRESS STROBE (AS)
8) ASSERT DATA STROBE (DS)
9) ASSERT DATA BUFFER ENABLE (DBEN)

ACQUIRE DATA

2) LATCH DATA
3) NEGATE AS AND DS
4) NEGATE DBEN

START NEXT CYCLE

PRESENT DATA

1) DECODE ADDRESS
2) PLACE DATA ON D31-D0
3) ASSERT DATA TRANSFER AND SIZE
 ACKNOWLEDGE (DSACKx)

TERMINATE CYCLE

1) REMOVE DATA FROM D31-D0
2) NEGATE DSACK

EXTERNAL DEVICE

1) SAMPLE CACHE IN (CIN)

START NEXT CYCLE

PRESENT DATA

1) DECODE ADDRESS
2) PLACE DATA ON D31-D324 OR
 D23-D16 OR
 D15-D8 OR
 D7-D0
 (BASED ON A1,A0, CACHE AND BUS WIDTH)
3) ASSERT DATA TRANSFER AND SIZE
 ACKNOWLEDGE (DSACKx)

TERMINATE CYCLE

1) REMOVE DATA FROM D31-D0
2) NEGATE DSACK

EXTERNAL DEVICECONTROLLER

ADDRESS DEVICE

1) ASSERT ECS/OCS FOR ONE-HALF CLOCK
2) SET R/W TO READ
3) DRIVE ADDRESS ON A31-A0
4) DRIVE FUNCTION CODE ON FC2-FC0
5) DRIVE SIZE (SIZ1-SIZ0) (FOUR BYTES)
6) CACHE INHIBIT OUT (CIOUT) BECOMES VALID
7) ASSERT ADDRESS STROBE (AS)
8) ASSERT DATA STROBE (DS)
9) ASSERT DATA BUFFER ENABLE (DBEN)

ACQUIRE DATA

2) LATCH DATA
3) NEGATE AS AND DS
4) NEGATE DBEN

1)SAMPLE CACHE INHIBIT IN (CIIN)

Bus Operation

MOTOROLA MC68030 USER’S MANUAL 7-33

Figure 7-21. Asynchronous Byte and Word Read Cycles — 32-Bit Port

WORD READ

S0 S2 S4 S0 S2 S4

BYTE READ

CLK

A31-A2

A1

A0

FC2-FC0

SIZ1

SIZ0

R/W

ECS

OCS

AS

DS

DSACK1

DSACK0

DBEN

D31-D24

D23-D16

 D15-D8

D7-D0

S0 S2 S4

OP2

OP3

OP3

OP3

BYTEWORD

BYTE READ

Bus Operation

MOTOROLA MC68030 USER’S MANUAL 7-35

Figure 7-22. Long-Word Read — 8-Bit Port with CIOUT Asserted

CLK

A31-A2

A1

A0

FC2-FC0

SIZ1

SIZ0

R/W

ECS

OCS

AS

DS

DSACK1

CIOUT

DSACK0

DBEN

D31-D24

D23-D16

 D15-D8

D7-D0

BYTE READ

OP0 OP1 OP3

 LONG WORD 3-BYTE

BYTE READ

WORD BYTE

OP2

BYTE READBYTE READ

LONG WORD OPERAND READ FROM 8-BIT PORT

S0 S2 S4 S0 S2 S4 S0 S2 S4 S0 S2 S4

Bus Operation

7-36 MC68030 USER’S MANUAL MOTOROLA

Figure 7-23. Long-Word Read — 16-Bit and 32-Bit Port

CLK

A31-A2

A1

A0

FC2-FC0

SIZ1

SIZ0

R/W

ECS

OCS

AS

DS

DSACK1

DSACK0

DBEN

D31-D24

D23-D16

 D15-D8

D7-D0

WORD READ

S0 S2 S4 S0 S2 S4

WORD READ

S0 S2 S4

OP0

OP1 OP3

OP3

LONG WORD WORD

LONG WORD READ
FROM 32- BIT PORT

OP2

OP1

OP0OP2

LONG WORD

LONG WORD OPERAND READ FROM 16-BIT PORT

Bus Operation

MOTOROLA MC68030 USER’S MANUAL 7-37

State 1
One-half clock later in state 1 (S1), the processor asserts AS indicating that the address
on the address bus is valid. The processor also asserts DS also during S1. In addition,
the ECS (and OCS, if asserted) signal is negated during S1.

State 2
During state 2 (S2), the processor asserts DBEN to enable external data buffers. The
selected device uses R/W, SIZ0–SIZ1, A0–A1, CIOUT, and DS to place its information on
the data bus, and drives CIIN if appropriate. Any or all of the bytes (D24–D31, D16–D23,
D8–D15, and D0–D7) are selected by SIZ0–SIZ1 and A0–A1. Concurrently, the selected
device asserts DSACKx.

State 3
As long as at least one of the DSACKx signals is recognized by the end of S2 (meeting
the asynchronous input setup time requirement), data is latched on the next falling edge
of the clock, and the cycle terminates. If DSACKx is not recognized by the start of state 3
(S3), the processor inserts wait states instead of proceeding to states 4 and 5. To ensure
that wait states are inserted, both DSACK0 and DSACK1 must remain negated
throughout the asynchronous input setup and hold times around the end of S2. If wait
states are added, the processor continues to sample the DSACKx signals on the falling
edges of the clock until one is recognized.

State 4
The processor samples CIIN at the beginning of state 4 (S4). Since CIIN is defined as a
synchronous input, whether asserted or negated, it must meet the appropriate
synchronous input setup and hold times on every rising edge of the clock while AS is
asserted. At the end of S4, the processor latches the incoming data.

State 5
The processor negates AS, DS, and DBEN during state 5 (S5). It holds the address valid
during S5 to provide address hold time for memory systems. R/W, SIZ0–SIZ1, and FC0–
FC2 also remain valid throughout S5.

The external device keeps its data and DSACKx signals asserted until it detects the
negation of AS or DS (whichever it detects first). The device must remove its data and
negate DSACKx within approximately one clock period after sensing the negation of AS
or DS. DSACKx signals that remain asserted beyond this limit may be prematurely
detected for the next bus cycle.

Bus Operation

7-38 MC68030 USER’S MANUAL MOTOROLA

7.3.2 Asynchronous Write Cycle
During a write cycle, the processor transfers data to memory or a peripheral device.

Figure 7-24 is a flowchart of a write cycle operation for a long-word transfer. The following
figures show the functional write cycle timing diagrams specified in terms of clock periods.
Figure 7-25 shows two write cycles (between two read cycles with no idle time) for a 32-bit
port. Figure 7-26 shows byte and word write cycles to a 32-bit port. Figure 7-27 shows a
long-word write cycle to an 8-bit port. Figure 7-28 shows a long-word write cycle to a 16-bit
port.

Figure 7-24. Asynchronous Write Cycle Flowchart

1) ASSERT ECS/OCS FOR ONE-HALF CLOCK
2) DRIVE ADDRESS ON A31-A0
3) DRIVE FUNCTION CODE ON FC2-FC0
4) DRIVE SIZE (SIZ1-SIZ0) (FOUR BYTES)
5) SET R/W TO WRITE
6) CACHE INHIBIT OUT (CIOUT) BECOMES VALID
7) ASSERT ADDRESS STROBE (AS)
8) ASSERT DATA BUFFER ENABLE (DBEN)
9) DRIVE DATA LINES D31-D0

10) ASSERT DATA STROBE (DS)

1) NEGATE AS AND DS
2) REMOVE DATA FROM D31-D0
3) NEGATE DBEN

EXTERNAL DEVICECONTROLLER

1) NEGATE DSACKx

TERMINATE CYCLE

ACCEPT DATA

1) DECODE ADDRSS
2) STORE DATA FROM D31-D0
3) ASSERT DATA TRANSFER AND SIZE
 ACKNOWLEDGE (DSACKx)

ADDRESS DEVICE

TERMINATE OUTPUT TRANSFER

START NEXT CYCLE

Bus Operation

MOTOROLA MC68030 USER’S MANUAL 7-39

State 0
The write cycle starts in S0. The processor drives ECS low, indicating the beginning of
an external cycle. When the cycle is the first external cycle of a write operation, OCS is
driven low at the same time. During S0, the processor places a valid address on A0–A31
and valid function codes on FC0–FC2. The function codes select the address space for
the cycle. The processor drives R/W low for a write cycle. SIZ0–SIZ1 become valid,
indicating the number of bytes to be transferred. CIOUT also becomes valid, indicating

Figure 7-25. Asynchronous Read-Write-Read Cycles — 32-Bit Port

CLK

A31-A2

A1

A0

FC2-FC0

SIZ1

SIZ0

R/W

ECS

OCS

AS

DS

DSACK1

DSACK0

DBEN

D31-D0

WRITE

 LONG WORD

WRITE READ

S0 S2 S4 S0 S2 S4 S0 S2 S4 S0 S2 Sw Sw S4

READ WITH WAIT STATES

Bus Operation

7-40 MC68030 USER’S MANUAL MOTOROLA

the state of the MMU CI bit in the address translation descriptor or in the appropriate TTx
register.

Bus Operation

MOTOROLA MC68030 USER’S MANUAL 7-41

Figure 7-26. Asynchronous Byte and Word Write Cycles — 32-Bit Port

CLK

A31-A2

A1

A0

FC2-FC0

SIZ1

SIZ0

R/W

ECS

OCS

AS

DS

DSACK1

DSACK0

DBEN

D31-D24

D23-D16

 D15-D8

D7-D0

WORD WRITE

S0 S2 S4 S0 S4

BYTE WRITE

S0 S2S2 S4

OP2

OP3 OP3

OP3

 WORD

OP3

OP3

OP3OP3

BYTE

OP2

OP3 OP3

OP3

BYTE WRITE

Bus Operation

7-42 MC68030 USER’S MANUAL MOTOROLA

Figure 7-27. Long-Word Operand Write — 8-Bit Port

CLK

A31-A2

A1

A0

FC2-FC0

SIZ1

SIZ0

R/W

ECS

OCS

AS

DS

DSACK1

DSACK0

DBEN

D31-D24

D23-D16

 D15-D8

D7-D0

BYTE WRITE

 LONG WORD 3-BYTE

BYTE WRITE

WORD BYTE

BYTE WRITEBYTE WRITE

LONG WORD OPERAND READ TO 8-BIT PORT

S0 S2 S2S4 S0 S4 S0 S2 S4 S0 S2 S4

OP0 OP3OP2OP1

OP1 OP3OP3OP1

OP2 OP3OP2OP2

OP3 OP3OP3OP3

Bus Operation

MOTOROLA MC68030 USER’S MANUAL 7-43

Figure 7-28. Long-Word Operand Write — 16-Bit Port

CLK

A31-A2

A1

A0

FC2-FC0

SIZ1

SIZ0

R/W

ECS

OCS

AS

DS

DSACK1

DSACK0

DBEN

D31-D24

D23-D16

 D15-D8

D7-D0

WORD WRITE

S0 S2 S2S4 S0 S4

WORD WRITE

S0 S2 S4

OP0

OP1 OP3

OP3

 LONG WORD

OP2

OP1

OP0OP2

WORD

OP2

OP3 OP3

OP2

LONG WORD WRITE
TO 32-BIT PORT

LONG WORD OPERAND WRITE TO 16-BIT PORT

 LONG WORD

Bus Operation

7-44 MC68030 USER’S MANUAL MOTOROLA

State 1
One-half clock later in S1, the processor asserts AS, indicating that the address on the
address bus is valid. The processor also asserts DBEN during S1, which can enable
external data buffers. In addition, the ECS (and OCS, if asserted) signal is negated during
S1.

State 2
During S2, the processor places the data to be written onto the D0–D31, and samples
DSACKx at the end of S2.

State 3
The processor asserts DS during S3, indicating that the data is stable on the data bus. As
long as at least one of the DSACKx signals is recognized by the end of S2 meeting the
asynchronous input setup time requirement), the cycle terminates one clock later. If
DSACKx is not recognized by the start of S3, the processor inserts wait states instead of
proceeding to S4 and S5. To ensure that wait states are inserted, both DSACK0 and
DSACK1 must remain negated throughout the asynchronous input setup and hold times
around the end of S2. If wait states are added, the processor continues to sample the
DSACKx signals on the falling edges of the clock until one is recognized. The selected
device uses R/W, DS, SIZ0–SIZ1, and A0–A1 to latch data from the appropriate byte(s)
of the data bus (D24–D31, D16–D23, D8–D15, and D0–D7). SIZ0–SIZ1 and A0–A1
select the bytes of the data bus. If it has not already done so, the device asserts DSACKx
to signal that it has successfully stored the data.

State 4
The processor issues no new control signals during S4.

State 5
The processor negates AS and DS during S5. It holds the address and data valid during
S5 to provide address hold time for memory systems. R/W, SIZ0–SIZ1, FC0–FC2, and
DBEN also remain valid throughout S5.

The external device must keep DSACKx asserted until it detects the negation of AS or
DS (whichever it detects first). The device must negate DSACKx within approximately
one clock period after sensing the negation of AS or DS. DSACKx signals that remain
asserted beyond this limit may be prematurely detected for the next bus cycle.

Bus Operation

MOTOROLA MC68030 USER’S MANUAL 7-45

7.3.3 Asynchronous Read-Modify-Write Cycle
The read-modify-write cycle performs a read, conditionally modifies the data in the
arithmetic logic unit, and may write the data out to memory. In the MC68030 processor, this
operation is indivisible, providing semaphore capabilities for multiprocessor systems. During
the entire read-modify-write sequence, the MC68030 asserts the RMC signal to indicate that
an indivisible operation is occurring. The MC68030 does not issue a bus grant (BG) signal
in response to a bus request (BR) signal during this operation. The read portion of a read-
modify-write operation is forced to miss in the data cache because the data in the cache
would not be valid if another processor had altered the value being read. However, read-
modify-write cycles may alter the contents of the data cache as described in 6.1.2 Data
Cache.

No burst filling of the data cache occurs during a read-modify-write operation.

The test and set (TAS) and compare and swap (CAS and CAS2) instructions are the only
MC68030 instructions that utilize read-modify-write operations. Depending on the compare
results of the CAS and CAS2 instructions, the write cycle(s) may not occur. Table search
accesses required for the MMU are always read-modify-write cycles to the supervisor data
space. During these cycles, a write does not occur unless a descriptor is updated. No data
is internally cached for table search accesses since the MMU uses physical addresses to
access the tables. Refer to Section 9 Memory Management Unit for information about the
MMU.

Figure 7-29 is a flowchart of the asynchronous read-modify-write cycle operation. Figure 7-
30 is an example of a functional timing diagram of a TAS instruction specified in terms of
clock periods.

State 0

The processor asserts ECS and OCS in S0 to indicate the beginning of an external
operand cycle. The processor also asserts RMC in S0 to identify a read-modify-write
cycle. The processor places a valid address on A0–A31 and valid function codes on FC0–
FC2. The function codes select the address space for the operation. SIZ0–SIZ1 become
valid in S0 to indicate the operand size. The processor drives R/W high for the read cycle
and sets 4 according to the value of the MMU CI bit in the address translation descriptor
or in the appropriate TTx register.

State 1

One-half clock later in S1, the processor asserts AS, indicating that the address on the
address bus is valid. The processor asserts DS during S1. In addition, the ECS (and OCS,
if asserted) signal is negated during S1.

Bus Operation

7-46 MC68030 USER’S MANUAL MOTOROLA

Figure 7-29. Asynchronous Read-Modify-Write Cycle Flowchart

LOCK BUS

1) ASSERT READ-MODIFY-WRITE
 CYCLE (RMC)

ADDRESS DEVICE

1) ASSERT ECS/OCS FOR ONE-HALF CLOCK
2) SET R/W TO READ
3) DRIVE ADDRESS ON A31-A0
4) DRIVE FUNCTION CODE ON FC2- FC0
5) DRIVE SIZE (SIZ1-SIZ0)
6) CACHE INHIBIT OUT (CIOUT) BECOMES VALID
7) ASSERT ADDRESS STROBE (AS)
8) ASSERT DATA STROBE (DS)
9) ASSERT DATA BUFFER ENABLE (DBEN)

ACQUIRE DATA

2) LATCH DATA
3) NEGATE AS AND DS
4) NEGATE DBEN
5) START DATA MODIFICATION

START OUTPUT TRANSFER

1) ASSERT ECS/OCS FOR ONE-HALF CLOCK
2) DRIVE ADDRESS ON A31-A0 (IF DIFFERENT)
3) DRIVE SIZE (SIZ1-SIZ0)
4) SET R/W TO WRITE
5) ASSERT AS
6) ASSERT DBEN
7) PLACE DATA ON D31-D0
8) ASSERT DS

TERMINATE OUTPUT TRANSFER

1) NEGATE AS AND DS
2) REMOVE DATA FROM D31-D0
3) NEGATE DBEN

UNLOCK BUS

1) NEGATE RMC

START NEXT CYCLE

PRESENT DATA

1) DECODE ADDRESS
2) PLACE DATA ON D31-D0
3) ASSERT DATA TRANSFER AND
 SIZE ACKNOWLEDGE (DSACKx)

TERMINATE CYCLE

1) REMOVE DATA FROM D31-D0
2) NEGATE DSACKx

ACCEPT DATA

1) DECODE ADDRESS
2) STORE DATA FROM D31-D0
3) ASSERT DSACKx

TERMINATE CYCLE

A

IF CAS2 INSTRUCTION
AND ONLY ONE OPERAND
READ, THEN GO TO A ;
IF OPERANDS DO NOT
MATCH, THEN GO TO

C ; ELSE GO TO
B C

B

1) NEGATE DSACKx

IF CAS2 INSTRUCTION
AND ONLY ONE OPERAND

WRITTEN, THEN GO TO
D ; ELSE GO TO E

E

D

1) SAMPLE CACHE INHIBIT IN

CONTROLLER EXTERNAL DRIVE

Bus Operation

MOTOROLA MC68030 USER’S MANUAL 7-47

State 2

During state 2 (S2), the processor drives DBEN active to enable external data buffers. The
selected device uses R/W, SIZ0–SIZ1, A0–A1, and DS to place information on the data
bus. Any or all of the bytes (D24–D31, D16–D23, D8–D15, and D0–D7) are selected by
SIZ0–SIZ1 and A0–A1. Concurrently, the selected device may assert the DSACKx
signals.

State 3

As long as at least one of the DSACKx signals is recognized by the end of S2 (meeting
the asynchronous input setup time requirement), data is latched on the next falling edge
of the clock, and the cycle terminates. If DSACKx is not recognized by the start of S3, the
processor inserts wait states instead of proceeding to S4 and S5. To ensure that wait
states are inserted, both DSACK0 and DSACK1 must remain negated throughout the
asynchronous input setup and hold times around the end of S2. If wait states are added,
the processor continues to sample the DSACKx signals on the falling edges of the clock
until one is recognized.

State 4

The processor samples the level of CIIN at the beginning of S4. At the end of S4, the
processor latches the incoming data.

State 5

The processor negates AS, DS, and DBEN during S5. If more than one read cycle is
required to read in the operand(s), S0–S5 are repeated for each read cycle. When
finished reading, the processor holds the address, R/W, and FC0–FC2 valid in
preparation for the write portion of the cycle.

The external device keeps its data and DSACKx signals asserted until it detects the
negation of AS or DS (whichever it detects first). The device must remove the data and
negate DSACKx within approximately one clock period after sensing the negation of AS
or DS. DSACKx signals that remain asserted beyond this limit may be prematurely
detected for the next portion of the operation.

Idle States

The processor does not assert any new control signals during the idle states, but it may
internally begin the modify portion of the cycle at this time. S6-S11 are omitted if no write
cycle is required. If a write cycle is required, the R/W signal remains in the read mode until
S6 to prevent bus conflicts with the preceding read portion of the cycle; the data bus is not
driven until S8.

Bus Operation

7-48 MC68030 USER’S MANUAL MOTOROLA

Figure 7-30. Asynchronous Byte Read-Modify-Write Cycle — 32-Bit Port
(TAS Instruction with CIOUT or CIIN Asserted)

Si

INDIVISIBLE CYCLE NEXT CYCLE

DS

DSACK0

DBEN

D31-D24

DSACK1

D7-D0

D23-D16

OP3

OP3

OP3

OP3

OP3

BERR

HALT

BG

D15-D8

AS

CLK

A31-A2

A1

A0

FC2-FC0

SIZ1

R/W

SIZ0

S0 S2 S4 Si S6 S8 S10 S0

RMC

ECS

CIIN

CIOUT

Bus Operation

MOTOROLA MC68030 USER’S MANUAL 7-49

State 6

The processor asserts ECS and OCS in S6 to indicate that another external cycle is
beginning. The processor drives R/W low for a write cycle. CIOUT also becomes valid,
indicating the state of the MMU CI bit in the address translation descriptor or in a relevant
TTx register. Depending on the write operation to be performed, the address lines may
change during S6.

State 7

In S7, the processor asserts AS, indicating that the address on the address bus is valid.
The processor also asserts DBEN, which can be used to enable data buffers during S7.
In addition, the ECS (and OCS, if asserted) signal is negated during S7.

State 8

During S8, the processor places the data to be written onto D0–D31.

State 9

The processor asserts DS during S9 indicating that the data is stable on the data bus. As
long as at least one of the DSACKx signals is recognized by the end of S8 (meeting the
asynchronous input setup time requirement), the cycle terminates one clock later. If
DSACKx is not recognized by the start of S9, the processor inserts wait states instead of
proceeding to S10 and S11. To ensure that wait states are inserted, both DSACK0 and
DSACK1 must remain negated throughout the asynchronous input setup and hold times
around the end of S8. If wait states are added, the processor continues to sample
DSACKx signals on the falling edges of the clock until one is recognized.

The selected device uses R/W, DS, SIZ0–SIZ1, and A0–A1 to latch data from the
appropriate section(s) of the data bus (D24–D31, D16–D23, D8–D15, and D0–D7).
SIZ0–SIZ1 and A0–A1 select the data bus sections. If it has not already done so, the
device asserts DSACKx when it has successfully stored the data.

State 10

The processor issues no new control signals during S10.

Bus Operation

7-50 MC68030 USER’S MANUAL MOTOROLA

State 11

The processor negates AS and DS during S11. It holds the address and data valid during
S11 to provide address hold time for memory systems. R/W and FC0–FC2 also remain
valid throughout S11.

If more than one write cycle is required, S6-S11 are repeated for each write cycle.

The external device keeps DSACKx asserted until it detects the negation of AS or DS
(whichever it detects first). The device must remove its data and negate DSACKx within
approximately one clock period after sensing the negation of AS or DS.

7.3.4 Synchronous Read Cycle
A synchronous read cycle is terminated differently from an asynchronous read cycle;
otherwise, the cycles assert and respond to the same signals, in the same sequence.
STERM rather than DSACKx is asserted by the addressed external device to terminate a
synchronous read cycle. Since STERM must meet the synchronous setup and hold times
with respect to all rising edges of the clock while AS is asserted, it does not need to be
synchronized by the processor. Only devices with 32-bit ports may assert STERM. STERM
is also used with the CBREQ and CBACK signals during burst mode operation. It provides
a two-clock (minimum) bus cycle for 32-bit ports and single-clock (minimum) burst accesses,
although wait states can be inserted for these cycles as well. Therefore, a synchronous
cycle terminated with STERM with one wait cycle is a three-clock bus cycle. However, note
that STERM is asserted one-half clock later than DSACKx would be for a similar
asynchronous cycle with zero wait cycles (also three clocks). Thus, if dynamic bus sizing is
not needed, STERM can be used to provide more decision time in an external cache design
than is available with DSACKx for three-clock accesses.

Figure 7-31 is a flowchart of a synchronous long-word read cycle. Byte and word operations
are similar. Figure 7-32 is a functional timing diagram of a synchronous long-word read
cycle.

Bus Operation

MOTOROLA MC68030 USER’S MANUAL 7-51

State 0

The read cycle starts with S0. The processor drives ECS low, indicating the beginning of
an external cycle. When the cycle is the first cycle of a read operand operation, OCS is
driven low at the same time. During S0, the processor places a valid address on A0–A31
and valid function codes on FC0–FC2. The function codes select the address space for
the cycle. The processor drives R/W high for a read cycle and drives DBEN inactive to
disable the data buffers. SIZ1-SIZ0 become valid, indicating the number of bytes to be
transferred. CIOUT also becomes valid, indicating the state of the MMU CI bit in the
address translation descriptor or in the appropriate TTx register.

State 1

One-half clock later in S1, the processor asserts AS, indicating that the address on the
address bus is valid. The processor also asserts DS during S1. If the burst mode is
enabled for the appropriate on-chip cache and all four long words of the cache entry are
invalid, (i.e., four long words can be read in), CBREQ is asserted. In addition, the ECS
(and OCS, if asserted) signal is negated during S1.

Figure 7-31. Synchronous Long-Word Read Cycle Flowchart —
No Burst Allowed

CONTROLLER

 1) ASSERT ECS/OCS FOR ONE-HALF CLOCK
 2) DRIVE R/W TO READ
 3) DRIVE ADDRESS ON A31–A0
 4) DRIVE FUNCTION ON FC2–FC0
 5) DRIVE SIZE (SIZ1–SIZ0) (FOUR BYTES)
 6) CACHE INHIBIT OUT (CIOUT) BECOMES VALID
 7) ASSERT ADDRESS STROBE (AS)
 8) ASSERT CACHE BURST REQUEST (CBREQ)
 (IF BURST POSSSIBLE)
 9) ASSERT DATA STROBE (DS)
10) ASSERT DATA BUFFER ENABLE (DBEN)

1) SAMPLE CACHE INHIBIT IN (CIIN)
 AND CACHE BURST ACKNOWLEDGE (CBACK)
2) LATCH DATA
3) NEGATE AS AND DS
4) NEGATE DBEN

PRESENT DATA

1) DECODE ADDRESS
2) PLACE DATA ON D31-D0
3) ASSERT SYNCHRONOUS TERMINATION (STERM)
4) ASSERT CACHE BURST ACKNOWLEDGE (CBACK)

TERMINATE CYCLE

1) REMOVE DATA FROM D31-D0
2) NEGATE STERM

EXTERNAL DEVICE

ADDRESS DEVICE

ACQUIRE DATA

START NEXT CYCLE

Bus Operation

7-52 MC68030 USER’S MANUAL MOTOROLA

State 2

The selected device uses R/W, SIZ0–SIZ1, A0–A1, and CIOUT to place its information on
the data bus. Any or all of the byte sections of the data bus (D24–D31, D16–D23, D8–
D15, and D0–D7) are selected by SIZ0–SIZ1 and A0–A1. During S2, the processor
drives DBEN active to enable external data buffers. In systems that use two-clock
synchronous bus cycles, the timing of DBEN may prevent its use. At the beginning of S2,
the processor samples the level of STERM. If STERM is recognized, the processor
latches the incoming data at the end of S2. If the selected data is not to be cached for the

Figure 7-32. Synchronous Read with CIIN Asserted and CBACK Negated

S0 S2

CLK

A31-A0

D31-D0

ECS

FC2-FC0

SIZ1

SIZ0

R/W

OCS

AS

DS

DSACK1

DSACK0

STERM

CIIN

CIOUT

CBREQ

CBACK

DBEN

Bus Operation

MOTOROLA MC68030 USER’S MANUAL 7-53

current cycle or if the device cannot supply 32 bits, CIIN must be asserted at the same
time as STERM. In addition, the state of CBACK is latched when STERM is recognized.

Since CIIN, CBACK, and STERM are synchronous signals, they must meet the
synchronous input setup and hold times for all rising edges of the clock while AS is
asserted. If STERM is negated at the beginning of S2, wait states are inserted after S2,
and STERM is sampled on every rising edge thereafter until it is recognized. Once
STERM is recognized, data is latched on the next falling edge of the clock
(corresponding to the beginning of S3).

State 3

The processor negates AS, DS, and DBEN during S3. It holds the address valid during
S3 to simplify memory interfaces. R/W, SIZ0–SIZ1, and FC0–FC2 also remain valid
throughout S3.

The external device must keep its data asserted throughout the synchronous hold time
for data from the beginning of S3. The device must remove its data within one clock
after asserting STERM and negate STERM within two clocks after asserting STERM;
otherwise, the processor may inadvertently use STERM for the next bus cycle.

7.3.5 Synchronous Write Cycle
A synchronous write cycle is terminated differently from an asynchronous write cycle and
the data strobe may not be useful. Otherwise, the cycles assert and respond to the same
signal, in the same sequence. STERM is asserted by the external device to terminate a
synchronous write cycle. The discussion of STERM in the preceding section applies to write
cycles as well as to read cycles.

DS is not asserted for two-clock synchronous write cycles; therefore, the clock (CLK) may
be used as the timing signal for latching the data. In addition, there is no time from the latest
assertion of AS and the required assertion of STERM for any two-clock synchronous bus
cycle. The system must qualify a memory write with the assertion of AS to ensure that the
write is not aborted by internal conditions within the MC68030.

Bus Operation

7-54 MC68030 USER’S MANUAL MOTOROLA

Figure 7-33 is a flowchart of a synchronous write cycle. Figure 7-34 is a functional timing
diagram of this operation with wait states.

State 0

The write cycle starts with S0. The processor drives ECS low, indicating the beginning of
an external cycle. When the cycle is the first cycle of a write operation, OCS is driven low
at the same time. During S0, the processor places a valid address on A0–A31 and valid
function codes on FC0–FC2. The function codes select the address space for the cycle.
The processor drives R/W low for a write cycle. SIZ0–SIZ1 become valid, indicating the
number of bytes to be transferred. CIOUT also becomes valid, indicating the state of the
MMU CI bit in the address translation descriptor or in the appropriate TTx register.

State 1

One-half clock later in S1, the processor asserts AS, indicating that the address on the
address bus is valid. The processor also asserts DBEN during S1, which may be used to
enable the external data buffers. In addition, the ECS (and OCS, if asserted) signal is
negated during S1.

Figure 7-33. Synchronous Write Cycle Flowchart

CONTROLLER

 1) ASSERT ECS/OCS FOR ONE-HALF CLOCK
 2) DRIVE ADDRESS ON A31–A0
 3) DRIVE FUNCTION ON FC2–FC0
 4) DRIVE SIZE (SIZ1–SIZ0) (FOUR BYTES)
 5) SET R/W TO WRITE
 6) CACHE INHIBIT OUT (CIOUT) BECOMES VALID
 7) ASSERT ADDRESS STROBE (AS)
 8) ASSERT DATA BUFFER ENABLE (DBEN)
 ASSERT DATA BUFFER ENABLE (DBEN)
 9) DRIVE DATA LINES D31–D0
10) ASSERT DATA STROBE (DS) IF WAIT STATES)

1) NEGATE AS AND DS
2) REMOVE DATA FROM D31-0
3) NEGATE DBEN

1) DECODE ADDRESS
2) STORE DATA ON D31-D0
3) ASSERT SYNCHRONOUS TERMINATION (STERM)

TERMINATE CYCLE

1) NEGATE STERM

EXTERNAL DEVICE

ADDRESS DEVICE

START NEXT CYCLE

TERMINATE OUTPUT TRANSFER

ACCEPT DATA

Bus Operation

MOTOROLA MC68030 USER’S MANUAL 7-55

State 2

During S2, the processor places the data to be written onto D0–D31. The selected device
uses R/W, CLK, SIZ0–SIZ1, and A0–A1 to latch data from the appropriate section(s) of
the data bus (D24–D31, D16–D23, D8–D15, and D0–D7). SIZ0–SIZ1 and A0–A1 select
the data bus sections. The device asserts STERM when it has successfully stored the
data. If the device does not assert STERM by the rising edge of S2, the processor inserts
wait states until it is recognized. The processor asserts DS at the end of S2 if wait states
are inserted. For zero-wait-state synchronous write cycles, DS is not asserted.

Figure 7-34. Synchronous Write Cycle with Wait States — CIOUT Asserted

CLK

A31-A0

D31-D0

ECS

FC2-FC0

SIZ1

SIZ0

R/W

OCS

AS

DS

DSACK1

DSACK0

STERM

CIIN

CIOUT

CBREQ

CBACK

DBEN

S0 S2 SwS1 Sw S3

Bus Operation

7-56 MC68030 USER’S MANUAL MOTOROLA

State 3

The processor negates AS (and DS, if necessary) during S3. It holds the address and data
valid during S3 to simplify memory interfaces. R/W, SIZ0–SIZ1, FC0–FC2, and DBEN
also remain valid throughout S3.

The addressed device must negate STERM within two clock periods after asserting it, or
the processor may use STERM for the next bus cycle.

7.3.6 Synchronous Read-Modify-Write Cycle
A synchronous read-modify-write operation differs from an asynchronous read-modify-write
operation only in the terminating signal of the read and write cycles and in the use of CLK
instead of DS latching data in the write cycle. Like the asynchronous operation, the
synchronous read-modify-write operation is indivisible. Although the operation is
synchronous, the burst mode is never used during read-modify-write cycles.

Figure 7-35 is a flowchart of the synchronous read-modify-write operation. Timing for the
cycle is shown in Figure 7-36.

Bus Operation

MOTOROLA MC68030 USER’S MANUAL 7-57

Figure 7-35. Synchronous Read-Modify-Write Cycle Flowchart

1) ASSERT READ-MODIFY-WRITE CYCLE
 (RMC)

LOCK BUS

CONTROLLER

START INPUT TRANSFER

1) ASSERT ECS/OCS FOR ONE-HALF CLOCK
2) DRIVE R/W TO READ
3) DRIVE FUNCTION CODE ON FC2–FC0
4) DRIVE ADDRESS ON A31–A0
5) DRIVE SIZE (SIZ1–SIZ0)
6) CACHE INHIBIT OUT (CIOUT) BECOMES
 VALID
7) ASSERT ADDRESS STROBE (AS)
8) ASSERT DATA STROBE (DS)
9) ASSERT DATA BUFFER ENABLE (DBEN)

TERMINATE INPUT TRANSFER

1) SAMPLE CACHE INHIBIT IN (CIIN)
2) LATCH DATA
3) NEGATE AS AND DS
4) NEGATE DBEN
5) START DATA MODICIATION

START OUTPUT TRANSFER

1) ASSERT ECS/OCS FOR ONE-HALF CLOCK
2) SET R/W TO WRITE
3) DRIVE ADDRESS ON A31–A0 (IF DIFFERENT)
4) DRIVE SIZE (SIZ1–SIZ0)
5) CIOUT BECOMES VALID
6) ASSERT AS
7) ASSERT DBEN
8) PLACE DATA ON D31–D0
9) ASSERT DS (IF WAIT STATES)

TERMINATE OUTPUT TRANSFER

1) NEGATE AS (AND DS)
2) REMOVE DATA FROM D31–D0
3) NEGATE DBEN

UNLOCK BUS

1) NEGATE RMC

START NEXT CYCLE

PRESENT DATA

1) DECODE ADDRESS
2) PLACE DATA ON D31-D0
3) ASSERT SYNCHRONOUS
 TERMINATION (STERM)

TERMINATE CYCLE

1) REMOVE DATA FROM D31–D0
2) NEGATE STERM

ACCEPT DATA

TERMINATE CYCLE

1) DECODE ADDRESS
2) STORE DATA FROM D31-D0
3) ASSERT STERM

1) NEGATE STERM

IF CAS2 INSTRUCTION
AND ONLY ONE

OPERAND
WRITTEN, THEN GO TO
 D : ELSE GO TO E

E

D

IF CAS2 INSTRUCTION
AND ONLY ONE OPERAND
READ, THEN GO TO A :

IF OPERANDS DO NOT
MATCH, THEN GO TO C :

ELSE GO TO B

A

CB

EXTERNAL DEVICE

Bus Operation

7-58 MC68030 USER’S MANUAL MOTOROLA

State 0

The processor asserts ECS and OCS in S0 to indicate the beginning of an external
operand cycle. The processor also asserts RMC in S0 to identify a read-modify-write
cycle. The processor places a valid address on A0–A31 and valid function codes on FC0–
FC2. The function codes select the address space for the operation. SIZ0–SIZ1 become
valid in S0 to indicate the operand size. The processor drives R/W high for a read cycle

Figure 7-36. Synchronous Read-Modify-Write Cycle Timing — CIIN Asserted

S0 S2 SiS1 S3 Si S4 S5 S6 S7

CLK

A31-A0

D31-D0

ECS

FC2-FC0

SIZ1

SIZ0

R/W

OCS

AS

DS

DSACK1

DSACK0

STERM

CIIN

CIOUT

CBREQ

CBACK

DBEN

RMC

Bus Operation

MOTOROLA MC68030 USER’S MANUAL 7-59

and sets CIOUT to the value of the MMU CI bit in the address translation descriptor or in
the appropriate TTx register. The processor drives DBEN inactive to disable the data
buffers.

State 1

One-half clock later in S1, the processor asserts AS, indicating that the address on the
address bus is valid. The processor also asserts DS during S1. In addition, the ECS (and
OCS, if asserted) signal is negated during S1.

State 2

The selected device uses R/W, SIZ0–SIZ1, A0–A1, and CIOUT to place its information on
the data bus. Any or all of the byte sections (D24–D31, D16–D23, D8–D15, and D0–D7)
are selected by SIZ0–SIZ1 and A0–A1. During S2, the processor drives DBEN active to
enable external data buffers. In systems that use two-clock synchronous bus cycles, the
timing of DBEN may prevent its use. At the beginning of S2, the processor samples the
level of STERM. If STERM is recognized, the processor latches the incoming data. If the
selected data is not to be cached for the current cycle or if the device cannot supply 32
bits, CIIN must be asserted at the same time as STERM.

Since CIIN and STERM are synchronous signals, they must meet the synchronous nput
setup and hold times for all rising edges of the clock while AS is asserted. If STERM is
negated at the beginning of S2, wait states are inserted after S2, and STERM is sampled
on every rising edge thereafter until it is recognized. Once STERM is recognized, data is
latched on the next falling edge of the clock (corresponding to the beginning of S3).

Bus Operation

7-60 MC68030 USER’S MANUAL MOTOROLA

State 3

The processor negates AS, DS, and DBEN during S3. If more than one read cycle is
required to read in the operand(s), S0–S3 are repeated accordingly. When finished with
the read cycle, the processor holds the address, R/W, and FC0–FC2 valid in preparation
for the write portion of the cycle.

The external device must keep its data asserted throughout the synchronous hold time for
data from the beginning of S3. The device must remove the data within one-clock cycle
after asserting STERM to avoid bus contention. It must also negate STERM within two
clocks after asserting STERM; otherwise, the processor may inadvertently use STERM
for the next bus cycle.

Idle States

The processor does not assert any new control signals during the idle states, but it may
begin the modify portion of the cycle at this time. The R/W signal remains in the read mode
until S4 to prevent bus conflicts with the preceding read portion of the cycle; the data bus
is not driven until S6.

State 4

The processor asserts ECS and OCS in S4 to indicate that an external cycle is beginning.
The processor drives R/W low for a write cycle. CIOUT also becomes valid, indicating the
state of the MMU CI bit in the address translation descriptor or in the appropriate TTx
register. Depending on the write operation to be performed, the address lines may change
during S4.

State 5

In state 5 (S5), the processor asserts AS to indicate that the address on the address bus
is valid. The processor also asserts DBEN during S5, which can be used to enable
external data buffers.

State 6

During S6, the processor places the data to be written onto the D0–D31.

The selected device uses R/W, CLK, SIZ0–SIZ1, and A0–A1 to latch data from the
appropriate byte(s) of the data bus (D24–D31, D16–D23, D8–D15, and D0–D7). SIZ0–
SIZ1 and A0–A1 select the data bus sections. The device asserts STERM when it has
successfully stored the data. If the device does not assert STERM by the rising edge of
S6, the processor inserts wait states until it is recognized. The processor asserts DS at
the end of S6 if wait states are inserted. Note that for zero-wait-state synchronous write
cycles, DS is not asserted.

Bus Operation

MOTOROLA MC68030 USER’S MANUAL 7-61

State 7

The processor negates AS (and DS, if necessary) during S7. It holds the address and
data valid during S7 to simplify memory interfaces. R/W and FC0–FC2 also remain valid
throughout S7.

If more than one write cycle is required, S8-S11 are repeated for each write cycle.

The external device must negate STERM within two clock periods after asserting it, or the
processor may inadvertently use STERM for the next bus cycle.

7.3.7 Burst Operation Cycles
The MC68030 supports a burst mode for filling the on-chip instruction and data caches.

The MC68030 provides a set of handshake control signals for the burst mode. When a miss
occurs in one of the caches, the MC68030 initiates a bus cycle to obtain the required data
or instruction stream fetch. If the data or instruction can be cached, the MC68030 attempts
to fill a cache entry. Depending on the alignment for a data access, the MC68030 may
attempt to fill two cache entries. The processor may also assert CBREQ to request a burst
fill operation. That is, the processor can fill additional entries in the line. The MC68030 allows
a burst of as many as four long words.

The mechanism that asserts the CBREQ signal for burstable cache entries is enabled by
the data burst enable (DBE) and instruction burst enable (IBE) bits of the cache control
register (CACR) for the data and instruction caches, respectively. Either of the following
conditions cause the MC68030 to initiate a cache burst request (and assert CBREQ) for a
cachable read cycle:

• The logical address and function code signals of the current instruction or data fetch do
not match the indexed tag field in the respective instruction or data cache.

• All four long words corresponding to the indexed tag in the appropriate cache are
marked invalid.

However, the MC68030 does not assert CBREQ during the first portion of a misaligned
access if the remainder of the access does not correspond to the same cache line. Refer to
6.1.3.1 Single Entry Mode for details.

Bus Operation

7-62 MC68030 USER’S MANUAL MOTOROLA

If the appropriate cache is not enabled or if the cache freeze bit for the cache is set, the
processor does not assert CBREQ. CBREQ is not asserted during the read or write cycles
of any read-modify-write operation.

The MC68030 allows burst filling only from 32-bit ports that terminate bus cycles with
STERM and respond to CBREQ by asserting CBACK. When the MC68030 recognizes
STERM and CBACK and it has asserted CBREQ, it maintains AS, DS, R/W, A0–A31, FC0–
FC2, SIZ0–SIZ1 in their current state throughout the burst operation. The processor
continues to accept data on every clock during which STERM is asserted until the burst is
complete or an abnormal termination occurs.

CBACK indicates that the addressed device can respond to a cache burst request by
supplying one more long word of data in the burst mode. It can be asserted independently
of the CBREQ signal, and burst mode is only initiated if both of these signals are asserted
for a synchronous cycle. If the MC68030 executes a full burst operation and fetches four
long words, CBREQ is negated after STERM is asserted for the third cycle, indicating that
the MC68030 only requests one more long word (the fourth cycle). CBACK can then be
negated, and the MC68030 latches the data for the fourth cycle and completes the cache
line fill.

The following conditions can abort a burst fill:

• CIIN asserted,

• BERR asserted, or

• CBACK negated prematurely.

The processing of a bus error during a burst fill operation is described in 7.5.1 Bus Errors.

For the purposes of halting the processor or arbitrating the bus away from the processor with
BR, a burst operation is a single cycle since AS remains asserted during the entire
operation. If the HALT signal is asserted during a burst operation, the processor halts at the
end of the operation. Refer to 7.5.3 Halt Operation for more information about the halt
operation. An alternate bus master requesting the bus with BR may become bus master at
the end of the operation provided BR is asserted early enough to be internally synchronized
before another processor cycle begins. Refer to 7.7 Bus Arbitration for more information
about bus arbitration.

Bus Operation

MOTOROLA MC68030 USER’S MANUAL 7-63

The simultaneous assertion of BERR and HALT during a bus cycle normally indicates that
the cycle should be retried. However, during the second, third, or fourth cycle of a burst
operation, this signal combination indicates a bus error condition, which aborts the burst
operation. In addition, the processor remains in the halted state until HALT is negated. For
information about bus error processing, refer to 7.5.1 Bus Errors.

Figure 7-37 is a flowchart of the burst operation. The following timing diagrams show various
burst operations. Figure 7-38 shows burst operations for long-word requests with two wait
states inserted in the first access and one wait cycle inserted in the subsequent accesses.
Figure 7-39 shows a burst operation that fails to complete normally due to CBACK negating
prematurely. Figure 7-40 shows a burst operation that is deferred because the entire
operand does not correspond to the same cache line. Figure 7-41 shows a burst operation
aborted by CIIN. Because CBACK corresponds to the next cycle, three long words are
transferred even though CBACK is only asserted for two clock periods.

The burst operation sequence begins with states S0–S3, which are very similar to those
states for a synchronous read cycle except that CBREQ is asserted. S4-S9 perform the final
three reads for a complete burst operation.

State 0

The burst operation starts with S0. The processor drives ECS low, indicating the
beginning of an external cycle. When the cycle is the first cycle of a read operation, OCS
is driven low at the same time. During S0, the processor places a valid address on A0–
A31 and valid function codes on FC0–FC2. The function codes select the address space
for the cycle. The processor drives R/W high, indicating a read cycle, and drives DBEN
inactive to disable the data buffers. SIZ0–SIZ1 become valid, indicating the number of
operand bytes to be transferred. CIOUT also becomes valid, indicating the state of the
MMU CI bit in the address translation descriptor or in the appropriate TTx register.

State 1

One-half clock later in S1, the processor asserts AS to indicate that the address on the
address bus is valid. The processor also asserts DS during S1. CBREQ is also asserted,
indicating that the MC68030 can perform a burst operation into one of its caches and can
read in four long words. In addition, ECS (and OCS, if asserted) is negated during S1.

State 2

The selected device uses R/W, SIZ0–SIZ1, A0–A1, and CIOUT to place the data on the
data bus. (The first cycle must supply the long word at the corresponding long-word
boundary.) All of the byte sections (D24–D31, D16–D23, D8–D15, and D0–D7) of the data
bus must be driven since the burst operation latches 32 bits on every cycle. During S2,
the processor drives DBEN active to enable external data buffers. In systems that use
two-clock synchronous bus cycles, the timing of DBEN may prevent its use. At the
beginning of S2, the processor tests the level of STERM. If STERM is recognized, the
processor latches the incoming data at the end of S2. For the burst operation to proceed,
CBACK must be asserted when STERM is recognized. If the data for the current cycle is

Bus Operation

7-64 MC68030 USER’S MANUAL MOTOROLA

not to be cached, CIIN must be asserted at the same time as STERM. The assertion of
CIIN also has the effect of aborting the burst operation.

Figure 7-37. Burst Operation Flowchart — Four Long Words Transferred

END OF BURST

1) NEGATE AS AND DS
2) NEGATE DBEN

CONTROLLER

1) ASSERT ECS/OCS FOR ONE-HALF CLOCK
2) DRIVE R/W TO READ
3) DRIVE ADDRESS ON A31–A0
4) DRIVE FUNCTION ON FC2–FC0
5) DRIVE SIZE (SIZ1–SIZ0) (FOUR BYTES)
6) CACHE INHIBIT OUT (CIOUT) BECOMES
 VALID
7) ASSERT ADDRESS STROBE (AS)
8) ASSERT CACHE BURST REQUEST (CBREQ)
9) ASSERT DATA STROBE (DS)

10) ASSERT DATA BUFFER ENABLE (DBEN)

1) SAMPLE CACHE INHIBIT IN (CIIN)
 AND CACHE BURST ACKNOWLEDGE
 (CBACK)
2) LATCH DATA

PRESENT DATA

1) DECODE ADDRESS
2) PLACE DATA ON D31-D0
3) ASSERT SYNCHRONOUS TERMINATION (STERM)
4) ASSERT CACHE BURST ACKNOWLEDGE (CBACK)

TERMINATE CYCLE

1) REMOVE DATA FROM D31-D0
2) NEGATE STERM (IF NECESSARY)
3) NEGATE CBACK (IF NECESSARY)

EXTERNAL DEVICE

ADDRESS DEVICE

ACQUIRE DATA

WHEN 4 LONG WORDS TRANSFERRED UNTIL 4 LONG WORDS TRANSFERRED

START NEXT CYCLE

Bus Operation

MOTOROLA MC68030 USER’S MANUAL 7-65

Figure 7-38. Long-Word Operand Request from $07 with
Burst Request and Wait Cycle

S0 S2 SwS1 Sw Sw Sw SwS4 S5 Sw SwS6 S9S8SwS7

b4–b7 bC–bFbC–bFb8–bB

SwSw SwSw S3

A31-A4

A3

A2–A0

FC2-FC0

R/W

ECS

OCS

CLK

AS

DS

STERM

CBREQ

CBACK

D31–D0

DBEN

SIZ1–SIZ0

CIIN

CIOUT

01 10 11 00

VALUE OF A3:A2 INCREMENTED BY THE SYSTEM HARDWARE

Bus Operation

7-66 MC68030 USER’S MANUAL MOTOROLA

Figure 7-39. Long-Word Operand Request from $07 with
Burst Request — CBACK Negated Early

CLK

A31–A4

A3

A2–A0

FC2–FC0

SIZ1–SIZ0

R/W

S0 S2 S4 S6

ECS

OCS

AS

DS

b4–b7 b8–bB bC–bF

01 10 11

1 2

VALUE OF CBACK
CONTROL NEXT CYCLE

3

STERM

CIIN

CIOUT

CBREQ

CBACK

D31–D0

DBEN

VALUE OF A3:A2 INCREMENTED BY THE SYSTEM HARDWARE

NOTES:
 1. Assertion of CBACK causes data to be placed on D31–D0.
 2. Continued assertion of CBACK causes data to be placed on D31–D0.
 3. Negation of CBACK causes AS to be negated.

Bus Operation

MOTOROLA MC68030 USER’S MANUAL 7-67

Figure 7-40. Long-Word Operand Request from $0E — Burst Fill Deferred

A31-A5

A4

A3–A1

FC2-FC0

SIZ1

R/W

ECS

OCS

CLK

S0 S2 Sw S0S1 Sw S3 S1 S2 Sw Sw S3 Sw Sw S4 S5 Sw Sw S6 S9S8SwSwS7

A0

SIZ0

AS

DS

STERM

CBREQ

CBACK

D31–D0

DBEN

b4–b7 bC–bFbC–bF b0–b3 b8–bB

PREVIOUS CACHE BLOCK NEXT CACHE BLOCK - START BURST CYCLE

Bus Operation

7-68 MC68030 USER’S MANUAL MOTOROLA

Figure 7-41. Long-Word Operand Request from $07 with
Burst Request — CBACK and CIIN Asserted

A31–A0

FC2–FC0

R/W

ECS

OCS

CLK

S0 S2

AS

DS

STERM

CBREQ

CBACK

D31–D0

DBEN

CIIN

CIOUT

S4

SIZ1

SIZ0

DSACK1

DSACK0

b4-b7

BURST MODE ENDS,
DATA NOT CACHED

01 10 11

VALUE OF A3:A2 INCREMENTED BY THE SYSTEM HARDWARE

Bus Operation

MOTOROLA MC68030 USER’S MANUAL 7-69

Since CIIN, CBACK, and STERM are synchronous signals, they must meet the
synchronous input setup and hold times for all rising edges of the clock while AS is
asserted. If STERM is negated at the beginning of S2, wait states are inserted after S2,
and STERM is sampled on every rising edge of the clock thereafter until it is recognized.
Once STERM is recognized, data is latched on the next falling edge of the clock
(corresponding to the beginning of S3).

State 3

The processor maintains AS, DS, and DBEN asserted during S3. It also holds the address
valid during S3 for continuation of the burst. R/W, SIZ0–SIZ1, and FC0–FC2 also remain
valid throughout S3.

The external device must keep the data driven throughout the synchronous hold time for
data from the beginning of S3. The device must negate STERM within one clock after
asserting STERM; otherwise, the processor may inadvertently use STERM prematurely
for the next burst access. STERM need not be negated if subsequent accesses do not
require wait cycles.

State 4

At the beginning of S4, the processor tests the level of STERM. This state signifies the
beginning of burst mode, and the remaining states correspond to burst fill cycles. If
STERM is recognized, the processor latches the incoming data at the end of S4. This data
corresponds to the second long word of the burst. If STERM is negated at the beginning
of S4, wait states are inserted instead of S4 and S5, and STERM is sampled on every
rising edge of the clock thereafter until it is recognized. As for synchronous cycles, the
states of CBACK and CIIN are latched at the time STERM is recognized. The assertion
of CBACK at this time indicates that the burst operation should continue, and the assertion
of CIIN indicates that the data latched at the end of S4 should not be cached and that the
burst should abort.

State 5

The processor maintains all the signals on the bus driven throughout S5 for continuation
of the burst. The same hold times for STERM and data described for S3 apply here.

State 6

This state is identical to S4 except that once STERM is recognized, the third long word of
data for the burst is latched at the end of S6.

Bus Operation

7-70 MC68030 USER’S MANUAL MOTOROLA

State 7

During this state, the processor negates CBREQ, and the memory device may negate
CBACK. Aside from this, all other bus signals driven by the processor remain driven.
The same hold times for STERM and data described for S3 apply here.

State 8

This state is identical to S4 except that CBREQ is negated, indicating that the processor
cannot continue to accept more data after this. The data latched at the end of S8
corresponds to the fourth long word of the burst.

State 9

The processor negates AS, DS, and DBEN during S9. It holds the address, R/W, SIZ0–
SIZ1, and FC0–FC2 valid throughout S9. The same hold times for data described for S3
apply here.

Note that the address bus of the MC68030 remains driven to a constant value for the
duration of a burst transfer operation (including the first transfer before burst mode is
entered). If an external memory system requires incrementing of the long-word base
address to supply successive long words of information, this function must be performed by
external hardware. Additionally, in the case of burst transfers that cross a 16-byte boundary
(i.e., the first long word transferred is not located at A3/A2=00), the external hardware must
correctly control the continuation or termination of the burst transfer as desired. The burst
may be terminated by negating CBACK during the transfer of the most significant long word
of the 16-byte image (A3/A2=11) or may be continued (with CBACK asserted) by providing
the long word located at A3/A2=00 (i.e., the count sequence wraps back to zero and
continues as necessary). The MC68030 caches assume the higher order address lines (A4-
A31) remain unchanged as the long-word accesses wrap back around to A3/A2=00.

7.4 CPU SPACE CYCLES
FC0–FC2 select user and supervisor program and data areas as listed in Table 4-1. The
area selected by FC0–FC2=$7 is classified as the CPU space. The interrupt acknowledge,
breakpoint acknowledge, and coprocessor communication cycles described in the following
sections utilize CPU space.

Bus Operation

MOTOROLA MC68030 USER’S MANUAL 7-71

The CPU space type is encoded on A16-A19 during a CPU space operation and indicates
the function that the processor is performing. On the MC68030, three of the encodings are
implemented as shown in Figure 7-42. All unused values are reserved by Motorola for future
additional CPU space types.

7.4.1 Interrupt Acknowledge Bus Cycles
When a peripheral device signals the processor (with the IPL0–IPL2 signals) that the device
requires service, and the internally synchronized value on these signals indicates a higher
priority than the interrupt mask in the status register (or that a transition has occurred in the
case of a level 7 interrupt), the processor makes the interrupt a pending interrupt. Refer to
8.1.9 Interrupt Exceptions for details on the recognition of interrupts.

The MC68030 takes an interrupt exception for a pending interrupt within one instruction
boundary (after processing any other pending exception with a higher priority). The following
paragraphs describe the various kinds of interrupt acknowledge bus cycles that can be
executed as part of interrupt exception processing.

Figure 7-42. MC68030 CPU Space Address Encoding

1 1 1

1 1 1

1 1 1

BREAKPOINT
ACKNOWLEDGE

COPROCESSOR
COMM.

INTERRUPT
ACKNOWLEDGE

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 LEVEL 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 CPID 0 0 0 0 0 0 0 0 CP REG

15 13 4 0

3 1 031

31

BKPT # 0 0

31 4 2 0

0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

19 16232 0

FUNCTION
CODE

ADDRESS BUS

CPU SPACE
TYPE FIELD

Bus Operation

7-72 MC68030 USER’S MANUAL MOTOROLA

7.4.1.1 INTERRUPT ACKNOWLEDGE CYCLE — TERMINATED NORMALLY. When
the MC68030 processes an interrupt exception, it performs an interrupt acknowledge cycle
to obtain the number of the vector that contains the starting location of the interrupt service
routine.

Some interrupting devices have programmable vector registers that contain the interrupt
vectors for the routines they use. The following paragraphs describe the interrupt
acknowledge cycle for these devices. Other interrupting conditions or devices cannot supply
a vector number and use the autovector cycle described in 7.4.1.2 Autovector Interrupt
Acknowledge Cycle.

The interrupt acknowledge cycle is a read cycle. It differs from the asynchronous read cycle
described in 7.3.1 Asynchronous Read Cycle or the synchronous read cycle described in
7.3.4 Synchronous Read Cycle in that it accesses the CPU address space. Specifically,
the differences are:

1. FC0–FC2 are set to seven (FC0/FC1/FC2=111) for CPU address space.

2. A1, A2, and A3 are set to the interrupt request level (the inverted values of IPL0, iPL1,
and IPL2, respectively).

3. The CPU space type field (A16-A19) is set to $F, the interrupt acknowledge code.

4. A20–A31, A4–A15, and A0 are set to one.

The responding device places the vector number on the data bus during the interrupt
acknowledge cycle. Beyond this, the cycle is terminated normally with either STERM or
DSACKx. Figure 7-43 is the flowchart of the interrupt acknowledge cycle.

Bus Operation

MOTOROLA MC68030 USER’S MANUAL 7-73

Figure 7-44 shows the timing for an interrupt acknowledge cycle terminated with DSACKx.

7.4.1.2 AUTOVECTOR INTERRUPT ACKNOWLEDGE CYCLE. When the interrupting
device cannot supply a vector number, it requests an automatically generated vector or
autovector. Instead of placing a vector number on the data bus and asserting DSACKx or
STERM, the device asserts the autovector signal (AVEC) to terminate the cycle. Neither
STERM nor DSACKx may be asserted during an interrupt acknowledge cycle terminated by
AVEC.

The vector number supplied in an autovector operation is derived from the interrupt level of
the current interrupt. When AVEC is asserted instead of DSACK or STERM during an
interrupt acknowledge cycle, the MC68030 ignores the state of the data bus and internally
generates the vector number, the sum of the interrupt level plus 24 ($18). There are seven
distinct autovectors that can be used, corresponding to the seven levels of interrupt
available with signals IPL0–IPL2. Figure 7-45 shows the timing for an autovector operation.

Figure 7-43. Interrupt Acknowledge Cycle Flowchart

REQUEST INTERRUPT

 INTERRUPTING DEVICECONTROLLER

1) PLACE VECTOR NUMBER ON LEAST
 SIGNIFICANT BYTE OF DATA PORT
 (DEPENDS ON PORT SIZE)
2) ASSERT DATA AND SIZE ACKNOWLEDGE
 (DSACKx)
 OR
 ASSERT SYNCHRONOUS TERMINATION
 (STERM)

PROVIDE VECTOR INFORMATION

ACKNOWLEDGE INTERRUPT

1) INTERRUPT PENDING (IPEND) RECOGNIZED BY
 CURRENT INSTRUCTION – WAIT FOR
 INSTRUCTION BOUNDARY
2) SET R/W TO READ
3) SET FUNCTION CODE TO CPU SPACE
4) PLACE INTERRUPT LEVEL ON A1,A2, AND A3.
 TYPE FIELD = INTERRUPT ACKNOWLEDGE (IACK)
5) SET SIZE TO BYTE
6) NEGATE IPEND
7) ASSERT ADDRESS STROBE (AS) AND DATA
 STROBE (DS)

ACQUIRE VECTOR NUMBER

1) LATCH VECTOR NUMBER
2) NEGATE AS AND DS

CONTINUE INTERRUPT EXCEPTION PROCESSING

RELEASE

1) REMOVE VECTOR NUMBER FROM DATA BUS
2) NEGATE DSACKx

Bus Operation

7-74 MC68030 USER’S MANUAL MOTOROLA

Figure 7-44. Interrupt Acknowledge Cycle Timing

READ CYCLE INTERRUPT
ACKNOWLEDGE

WRITE STACK

CLK

A31-A4

A3-A1

A0

FC2-FC0

SIZ1

R/W

ECS

OCS

AS

DS

DSACK0

DBEN

D31-D24

IPL2-IPL0

SIZ0

DSACK1

S0 S2 S4 S0 S2 S4 S0 S2

INTERRUPT LEVEL

IPEND

D7-D0

D23-D16

VECTOR # FROM 8-BIT PORT

VECTOR # FROM 16-BIT PORT

VECTOR # FROM 32-BIT PORT

Bus Operation

MOTOROLA MC68030 USER’S MANUAL 7-75

Figure 7-45. Autovector Operation Timing

READ CYCLE
INTERRUPT

ACKNOWLEDGE
AUTOVECTORED

WRITE STACK

CLK

A31-A4

A3-A1

A0

FC2-FC0

SIZ1

R/W

ECS

OCS

AS

DS

DSACK0

DBEN

D31-D0

IPL2-IPL0

AVEC

SIZ0

DSACK1

S0 S2 S4 S0 S2 S4 S0 S2

INTERRUPT LEVEL

Bus Operation

7-76 MC68030 USER’S MANUAL MOTOROLA

7.4.1.3 SPURIOUS INTERRUPT CYCLE. When a device does not respond to an interrupt
acknowledge cycle with AVEC, STERM, or DSACKx, the external logic typically returns
BERR. The MC68030 automatically generates the spurious interrupt vector number, 24,
instead of the interrupt vector number in this case. If HALT is also asserted, the processor
retries the cycle.

7.4.2 Breakpoint Acknowledge Cycle
The breakpoint acknowledge cycle is generated by the execution of a breakpoint instruction
(BKPT). The breakpoint acknowledge cycle allows the external hardware to provide an
instruction word directly into the instruction pipeline as the program executes. This cycle
accesses the CPU space with a type field of zero and provides the breakpoint number
specified by the instruction on address lines A2–A4. If the external hardware terminates the
cycle with DSACKx or STERM, the data on the bus (an instruction word) is inserted into the
instruction pipe, replacing the breakpoint opcode, and is executed after the breakpoint
acknowledge cycle completes. The breakpoint instruction requires a word to be transferred
so that if the first bus cycle accesses an 8-bit port, a second cycle is required. If the external
logic terminates the breakpoint acknowledge cycle with BERR (i.e., no instruction word
available), the processor takes an illegal instruction exception. Figure 7-46 is a flowchart of
the breakpoint acknowledge cycle. Figure 7-47 shows the timing for a breakpoint
acknowledge cycle that returns an instruction word. Figure 7-48 shows the timing for a
breakpoint acknowledge cycle that signals an exception.

7.4.3 Coprocessor Communication Cycles
The MC68030 coprocessor interface provides instruction-oriented communication between
the processor and as many as seven coprocessors. The bus communication required to
support coprocessor operations uses the MC68030 CPU space with a type field of $2.

Coprocessor accesses use the MC68030 bus protocol except that the address bus supplies
access information rather than a 32-bit address. The CPU space type field (A16-A19) for a
coprocessor operation is $2. A13-A15 contain the coprocessor identification number (CpID),
and A0–A4 specify the coprocessor interface register to be accessed. Coprocessor
accesses to a CpID of zero correspond to MMU instructions and are not generated by the
MC68030 as a result of the coprocessor interface. These cycles can only be generated by
the MOVES instruction. Refer to Section 10 Coprocessor Interface Description for
further information.

Bus Operation

MOTOROLA MC68030 USER’S MANUAL 7-77

7.5 BUS EXCEPTION CONTROL CYCLES
The MC68030 bus architecture requires assertion of either DSACKx or STERM from an
external device to signal that a bus cycle is complete. DSACKx, STERM, or AVEC is not
asserted if:

• The external device does not respond.

• No interrupt vector is provided.

• Various other application-dependent errors occur.

External circuitry can provide BERR when no device responds by asserting DSACKx,
STERM, or AVEC within an appropriate period of time after the processor asserts AS. This
allows the cycle to terminate and the processor to enter exception processing for the error
condition.

The MMU can also detect an internal bus error. This occurs when the processor attempts to
access an address in a protected area of memory (a user program attempts to access
supervisor data, for example) or after the MMU receives a bus error while searching the
address table for an address translation description.

Figure 7-46. Breakpoint Operation Flow

1) PLACE REPLACEMENT OPCODE ON DATA
 BUS
2) ASSERT DATA TRANSFER AND SIZE
 ACKNOWLEDGE (DSACKx) SYNCHRONOUS
 TERMINATION (STERM)
 OR
1) ASSERT BUS ERRROR (BERR) TO INITIATE
 EXCEPTION PROCESSING

CONTROLLER

1) SET R/W TO READ
2) SET FUNCTION CODE TO CPU SPACE
3) PLACE CPU SPACE TYPE 0 ON A19-A16
4) PLACE BREAKPOINT NUMBER ON A4-A2
5) SET SIZE TO WORD
6) ASSERT ADDRESS STROBE (AS) AND DATA
 STROBE (DS)

 BREAKPOINT ACKNOWLEDGE

1) PLACE LATCHED DATA IN INSTRUCTION
 PIPELINE
2) CONTINUE PROCESSING

1) INITIATE ILLEGAL INSTRUCTION PROCESSING

SLAVE NEGATES DSACKx, STERM OR BERR

EXTERNAL DEVICE

 IF DSACKx OR STERM
 1) LATCH DATA
 2) NEGATE AS AND DS
 3) GO TO A

IF BERR ASSERTED:
 1) NEGATE AS AND DS
 2) GO TO B A B

Bus Operation

7-78 MC68030 USER’S MANUAL MOTOROLA

Figure 7-47. Breakpoint Acknowledge Cycle Timing

BREAKPOINT
ACKNOWLEDGE

INSTRUCTION WORD
FETCH

READ CYCLE

CLK

A31-A20

A19-A16

A15-A2

FC2-FC0

SIZ1

R/W

ECS

OCS

AS

DSACK0

D31-D24

D23-D16

SIZ0

DSACK1

S0 S2 S4 S0 S2 S4 S0 S2

D7-D0

D15-D8

BREAKPOINT NUMBER

WORD

FETCHED
INSTRUCTION
EXECUTION

(0000)
BREAKPOINT ENCODING

A1-A0

HALT

BERR

CPU SPACE

DS

DBEN

Bus Operation

MOTOROLA MC68030 USER’S MANUAL 7-79

Another signal that is used for bus exception control is HALT. This signal can be asserted
by an external device for debugging purposes to cause single bus cycle operation or (in
combination with BERR) a retry of a bus cycle in error.

Figure 7-48. Breakpoint Acknowledge Cycle Timing (Exception Signaled)

CLK

A31-A0

FC2-FC0

R/W

ECS

OCS

AS

DS

DSACK0

DBEN

SIZ1-SIZ0

DSACK1

S0 S2 S4 S0 S2

HALT

SwSw Sw S4

D31-D0

BERR

READ WITH BUS ERROR ASSERTED INTERNAL
PROCESSING

STACK WRITE

Bus Operation

7-80 MC68030 USER’S MANUAL MOTOROLA

To properly control termination of a bus cycle for a retry or a bus error condition, DSACKx,
BERR, and HALT can be asserted and negated with the rising edge of the MC68030 clock.
This assures that when two signals are asserted simultaneously, the required setup time
(#47A) and hold time (#47B) for both of them is met for the same falling edge of the
processor clock. (Refer to MC68030EC/D, MC68030 Electrical Specifications for timing
requirements.) This or some equivalent precaution should be designed into the external
circuitry that provides these signals.

The acceptable bus cycle terminations for asynchronous cycles are summarized in relation
to DSACKx assertion as follows (case numbers refer to Table 7-8):

Normal Termination:

DSACKx is asserted; BERR and HALT remain negated (case 1).

Halt Termination:

HALT is asserted at same time or before DSACKx, and BERR remains negated (case
2).

Bus Error Termination:

BERR is asserted in lieu of, at the same time, or before DSACKx (case 3) or after
DSACKx (case 4), and HALT remains negated; BERR is negated at the same time or
after DSACKx.

Retry Termination:

HALT and BERR are asserted in lieu of, at the same time, or before DSACKx (case 5)
or after DSACKx (case 6); BERR is negated at the same time or after DSACKx; HALT
may be negated at the same time or after BERR.

Bus Operation

MOTOROLA MC68030 USER’S MANUAL 7-81

LEGEND:
N — The number of current even bus state (e.g., S2, S4, etc.)
A — Signal is asserted in this bus state
NA — Signal is not asserted in this state
X — Don't care
S — Signal was asserted in previous state and remains asserted in this state

Table 7-8 shows various combinations of control signal sequences and the resulting bus
cycle terminations. To ensure predictable operation, BERR and HALT should be negated
according to the specifications in MC68030EC/D, MC68030 Electrical Specifications.
DSACKx, BERR, and HALT may be negated after AS. If DSACKx or BERR remain asserted
into S2 of the next bus cycle, that cycle may be terminated prematurely.

The termination signal for a synchronous cycle is STERM. An analogous set of bus cycle
termination cases exists in relationship to STERM assertion. Note that STERM and
DSACKx must never both be asserted in the same cycle. STERM has setup time (#60) and
hold time (#61) requirements relative to each rising edge of the processor clock while AS is
asserted. Bus error and retry terminations during burst cycles operate as described in
6.1.3.2 Burst Mode Filling, 7.5.1 Bus Errors, and 7.5.2 Retry Operation.

Table 7-8. DSACK, BERR, and HALT Assertion Results

Case
No.

Control
Signal

Asserted on Rising
Edge of State

Result

N N+2

1 DSACKx
BERR
HALT

A
NA
NA

S
NA
X

Normal cycle terminate and continue.

2 DSACKx
BERR
HALT

A
NA
A/S

S
NA
S

Normal cycle terminate and halt. Continue when HALT
negated.

3 DSACKx
BERR
HALT

NA/A
A

NA

X
S

NA

Terminate and take bus error exception, possibly
deferred.

4 DSACKx
BERR
HALT

A
NA
NA

X
A

NA

Terminate and take bus error exception, possibly
 deferred.

5 DSACKx
BERR
HALT

NA/A
A

A/S

X
S
S

Terminate and retry when HALT negated.

6 DSACKx
BERR
HALT

A
NA
NA

X
A
A

Terminate and retry when HALT negated.

Bus Operation

7-82 MC68030 USER’S MANUAL MOTOROLA

For STERM, the bus cycle terminations are summarized as follows (case numbers refer to
Table 7-9):

Normal Termination:

STERM is asserted; BERR and HALT remain negated (case 1).

Halt Termination:

HALT is asserted before STERM, and BERR remains negated (case 2).

Bus Error Termination:

BERR is asserted in lieu of, at the same time, or before STERM (case 3) or after
STERM (case 4), and HALT remains negated; BERR is negated at the same time or
after STERM.

Retry Termination:

HALT and BERR are asserted in lieu of, at the same time, or before STERM (case 5)
or after STERM (case 6); BERR is negated at the same time or after STERM; HALT
may be negated at the same time or after BERR.

Bus Operation

MOTOROLA MC68030 USER’S MANUAL 7-83

LEGEND:
N —The number of current even bus state (e.g., S2, S4, etc.)
A —Signal is asserted in this bus state
NA —Signal is not asserted in this state
X —Don't care
S —Signal was asserted in previous state and remains asserted in this state
— —State N+2 not part of bus cycle

EXAMPLE A:

A system uses a watchdog timer to terminate accesses to an unpopulated address
space. The timer asserts BERR after timeout (case 3).

Table 7-9. STERM, BERR, and HALT Assertion Results

Case
No.

Control
Signal

Asserted on Rising
Edge of State

Result

N N+2

1 STERM
BERR
HALT

A
NA
NA

—
—
—

Normal cycle terminate and continue.

2 STERM
BERR
HALT

NA
NA
A/S

A
NA
S

Normal cycle terminate and halt. Continue when HALT
negated.

3 STERM
BERR
HALT

NA
A/S
NA

A
S

NA

Terminate and take bus error exception, possibly
deferred.

4 STERM
BERR
HALT

A
A

N/A

—
—
—

Terminate and take bus error exception, possibly
deferred.

5 STERM
BERR
HALT

NA
A

A/S

A
S
S

Terminate and retry when HALT negated.

6 STERM
BERR
HALT

A
A
A

—
—
—

Terminate and retry when HALT negated.

Bus Operation

7-84 MC68030 USER’S MANUAL MOTOROLA

EXAMPLE B:

A system uses error detection and correction on RAM contents. The designer may:

1. Delay DSACKx until data is verified; assert BERR and HALT simultaneously to indi-
cate to the processor to automatically retry the error cycle (case 5) or, if data is valid,
assert DSACKx (case 1).

2. Delay DSACKx until data is verified and assert BERR with or without DSACKx if data
is in error (case 3). This initiates exception processing for software handling of the
condition.

3. Return DSACKx prior to data verification. If data is invalid, BERR is asserted on the
next clock cycle (case 4). This initiates exception processing for software handling of
the condition.

4. Return DSACKx prior to data verification; if data is invalid, assert BERR and HALT on
the next clock cycle (case 6). The memory controller can then correct the RAM prior
to or during the automatic retry.

7.5.1 Bus Errors
The bus error signal can be used to abort the bus cycle and the instruction being executed.
BERR takes precedence over DSACKx or STERM provided it meets the timing constraints
described in MC68030EC/D, MC68030 Electrical Specifications. If BERR does not meet
these constraints, it may cause unpredictable operation of the MC68030. If BERR remains
asserted into the next bus cycle, it may cause incorrect operation of that cycle.

When the bus error signal is issued to terminate a bus cycle, the MC68030 may enter
exception processing immediately following the bus cycle, or it may defer processing the
exception. The instruction prefetch mechanism requests instruction words from the bus
controller and the instruction cache before it is ready to execute them. If a bus error occurs
on an instruction fetch, the processor does not take the exception until it attempts to use that
instruction word. Should an intervening instruction cause a branch or should a task switch
occur, the bus error exception does not occur.

Bus Operation

MOTOROLA MC68030 USER’S MANUAL 7-85

The bus error signal is recognized during a bus cycle in any of the following cases:

• DSACKx (or STERM) and HALT are negated and BERR is asserted.

• HALT and BERR are negated and DSACKx is asserted. BERR is then asserted within
one clock cycle (HALT remains negated).

• BERR is asserted and recognized on the next falling clock edge following the rising
clock edge on which STERM is asserted and recognized (HALT remains negated).

When the processor recognizes a bus error condition, it terminates the current bus cycle in
the normal way. Figure 7-49 shows the timing of a bus error for the case in which neither
DSACKx nor STERM is asserted. Figure 7-50 shows the timing for a bus error that is
asserted after DSACKx. Exceptions are taken in both cases. (Refer to 8.1.2 Bus Error
Exception for details of bus error exception processing.) When BERR is asserted during a
read cycle that supplies data to either on-chip cache, the data in the cache is marked invalid.
However, when a write cycle that writes data into the data cache results in an externally
generated bus error, the data in the cache is not marked invalid.

In the second case, where BERR is asserted after DSACKx is asserted, BERR must be
asserted within specification #48 (refer to MC68030EC/D, MC68030 Electrical
Specifications) for purely asynchronous operation, or it must be asserted and remain stable
during the sample window, defined by specifications #27A and #47B, around the next falling
edge of the clock after DSACKx is recognized. If BERR is not stable at this time, the
processor may exhibit erratic behavior. BERR has priority over DSACKx. In this case, data
may be present on the bus, but may not be valid. This sequence may be used by systems
that have memory error detection and correction logic and by external cache memories.

The assertion of BERR described in the third case (recognized after STERM) has
requirements similar to those described in the preceding paragraph. BERR must be stable
throughout the sample window for the next falling edge of the clock, as defined by
specifications #27A and #28A. Figure 7-51 shows the timing for this case.

Bus Operation

7-86 MC68030 USER’S MANUAL MOTOROLA

Figure 7-49. Bus Error without DSACKx

BREAKPOINT
ACKNOWLEDGE

BUS ERROR
ASSERTED

READ CYCLE

CLK

A31-A20

A19-A16

A15-A2

FC2-FC0

SIZ1

R/W

ECS

OCS

AS

DS

DSACK0

DBEN

D23-D16

SIZ0

DSACK1

S0 S2 S4 S0 S2 S4 S0 S2

D7-D0

D15-D8

BREAKPOINT NUMBER

WORD

FETCHED
INSTRUCTION
EXECUTION

(0000)
BREAKPOINT ENCODING

A1-A0

HALT

BERR

CPU SPACE

D31 -D24

Bus Operation

MOTOROLA MC68030 USER’S MANUAL 7-87

A bus error occurring during a burst fill operation is a special case. If a bus error occurs
during the first cycle of a burst, the data is ignored, the entire cache line is marked invalid,
and the burst operation is aborted. If the cycle is for an instruction fetch, a bus error
exception is made pending. This bus error is processed only if the execution unit attempts
to use either of the two words latched during the bus cycle. If the cycle is for a data fetch,
the bus error exception is taken immediately. Refer to Section 11 Instruction Execution
Timing for more information about pipeline operation.

Figure 7-50. Late Bus Error with DSACKx

CLK

A31-A0

FC2-FC0

R/W

ECS

OCS

AS

DS

DSACK0

DBEN

D31-D0

IPL0-IPL2

DSACK1

S0 S2 Sw S4 S0 S2Sw S4

SIZ1-SIZ0

BERR

HALT

WRITE WITH BUS ERROR ASSERTED INTERNAL
PROCESSING

STACK WRITE

Bus Operation

7-88 MC68030 USER’S MANUAL MOTOROLA

When a bus error occurs after the burst mode has been entered (that is, on the second
access or later), the processor terminates the burst operation, and the cache entry
corresponding to that cycle is marked invalid, but the processor does not take an exception
(see Figure 7-52). If the second cycle is for a portion of a misaligned operand fetch, the
processor runs another read cycle for the second portion with CBREQ negated, as shown
in Figure 7-53. If BERR is asserted again, the MC68030 then takes an exception. The
MC68030 supports late bus errors during a burst fill operation; the timing is the same relative
to STERM and the clock as for a late bus error in a normal synchronous cycle.

Figure 7-51. Late Bus Error with STERM — Exception Taken

AS

CLK

A31-A0

FC2-FC0

SIZ1–SIZ0

S0 S2 S3 S0 S2SwSwSw Sw

R/W

ECS

OCS

DS

STERM

DBEN

BERR

D31-D0

HALT

WRITE WITH BUS ERROR ASSERTED INTERNAL
PROCESSING

STACK WRITE

Bus Operation

MOTOROLA MC68030 USER’S MANUAL 7-89

Figure 7-52. Long-Word Operand Request — Late BERR on Third Access

CLK

A31–A4

A3

A2–A0

FC2–FC0

SIZ1–SIZ0

R/W

S0 S2 S4 S6

ECS

OCS

AS

DS

b4–b7 b8–bB

0111 1000 1100

STERM

CIIN

CIOUT

CBREQ

CBACK

D31–D0

DBEN

BERR

HALT
LATE BERR ENDS BURST;
NO EXCEPTION TAKEN

VALUE OF A3:A0 INCREMENTED BY THE SYSTEM HARDWARE

Bus Operation

7-90 MC68030 USER’S MANUAL MOTOROLA

Figure 7-53. Long-Word Operand Request — BERR on Second Access

FC2-FC0

R/W

ECS

OCS

CLK

S0 S2 SwS1 Sw Sw Sw SwS4 S5 Sw Sw

AS

DS

STERM

CBREQ

CBACK

D31–D0

DBEN

b4–b7 bC–bF

SwSw SwSw S3

SIZ1–SIZ0

CIIN

CIOUT

Sw Sw S0 S1 S2 S3 S4 S5Sw

A31-A0 A3:A0 = 1000

DSACK1

DSACK0

BERR

HALT

BURST ABORTED
BUS ERROR ASSERTED INTERNAL

PROCESSING

RERUN CYCLE TO GET LAST
3 BYTES OF OPERAND

0111 1000

VALUE OF A3:A0 INCREMENTED BY THE SYSTEM HARDWARE

Bus Operation

MOTOROLA MC68030 USER’S MANUAL 7-91

7.5.2 Retry Operation
When the BERR and HALT signals are both asserted by an external device during a bus
cycle, the processor enters the retry sequence. A delayed retry, similar to the delayed bus
error signal described previously, can also occur, both for synchronous and asynchronous
cycles.

The processor terminates the bus cycle, places the control signals in their inactive state, and
does not begin another bus cycle until the HALT signal is negated by external logic. After a
synchronization delay, the processor retries the previous cycle using the same access
information (address, function code, size, etc.) The BERR signal should be negated before
S2 of the read cycle to ensure correct operation of the retried cycle. Figure 7-54 shows a
retry operation of an asynchronous cycle, and Figure 7-55 shows a retry operation of a
synchronous cycle.

The processor retries any read or write cycle of a read-modify-write operation separately;
RMC remains asserted during the entire retry sequence.

On the initial access of a burst operation, a retry (indicated by the assertion of BERR and
HALT) causes the processor to retry the bus cycle and assert CBREQ again. Figure 7-56
shows a late retry operation that causes an initial burst operation to be repeated. However,
signaling a retry with simultaneous BERR and HALT during the second, third, or fourth cycle
of a burst operation does not cause a retry operation, even if the requested operand is
misaligned. Assertion of BERR and HALT during a subsequent cycle of a burst operation
causes independent BERR and HALT operations. The external bus activity remains halted
until HALT is negated and the processor acts as previously described for the bus error
during a burst operation.

Asserting BR along with BERR and HALT provides a relinquish and retry operation. The
MC68030 does not relinquish the bus during a read-modify-write operation, except during
the first read cycle. Any device that requires the processor to give up the bus and retry a bus
cycle during a read-modify-write cycle must either assert BERR and BR only (HALT must
not be included) or use the single wire arbitration method discussed in 7.7.4 Bus
Arbitration Control. The bus error handler software should examine the read-modify-write
bit in the special status word (refer to 8.2.1 Special Status Word (SSW)) and take the
appropriate action to resolve this type of fault when it occurs.

Bus Operation

7-92 MC68030 USER’S MANUAL MOTOROLA

Figure 7-54. Asynchronous Late Retry

A31-A0

FC2-FC0

R/W

ECS

OCS

CLK

S0 S2 SwS1

AS

DS

D31–D0

Sw

SIZ1–SIZ0

S3 S4 S5 S0 S2 S4

DSACK1

DSACK0

DATA BUS NOT DRIVEN

BERR

HALT

WRITE CYCLE RETRY SIGNALED HALT RETRY CYCLE

Bus Operation

7-93 MC68030 USER’S MANUAL MOTOROLA

7.5.3 Halt Operation
When HALT is asserted and BERR is not asserted, the MC68030 halts external bus activity
at the next bus cycle boundary. HALT by itself does not terminate a bus cycle. Negating and
reasserting HALT in accordance with the correct timing requirements provides a single-step
(bus cycle to bus cycle) operation. The HALT signal affects external bus cycles only; thus,
a program that resides in the instruction cache and performs no data writes (or reads that
miss in the data cache) may continue executing, unaffected by the HALT signal.

Figure 7-55. Synchronous Late Retry

A31-A0

FC2-FC0

R/W

ECS

OCS

CLK

S0 S2S1

AS

DS

STERM

SIZ1–SIZ0

S3 S0 S1 S2 S3

D31–D0

BERR

HALT

READ CYCLE
RETRY SIGNALED

HALT RETRY CYCLE

Bus Operation

7-94 MC68030 USER’S MANUAL MOTOROLA

The single-cycle mode allows the user to proceed through (and debug) external processor
operations, one bus cycle at a time. Figure 7-57 shows the timing requirements for a single-
cycle operation. Since the occurrence of a bus error while HALT is asserted causes a retry
operation, the user must anticipate retry cycles while debugging in the single-cycle mode.
The single-step operation and the software trace capability allow the system debugger to
trace single bus cycles, single instructions, or changes in program flow. These processor
capabilities, along with a software debugging package, give complete debugging flexibility.

Figure 7-56. Late Retry Operation for a Burst

A31-A0

FC2-FC0

R/W

ECS

OCS

CLK

S0 S2S1

AS

DS

STERM

SIZ1–SIZ0

S3 S0 S1 S2 S3

D31–D0

BERR

HALT

S4

CIIN

CIOUT

CBREQ

CBACK

READ HALT RETRY

Bus Operation

7-95 MC68030 USER’S MANUAL MOTOROLA

Figure 7-57. Halt Operation Timing

CLK

A31-A0

FC2-FC0

R/W

ECS

OCS

AS

DS

DSACK0

DBEN

DSACK1

S0 S2 S0

BERR

HALT

S4 S2

SIZ1/SIZ0

S4

D31-D0

BR

BG

BGACK

READ HALT
(ARBITRATION PERMITTED
WHILE THE CONTROLLER

IS HALTED)

READ

Bus Operation

7-96 MC68030 USER’S MANUAL MOTOROLA

When the processor completes a bus cycle with the HALT signal asserted, the data bus is
placed in the high-impedance state, and bus control signals are driven inactive (not high-
impedance state); the address, function code, size, and read/write signals remain in the
same state. The halt operation has no effect on bus arbitration (refer to 7.7 Bus
Arbitration). When bus arbitration occurs while the MC68030 is halted, the address and
control signals are also placed in the high-impedance state. Once bus mastership is
returned to the MC68030, if HALT is still asserted, the address, function code, size, and
read/write signals are again driven to their previous states. The processor does not service
interrupt requests while it is halted, but it may assert the IPEND signal as appropriate.

7.5.4 Double Bus Fault
When a bus error or an address error occurs during the exception processing sequence for
a previous bus error, a previous address error, or a reset exception, the bus or address error
causes a double bus fault. For example, the processor attempts to stack several words
containing information about the state of the machine while processing a bus error
exception. If a bus error exception occurs during the stacking operation, the second error is
considered a double bus fault. Only an external reset operation can restart a halted
processor. However, bus arbitration can still occur (refer to 7.7 Bus Arbitration).

The MC68030 indicates that a double bus fault condition has occurred by continuously
asserting the STATUS signal until the processor is reset. The processor asserts STATUS
for one, two, or three clock periods to signal other microsequencer status indications. Refer
to Section 12 Applications Information for a description of the interpretation of the
STATUS signal.

A second bus error or address error that occurs after exception processing has completed
(during the execution of the exception handler routine or later) does not cause a double bus
fault. A bus cycle that is retried does not constitute a bus error or contribute to a double bus
fault. The processor continues to retry the same bus cycle as long as the external hardware
requests it.

Bus Operation

7-97 MC68030 USER’S MANUAL MOTOROLA

7.6 BUS SYNCHRONIZATION
The MC68030 overlaps instruction execution; that is, during bus activity for one instruction,
instructions that do not use the external bus can be executed. Due to the independent
operation of the on-chip caches relative to the operation of the bus controller, many
subsequent instructions can be executed, resulting in seemingly nonsequential instruction
execution. When this is not desired and the system depends on sequential execution
following bus activity, the NOP instruction can be used. The NOP instruction forces
instruction and bus synchronization in that it freezes instruction execution until all pending
bus cycles have completed.

An example of the use of the NOP instruction for this purpose is the case of a write operation
of control information to an external register, where the external hardware attempts to
control program execution based on the data that is written with the conditional assertion of
BERR. If the data cache is enabled and the write cycle results in a hit in the data cache, the
cache is updated. That data, in turn, may be used in a subsequent instruction before the
external write cycle completes. Since the MC68030 cannot process the bus error until the
end of the bus cycle, the external hardware has not successfully interrupted program
execution. To prevent a subsequent instruction from executing until the external cycle
completes, a NOP instruction can be inserted after the instruction causing the write. In this
case, bus error exception processing proceeds immediately after the write before
subsequent instructions are executed. This is an irregular situation, and the use of the NOP
instruction for this purpose is not required by most systems.

Note that even in a system with error detection/correction circuitry, the NOP is not required
for this synchronization. Since the MMU always checks the validity of write cycles before
they proceed to the data cache and are executed externally, the MC68030 is guaranteed to
write correct data to the cache. Thus, there is no danger in subsequent instructions using
erroneous data from the cache before an external bus error signals an error.

A bus synchronization example is given in Figure 7-58.

Bus Operation

7-98 MC68030 USER’S MANUAL MOTOROLA

7.7 BUS ARBITRATION
The bus design of the MC68030 provides for a single bus master at any one time: either the
processor or an external device. One or more of the external devices on the bus can have
the capability of becoming bus master. Bus arbitration is the protocol by which an external
device becomes bus master; the bus controller in the MC68030 manages the bus arbitration
signals so that the processor has the lowest priority. External devices that need to obtain the
bus must assert the bus arbitration signals in the sequences described in the following
paragraphs. Systems having several devices that can become bus master require external
circuitry to assign priorities to the device so that, when two or more external devices attempt
to become bus master at the same time, the one having the highest priority becomes bus
master first. The sequence of the protocol is:

1. An external device asserts the bus request signal.

2. The processor asserts the bus grant signal to indicate that the bus will become avail-
able at the end of the current bus cycle.

3. The external device asserts the bus grant acknowledge signal to indicate that it has
assumed bus mastership.

BR may be issued any time during a bus cycle or between cycles. BG is asserted in
response to BR; it is usually asserted as soon as BR has been synchronized and
recognized, except when the MC68030 has made an internal decision to execute a bus
cycle. Then, the assertion of BG is deferred until the bus cycle has begun. Additionally, BG
is not asserted until the end of a read-modify-write operation (when RMC is negated) in
response to a BR signal. When the requesting device receives BG and more than one
external device can be bus master, the requesting device should begin whatever arbitration
is required. The external device asserts BGACK when it assumes bus mastership and

Figure 7-58. Bus Synchronization Example

S0 Sw

EXTERNAL WRITE

 WRITE TO D. CACHE D. CACHE READ

MOVE. L D0, (A0)

NOP PREVENTS EXECUTION OF SUBSEQUENT
INSTRUCTIONS UNTIL MOVE. L D0, (A0)
WRITE CYCLE COMPLETES

MOVE . L (A0), D1

Bus Operation

7-99 MC68030 USER’S MANUAL MOTOROLA

maintains BGACK during the entire bus cycle (or cycles) for which it is bus master. The
following conditions must be met for an external device to assume mastership of the bus
through the normal bus arbitration procedure:

• It must have received BG through the arbitration process.

• AS must be negated, indicating that no bus cycle is in progress, and the external device
must ensure that all appropriate processor signals have been placed in the high-imped-
ance state (by observing specification #7 in MC68030EC/D, MC68030 Electrical Spec-
ifications).

• The termination signal (DSACKx or STERM) for the most recent cycle must have be-
come inactive, indicating that external devices are off the bus (optional, refer to 7.7.3
Bus Grant Acknowledge).

• BGACK must be inactive, indicating that no other bus master has claimed ownership
of the bus.

Figure 7-59 is a flowchart showing the detail involved in bus arbitration for a single device.
Figure 7-60 is a timing diagram for the same operation. This technique allows processing of
bus requests during data transfer cycles.

The timing diagram shows that BR is negated at the time that BGACK is asserted. This type
of operation applies to a system consisting of the processor and one device capable of bus
mastership. In a system having a number of devices capable of bus mastership, the bus
request line from each device can be wire-ORed to the processor. In such a system, more
than one bus request can be asserted simultaneously.

The timing diagram in Figure 7-60 shows that BG is negated a few clock cycles after the
transition of the BGACK signal. However, if bus requests are still pending after the negation
of BG, the processor asserts another BG within a few clock cycles after it was negated. This
additional assertion of BG allows external arbitration circuitry to select the next bus master
before the current bus master has finished with the bus. The following paragraphs provide
additional information about the three steps in the arbitration process.

Bus arbitration requests are recognized during normal processing, RESET assertion, HALT
assertion, and even when the processor has halted due to a double bus fault.

Bus Operation

7-100 MC68030 USER’S MANUAL MOTOROLA

7.7.1 Bus Request
External devices capable of becoming bus masters request the bus by asserting BR. This
can be a wire-ORed signal (although it need not be constructed from open-collector devices)
that indicates to the processor that some external device requires control of the bus. The
processor is effectively at a lower bus priority level than the external device and relinquishes
the bus after it has completed the current bus cycle (if one has started).

If no acknowledge is received while the BR is active, the processor remains bus master once
BR is negated. This prevents unnecessary interference with ordinary processing if the
arbitration circuitry inadvertently responds to noise or if an external device determines that
it no longer requires use of the bus before it has been granted mastership.

Figure 7-59. Bus Arbitration Flowchart for Single Request

1) ASSERT BUS GRANT (BG)

GRANT BUS ARBITRATION

TERMINATE ARBITRATION

1) NEGATE BG AND WAIT FOR BGACK TO
 BE NEGATED

REARBITRATE OR RESUME
CONTROLLER OPERATION

REQUEST THE BUS

1) ASSERT BUS REQUEST (BR)

REQUESTING DEVICECONTROLLER

ACKNOWLEDGE BUS MASTERSHIP

1) EXTERNAL ARBITRATION DETERMINES
 NEXT BUS MASTER
2) NEXT BUS MASTER WAITS FOR
 CURRENT CYCLE TO COMPLETE
3) NEXT BUS MASTER ASSERTS BUS
 GRANT ACKNOWLEDGE (BGACK) TO
 BECOME NEW MASTER
4) BUS MASTER NEGATES BR

OPERATE AS BUS MASTER

RELEASE BUS MASTERSHIP

1) PERFORM DATA TRANSFERS
 (READ AND WRITE CYCLES)

1) NEGATE BGACK

Bus Operation

7-101 MC68030 USER’S MANUAL MOTOROLA

7.7.2 Bus Grant
The processor asserts BG as soon as possible after receipt of BR. This is immediately
following internal synchronization except during a read-modify-write cycle or following an
internal decision to execute a bus cycle. During a read-modify-write cycle, the processor
does not assert BG until the entire operation has completed. RMC is asserted to indicate

Figure 7-60. Bus Arbitration Operation Timing

A31-A0

FC2-FC0

ECS

OCS

AS

DS

DSACK1

CLK

S0 S4 S0

SIZ1-SIZ0

R/W

DSACK0

DBEN

S2 S2

BGACK

BG

BR

D31-D0

CONTROLLER DMA DEVICE CONTROLLER

Bus Operation

7-102 MC68030 USER’S MANUAL MOTOROLA

that the bus is locked. In the case an internal decision to execute another bus cycle, BG is
deferred until the bus cycle has begun.

BG may be routed through a daisy-chained network or through a specific priority-encoded
network. The processor allows any type of external arbitration that follows the protocol.

7.7.3 Bus Grant Acknowledge
Upon receiving BG, the requesting device waits until AS, DSACKx (or synchronous
termination, STERM), and BGACK are negated before asserting its own BGACK. The
negation of the AS indicates that the previous master releases the bus after specification #7
(refer to MC68030EC/D, MC68030 Electrical Specifications). The negation of DSACKx or
STERM indicates that the previous slave has completed its cycle with the previous master.
Note that in some applications, DSACKx might not be used in this way.

General-purpose devices are then connected to be dependent only on AS. When BGACK
is asserted, the device is the bus master until it negates BGACK. BGACK should not be
negated until all bus cycles required by the alternate bus master are completed. Bus
mastership terminates at the negation of BGACK. The BR from the granted device should
be negated after BGACK is asserted. If a BR is still pending after the assertion of BGACK,
another BG is asserted within a few clocks of the negation of BG, as described in the 7.7.4
Bus Arbitration Control. Note that the processor does not perform any external bus cycles
before it reasserts BG in this case.

7.7.4 Bus Arbitration Control
The bus arbitration control unit in the MC68030 is implemented with a finite state machine.
As discussed previously, all asynchronous inputs to the MC68030 are internally
synchronized in a maximum of two cycles of the processor clock.

As shown in Figure 7-61, input signals labeled R and A are internally synchronized versions
of the BR and BGACK signals, respectively. The BG output is labeled G, and the internal
high-impedance control signal is labeled T. If T is true, the address, data, and control buses
are placed in the high-impedance state after the next rising edge following the negation of
AS and RMC. All signals are shown in positive logic (active high), regardless of their true
active voltage level.

Bus Operation

7-103 MC68030 USER’S MANUAL MOTOROLA

State changes occur on the next rising edge of the clock after the internal signal is valid. The
BG signal transitions on the falling edge of the clock after a state is reached during which G
changes. The bus control signals (controlled by T) are driven by the processor, immediately
following a state change, when bus mastership is returned to the MC68030.

State 0, at the top center of the diagram, in which G and T are both negated, is the state of
the bus arbiter while the processor is bus master. Request R and acknowledge A keep the
arbiter in state 0 as long as they are both negated. When a request R is received, both grant
G and signal T are asserted (in state 1 at the top left). The next clock causes a change to
state 2, at the lower left, in which G and T are held. The bus arbiter remains in that state until
acknowledge A is asserted or request R is negated. Once either occurs, the arbiter changes
to the center state, state 3, and negates grant G. The next clock takes the arbiter to state 4,
at the upper right, in which grant G remains negated and signal T remains asserted. With
acknowledge A asserted, the arbiter remains in state 4 until A is negated or request R is

Figure 7-61. Bus Arbitration State Diagram

RA

RA

XX

RA
RA

RA

XX

RX

RA

XA

RA

RX

XA

RA

GT

STATE 1

GT

STATE 0

GT

STATE 4

GT

STATE 5

GT

STATE 6

GT

STATE 2

GT

STATE 3

XX

R - BUS REQUEST
A - BUS GRANT ACKNOWLEDGE
G - BUS GRANT
T - THREE-STATE CONTROL TO BUS CONTROL LOGIC
X - DON'T CARE

NOTE: The BG output will not be asserted while RMC is asserted.

Bus Operation

7-104 MC68030 USER’S MANUAL MOTOROLA

again asserted. When A is negated, the arbiter returns to the original state, state 0, and
negates signal T. This sequence of states follows the normal sequence of signals for
relinquishing the bus to an external bus master. Other states apply to other possible
sequences of combinations of R and A. As shown by the path from state 0 to state 4, BGACK
alone can be used to place the processor's external bus buffers in the high-impedance state,
providing single-wire arbitration capability.

The read-modify-write sequence is normally indivisible to support semaphore operations
and multiprocessor synchronization. During this indivisible sequence, the MC68030 asserts
the RMC signal and causes the bus arbitration state machine to ignore bus requests
(assertions of BR) that occur after the first read cycle of the read-modify-write sequence by
not issuing bus grants (asserting BG).

In some cases, however, it may be necessary to force the MC68030 to release the bus
during an read-modify-write sequence. One way for an alternate bus master to force the
MC68030 to release the bus applies only to the first read cycle of an read-modify-write
sequence. The MC68030 allows normal bus arbitration during this read cycle; a normal
relinquish and retry operation (asserting BERR, HALT, and BR at the same time) is used.
Note that this method applies only to the first read cycle of the read-modify-write sequence,
but this method preserves the integrity of the read-modify-write sequence without imposing
any constraint on the alternate bus master.

A second method is single-wire arbitration, the timing of which is shown in Figure 7-62. An
alternate master forces the MC68030 to release the bus by asserting BGACK and waits for
AS to negate before taking the bus. It applies to all bus cycles of a read-modify-write
sequence, but can cause system integrity problems if used improperly. The alternate bus
master must guarantee the integrity of the read-modify-write sequence by not altering the
contents of memory locations accessed by the read-modify-write sequence. Note that for
the method to operate properly, AS must be observed to be negated (high) on two
consecutive clock edges before the alternate bus master takes the bus. Waiting for this
condition ensures that any current or pending bus activity has completed or has been pre-
empted.

Bus Operation

7-105 MC68030 USER’S MANUAL MOTOROLA

A timing diagram of the bus arbitration sequence during a processor bus cycle is shown in
Figure 7-60. The bus arbitration sequence while the bus is inactive (i.e., executing internal
operations such as a multiply instruction) is shown in Figure 7-63.

7.8 RESET OPERATION
RESET is a bidirectional signal with which an external device resets the system or the
processor resets external devices. When power is applied to the system, external circuitry
should assert RESET for a minimum of 520 clocks after VCC is within tolerance. Figure 7-64
is a timing diagram of the powerup reset operation, showing the relationships between
RESET, VCC, and bus signals. The clock signal is required to be stable by the time VCC
reaches the minimum operating specification. During the reset period, the entire bus three-
states (except for non-three-statable signals, which are driven to their inactive state). Once
RESET negates, all control signals are driven to their inactive state, the data bus is in read
mode, and the address bus is driven. After this, the first bus cycle for reset exception
processing begins.

Figure 7-62. Single-Wire Bus Arbitration Timing Diagram

NOTE: The alternate bus master must sample AS high on two consecutive rising edges of the clock (after BGACK is
recognized low) before taking the bus.

16

7

47A

12

TAKE BUS

SEE NOTE

DO NOT
TAKE BUS

912

47A

CLK

AS

BGACK

ADDRESS

Bus Operation

7-106 MC68030 USER’S MANUAL MOTOROLA

The external RESET signal resets the processor and the entire system. Except for the initial
reset, RESET should be asserted for at least 520 clock periods to ensure that the processor
resets. Asserting RESET for 10 clock periods is sufficient for resetting the processor logic;
the additional clock periods prevent a reset instruction from overlapping the external RESET
signal.

Figure 7-63. Bus Arbitration Operation (Bus Inactive)

A31-A0

FC2-FC0

ECS

OCS

AS

DS

DSACK1

CLK

S4 S0

SIZ1-SIZ0

R/W

DSACK0

DBEN

BGACK

BG

BR

D31-D0

CONTROLLER CONTROLLERALTERNATE MASTER

BUS INACTIVE
(ARBITRATION PERMITTED
WHILE THE CONTROLLER IS

INACTIVE OR HALTED)

Bus Operation

7-107 MC68030 USER’S MANUAL MOTOROLA

Resetting the processor causes any bus cycle in progress to terminate as if DSACKx,
BERR, or STERM had been asserted. In addition, the processor initializes registers
appropriately for a reset exception. Exception processing for a reset operation is described
in 8.1.1 Reset Exception.

When a reset instruction is executed, the processor drives the RESET signal for 512 clock
cycles. In this case, the processor resets the external devices of the system, and the internal
registers of the processor are unaffected. The external devices connected to the RESET
signal are reset at the completion of the reset instruction. An external RESET signal that is
asserted to the processor during execution of a reset instruction must extend beyond the
reset period of the instruction by at least eight clock cycles to reset the processor. Figure 7-
65 shows the timing information for the reset instruction.

Figure 7-64. Initial Reset Operation Timing

ISP
READ

STARTS

ALL CONTROL SIGNALS
INACTIVE. DATA BUS IN
READ MODE. ADDRESS

BUS DRIVEN

ENTIRE
BUS HIGH

IMPEDANCE
BUS STATE UNKNOWN

t = >520 CLOCKS

1<4 CLOCKS

4 CLOCKS

CLK

 +5
VOLTS

VCC

BUS
CYCLES

RESET

Bus Operation

7-108 MC68030 USER’S MANUAL MOTOROLA

Figure 7-65. Processor-Generated Reset Operation

CLK

A31-A0

FC2-FC0

R/W

ECS

OCS

AS

DS

DSACK0

DBEN

SIZ1-SIZ0

DSACK1

HALT

S0 S2S4

D31-D0

S2S0

RESET

READ RESET INTERNAL
512 CLOCKS

RESUME NORMAL
OPERATION

MOTOROLA

MC68030 USER’S MANUAL

8-1

SECTION 8
EXCEPTION PROCESSING

Exception processing is defined as the activities performed by the processor in preparing to
execute a handler routine for any condition that causes an exception. In particular, exception
processing does not include execution of the handler routine itself. An introduction to
exception processing, as one of the processing states of the MC68030 processor, was given
in

Section 4 Processing States

. This section describes exception processing in detail,
describing the processing for each type of exception. It describes the return from an
exception and bus fault recovery. This section also describes the formats of the exception
stack frames. For details of MMU-related exceptions, refer to

Section 9 Memory
Management Unit

. For more detail on protocol violation and coprocessor-related
exceptions, refer to

Section 10 Coprocessor Interface Description

. Also, for more detail
on exceptions defined for floating-point coprocessors, refer to the user's manual for the
MC68881/MC68882.

8.1 EXCEPTION PROCESSING SEQUENCE

Exception processing occurs in four functional steps. However, all individual bus cycles
associated with exception processing (vector acquisition, stacking, etc.) are not guaranteed
to occur in the order in which they are described in this section. Nonetheless, all addresses
and offsets from the stack pointer are guaranteed to be as described.

The first step of exception processing involves the status register. The processor makes an
internal copy of the status register. Then the processor sets the S bit, changing to the
supervisor privilege level. Next, the processor inhibits tracing of the exception handler by
clearing the T1 and T0 bits. For the reset and interrupt exceptions, the processor also
updates the interrupt priority mask.

In the second step, the processor determines the vector number of the exception. For
interrupts, the processor performs an interrupt acknowledge cycle (a read from the CPU
address space type $F; see Figures 7-45 and 7-46) to obtain the vector number. For
coprocessor-detected exceptions, the vector number is included in the coprocessor
exception primitive response.

Exception Processing

8-2

MC68030 USER’S MANUAL

MOTOROLA

(Refer to

Section 10 Coprocessor Interface Description

 for a complete discussion of
coprocessor exceptions.) For all other exceptions, internal logic provides the vector number.
This vector number is used in the last step to calculate the address of the exception vector.
Throughout this section, 9 vector numbers are given in decimal notation.

For all exceptions other than reset, the third step is to save the current processor context.
The processor creates an exception stack frame on the active supervisor stack and fills it
with context information appropriate for the type of exception. Other information may also
be stacked, depending on which exception is being processed and the state of the processor
prior to the exception. If the exception is an interrupt and the M bit of the status register is
set, the processor clears the M bit in the status register and builds a second stack frame on
the interrupt stack.

The last step initiates execution of the exception handler. The processor multiplies the
vector number by four to determine the exception vector offset. It adds the offset to the value
stored in the vector base register to obtain the memory address of the exception vector.
Next, the processor loads the program counter (and the interrupt stack pointer (ISP) for the
reset exception) from the exception vector table in memory. After prefetching the first three
words to fill the instruction pipe, the processor resumes normal processing at the address in
the program counter. Table 8-1 contains a description of all the exception vector offsets
defined for the MC68030.

Table 8-1. Exception Vector Assignments (Sheet 1 of 2)

Vector
Number(s)

Vector Offset Assignment
STATUS
Asserted

Hex Space

0
1
2
3

000
004
008
00C

SP
SP
SD
SD

Reset Initial Interrupt Stack Pointer
Reset Initial Program Counter
Bus Error
Address Error

—
—

YES
YES

4
5
6
7

010
014
018
01C

SD
SD
SD
SD

Illegal Instruction
Zero Divide
CHK, CHK2 Instruction
cpTRAPcc, TRAPcc, TRAPV Instructions

NO
NO
NO
NO

8
9
10
11

020
024
028
02C

SD
SD
SD
SD

Privilege Violation
Trace
Line 1010 Emulator
Line 1111 Emulator

NO
YES
NO
YES

12
13
14
15

030
034
038
03C

SD
SD
SD
SD

(Unassigned, Reserved)
Coprocessor Protocol Violation
Format Error
Uninitialized Interrupt

—
NO
NO
YES

Exception Processing

MOTOROLA

MC68030 USER’S MANUAL

8-3

SP = Supervisor Program Space
SD = Supervisor Data Space

As shown in Table 8-1, the first 64 vectors are defined by Motorola and 192 vectors are
reserved for interrupt vectors defined by the user. However, external devices may use
vectors reserved for internal purposes at the discretion of the system designer.

Table 8-1. Exception Vector Assignments (Sheet 2 of 2)

Vector
Number(s)

Vector Offset Assignment
STATUS
Asserted

Hex Space

16
Through

23

040

05C

SD

SD
Unassigned, Reserved —

24
25
26
27

060
064
068
06C

SD
SD
SD
SD

Spurious Interrupt
Level 1 Interrupt Autovector
Level 2 Interrupt Autovector
Level 3 Interrupt Autovector

Yes
Yes
Yes
Yes

28
29
30
31

070
074
078
07C

SD
SD
SD
SD

Level 4 Interrupt Autovector
Level 5 Interrupt Autovector
Level 6 Interrupt Autovector
Level 7 Interrupt Autovector

Yes
Yes
Yes
Yes

32
Through

47

080

0BC

SD

SD
TRAP #0-15 Instruction Vectors No

48
49
50
51

0C0
0C4
0C8
0CC

SD
SD
SD
SD

FPCP Branch or Set on Unordered Condition
FPCP Inexact Result
FPCP Divide by Zero
FPCP Underflow

No
No
No
No

52
53
54
55

0D0
0D4
0D8
0DC

SD
SD
SD
SD

FPCP Operand Error
FPCP Overflow
FPCP Signaling NAN
Unassigned, Reserved

No
No
No
No

56
57
58

0E0
0E4
0E8

SD
SD
SD

MMU Configuration Error
Defined for MC68851 not used by MC68030
Defined for MC68851 not used by MC68030

No
—
—

59
Through

63

0EC

0FC

SD

SD
Unassigned, Reserved —

64
Through

255

100

3FC

SD

SD
User Defined Vectors (192) Yes

Exception Processing

8-4

MC68030 USER’S MANUAL

MOTOROLA

The MC68030 provides the STATUS signal to identify instruction boundaries and some
exceptions. As shown in Table 8-2, STATUS indicates an instruction boundary and
exceptions to be processed, depending on the state of the internal microsequencer. In
addition, STATUS indicates when an MMU address translation cache miss has occurred
and the processor is about to begin a table search access for the logical address that caused
the miss. Instruction-related exceptions do not cause the assertion of STATUS as shown in
Table 8-1. For STATUS signal timing information, refer to

Section 12 Applications
Information

.

Table 8-2. Microsequencer STATUS Indications

Asserted for Indicates

1 Clock Sequencer at instruction boundary will begin execution of next instruction.
2 Clocks Sequencer at instruction boundary but will not begin the next instruction

immediately due to:

•

 pending trace exception
OR

•

 pending interrupt exception
3 Clocks MMU address translation cache miss — processor to begin table serach

OR
Exception processing to begin for:

•

 reset OR

•

 bus error OR

•

 address error OR

•

 spurious interrupt OR

•

 autovectored interrupt OR

•

 F-line instruction (no coprocessor responded)
Continuously Processor halted due to double bus fault.

Exception Processing

MOTOROLA

MC68030 USER’S MANUAL

8-5

8.1.1 Reset Exception

Assertion by external hardware of the RESET signal causes a reset exception. For details
on the requirements for the assertion of RESET, refer to

7.8 Reset Operation

.

The reset exception has the highest priority of any exception; it provides for system
initialization and recovery from catastrophic failure. When reset is recognized, it aborts any
processing in progress, and that processing cannot be recovered. Figure 8-1 is a flowchart
of the reset exception, which performs the following operations:

1. Clears both trace bits in the status register to disable tracing.

2. Places the processor in the interrupt mode of the supervisor privilege level by setting
the supervisor bit and clearing the master bit in the status register.

3. Sets the processor interrupt priority mask to the highest priority level (level 7).

4. Initializes the vector base register to zero ($00000000).

5. Clears the enable, freeze, and burst enable bits for both on-chip caches and the write-
allocate bit for the data cache in the cache control register.

6. Invalidates all entries in the instruction and data caches.

7. Clears the enable bit in the translation control register and the enable bits in both trans-
parent translation registers of the MMU.

8. Generates a vector number to reference the reset exception vector (two long words)
at offset zero in the supervisor program address space.

9. Loads the first long word of the reset exception vector into the interrupt stack pointer.

10. Loads the second long word of the reset exception vector into the program counter.

After the initial instruction prefetches, program execution begins at the address in the
program counter. The reset exception does not flush the address translation cache (ATC),
nor does it save the value of either the program counter or the status register.

Exception Processing

8-6

MC68030 USER’S MANUAL

MOTOROLA

.

Figure 8-1. Reset Operation Flowchart

BUS ERROR OR ADDRESS ERROR

OTHERWISE
SP (VECTOR #0)

EXIT

FETCH VECTOR #0

(DOUBLE BUS FAULT)

 S
M

T0, T1
I2-I0
VBR

CACR

1
0
0
$7
$0
$0

➧
➧
➧
➧
➧
➧

(DOUBLE BUS FAULT)

(DOUBLE BUS FAULT)

ENTRY

OTHERWISE
BEGIN INSTRUCTION

EXECUTION

BUS ERROROTHERWISE

INSTRUCTION AND
DATA CACHE

ENTRIES INVALIDATED

➧

FETCH VECTOR #1

PC (VECTOR #1)

➧

PREFETCH 3 WORDS

EXIT

EXIT

BUS ERROR

EXIT

ASSERT STATUS
CONTINUOUSLY

ASSERT STATUS
CONTINUOUSLY

ASSERT STATUS
CONTINUOUSLY

Exception Processing

MOTOROLA

MC68030 USER’S MANUAL

8-7

As described in

7.5.4 Double Bus Fault

, if bus error or address error occur during the
exception processing sequence for a reset, a double bus fault occurs. The processor halts,
and the STATUS signal is asserted continuously to indicate the halted condition.

Execution of the reset instruction does not cause a reset exception, nor does it affect any
internal registers, but it does cause the MC68030 to assert the RESET signal, resetting all
external devices.

8.1.2 Bus Error Exception

A bus error exception occurs when external logic aborts a bus cycle by asserting the BERR
input signal. If the aborted bus cycle is a data access, the processor immediately begins
exception processing. If the aborted bus cycle is an instruction prefetch, the processor may
delay taking the exception until it attempts to use the prefetched information. The assertion
of the BERR signal during the second, third, or fourth access of a burst operation does not
cause a bus error exception, but the burst is aborted. Refer to

6.1.3.2 Burst Mode Filling

and

7.5.1 Bus Errors

 for details on the effects of bus errors during burst operation.

A bus error exception also occurs when the MMU detects that a successful address
translation is not possible. Furthermore, when an ATC miss occurs and an external bus
cycle is required, the MMU must abort the bus cycle, search the translation tables in memory
for the mapping, and then retry the bus cycle. If a valid translation for the logical address is
not available due to a problem encountered during the table search (the attempt to access
the appropriate page descriptor in the translation tables for that page), a bus error exception
occurs when the aborted bus cycle is retried.

The problem encountered could be a limit violation, an invalid descriptor, or the assertion of
the BERR signal during a bus cycle used to access the translation tables. A miss in the ATC
causes the processor to automatically initiate a table search but does not cause a bus error
exception unless one of the specific conditions mentioned above is encountered.

Exception Processing

8-8

MC68030 USER’S MANUAL

MOTOROLA

The processor begins exception processing for a bus error by making an internal copy of the
current status register. The processor then enters the supervisor privilege level (by setting
the S bit in the status register) and clears the trace bits. The processor generates exception
vector number 2 for the bus error vector. It saves the vector offset, program counter, and the
internal copy of the status register on the stack. The saved program counter value is the
logical address of the instruction that was executing at the time the fault was detected. This
is not necessarily the instruction that initiated the bus cycle, since the processor overlaps
execution of instructions. The processor also saves the contents of some of its internal
registers. The information saved on the stack is sufficient to identify the cause of the bus
fault and recover from the error.

For efficiency, the MC68030 uses two different bus error stack frame formats. When the bus
error exception is taken at an instruction boundary, less information is required to recover
from the error, and the processor builds the short bus fault stack frame as shown in Table
8-7. When the exception is taken during the execution of an instruction, the processor must
save its entire state for recovery and uses the long bus fault stack frame shown in Table 8-
7. The format code in the stack frame distinguishes the two stack frame formats. Stack
frame formats are described in detail in

8.4 Exception Stack Frame Formats

.

If a bus error occurs during the exception processing for a bus error, address error, or reset
or while the processor is loading internal state information from the stack during the
execution of an RTE instruction, a double bus fault occurs, and the processor enters the
halted state as indicated by the continuous assertion of the STATUS signal. In this case, the
processor does not attempt to alter the current state of memory. Only an external RESET
can restart a processor halted by a double bus fault.

8.1.3 Address Error Exception

An address error exception occurs when the processor attempts to prefetch an instruction
from an odd address. This exception is similar to a bus error exception, but is internally
initiated. A bus cycle is not executed, and the processor begins exception processing
immediately. After exception processing commences, the sequence is the same as that for
bus error exceptions described in the preceding paragraphs, except that the vector number
is 3 and the vector offset in the stack frame refers to the address error vector. Either a short
or long bus fault stack frame may be generated. If an address error occurs during the
exception processing for a bus error, address error, or reset, a double bus fault occurs.

Exception Processing

MOTOROLA

MC68030 USER’S MANUAL

8-9

8.1.4 Instruction Trap Exception

Certain instructions are used to explicitly cause trap exceptions. The TRAP #n instruction
always forces an exception and is useful for implementing system calls in user programs.
The TRAPcc, TRAPV, cpTRAPcc, CHK, and CHK2 instructions force exceptions if the user
program detects an error, which may be an arithmetic overflow or a subscript value that is
out of bounds.

The DIVS and DIVU instructions force exceptions if a division operation is attempted with a
divisor of zero.

When a trap exception occurs, the processor copies the status register internally, enters the
supervisor privilege level, and clears the trace bits. If tracing is enabled for the instruction
that caused the trap, a trace exception is taken after the RTE instruction from the trap
handler is executed, and the trace corresponds to the trap instruction; the trap handler
routine is not traced. The processor generates a vector number according to the instruction
being executed; for the TRAP #n instruction, the vector number is 32 plus n. The stack frame
saves the trap vector offset, the program counter, and the internal copy of the status register
on the supervisor stack. The saved value of the program counter is the logical address of
the instruction following the instruction that caused the trap. For all instruction traps other
than TRAP #n, a pointer to the instruction that caused the trap is also saved. Instruction
execution resumes at the address in the exception vector after the required instruction
prefetches.

8.1.5 Illegal Instruction and Unimplemented Instruction Exceptions

An illegal instruction is an instruction that contains any bit pattern in its first word that does
not correspond to the bit pattern of the first word of a valid MC68030 instruction or is a
MOVEC instruction with an undefined register specification field in the first extension word.
An illegal instruction exception corresponds to vector number 4 and occurs when the
processor attempts to execute an illegal instruction.

Exception Processing

8-10

MC68030 USER’S MANUAL

MOTOROLA

An illegal instruction exception is also taken if a breakpoint acknowledge bus cycle (see

7.4.2 Breakpoint Acknowledge Cycle

) is terminated with the assertion of the bus error
signal. This implies that the external circuitry did not supply an instruction word to replace
the BKPT instruction word in the instruction pipe.

Instruction word patterns with bits [15:12] equal to $A are referred to as unimplemented
instructions with A-line opcodes. When the processor attempts to execute an
unimplemented instruction with an A-line opcode, an exception is generated with vector
number 10, permitting efficient emulation of unimplemented instructions.

Instructions that have word patterns with bits [15:12] equal to $F, bits [11:9] equal to $0, and
defined word patterns for subsequent words are legal MMU instructions. Instructions that
have bits [15:12] of the first words equal to $F, bits [11:9] equal to $0, and undefined patterns
in subsequent words are treated as unimplemented instructions with F-line opcodes when
execution is attempted in supervisor mode. When execution of the same instruction is
attempted in user mode, a privilege violation exception is taken. The exception vector
number for an unimplemented instruction with an F-line opcode is number 11.

The word patterns with bits [15:12] equal to $F and bits [11:9] not equal to zero are used for
coprocessor instructions. When the processor identifies a coprocessor instruction, it runs a
bus cycle referencing CPU space type $2 (refer to

4.2 Address Space Types

) and
addressing one of seven coprocessors (1-7, according to bits [11:9]). If the addressed
coprocessor is not included in the system and the cycle terminates with the assertion of the
bus error signal, the instruction takes an unimplemented instruction (F-line opcode)
exception. The system can emulate the functions of the coprocessor with an F-line
exception handler. Refer to

Section 10 Coprocessor Interface Description

for more
details.

Exception Processing

MOTOROLA

MC68030 USER’S MANUAL

8-11

Exception processing for illegal and unimplemented instructions is similar to that for
instruction traps. When the processor has identified an illegal or unimplemented instruction,
it initiates exception processing instead of attempting to execute the instruction. The
processor copies the status register, enters the supervisor privilege level, and clears the
trace bits, disabling further tracing. The processor generates the vector number, either 4,
10, or 11, according to the exception type. The illegal or unimplemented instruction vector
offset, current program counter, and copy of the status register are saved on the supervisor
stack, with the saved value of the program counter being the address of the illegal or
unimplemented instruction. Instruction execution resumes at the address contained in the
exception vector. It is the responsibility of the handling routine to adjust the stacked program
counter if the instruction is emulated in software or is to be skipped on return from the
handler.

8.1.6 Privilege Violation Exception

To provide system security, the following instructions are privileged:

 ANDI TO SR

 EOR to SR

 cpRESTORE

 cpSAVE

 MOVE from SR

 MOVE to SR

 MOVE USP

 MOVEC

 MOVES

 ORI to SR

 PFLUSH

 PLOAD

 PMOVE

 PTEST

 RESET

 RTE

 STOP

An attempt to execute one of the privileged instructions while at the user privilege level
causes a privilege violation exception. Also, a privilege violation exception occurs if a
coprocessor requests a privilege check and the processor is at the user level.

Exception Processing

8-12

MC68030 USER’S MANUAL

MOTOROLA

Exception processing for privilege violations is similar to that for illegal instructions. When
the processor identifies a privilege violation, it begins exception processing before executing
the instruction. The processor copies the status register, enters the supervisor privilege
level, and clears the trace bits. The processor generates vector number 8, the privilege
violation exception vector, and saves the privilege violation vector offset, the current
program counter value, and the internal copy of the status register on the supervisor stack.
The saved value of the program counter is the logical address of the first word of the
instruction that caused the privilege violation. Instruction execution resumes after the
required prefetches from the address in the privilege violation exception vector.

8.1.7 Trace Exception

To aid in program development, the M68000 processors include instruction-by-instruction
tracing capability. The MC68030 can be programmed to trace all instructions or only
instructions that change program flow. In the trace mode, an instruction generates a trace
exception after it completes execution, allowing a debugger program to monitor execution
of a program.

The T1 and T0 bits in the supervisor portion of the status register control tracing. The state
of these bits when an instruction begins execution determines whether the instruction
generates a trace exception after the instruction completes. Clearing both T bits disables
tracing, and instruction execution proceeds normally. Clearing the T1 bit and setting the T0
bit causes an instruction that forces a change of flow to take a trace exception. Instructions
that increment the program counter normally do not take the trace exception. Instructions
that are traced in this mode include all branches, jumps, instruction traps, returns, and
coprocessor instructions that modify the program counter flow. This mode also includes
status register manipulations, because the processor must re-prefetch instruction words to
fill the pipe again any time an instruction that can modify the status register is executed. The
execution of the BKPT instruction causes a change of flow if the opcode replacing the BKPT
is an instruction that causes a change of flow (i.e., a jump, branch, etc.). Setting the T1 bit
and clearing the T0 bit causes the execution of all instructions to force trace exceptions.
Table 8-3 shows the trace mode selected by each combination of T1 and T0.

Exception Processing

MOTOROLA

MC68030 USER’S MANUAL

8-13

In general terms, a trace exception is an extension to the function of any traced instruction
— that is, the execution of a traced instruction is not complete until the trace exception
processing is completed. If an instruction does not complete due to a bus error or address
error exception, trace exception processing is deferred until after the execution of the
suspended instruction is resumed and the instruction execution completes normally. If an
interrupt is pending at the completion of an instruction, the trace exception processing
occurs before the interrupt exception processing starts. If an instruction forces an exception
as part of its normal execution, the forced exception processing occurs before the trace
exception is processed. See

8.1.12 Multiple Exceptions

 for a more complete discussion of
exception priorities.

When the processor is in the trace mode and attempts to execute an illegal or
unimplemented instruction, that instruction does not cause a trace exception since it is not
executed. This is of particular importance to an instruction emulation routine that performs
the instruction function, adjusts the stacked program counter to skip the unimplemented
instruction, and returns. Before returning, the trace bits of the status register on the stack
should be checked. If tracing is enabled, the trace exception processing should also be
emulated for the trace exception handler to account for the emulated instruction.

The exception processing for a trace starts at the end of normal processing for the traced
instruction and before the start of the next instruction. The processor makes an internal copy
of the status register and enters the supervisor privilege level. It also clears the T0 and T1
bits of the status register, disabling further tracing. The processor supplies vector number 9
for the trace exception and saves the trace exception vector offset, program counter value,
and the copy of the status register on the supervisor stack. The saved value of the program
counter is the logical address of the next instruction to be executed. Instruction execution
resumes after the required prefetches from the address in the trace exception vector.

Table 8-3. Tracing Control

T1 T0 Tracing Function

0 0 No Tracing
0 1 Trace on Change of Flow (BRA, JMP, etc.)
1 0 Trace on Instruction Execution (Any Instruction)
1 1 Undefined, Reserved

Exception Processing

8-14

MC68030 USER’S MANUAL

MOTOROLA

The STOP instruction does not perform its function when it is traced. A STOP instruction that
begins execution with T1=1 and T0=0 forces a trace exception after it loads the status
register. Upon return from the trace handler routine, execution continues with the instruction
following the STOP, and the processor never enters the stopped condition.

8.1.8 Format Error Exception

Just as the processor checks that prefetched instructions are valid, the processor (with the
aid of a coprocessor, if needed) also performs some checks of data values for control
operations, including the coprocessor state frame format word for a cpRESTORE instruction
and the stack frame format for an RTE instruction.

The RTE instruction checks the validity of the stack format code. For long bus cycle fault
format frames, the RTE instruction also compares the internal version number of the
processor to that contained in the frame at memory location SP+54 (SP+$36). This check
ensures that the processor can correctly interpret internal state information from the stack
frame.

The cpRESTORE instruction passes the format word of the coprocessor state frame to the
coprocessor for validation. If the coprocessor does not recognize the format value, it signals
the MC68030 to take a format error exception. Refer to

Section 10 Coprocessor Interface
Description

 for details of coprocessor-related exceptions.

If any of the checks previously described determine that the format of the stacked data is
improper, the instruction generates a format error exception. This exception saves a short
format stack frame, generates exception vector number 14, and continues execution at the
address in the format exception vector. The stacked program counter value is the logical
address of the instruction that detected the format error.

8.1.9 Interrupt Exceptions

When a peripheral device requires the services of the MC68030 or is ready to send
information that the processor requires, it may signal the processor to take an interrupt
exception. The interrupt exception transfers control to a routine that responds appropriately.

Exception Processing

MOTOROLA

MC68030 USER’S MANUAL

8-15

The peripheral device uses the active-low interrupt priority level signals (IPL0–IPL2) to
signal an interrupt condition to the processor and to specify the priority of that condition. The
three signals encode a value of zero through seven (IPL0 is the least significant bit). High
levels on all three signals correspond to no interrupt requested (level 0) and low levels on
IPL0–IPL2 correspond to interrupt request level 7. Values 1-7 specify one of seven levels of
prioritized interrupts; level seven has the highest priority. External circuitry can chain or
otherwise merge signals from devices at each level, allowing an unlimited number of devices
to interrupt the processor.

The IPL0–IPL2 interrupt signals must maintain the interrupt request level until the MC68030
acknowledges the interrupt to guarantee that the interrupt is recognized. The MC68030
continuously samples the IPL0–IPL2 signals on consecutive falling edges of the processor
clock to synchronize and debounce these signals. An interrupt request that is the same for
two consecutive falling clock edges is considered a valid input. Although the protocol
requires that the request remain until the processor runs an interrupt acknowledge cycle for
that interrupt value, an interrupt request that is held for as short a period as two clock cycles
could be recognized.

The status register of the MC68030 contains an interrupt priority mask (I2, I1, I0, bits 10-8).
The value in the interrupt mask is the highest priority level that the processor ignores. When
an interrupt request has a priority higher than the value in the mask, the processor makes
the request a pending interrupt. Figure 8-2 is a flowchart of the procedure for making an
interrupt pending.

Figure 8-2. Interrupt Pending Procedure

RESET

SAMPLE AND SYNCH
IPL2-IPL0

ASSERT IPEND

(COMPARE INTERRUPT LEVEL
WITH STATUS REGISTER MASK)

OTHERWISE INTERRUPT LEVEL I2-I0,
OR TRANSITION ON LEVEL 7

>

Exception Processing

8-16

MC68030 USER’S MANUAL

MOTOROLA

When several devices are connected to the same interrupt level, each device should hold
its interrupt priority level constant until its corresponding interrupt acknowledge cycle to
ensure that all requests are processed.

Table 8-4 lists the interrupt levels, the states of IPL2-IPL0 that define each level, and the
mask value that allows an interrupt at each level.

*Indicates that no interrupt is requested.

Priority level 7, the nonmaskable interrupt (NMI), is a special case. Level 7 interrupts cannot
be masked by the interrupt priority mask, and they are transition sensitive. The processor
recognizes an interrupt request each time the external interrupt request level changes from
some lower level to level 7, regardless of the value in the mask. Figure 8-3 shows two
examples of interrupt recognitions, one for level 6 and one for level 7. When the MC68030
processes a level 6 interrupt, the status register mask is automatically updated with a value
of 6 before entering the handler routine so that subsequent level 6 interrupts are masked.
Provided no instruction that lowers the mask value is executed, the external request can be
lowered to level 3 and then raised back to level 6 and a second level 6 interrupt is not
processed. However, if the MC68030 is handling a level 7 interrupt (status register mask set
to 7) and the external request is lowered to level 3 and than raised back to level 7, a second
level 7 interrupt is processed. The second level 7 interrupt is processed because the level 7
interrupt is transition sensitive. A level 7 interrupt is also generated by a level comparison if
the request level and mask level are at seven and the priority mask is then set to a lower
level (with the MOVE to SR or RTE instruction, for example). As shown in Figure 8-3 for level
6 interrupt request level and mask level, this is the case for all interrupt levels.

Table 8-4. Interrupt Levels and Mask Values

Requested
Interrupt Level

Control Line Status
Interrupt Mask Level

Required for Recognition
IP2 IP1 IP0

0* High High High N/A*
1 High High Low 0
2 High Low High 0-1
3 High Low Low 0-2
4 Low High High 0-3
5 Low High Low 0-4
6 Low Low High 0-5
7 Low Low Low 0-7

Exception Processing

MOTOROLA

MC68030 USER’S MANUAL

8-17

Note that a mask value of 6 and a mask value of 7 both inhibit request levels 1-6 from being
recognized. In addition, neither masks a transition to an interrupt request level of 7. The only
difference between mask values of 6 and 7 occurs when the interrupt request level is 7 and
the mask value is 7. If the mask value is lowered to 6, a second level 7 interrupt is
recognized.

The MC68030 asserts the interrupt pending signal (IPEND) when it makes an interrupt
request pending. Figure 8-4 shows the assertion of IPEND relative to the assertion of an
interrupt level on the IPL lines. IPEND signals to external devices that an interrupt exception
will be taken at an upcoming instruction boundary (following any higher priority exception).

Figure 8-3. Interrupt Recognition Examples

EXTERNAL IPL2-IPL0 SR MASK (I2-I0) ACTION

LEVEL 6 EXAMPLE:

INITIAL CONDITIONS100 ($3) 101 ($5)

(LEVEL COMPARISON)IF 001 ($6) THEN 110 ($6) AND LEVEL 6 INTERRUPT

IF 100 ($3) AND STILL 110 ($6) THEN NO ACTION

IF 001 ($6) AND STILL 110 ($6) THEN

IF STILL 001 ($6) AND RTE SO THAT 101 ($5) THEN LEVEL 6 INTERRUPT (LEVEL COMPARISON)

(TRANSITION)

(TRANSITION)

LEVEL 7 EXAMPLE:

INITIAL CONDITIONS100 ($3) 101 ($5)

IF 000 ($7) THEN 111 ($7) AND LEVEL 7 INTERRUPT

IF 100 ($3) AND STILL 111 ($7) THEN NO ACTION

IF 000 ($7) AND STILL 111 ($7) THEN

NO ACTION

IF STILL 000 ($7) AND RTE SO THAT 101 ($5) THEN LEVEL 7 INTERRUPT (LEVEL COMPARISON)

LEVEL 7 INTERRUPT

Exception Processing

8-18

MC68030 USER’S MANUAL

MOTOROLA

The state of the IPEND signal is internally checked by the processor once per instruction,
independently of bus operation. In addition, it is checked during the second instruction
prefetch associated with exception processing. Figure 8-5 is a flowchart of the interrupt
recognition and associated exception processing sequence.

To predict the instruction boundary during which a pending interrupt is processed, the timing
relationship between the assertion of IPEND for that interrupt and the assertion of STATUS
must be examined. Figure 8-6 shows two examples of interrupt recognition. The first
assertion of STATUS after IPEND is denoted as STAT0. The next assertion of STATUS is
denoted as STAT1. If STAT0 begins on the falling edge of the clock immediately following
the clock edge that caused IPEND to assert (as shown in example 1), STAT1 is at least two
clocks long, and, when there are no other pending exceptions, the interrupt is acknowledged
at the boundary defined by STAT1. If IPEND is asserted with more setup time to STAT0, the
interrupt may be acknowledged at the boundary defined by STAT0 (as shown in example
2). In that case, STAT0 is asserted for two clocks, signaling this condition.

If no higher priority interrupt has been synchronized, the IPEND signal is negated during
state 0 (S0) of an interrupt acknowledge cycle (refer to

7.4.1.1 Interrupt Acknowledge
Cycle — Terminated Normally

), and the IPLx signals for the interrupt being acknowledged
can be negated at this time.

Figure 8-4. Assertion of IPEND

CLK

IPL2-IPL0

IPEND

COMPARE REQUEST
WITH MASK IN SR

ASSERT IPENDIPLs RECOGNIZED

IPLs SYNCHRONIZED

Exception Processing

MOTOROLA

MC68030 USER’S MANUAL

8-19

Figure 8-5. Interrupt Exception Processing Flowchart

TEMP
S

T0,T1

SR
1
0

➧
➧
➧

UPDATE 12-10

➧
➧

➧
➧

-(SP) TEMP
-(SP) PC

-(SP) FORMAT WORD
-(SP) OTHER EXCEPTION-DEPENDENT

ONCE PER INSTRUCTION

NEGATE IPEND
EXECUTE INTERRUPT

ACKNOWLEDGE CYCLE

IPEND BEFORE STATUS

(CHECK RELATIONSHIP BETWEEN IPEND AND STATUS)

EXIT

OTHERWISE

M = 1

TEMP SR
M 0

➧
➧

M = 0
PC VECTOR TABLE ENTRY

➧

PREFETCH 3 WORDS

END OF EXCEPTION PROCESSING
FOR THE INTERRUPT

BEGIN EXECUTION OF THE INTERRUPT
HANDLER ROUTINE OR PROCESS A
HIGHER PRIORITY EXCEPTION

THESE
INDIVIDUAL

BUS CYCLES
MAY OCCUR

IN ANY ORDER

WAIT FOR STAT0 OR STAT1*
INDICATE INTERRUPT TO BE PROCESSED

(ASSERT STATUS FOR 2 CLOCKS)

STAT0 THIS INSTRUCTION BOUNDARY

➧

STAT1 NEXT INSTRUCTION BOUNDARY

➧

*EXPLAINED FURTHER IN TEXT

INFORMATION

Exception Processing

8-20

MC68030 USER’S MANUAL

MOTOROLA

When processing an interrupt exception, the processor first makes an internal copy of the
status register, sets the privilege level to supervisor, suppresses tracing, and sets the
processor interrupt mask level to the level of the interrupt being serviced. The processor
attempts to obtain a vector number from the interrupting device using an interrupt
acknowledge bus cycle with the interrupt level number output on pins A1–A3 of the address
bus. For a device that cannot supply an interrupt vector, the autovector signal (AVEC) can
be asserted, and the MC68030 uses an internally generated autovector, which is one of
vector numbers 25-31, that corresponds to the interrupt level number. If external logic
indicates a bus error during the interrupt acknowledge cycle, the interrupt is considered
spurious, and the processor generates the spurious interrupt vector number, 24. Refer to
7.4.1 Interrupt Acknowledge Bus Cycles for complete interrupt bus cycle information.

Figure 8-6. Examples of Interrupt Recognition and Instruction Boundaries

CLK

IPEND

STATUS

STAT0 STAT1

EXAMPLE 1: INTERRUPT EXCEPTION SIGNALED DURING STAT1

PROCEED TO INTERRUPT
EXCEPTION PROCESSING

CLK

IPEND

STATUS

STAT1

EXAMPLE 2: INTERRUPT EXCEPTION SIGNALED DURING STAT0

PROCEED TO INTERRUPT
EXCEPTION PROCESSING

Exception Processing

MOTOROLA MC68030 USER’S MANUAL 8-21

Once the vector number is obtained, the processor saves the exception vector offset,
program counter value, and the internal copy of the status register on the active supervisor
stack. The saved value of the program counter is the logical address of the instruction that
would have been executed had the interrupt not occurred. If the interrupt was acknowledged
during the execution of a coprocessor instruction, further internal information is saved on the
stack so that the MC68030 can continue executing the coprocessor instruction when the
interrupt handler completes execution.

If the M bit of the status register is set, the processor clears the M bit and creates a
throwaway exception stack frame on top of the interrupt stack as part of interrupt exception
processing. This second frame contains the same program counter value and vector offset
as the frame created on top of the master stack, but has a format number of 1 instead of 0
or 9. The copy of the status register saved on the throwaway frame is exactly the same as
that placed on the master stack except that the S bit is set in the version placed on the
interrupt stack. (It may or may not be set in the copy saved on the master stack.) The
resulting status register (after exception processing) has the S bit set and the M bit cleared.

The processor loads the address in the exception vector into the program counter, and
normal instruction execution resumes after the required prefetches for the interrupt handler
routine.

Most M68000 Family peripherals use programmable interrupt vector numbers as part of the
interrupt request/acknowledge mechanism of the system. If this vector number is not
initialized after reset and the peripheral must acknowledge an interrupt request, the
peripheral usually returns the vector number for the uninitialized interrupt vector, 15.

8.1.10 MMU Configuration Exception
When the MC68030 executes a PMOVE instruction that attempts to move invalid data into
the TC, CRP, or SRP register of the MMU, the PMOVE instruction causes an MMU
configuration exception. The exception is a post-instruction exception; it is processed after
the instruction completes. The processor generates exception vector number 56 when an
MMU configuration exception occurs. Refer to Section 9 Memory Management Unit for a
description of the valid configurations for the MMU registers.

Exception Processing

8-22 MC68030 USER’S MANUAL MOTOROLA

The processor copies the status register, enters the supervisor privilege level, and clears
the trace bits. The processor saves the vector offset, the scanPC value (which points to the
next instruction), and the copy of the status register on the supervisor stack. It also saves
the logical address of the PMOVE instruction on the stack. Then the processor resumes
normal instruction execution after the required prefetches from the address in the exception
vector.

8.1.11 Breakpoint Instruction Exception
To use the MC68030 in a hardware emulator, it must provide a means of inserting
breakpoints in the emulator code and of performing appropriate operations at each
breakpoint. For the MC68000 and MC68008, this can be done by inserting an illegal
instruction at the breakpoint and detecting the illegal instruction exception from its vector
location. However, since the vector base register on the MC68010, MC68020, and
MC68030 allows arbitrary relocation of exception vectors, the exception address cannot
reliably identify a breakpoint. The MC68020 and MC68030 processors provide a breakpoint
capability with a set of breakpoint instructions, $4848-$484F, for eight unique breakpoints.
The breakpoint facility also allows external hardware to monitor the execution of a program
residing in the on-chip instruction cache without severe performance degradation.

When the MC68030 executes a breakpoint instruction, it performs a breakpoint
acknowledge cycle (read cycle) from CPU space type $0 with address lines A2-A4
corresponding to the breakpoint number. Refer to Figure 7-44 for the CPU space type $0
addresses and to 7.4.2 Breakpoint Acknowledge Cycle for a description of the breakpoint
acknowledge cycle. The external hardware can return either BERR, DSACKx, or STERM
with an instruction word on the data bus. If the bus cycle terminates with BERR, the
processor performs illegal instruction exception processing. If the bus cycle terminates with
DSACKx or STERM, the processor uses the data returned to replace the breakpoint
instruction in the internal instruction pipe and begins execution of that instruction. The
remainder of the pipe remains unaltered. In addition, no stacking or vector fetching is
involved with the execution of the instruction. Figure 8-7 is a flowchart of the breakpoint
instruction execution.

Exception Processing

MOTOROLA MC68030 USER’S MANUAL 8-23

8.1.12 Multiple Exceptions
When several exceptions occur simultaneously, they are processed according to a fixed
priority. Table 8-5 lists the exceptions, grouped by characteristics. Each group has a priority
from 0-4. Priority 0 has the highest priority.

As soon as the MC68030 has completed exception processing for a condition when another
exception is pending, it begins exception processing for the pending exception instead of
executing the exception handler for the original exception condition. Also, whenever a bus
error or address error occurs, its exception processing takes precedence over lower priority
exceptions and occurs immediately. For example, if a bus error occurs during the exception
processing for a trace condition, the system processes the bus error and executes its
handler before completing the trace exception processing. However, most exceptions
cannot occur during exception processing, and very few combinations of the exceptions
shown in Table 8-5 can be pending simultaneously.

Figure 8-7. Breakpoint Instruction Flowchart

EXIT

ENTRY

A19-A16 $0
A4-A2 BREAKPOINT NUMBER

➧
➧

INITIATE READ BUS CYCLE

DSACKx OR STERM BERR

CYCLE TERMINATED WITH

PIPE STAGE D INSTRUCTION WORD ON DATA BUS
EXECUTE INSTRUCTION WORD

➧ TAKE ILLEGAL INSTRUCTION
EXCEPTION

Exception Processing

8-24 MC68030 USER’S MANUAL MOTOROLA

 0.0 is the highest priority, 4.2 is the lowest.

The priority scheme is very important in determining the order in which exception handlers
execute when several exceptions occur at the same time. As a general rule, the lower the
priority of an exception, the sooner the handler routine for that exception executes. For
example, if simultaneous trap, trace, and interrupt exceptions are pending, the exception
processing for the trap occurs first, followed immediately by exception processing for the
trace and then for the interrupt. When the processor resumes normal instruction execution,
it is in the interrupt handler, which returns to the trace handler, which returns to the trap
exception handler. This rule does not apply to the reset exception; its handler is executed
first even though it has the highest priority because the reset operation clears all other
exceptions.

8.1.13 Return from Exception
After the processor has completed exception processing for all pending exceptions, the
processor resumes normal instruction execution at the address in the vector for the last
exception processed. Once the exception handler has completed execution, the processor
must return to the system context prior to the exception (if possible). The RTE instruction
returns from the handler to the previous system context for any exception.

Table 8-5. Exception Priority Groups

Group/Priority Exception and Relative Priority Characteristics
0 0.0 — Reset Aborts all processing (instruction or

exception) and does not save old context.
1 1.0 — Address Error

1.1 — Bus Error
Suspends processing (instruction or
exception) and saves internal context.

2 2.0 — BKPT #n, CHK, CHK2, cp Mid-Instruction, cp
Protocol Violation, cpTRAPcc, Divide by Zero,
RTE, TRAP #n, TRAPV, MMU Configuration

Exception processing is part of instruction
execution.

3 3.0 — Illegal Instruction, Line A, Unimplemented Line
F, Privilege Violation, cp Pre-Instruction

Exception processing begins before
instruction is executed.

4 4.0 — cp Post-Instruction
4.1 — Trace
4.2 — Interrupt

Exception processing begins when current
instruction or previous exception processing
is completed.

Exception Processing

MOTOROLA MC68030 USER’S MANUAL 8-25

When the processor executes an RTE instruction, it examines the stack frame on top of the
active supervisor stack to determine if it is a valid frame and what type of context restoration
it requires. This section describes the processing for each of the stack frame types; refer to
8.3 COPROCESSOR CONSIDERATIONS for a description of the stack frame type formats.

For a normal four-word frame, the processor updates the status register and program
counter with the data read from the stack, increments the stack pointer by eight, and
resumes normal instruction execution.

For the throwaway four-word stack, the processor reads the status register value from the
frame, increments the active stack pointer by eight, updates the status register with the
value read from the stack, and then begins RTE processing again, as shown in Figure 8-8.
The processor reads a new format word from the stack frame on top of the active stack
(which may or may not be the same stack used for the previous operation) and performs the
proper operations corresponding to that format. In most cases, the throwaway frame is on
the interrupt stack and when the status register value is read from the stack, the S and M
bits are set. In that case, there is a normal four-word frame or a ten-word coprocessor mid-
instruction frame on the master stack. However, the second frame may be any format (even
another throwaway frame) and may reside on any of the three system stacks.

For the six-word stack frame, the processor restores the status register and program counter
values from the stack, increments the active supervisor stack pointer by 12, and resumes
normal instruction execution.

For the coprocessor mid-instruction stack frame, the processor reads the status register,
program counter, instruction address, internal register values, and the evaluated effective
address from the stack, restores these values to the corresponding internal registers, and
increments the stack pointer by 20. The processor then reads from the response register of
the coprocessor that initiated the exception to determine the next operation to be performed.
Refer to Section 10 Coprocessor Interface Description for details of coprocessor-related
exceptions.

For both the short and long bus fault stack frames, the processor first checks the format
value on the stack for validity. In addition, for the long stack frame, the processor compares
the version number in the stack with its own version number. The version number is located
in the most significant nibble (bits 15-12) of the word at location SP+$36 in the long stack
frame. This validity check is required in a multiprocessor system to ensure that the data is
properly interpreted by the RTE instruction. The RTE instruction also reads from both ends
of the stack frame to make sure it is accessible. If the frame is invalid or inaccessible, the
processor takes a format error or a bus error exception, respectively. Otherwise, the
processor reads the entire frame into the proper internal registers, deallocates the stack,
and resumes normal processing. Once the processor begins to load the frame to restore its
internal state, the assertion of the BERR signal causes the processor to enter the halted
state with the continuous assertion of the STATUS signal. Refer to 8.2 Bus Fault Recovery
for a description of the processing that occurs after the frame is read into the internal
registers.

Exception Processing

8-26 MC68030 USER’S MANUAL MOTOROLA

If a format error or bus error exception occurs during the frame validation sequence of the
RTE instruction, either due to any of the errors previously described or due to an illegal
format code, the processor creates a normal four-word or a bus fault stack frame below the
frame that it was attempting to use. In this way, the faulty stack frame remains intact. The
exception handler can examine or repair the faulty frame. In a multiprocessor system, the
faulty frame can be left to be used by another processor of a different type (e.g., an
MC68010, MC68020, or a future M68000 processor) when appropriate.

Figure 8-8. RTE Instruction for Throwaway Four-Word Frame

ENTRY

SR TEMP
SP SP + 6

➧

➧

TEMP (SP) +
READ FORMAT WORD

➧

OTHERWISE

FORMAT CODE = $1

(THROWAWAY FRAME)

FORMAT CODE = $0 (4-WORD FRAME)

OTHERWISE

PC (SP) +
SP SP + 6
SR TEMP

➧
➧
➧

EXIT

OTHER FORMATS

INVALID FORMAT WORD

TAKE FORMAT
ERROR EXCEPTION

Exception Processing

MOTOROLA MC68030 USER’S MANUAL 8-27

8.2 BUS FAULT RECOVERY
An address error exception or a bus error exception indicates a bus fault. The saving of the
processor state for a bus error or address error is described in 8.1.2 Bus Error Exception,
and the restoring of the processor state by an RTE instruction is described in 8.1.13 Return
from Exception

Processor accesses of either data items or the instruction stream can result in bus errors.
When a bus error exception occurs while accessing a data item, the exception is taken
immediately after the bus cycle terminates. Bus errors reported by the on-chip MMU are also
processed immediately. A bus error occurring during an instruction stream access is not
processed until the processor attempts to use the information (if ever) that the access should
have provided. For instruction faults, when the short format frame applies, the address of
the pipe stage B word is the value in the program counter plus four, and the address of the
stage C word is the value in the program counter plus two. For the long format, the long word
at SP+$24 contains the address of the stage B word; the address of the stage C word is the
address of the stage B word minus two. Address error faults occur only for instruction stream
accesses, and the exceptions are taken before the bus cycles are attempted.

Exception Processing

8-28 MC68030 USER’S MANUAL MOTOROLA

8.2.1 Special Status Word (SSW)
The internal SSW (see Figure 8-9) is one of several registers saved as part of the bus fault
exception stack frame. Both the short bus cycle fault format and the long bus cycle fault
format include this word at offset $A. The bus cycle fault stack frame formats are described
in detail at the end of this section.

FC — Fault on stage C of the instruction pipe
FB — Fault on stage B of the instruction pipe
RC — Rerun flag for stage C of the instruction pipe*
RB — Rerun flag for stage B of the instruction pipe*
DF — Fault/rerun flag for data cycle*
RM — Read-modify-write on data cycle
RW — Read/write for data cycle — 1=read, 0=write
SIZE — Size code for data cycle
FC2-FC0 — Address space for data cycle
*1=Rerun Faulted bus Cycle, or run pending prefetch
 0=Do not rerun bus sycle
 X=For internal use only

Figure 8-9. Special Status Word (SSW)

The SSW information indicates whether the fault was caused by an access to the instruction
stream, data stream, or both. The high-order half of the SSW contains two status bits each
for the B and C stages of the instruction pipe. The fault bits (FB and FC) indicate that the
processor attempted to use a stage (B or C) and found it to be marked invalid due to a bus
error on the prefetch for that stage. The fault bits can be used by a bus error handler to
determine the cause(s) of a bus error exception. The rerun flag bits (RB and RC) are set to
indicate that a fault occurred during a prefetch for the corresponding stage. A rerun bit is
always set when the corresponding fault bit is set. The rerun bits indicate that the word in a
stage of the instruction pipe is invalid, and the state of the bits can be used by a handler to
repair the values in the pipe after an address error or a bus error, if necessary. If a rerun bit
is set when the processor executes an RTE instruction, the processor may execute a bus
cycle to prefetch the instruction word for the corresponding stage of the pipe (if it is required).
If the rerun and fault bits are set for a stage of the pipe, the RTE instruction automatically
reruns the prefetch cycle for that stage. The address space for the bus cycle is the program
space for the privilege level indicated in the copy of the status register on the stack. If a rerun
bit is cleared, the words on the stack for the corresponding stages of the pipe are accepted
as valid; the processor assumes that there is no prefetch pending for the corresponding
stage and that software has repaired or filled the image of the stage, if necessary.

15 14 13 12 11 10 9 8 7 6
5
4

3
2

 0

FC FB RC RB X X X DF RM RW SIZE X
FC2-
FC0

Exception Processing

MOTOROLA MC68030 USER’S MANUAL 8-29

If an address error exception occurs, the fault bits written to the stack frame are not set (they
are only set due to a bus error, as previously described), and the rerun bits alone show the
cause of the exception. Depending on the state of the pipeline, either RB and RC are both
set, or RC alone is set. To correct the pipeline contents and continue execution of the
suspended instruction, software must place the correct instruction stream data in the stage
C and/or stage B images requested by the rerun bits and clear the rerun bits. The least
significant half of the SSW applies to data cycles only. If the DF bit of the SSW is set, a data
fault has occurred and caused the exception. If the DF bit is set when the processor reads
the stack frame, it reruns the faulted data access; otherwise, it assumes that the data input
buffer value on the stack is valid for a read or that the data has been correctly written to
memory for a write (or that no data fault occurred). The RM bit of the SSW identifies a read-
modify-write operation and the RW bit indicates whether the cycle was a read or write
operation. The SIZE field indicates the size of the operand access, and the FC field specifies
the address space for the data cycle. Data and instruction stream faults may be pending
simultaneously; the fault handler should be able to recognize any combination of the FC, FB,
RC, RB, and DF bits.

8.2.2 Using Software to Complete the Bus Cycles
One method of completing a faulted bus cycle is to use a software handler to emulate the
cycle. This is the only method for correcting address errors. The handler should emulate the
faulted bus cycle in a manner that is transparent to the instruction that caused the fault. For
instruction stream faults, the handler may need to run bus cycles for both the B and C stages
of the instruction pipe. The RB and RC bits identify the stages that may require a bus cycle;
the FB and FC bits indicate that a stage was invalid when an attempt was made to use its
contents. Those stages must be repaired. For each faulted stage, the software handler
should copy the instruction word from the proper address space as indicated by the S bit of
the copy of the status register saved on the stack to the image of the appropriate stage in
the stack frame. In addition, the handler must clear the rerun bit associated with the stage
that it has corrected. The handler should not change the fault bits FB and FC.

Exception Processing

8-30 MC68030 USER’S MANUAL MOTOROLA

To repair data faults (indicated by DF=1), the software should first examine the RM bit in the
SSW to determine if the fault was generated during a read-modify-write operation. If RM=0,
the handler should then check the R/W bit of the SSW to determine if the fault was caused
by a read or a write cycle. For data write faults, the handler must transfer the properly sized
data from the data output buffer (DOB) on the stack frame to the location indicated by the
data fault address in the address space defined by the SSW. (Both the DOB and the data
fault address are part of the stack frame at SP+$18 and SP+$10, respectively.) Data read
faults only generate the long bus fault frame and the handler must transfer properly sized
data from the location indicated by the fault address and address space to the image of the
data input buffer (DIB) at location SP+$2C of the long format stack frame. Byte, word, and
3-byte[lz operands are right-justified in the 4-byte data buffers. In addition, the software
handler must clear the DF bit of the SSW to indicate that the faulted bus cycle has been
corrected.

To emulate a read-modify-write cycle, the exception handler must first read the operation
word at the program counter address (SP+2 of the stack frame). This word identifies the
CAS, CAS2, or TAS instruction that caused the fault. Then the handler must emulate this
entire instruction (which may consist of up to four long word transfers) and update the
condition code portion of the status register appropriately, because the RTE instruction
expects the entire operation to have been completed if the RM bit is set and the DF bit is
cleared. This is true even if the fault occurred on the first read cycle.

To emulate the entire instruction, the handler must save the data and address registers for
the instruction (with a MOVEM instruction, for example). Next, the handler reads and
modifies (if necessary) the memory location. It clears the DF bit in the SSW of the stack
frame and modifies the condition codes in the status register copy and the copies of any data
or address registers required for the CAS and CAS2 instructions. Last, the handler restores
the registers that it saved at the beginning of the emulation. Except for the data input buffer
(DIB), the copy of the status register, and the SSW, the handler should not modify a bus fault
stack frame. The only bits in the SSW that may be modified are DF, RB, and RC; all other
bits, including those defined for internal use, must remain unchanged.

Address error faults must be repaired in software. Address error faults can be distinguished
from bus error faults by the value in the vector offset field of the format word.

Exception Processing

MOTOROLA MC68030 USER’S MANUAL 8-31

8.2.3 Completing the Bus Cycles with Rte
Another method of completing a faulted bus cycle is to allow the processor to rerun the bus
cycles during execution of the RTE instruction that terminates the exception handler. This
method cannot be used to recover from address errors. The RTE instruction is always
executed. Unless the handler routine has corrected the error and cleared the fault (and
cleared the rerun and DF bits of the SSW), the RTE instruction can complete the bus
cycle(s). If the DF bit is still set at the time of the RTE execution, the faulted data cycle is
rerun by the RTE instruction. If the fault bit for a stage of the pipe is set and the
corresponding rerun bit was not cleared by the software, the RTE reruns the associated
instruction prefetch. The fault occurs again unless the cause of the fault, such as a non-
resident page in a virtual memory system, has been corrected. If the rerun bit is set for a
stage of the pipe and the fault bit is cleared, the associated prefetch cycle may or may not
be run by the RTE instruction (depending on whether the stage is required).

If a fault occurs when the RTE instruction attempts to rerun the bus cycle(s), the processor
creates a new stack frame on the supervisor stack after deallocating the previous frame, and
address error or bus error exception processing starts in the normal manner.

The read-modify-write operations of the MC68030 can also be completed by the RTE
instruction that terminates the handler routine. The rerun operation, executed by the RTE
instruction with the DF bit of the SSW set, reruns the entire instruction. If the cause of the
error has been corrected, the handler does not need to emulate the instruction but can leave
the DF bit set and execute the RTE instruction.

Systems programmers and designers should be aware that the MMU of the MC68030 treats
any bus cycle with RMC asserted as a write operation for protection checking, regardless of
the state of R/W signal. Otherwise, the potential for partially destroying system pointers with
CAS and CAS2 instructions exists since one portion of the write operation could take place
and the remainder be aborted by a bus error.

Exception Processing

8-32 MC68030 USER’S MANUAL MOTOROLA

8.3 COPROCESSOR CONSIDERATIONS
Exception handler programmers should consider carefully whether to save and restore the
context of a coprocessor at the beginning and end of handler routines for exceptions that
can occur during the execution of a coprocessor instruction (i.e., bus errors, interrupts, and
coprocessor-related exceptions). The nature of the coprocessor and the exception handler
routine determines whether or not saving the state of one or more coprocessors with the
cpSAVE and cpRESTORE instructions is required. If the coprocessor allows multiple
coprocessor instructions to be executed concurrently, it may require its state to be saved
and restored for all coprocessor-generated exceptions, regardless of whether or not the
coprocessor is accessed during the handler routine. The MC68882 floating-point
coprocessor is an example of this type of coprocessor. On the other hand, the MC68881
floating-point coprocessor requires FSAVE and FRESTORE instructions within an
exception handler routine only if the exception handler itself uses the coprocessor.

8.4 EXCEPTION STACK FRAME FORMATS
The MC68030 provides six different stack frames for exception processing. The set of
frames includes the normal four- and six-word stack frames, the four-word throwaway stack
frame, the coprocessor mid-instruction stack frame, and the short and long bus fault stack
frames.

When the MC68030 writes or reads a stack frame, it uses long-word operand transfers
wherever possible. Using a long-word-aligned stack pointer with memory that is on a 32-bit
port greatly enhances exception processing performance. The processor does not
necessarily read or write the stack frame data in sequential order.

The system software should not depend on a particular exception generating a particular
stack frame. For compatibility with future devices, the software should be able to handle any
type of stack frame for any type of exception.

Table 8-6 summarizes the stack frames defined for the M68000 Family.

Exception Processing

MOTOROLA MC68030 USER’S MANUAL 8-33

Exception Stack Frames (Sheet 1 of 2).

Exception Processing

8-34 MC68030 USER’S MANUAL MOTOROLA

Table 8-5. Exception Stack Frames (Sheet 2 of 2).

MOTOROLA

MC68030 USER’S MANUAL

9-1

SECTION 9
MEMORY MANAGEMENT UNIT

The MC68030 includes a memory management unit (MMU) that supports a demand-paged
virtual memory environment. The memory management is "demand in that programs do not
specify required memory areas in advance, but request them by accessing logical
addresses. The physical memory is paged, meaning that it is divided into blocks of equal
size called page frames. The logical address space is divided into pages of the same size.
The operating system assigns pages to page frames as they are required to meet the needs
of programs.

The principal function of the MMU is the translation of logical addresses to physical
addresses using translation tables stored in memory. The MMU contains an address
translation cache (ATC) in which recently used logical-to-physical address translations are
stored. As the MMU receives each logical address from the CPU core, it searches the ATC
for the corresponding physical address. When the translation is not in the ATC, the
processor searches the translation tables in memory for the translation information. The
address calculations and bus cycles required for this search are performed by microcode
and dedicated logic in the MC68030. In addition, the MMU contains two transparent
translation registers (TT0 and TT1) that identify blocks of memory that can be accessed
without translation. The features of the MMU are:

• 32-Bit Logical Address Translated to 32-Bit Physical Address with 3-Bit Function Code

• Supports Two-Clock Cycle Processor Accesses to Physical Address Spaces

• Addresses Translated in Parallel with Accesses to Data and Instruction Caches

• On-Chip Fully Associative 22-Entry ATC

• Translation Table Search Controlled by Microcode

• Eight Page Sizes: 256, 512, 1K, 2K, 4K, 8K, 16K and 32K Bytes

• Separate User and Supervisor Translation Table Trees Are Supported

• Two Independent Blocks Can Be Defined as Transparent (Untranslated)

• Multiple Levels of Translation Tables

Memory Management Unit

9-2

MC68030 USER’S MANUAL

MOTOROLA

• 0-15 Upper Logical Address Bits Can Be Ignored (Using Initial Shift)

• Portions of Tables Can Be Undefined (Using Limits)

• Write Protection and Supervisor Protection

• History Bits Automatically Maintained in Page Descriptors

• Cache Inhibit Output (CIOUT) Signal Asserted on Page Basis

• External Translation Disable Input Signal (MMUDIS)

• Subset of Instruction Set Defined by MC68851

The MMU completely overlaps address translation time with other processing activity when
the translation is resident in the ATC. ATC accesses operate in parallel with the on-chip
instruction and data caches.

Figure 9-1 is a block diagram of the MC68030 showing the relationship of the MMU to the
execution unit and the bus controller. For an instruction or operand access, the MC68030
simultaneously searches the caches and searches for a physical address in the ATC. If the
translation is available, the MMU provides the physical address to the bus controller and
allows the bus cycle to continue. When the instruction or operand is in either of the on-chip
caches on a read cycle, the bus controller aborts the bus cycle before address strobe is
asserted. Similarly, the MMU causes a bus cycle to abort before the assertion of address
strobe when a valid translation is not available in the ATC or when an invalid access is
attempted.

An MMU disable input signal (MMUDIS) is provided that dynamically disables address
translation for emulation, diagnostic, or other purposes.

The programming model of the MMU (see Figure 9-2) consists of two root pointer registers,
a control register, two transparent translation registers, and a status register. These
registers can only be accessed by supervisor programs. The CPU root pointer register
points to an address translation tree structure in memory that describes the logical-to-
physical mapping for user accesses or for both user and supervisor accesses. The
supervisor root pointer register optionally points to an address translation tree structure for
supervisor mappings. The translation control register is comprised of fields that control the
translation operation. Each transparent translation register can define a block of logical
addresses that are used as physical addresses (without translation). The MMU status
register contains accumulated status information from a translation performed as a part of a
PTEST instruction.

Memory Management Unit

MOTOROLA

MC68030 USER’S MANUAL

9-3

Figure 9-1. MMU Block Diagram

 M
IC

R
O

SE
Q

U
EN

C
ER

 A
N

D
C

O
N

TR
O

L

C
O

N
TR

O
L

ST
O

R
E

IN
ST

R
U

C
TI

O
N

C
AC

H
E

ST
AG

E
B

ST
AG

E
C

ST
AG

E
D

IN
TE

R
N

AL
D

AT
A

BU
S

IN
ST

R
U

C
TI

O
N

 P
IP

E

 IN
ST

R
U

C
TI

O
N

AD
D

R
ES

S
BU

S

AD
D

R
ES

S
SE

C
TI

O
N

PR
O

G
R

AM
C

O
U

N
TE

R
SE

C
TI

O
N

D
AT

A
SE

C
TI

O
N

EX
EC

U
TI

O
N

 U
N

IT

M
IS

AL
IG

N
M

EN
T

M
U

LT
IP

LE
XE

R

SI
ZE

M
U

LT
IP

LE
XE

R
D

AT
A

PA
D

S
D

AT
A

BU
S

W
R

IT
E

PE
N

D
IN

G
BU

FF
ER

PR
EF

ET
C

H
 P

EN
D

IN
G

BU
FF

ER

 M
IC

R
O

BU
S

 C
O

N
TR

O
LL

ER

BU
S

C
O

N
TR

O
LL

ER

BU
S

C
O

N
TR

O
L

SI
G

N
AL

S

AD
D

R
ES

S
BU

S

AD
D

R
ES

S
PA

D
S

AD
D

R
ES

S
BU

S

AD
D

R
ES

S

D
AT

A
C

AC
H

E

D
AT

A
AD

D
R

ES
S

BU
S

C
AC

H
E

H
O

LD
IN

G
R

EG
IS

TE
R

(C
AH

R
)

AC
C

ES
S

C
O

N
TR

O
L

U
N

IT

C
O

N
TR

O
L

LO
G

IC

Memory Management Unit

9-4

MC68030 USER’S MANUAL

MOTOROLA

The ATC in the MMU is a fully associative cache that stores 22 logical-to-physical address
translations and associated page information. It compares the logical address and function
code internally supplied by the processor with all tag entries in the ATC. When the access
address and function code matches a tag in the ATC (a hit occurs) and no access violation
is detected, the ATC outputs the corresponding physical address to the bus controller, which
continues the external bus cycle. Function codes are routed to the bus controller unmodified.

Each ATC entry contains a logical address, a physical address, and status bits. Among the
status bits are the write protect and cache inhibit bits.

When the ATC does not contain the translation for a logical address (a miss occurs) and an
external bus cycle is required, the MMU aborts the access and causes the processor to
initiate bus cycles that search the translation tables in memory for the correct translation. If
the table search completes without any errors, the MMU stores the translation in the ATC
and provides the physical address for the access, allowing the bus controller to retry the
original bus cycle.

An MMU translation table has a tree structure with the base of the first table defined by a
root pointer descriptor. The root pointer descriptor of the current translation table is resident
in one of two root pointer registers. The general tree structure is shown in Figure 9-3. Table
entries at the upper levels of a tree point to other tables. The table leaf entries are page
frame addresses. All addresses stored in the translation tables are physical addresses; the
translation tables reside in the physical address space.

System software selects the parameters for the translation tables by configuring the
translation control register (TC) appropriately. The function codes or a portion of the logical
address can be defined as the index into the first level of lookup in the table. The TC register
specifies how many bits of the logical address are used as the index for each level of the
lookup (as many as 15 bits can be used at a given level).

Figure 9-2. MMU Programming Model
FIG. 9-2

ACCESS CONTROL 0

31 0

ACCESS CONTROL 1

31 0

ACU STATUS (ACUSR)

15 0

Memory Management Unit

MOTOROLA

MC68030 USER’S MANUAL

9-5

Figure 9-3. Translation Table Tree

ADDRESS BASE ADDRESS MASK

31 24 23 16

E 0 0 0 0 CI R/W RWN 0 FC BASE 0 FC MASK

15 8 7 0

FIG 9-3

ADDRESS BASE - VALUE OF A31-A24 THAT DEFINES BLOCK
ADDRESS MASK - BITS A31-A24 TO BE IGNORED

 E - ENABLE
 CI - CACHE INHIBIT
 R/W - READ/WRITE
 RWM - READ WRITE MASK
 FC BASE - FUNCTION CODE VALUE FOR BLOCK
 FC MASK - FUNCTION CODE BITS TO BE IGNORED

Memory Management Unit

9-6

MC68030 USER’S MANUAL

MOTOROLA

9.1 TRANSLATION TABLE STRUCTURE

The M68030 uses the ATC and translation tables stored in memory to perform the
translation from a logical to a physical address. Translation tables for a program are loaded
into memory by the operating system.

The general translation table structure supported by the MC68030 is a tree structure of
tables. The pointer tables form the branches of the tree. These tables contain the base
addresses of other tables. Page descriptors can reside in pointer tables and, in that case,
are called early termination descriptors. The tables at the leaves of the tree are called page
tables. Only a portion of the translation table for the entire logical address space is required
to be resident in memory at any time: specifically, only the portion of the table that translates
the logical addresses that the currently executing process(es) use(s) must be resident.
Portions of translation tables can be dynamically allocated as the process requires
additional memory.

As shown in Figure 9-4, the root pointer for a table is a descriptor that contains the base
address of the top level table for the tree. The pointer tables and page tables also consist of
descriptors. A descriptor in a pointer table typically contains the base address of a table at
the next level of the tree. A table descriptor can also contain limits for the index into the next
table, protection information, and history information pertaining to the descriptor. Each table
is indexed by a field extracted from the logical address. In the example shown in Figure 9-
4, the A field of the logical address, $00A, is added to the root pointer value to select a
descriptor at the A level of the translation tree. The selected descriptor points to the base of
the appropriate page table, and the B field of the logical address ($006) is added to this base
address to select a descriptor within the page table. A descriptor in a page table contains
the physical base address of the page, protection information, and history information for the
page. A page descriptor can also reside in a pointer table or even in a root pointer to define
a contiguous block of pages. A two-level page task is shown. The 32-bit logical address
space is divided into 4096 segments of 1024 bytes each.

Figure 9-5 shows a possible layout of this example translation tree in memory.

Memory Management Unit

MOTOROLA

MC68030 USER’S MANUAL

9-7

Figure 9-4. Example Translation Table Tree

15 7 0

FIG 9-4

AC - ACCESS CONTROLLED

6 5

AC

Memory Management Unit

9-8

MC68030 USER’S MANUAL

MOTOROLA

9.1.1 Translation Control

The translation control register (TC) defines the size of pages in memory, selects the root
pointer register to be used for supervisor accesses, indicates whether the top level of the
translation tree is indexed by function code, and specifies the number of logical address bits
used to index into the various levels of the translation tree. The initial shift (IS) field of the
TC register defines the size of the logical address space; it contains the number of most
significant address bits that are ignored in the translation table lookup. For example, if the
IS field is set to zero, the logical address space is 2

32

 bytes. On the other hand, if the IS field
is set to 15, the logical address space contains only 2

32

—2

1

 bytes.

The page size (PS) field of the TC register specifies the page size for the system. The
number of pages in the system is equal to the logical address space divided by the page
size. The maximum number of pages that can be defined by a translation tree is greater than
16 million (2

32

/2

8

). The minimum number is 4 (2

17

/2

15

). The function code can also be used
in the table lookup, defining as many as seven regions of the above size (FC=0-6). The
entire range of the logical address space(s) can be defined by translation tables of many
sizes. The MC68030 provides flexibility that simplifies the implementation of large
translation tables.

The use of a tree structure with as many as five levels of tables provides granularity in
translation table design. The LIMIT field of the root pointer can limit the value of the first
index and limits the actual number of descriptors required. Optionally, the top level of the
structure can be indexed by function code bits. In this case, the pointer table at this level
contains eight descriptors. The next level of the structure (or the top level when the FCL bit
of the TC register is set to zero) is indexed by the most significant bits of the logical address
(disregarding the number of bits specified by the IS field). The number of logical address bits
used for this index is specified by the TIA field of the TC register. If, for example, the TIA
field contains the value 5, the index for this level contains five bits, and the pointer table at
this level contains at most 32 descriptors.

Similarly, the TIB, TIC, and TID fields of the TC register define the indexes for lower levels
of the translation table tree. When one of these fields contains zero, the remaining TIx fields
are ignored; the last nonzero TIx field defines the index into the lowest level of the tree
structure. The tables selected by the index at this level are page tables; every descriptor in
these tables is (or represents) a page descriptor. Figure 9-6 shows how the TIx fields of the
TC register apply to a function code and logical address.

(UNABLE TO LOCATE ART)

Figure 9-5. Example Translation Tree Layout in Memory

(UNABLE TO LOCATE ART)

Figure 9-6. Derivation of Table Index Fields

Memory Management Unit

MOTOROLA

MC68030 USER’S MANUAL

9-9

For example, a TC register in which the FCL bit is set to one, the TIA field contains five, the
TIB field contains nine, and the TIC and TID fields contain zero defines a three-level
translation tree. The top level is indexed by the function code, the next level by five logical
address bits, and the bottom level by nine logical address bits. If the TIC field contained nine
instead of zero, the translation tree would have four levels, and the two bottom levels would
each be indexed by 9-bit portions of the logical address.

The following equation for fields in the TC register must be satisfied:

IS+PS+TIA+TIB

1

+TIC

1

+TID

1

 = 32

That is, every bit of the logical address either addresses a byte within the page, is part of the
index at some level of the address table, or is explicitly ignored by initial shift.

Table 9-1 lists the valid sizes of the table indexes at each of the levels indexed by the TIx
fields and the position of each table index within the logical address. When the function code
is also used to select a descriptor, a total of five levels can be defined by the logical address.
The function code lookup level and levels B, C, and D can be suppressed.

9.1.2 Translation Table Descriptors

The address translation trees consist of tables of descriptors. These descriptors can be one
of four basic types: table descriptors, page descriptors (normal or early termination), invalid
descriptors, or indirect descriptors. Each of these descriptors has both a long-format and a
short-format representation.

A root pointer descriptor defines the root of a tree and can be a table descriptor or an early
termination page descriptor. A table descriptor points to a descriptor table in memory that
defines the next lower level in the translation tree. An early termination page descriptor
causes immediate termination of the table search and contains the physical address of an
area in memory that contains page frames corresponding to contiguous logical addresses
(Refer to

9.5.3.1 Early Termination and Contiguous Memory

).

1.NOTE 1: If any of these fields are zero, the remaining fields are ignored.

Table 9-1. Size Restrictions

Field Starting Bit Position Size Restrictions

A 31-IS 1-15 (TIA must be greater than zero; minimum of two if TIB=0)
B 31-IS-TIA 0-15
C 31-IS-TIA-TIB 0-15 (ignored if TIB is zero)
D 31-IS-TIA-TIB-TIC 31-IS-TIA-TIB-TIC 0-15 (ignored if TIB or TIC is zero)

Memory Management Unit

9-10

MC68030 USER’S MANUAL

MOTOROLA

Tables at intermediate levels of a translation tree contain descriptors that are similar to the
root pointer descriptors. They can contain table descriptors or early termination page
descriptors and can also contain invalid descriptors.

The descriptor tables at the lowest level of a translation tree can only contain page
descriptors, indirect descriptors, and invalid descriptors. A page descriptor in the lowest
level of a translation tree defines the physical address of a page frame in memory that
corresponds to the logical address of a page. An indirect descriptor contains a pointer to the
actual page descriptor and can be used when a single page descriptor is accessed by two
or more logical addresses.

To enhance the flexibility of translation table design, descriptors (except for root pointer
descriptors) can be either short or long format. The short-format descriptors consist of one
long word and have no index-limiting capabilities or supervisor-only protection. The long-
format descriptors consist of two long words and contain all defined descriptor fields for the
MC68030. The pointer and page tables can each contain either short- or long-format
descriptors, but no single table can contain both sizes. Tables at different levels of the
translation tree can contain different formats of descriptors. Tables at the same level can
also contain descriptors of different formats, but all descriptors in a particular pointer table
or page table must be of the same format. Figure 9-7 shows a translation tree that uses
several different format descriptors.

All descriptors contain a descriptor type (DT) field, which identifies the descriptor or specifies
the size of the descriptors in the table to which the descriptor points. It is always the two least
significant bits of the most significant (or only) long word of a descriptor.

Invalid descriptors can be used at any level of the translation tree except the root. When a
table search for a normal translation encounters an invalid descriptor, the processor takes
a bus error exception. The invalid descriptor can be used to identify either a page or branch
of the tree that has been stored on an external device and is not resident in memory or a
portion of the translation table that has not yet been defined. In these two cases, the
exception routine can either restore the page from disk or add to the translation table.

Memory Management Unit

MOTOROLA

MC68030 USER’S MANUAL

9-11

All long-format descriptors and short-format invalid descriptors include one or two unused
fields. The operating system can use these fields for its own purposes. For example, the
operating system can encode these fields to specify the type of invalid descriptor.
Alternately, the external device address of a page that is not resident in main memory can
be stored in the unused field.

9.2 ADDRESS TRANSLATION

The function of the MMU is to translate logical addresses to physical addresses according
to control information stored by the system in the MMU registers and in translation table
trees resident in memory.

9.2.1 General Flow for Address Translation

A CPU space address (FC0-FC2=$7) is a special case that is immediately used as a
physical address without translation. For other accesses, the translation process proceeds
as follows:

1. Search the on-chip data and instruction caches for the required instruction word or op-
erand on read accesses.

2. Compare the logical address and function code to the transparent translation param-
eters in the transparent translation registers, and use the logical address as a physical
address for the memory access when one or both of the registers match.

3. Compare the logical address and function code to the tag portions of the entries in the
ATC and use the corresponding physical address for the memory access when a
match occurs.

4. When no on-chip cache hit occurs (on a read) and no TTx register matches or valid
ATC entry matches, initiate a table search operation to obtain the corresponding phys-
ical address from the corresponding translation tree, create a valid ATC entry for the
logical address, and repeat step 3.

Figure 9-8 is a general flowchart for address translation. The top branch of the flowchart
applies to CPU space accesses (FC0-FC2=$7). The next branch applies to read accesses
only. When either of the on-chip caches hits (contains the required data or instruction), no
memory access is necessary. The third branch applies to transparent translation. The
bottom three branches apply to ATC translation as follows. If the requested access misses
in the ATC, the memory cycle is aborted, and a table search operation proceeds. An ATC
entry is created after the table search, and the access is retried. If an access hits in the ATC
but a bus error was detected during the table search that created the ATC entry, the memory
access is aborted, and a bus error exception is taken.

(UNABLE TO LOCATE ART)

Figure 9-7. Example Translation Tree Using Different Format Descriptors

Memory Management Unit

9-12

MC68030 USER’S MANUAL

MOTOROLA

If an access results in an ATC hit but the access is either a write or read-modify-write access
and the page is write protected, the memory cycle is also aborted, and a bus error exception
is taken. For a write or read-modify-write access, when the modified bit of the ATC entry is
not set, the memory cycle is aborted, a table search proceeds to set the modified bit in both
the page descriptor in memory and in the ATC, and the access is retried. If the modified bit
of the ATC entry is set and the bus error bit is not, assuming that neither TTx register
matches and the access is not to CPU space, the ATC provides the address translation to
the bus controller under two conditions: 1) if a read access does not hit in either on-chip
cache and 2) if a write or read-modify-write access is not write protected.

The preceding description of the general flowchart specifies several conditions that cause
the memory cycle to be aborted. In these cases, the bus cycle is aborted before the
assertion of AS.

9.2.2 Effect of RESET On MMU

When the MC68030 is reset by the assertion of the RESET signal, the E bits of the TC and
TTx registers are cleared, disabling address translation. This causes logical addresses to
be passed through as physical addresses to the bus controller, allowing an operating system
to set up the translation tables and MMU registers, as required. After it has initialized the
translation tables and registers, the E bit of the TC register can be set, enabling address
translation. A reset of the processor does not invalidate any entries in the ATC. An MMU
instruction (such as PMOVE) that flushes the ATC must be executed to flush all existing
valid entries from the ATC after a reset operation and before translation is enabled.

9.2.3 Effect of MMUDIS On Address Translation

The assertion of MMUDIS prevents the MMU from performing searches of the ATC and the
execution unit from performing table searches. With address translation disabled, logical
addresses are used as physical addresses. When an initial access to a long-word-aligned
data operand that is larger than the addressed port size is performed, the successive bus
cycles for additional portions of the operand always use the same higher order address bits
that were used for the initial bus cycle (changing A0 and A1 appropriately). Thus, if MMUDIS
is asserted during this type of operation, the disabling of address translation does not
become effective until the entire transfer is complete. Note that the assertion of MMUDIS
does not affect the operation of the transparent translation registers.

(UNABLE TO LOCATE ART)

Figure 9-8. Address Translation General Flowchart

Memory Management Unit

MOTOROLA

MC68030 USER’S MANUAL

9-13

9.3 TRANSPARENT TRANSLATION

Two independent transparent translation registers (TT0 and TT1) in the MMU optionally
define two blocks of the logical address space that are directly translated to the physical
address spaces. The MMU does not explicitly check write protection for the addresses in
these blocks, but a block can be specified as transparent only for read cycles. The blocks of
addresses defined by the TTx registers include at least 16M bytes of logical address space;
the two blocks can overlap, or they can be separate.

The following description of the address comparison assumes that both TT0 and TT1 are
enabled; however, each TTx register can be independently disabled. A disabled TTx
register is completely ignored.

When the MMU receives an address to be translated, the function code and the eight high-
order bits of the address are compared to the block of addresses defined by TT0 and TT1.
The address space block for each TTx register is defined by the base function code, the
function code mask, the logical base address, and the logical address mask. When a bit in
a mask field is set, the corresponding bit of the base function code or logical base address
is ignored in the function code and address comparison. Setting successively higher order
bits in the address mask increases the size of the transparently translated block.

The address for the current bus cycle and a TTx register address match when the function
code bits and address bits (not including masked bits) are equal. Each TTx register can
specify read accesses or write accesses as transparent. In that case, the internal read/write
signal must match the R/W bit in the TTx register for the match to occur. The selection of
the type of access (read or write) can also be masked. The read/write mask bit (RWM) must
be set for transparent translation of addresses used by instructions that execute read-
modify-write operations. Otherwise, neither the read nor write portions of read-modify-write
operations are mapped transparently with the TTx registers, regardless of the function code
and address bits for the individual cycles within a read-modify-write operation.

Memory Management Unit

9-14

MC68030 USER’S MANUAL

MOTOROLA

By appropriately configuring a transparent translation register, flexible transparent mapping
can be specified. For instance, to transparently translate user program space with a TTx
register, the RWM bit of the register is set to 1, the FC BASE is set to $2, and the FC MASK
is set to $0. To transparently translate supervisor data read accesses of addresses
$00000000-$0FFFFFFF, the LOGICAL BASE ADDRESS field is set to $0X, the LOGICAL
ADDRESS MASK is set to $0F, the R/W bit is set to 1, the RWM bit is set to 0, the FC BASE
is set to $5, and the FC MASK field is set to $0. Since only read cycles are specified by the
TTx register for this example, write accesses for this address range can be translated with
the translation tables and write protection can be implemented as required.

Each TTx register can specify that the contents of logical addresses in its block should not
be stored in either an internal or external cache. The cache inhibit out signal (CIOUT) is
asserted when an address matches the address specified by a TTx register and the cache
inhibit bit in that TTx register is set. CIOUT is used by the on-chip instruction and data
caches to inhibit caching of data associated with this address. The signal is available to
external caches for the same purpose.

For an access, if either of these registers match, the access is transparently translated. If
both registers match, the CI bits are ORed together to generate the CIOUT signal.

Transparent translation can also be implemented by the translation tables of the translation
trees if the physical addresses of pages are set equal to the logical addresses.

9.4 ADDRESS TRANSLATION CACHE

The ATC is a 22-entry fully associative (content addressable) cache that contains address
translations in a form similar to the corresponding page descriptors in memory to provide
fast address translation of a recently used logical address.

The MC68030 is organized such that the translation time of the ATC is always completely
overlapped by other operations; thus, no performance penalty is associated with ATC
searches. The address translation occurs in parallel with on-chip instruction and data cache
accesses before an external bus cycle begins.

Memory Management Unit

MOTOROLA

MC68030 USER’S MANUAL

9-15

If possible, when the ATC stores a new address translation, it replaces an entry that is no
longer valid. When all entries in the ATC are valid, the ATC selects a valid entry to be
replaced, using a pseudo least recently used algorithm. The ATC uses a validity bit and an
internal history bit to implement this replacement algorithm. ATC hit rates are application
dependent, but hit rates ranging from 98% to greater than 99% can be expected.

Each ATC entry consists of a logical address and information from a corresponding page
descriptor that contains the physical address. The 28-bit logical (or tag) portion of each entry
consists of three fields:

V — VALID
This bit indicates the validity of the entry. If V is set, this entry is valid. This bit is set
when the MC68030 loads an entry. A flush operation clears the bit. Specifically, any of
these operations clear the V bit of an entry:

• A PMOVE instruction with the FD bit equal to zero that loads a value into the CRP,
SRP, TC, TT0, or TT1 register.

• A PFLUSHA instruction.

• A PFLUSH instruction that selects this entry.

• A PLOAD instruction for a logical address and FC that matches the tag for this entry.
The instruction writes a new entry (with the V bit set) for the specified logical address.

• The selection of this entry for replacement by the replacement algorithm of the ATC.

FC — FUNCTION CODE
This 3-bit field contains the function code bits (FC0-FC2) corresponding to the logical ad-
dress in this entry.

LOGICAL ADDRESS
This 24-bit field contains the most significant logical address bits for this entry. All 24 bits
of this field are used in the comparison of this entry to an incoming logical address when
the page size is 256 bytes. For larger page sizes, the appropriate number of least signifi-
cant bits of this field are ignored.

27 26 24 23 0
V FC LOGICAL ADDRESS

Memory Management Unit

9-16

MC68030 USER’S MANUAL

MOTOROLA

Each logical portion of an entry has a corresponding 28-bit physical (or data) portion. The
physical portion contains these fields:

B — BUS ERROR
This bit is set for an entry if a bus error, an invalid descriptor, a supervisor violation, or a
limit violation is encountered during the table search corresponding to this entry. When B
is set, a subsequent access to the logical address causes the MC68030 to take a bus er-
ror exception. Since an ATC miss causes an immediate retry of the access after the table
search operation, the bus error exception is taken on the retry. The B bit remains set until
a PFLUSH instruction or a PLOAD instruction for this entry invalidates the entry or until
the replacement algorithm for the ATC replaces it.

CI — CACHE INHIBIT
This bit is set when the cache inhibit bit of the page descriptor corresponding to this entry
is set. When the MC68030 accesses the logical address of an entry with the CI bit set, it
asserts the cache inhibit out signal (CIOUT) during the corresponding bus cycle. This sig-
nal inhibits caching in the on-chip caches and can also be used for external caches.

WP — WRITE PROTECT
This bit is set when a WP bit is set in any of the descriptors encountered during the table
search for this entry. Setting a WP bit in a table descriptor write protects all pages access-
ed with that descriptor. When the WP bit is set, a write access or a read-modify-write ac-
cess to the logical address corresponding to this entry causes a bus error exception to be
taken immediately.

M — MODIFIED
This bit is set when a valid write access to the logical address corresponding to the entry
occurs. If the M bit is clear and a write access to this logical address is attempted, the
MC68030 aborts the access and initiates a table search, setting the M bit in the page de-
scriptor, invalidating the old ATC entry, and creating a new entry with the M bit set. The
MMU then allows the original write access to be performed. This assures that the first
write operation to a page sets the M bit in both the ATC and the page descriptor in the
translation tables even when a previous read operation to the page had created an entry
for that page in the ATC with the M bit clear.

27 26 25 24 23 0
B CI WP M PHYSICAL ADDRESS

Memory Management Unit

MOTOROLA

MC68030 USER’S MANUAL

9-17

PHYSICAL ADDRESS
This 24-bit field contains the physical address bits (A31-A8) from the page descriptor cor-
responding to the logical address. When the page size is larger than 256 bytes, not all bits
in the physical address field are used. All page index bits of the logical address are trans-
ferred to the bus controller without translation.

9.5 TRANSLATION TABLE DETAILS

The details of translation tables and their use include detailed descriptions of the
descriptors, table searching, translation table structure variations, and the protection
techniques available with the MC68030 MMU.

9.5.1 Descriptor Details

The descriptor details include detailed descriptions of the short- and long-format descriptors
used in the translation trees. The fields that apply to all descriptors are described in the first
paragraph.

9.5.1.1 DESCRIPTOR FIELD DEFINITIONS.

All descriptor fields are used in more than
one type of descriptor. This section lists these fields and describes the use of each field.

DT
This 2-bit field contains the descriptor type; the first two types apply to the descriptor it-
self. The other two types apply to the descriptors in the table at the next level of the tree.
The values are defined as follows:

$0 INVALID
This code identifies the current descriptor as an invalid descriptor. A table search
ends when an invalid descriptor is encountered.

$1 PAGE DESCRIPTOR
This code identifies the current descriptor as a page descriptor. The page descrip-
tor is a normal page descriptor when it resides in a page table (in the bottom level
of the translation tree). A page descriptor at a higher level is an early termination
page descriptor. A table search ends when a page descriptor of either type is en-
countered.

Memory Management Unit

9-18

MC68030 USER’S MANUAL

MOTOROLA

$2 VALID 4 BYTE
This code specifies that the next table to be accessed contains short-format de-
scriptors. The MC68030 multiplies the index for the next table by four to access the
next descriptor. (Short-format descriptors must be long-word aligned.) When used
in a page table (bottom level of an translation tree), this code identifies an indirect
descriptor that points to a short-format page descriptor.

$3 VALID 8 BYTE
This code specifies that the next table to be accessed contains long-format de-
scriptors. The MC68030 multiplies the index for the next table by eight to access
the next descriptor. (Long-format descriptors must be quad-word aligned.) When
used in a page table (bottom level of an address translation tree), this code identi-
fies an indirect descriptor that points to a long-format page descriptor.

U
This bit is automatically set by the processor when a descriptor is accessed in which the
U bit is clear except after a supervisor violation is detected. In a page descriptor table, this
bit is set to indicate that the page corresponding to the descriptor has been accessed. In
a pointer table, this bit is set to indicate that the pointer has been accessed by the
MC68030 as part of a table search. Note that a pointer may be fetched, and its U bit set,
for an address to which access is denied at another level of the tree. Updates of the U bit
are performed before the MC68030 allows a page to be accessed. The processor never
clears this bit.

WP
This bit provides write protection. The states of all WP bits encountered during a table
search are logically ORed, and the result is copied to the ATC entry at the end of a table
search for a logical address. During a table search for a PTEST instruction, the processor
copies this result into the MMU status register (MMUSR). When WP is set, the MC68030
does not allow the logical address space mapped by that descriptor to be written by any
program (i.e., this protection is absolute). If the WP bit is clear, the MC68030 allows write
accesses using this descriptor (unless access is restricted at some other level of the trans-
lation tree).

CI
This bit is set to inhibit caching of items within this page by the on-chip instruction and data
caches and, also, to cause the assertion of the CIOUT signal by the MC68030 for bus cy-
cles accessing items within this page.

Memory Management Unit

MOTOROLA

MC68030 USER’S MANUAL

9-19

L/U
This bit specifies the type of limit in the LIMIT field. When the L/U bit is set, the LIMIT field
contains the unsigned lower limit; the index value for the next level of the tree must be
greater than or equal to the value in the LIMIT field. When the bit is cleared, the limit is an
unsigned upper limit, and the index value must be less than or equal to the LIMIT. An out-
of-bounds access causes the B bit in the ATC entry for the address to be set and causes
the table search to abort.

LIMIT
This 15-bit field contains a limit to which the index portion of an address is compared to
detect an out-of-bounds index. The limit check applies to the index into the table at the
next lower level of the translation tree. If the descriptor is an early termination page de-
scriptor, the limit field is still used as a check on the next index field of the logical address.

M
This bit identifies a modified page. The MC68030 sets the M bit in the corresponding page
descriptor before a write operation to a page for which the M bit is zero, except after a
descriptor with the WP bit set is encountered, or after a supervisor violation is encoun-
tered. An access is considered to be a write for updating purposes if either the R/W or
RMC signal is low. The MC68030 never clears this bit.

PAGE ADDRESS
 This 24-bit field contains the physical base address of a page in memory. The low-order
bits of the address are supplied by the logical address. When the page size is larger than
256 bytes, one or more of the least significant bits of this field are not used. The number
of unused bits is equal to the PS field value in the TC register minus eight.

S
This bit identifies a pointer table or a page as a supervisor only table or page. When the
S bit is set, only programs operating at the supervisor privilege level are allowed to access
the portion of the logical address mapped by this descriptor. If this bit is clear, accesses
using this descriptor are not restricted to supervisor-only unless the access is restricted
by some other level of the translation tree.

TABLE ADDRESS
This 28-bit field contains the physical base address of a table of descriptors. The low-or-
der bits of the address are supplied by the logical address.

Memory Management Unit

9-20

MC68030 USER’S MANUAL

MOTOROLA

DESCRIPTOR ADDRESS
This 30-bit field, which contains the physical address of a page descriptor, is only used in
short- and long-format indirect descriptors.

UNUSED
The bits in this field are not used by the MC68030 and may be used by the system soft-
ware.

RESERVED
Descriptor fields designated by a one or a zero are reserved by Motorola for future defini-
tion. These bits should be consistently written as either a one or a zero as appropriate. In
the root pointers, these bits are not alterable. In memory-resident descriptors, the values
in these fields are neither checked nor altered by the MC68030. Use of these bits by sys-
tem software for any purpose may not be supported in future products.

9.5.1.2 ROOT POINTER DESCRIPTOR.

A root pointer descriptor contains the address of
the top-level pointer table of a translation tree. This type of descriptor is loaded into the CRP
and SRP registers with the PMOVE instruction. The field descriptions in the preceding
section apply to corresponding fields of the CRP and SRP with two minor exceptions. A
descriptor-type code of $00 (invalid) is not allowed; an attempt to load zero into the DT field
of the CRP or SRP register results in an MMU configuration exception. Also, when the FCL
field of the TC register is set, the L/U and LIMIT fields of the root pointer registers are
unused. Figure 9-9 shows the root pointer descriptor format.

9.5.1.3 SHORT-FORMAT TABLE DESCRIPTOR.

The field descriptions in

9.5.1.1
DESCRIPTOR FIELD DEFINITIONS

apply to corresponding fields of this descriptor. Figure
9-10 shows the format of the short-format table descriptor.

9.5.1.4 LONG-FOMAT TABLE DESCRIPTOR.

The field descriptions in

9.5.1.1
DESCRIPTOR FIELD DEFINITIONS

 apply to corresponding fields of this descriptor. During
address computations, the MC68030 internally replaces the UNUSED field with zeros.
Figure 9-11 shows the format of the long-format table descriptor.

(UNABLE TO LOCATE ART)

Figure 9-9. Root Pointer Descriptor Format

(UNABLE TO LOCATE ART)

Figure 9-10. Short-Format Table Descriptor

(UNABLE TO LOCATE ART)

Figure 9-11. Long-Format Table Descriptor

Memory Management Unit

MOTOROLA

MC68030 USER’S MANUAL

9-21

9.5.1.5 SHORT-FORMAT EARLY TERMINATION PAGE DESCRIPTOR.

The short-
format early termination page descriptor contains the page descriptor code in the DT field
but resides in a pointer table. That is, the table in which an early termination page descriptor
is located is not at the bottom level of the address translation tree. The field descriptions in

9.5.1.1 Descriptor Field Definitions

 apply to corresponding fields of this descriptor. Figure
9-12 shows the format of the short-format early termination page descriptor.

9.5.1.6 LONG-FORMAT EARLY TERMINATION PAGE DESCRIPTOR.

The long-format
early termination page descriptor contains the page descriptor code in the DT field but
resides in a pointer table like the short-format early termination page descriptor. The field
descriptions in

9.5.1.1 Descriptor Field Definitions

 apply to corresponding fields of this
descriptor. Figure 9-13 shows the format of the long-format early termination page
descriptor. The LIMIT field of the long-format descriptor provides a means of limiting the
number of pages to which the descriptor applies.

(UNABLE TO LOCATE ART)

Figure 9-12. Short-Format Page Descriptor and
Short-Format Early Termination Page Descriptor

(UNABLE TO LOCATE ART)

Figure 9-13. Long-Format Early Termination Page Descriptor

Memory Management Unit

9-22

MC68030 USER’S MANUAL

MOTOROLA

9.5.1.7 SHORT-FORMAT PAGE DESCRIPTOR. The short-format page descriptor is used
in the page tables (the bottom level of the address table). The field descriptions in 9.5.1.1
Descriptor Field Definitions apply to the corresponding fields of this descriptor. The short-
format page descriptor is identical to of the short-format early termination page descriptor
shown in Figure 9-12.

9.5.1.8 LONG-FORMAT PAGE DESCRIPTOR. The long-format page descriptor is also
used in the page tables. The field descriptions in 9.5.1.1 Descriptor Field Definitions apply
to the corresponding fields of this descriptor. Figure 9-14 shows the format of the long-
format page descriptor.

9.5.1.9 SHORT-FORMAT INVALID DESCRIPTOR. The short-format invalid descriptor
consists of a DT field that contains zeros, identifying it as an invalid descriptor. It can be used
at any level of the address translation tree except at the root pointer level. The 30-bit unused
field is available to the operating system to identify unallocated portions of the table or
portions of the table that reside on an external device. For example, the disk address of disk-
resident tables or pages can be stored in this field. Figure 9-15 shows the format of a short-
format invalid descriptor.

(UNABLE TO LOCATE ART)

Figure 9-14. Long-Format Page Descriptor

(UNABLE TO LOCATE ART)

Figure 9-15. Short-Format Invalid Descriptor

Memory Management Unit

MOTOROLA MC68030 USER’S MANUAL 9-23

9.5.1.10 LONG-FORMAT INDIRECT DESCRIPTOR. The long-format invalid descriptor is
used in pointer and page tables that contain long-format descriptors. It is used in the same
way as the short-format invalid descriptor in the preceding section. The first long word
contains the DT field in the lowest order bits. The second long word is an unused field, also
available to the operating system. Figure 9-16 shows the format of the long-format invalid
descriptor.

9.5.1.11 SHORT-FORMAT INDIRECT DESCRIPTOR. The short-format indirect descriptor
does not have a unique descriptor-type code. Rather, it resides in a page table (the bottom
level of the address translation tree) that contains short-format descriptors and is neither a
page descriptor nor an invalid descriptor. The descriptor-type field contains either the code
for a valid 4-byte descriptor or for a valid 8-byte descriptor, depending upon the size of the
referenced page descriptor. The field descriptions in 9.5.1.1 Descriptor Field Definitions
apply to the corresponding fields of this descriptor. Figure 9-17 shows the format of a short-
format indirect descriptor.

(UNABLE TO LOCATE ART)

Figure 9-16. Long-Format Invalid Descriptor

(UNABLE TO LOCATE ART)

Figure 9-17. Short-Format Indirect Descriptor

Memory Management Unit

9-24 MC68030 USER’S MANUAL MOTOROLA

9.5.1.12 LONG-FORMAT INDIRECT DESCRIPTOR. The long-format indirect descriptor
has all the attributes of the short-format indirect descriptor described in the preceding
section. The only differences are that it is used in a page table that contains long-format
descriptors and that it has two unused fields. The field descriptions in 9.5.1.1 Descriptor
Field Definitions apply to corresponding fields of this descriptor. Figure 9-18 shows the
format of a long-format indirect descriptor.

9.5.2 General Table Search
When the ATC does not contain a descriptor for the logical address of a processor access
and a translation is required, the MC68030 searches the translation tables in memory and
obtains the physical address and status information for the page corresponding to the logical
address. When a table search is required, the CPU suspends instruction execution activity
and, at the end of a successful table search, stores the address mapping in the ATC and
retries the access. The access then results in a match (it hits) and the translated address is
transferred to the bus controller (provided no exceptions were encountered).

The table search begins by selecting the translation tree, using function code bit FC2 and
the SRE bit of the TC register, as shown in Table 9-2. SRE is set to enable the supervisor
root pointer, and FC2 is set for supervisor-level accesses. The translation tree with its root
defined by the SRP register is selected only when SRE and FC2 are both set. Otherwise,
the translation table with its root defined by the CRP register is selected. A simplified
flowchart of the table search procedure is shown in Figure 9-19.

(UNABLE TO LOCATE ART)

Figure 9-18. Long-Format Indirect Descriptor

Memory Management Unit

MOTOROLA MC68030 USER’S MANUAL 9-25

The table search procedure uses physical addresses to access the translation tables. The
read-modify-write (RMC) signal is asserted on the first bus cycle of the search and remains
asserted throughout, ensuring that the entire table search completes without interruption.

The first bus cycle of the search uses the table address field of the appropriate root pointer
as the base address of the first table. The low-order bits of the address are supplied by the
logical address. The table is indexed by either the function code or the set of logical address
bits defined by the TIA field of the TC register. The FCL field of the TC register determines
whether or not the function code is used. In either case, the descriptor-type field of the root
pointer selects the scale factor (or multiplier) for the index.

The first access obtains a descriptor. If the descriptor is a table descriptor, the MC68030
again accesses memory. The next access uses the table address in the descriptor as the
base address for the next table. The low-order bits of the address are supplied by the logical
address. The table is indexed by a set of bits from the logical address using a scale factor
determined by the descriptor type code in the descriptor. If the first table access used the
function code, the second access uses the bits selected by the TIA field of the TC register.
Otherwise, the second access uses the bits selected by the TIB field.

Additional accesses are performed, using the logical address bits specified in TIB, TIC, or
TID in order, until an access obtains a page descriptor or an invalid descriptor or until a limit
violation occurs. At this point, whether or not all levels of the address table have been
accessed, the table search is over. The page descriptor contains the physical address and
other information needed for the ATC entry; the MC68030 creates the ATC entry and retries
the original bus access.

Figure 9-20 shows a table search using the function code and all four TIx fields.

(UNABLE TO LOCATE ART)

Figure 9-19. Simplified Table Search Flowchart

Table 9-2. Translation Tree Selection

FC2 SRE Translation Table Root Pointer
0 0 CRP
0 1 CRP
1 0 CRP
1 1 SRP

Memory Management Unit

9-26 MC68030 USER’S MANUAL MOTOROLA

The MC68030 enforces a limit on the index value for the next level of a table search when
long-format descriptors are used.

The root pointer includes a limit field that applies when the function code lookup is not used
(the FCL bit of the TC register is zero). The index used to access the next level table is
compared to the contents of the limit field. The limit field effectively reduces the portion of
the address space to which a descriptor applies and also reduces the size of the translation
table. The index must reside within the range defined by the limit field. The limit can be a
lower limit or an upper limit, according to the L/U bit value. When the L/U bit is set, the limit
is a lower limit, and an index less than the limit is out of bounds. When the L/U bit is zero,
the limit is an upper limit, and an index greater than the limit is out of bounds. The limit field
is effectively disabled if L/U is set and the limit field contains zero or if L/U is clear and the
limit field contains $7FFF.

During a table search for an normal translation or a PLOAD instruction, if a limit violation is
detected, the ATC is loaded with an entry having the bus error (B) bit set. If a limit violation
is detected during a table search for a PTEST instruction, the invalid (I) and limit (L) bits are
set in the MMUSR.

During a table search, the U bit in each descriptor that is encountered is checked and set if
it is not already set. Similarly, when the table search is for a write access and the M bit of
the page descriptor is clear, the processor sets the bit if the table search does not encounter
a set WP bit or a supervisor violation. Since the read-modify-write (RMC) signal is asserted
throughout the entire table search operation, the read and write operations to update the
history bits are guaranteed to be uninterrupted.

A table search terminates successfully when a page descriptor is encountered. The
occurrence of an invalid descriptor, a limit violation, or a bus error also terminates a table
search, and the MC68030 takes an exception on the retry of the cycle because of these
conditions. The exception routine should distinguish between anticipated conditions and
true error conditions. The routine can correct an invalid descriptor that indicates a
nonresident page or one that identifies a portion of the translation table yet to be allocated.
A limit violation or a bus error due to a system malfunction may result in an error message
and termination of the task.

(UNABLE TO LOCATE ART)

Figure 9-20. Five-Level Table Search

Memory Management Unit

MOTOROLA MC68030 USER’S MANUAL 9-27

9.5.3 Variations in Translation Table Structure
Many aspects of the MMU translation tree structure are software configurable, allowing the
system designer flexibility to optimize the performance of the MMU for a particular system.
The following paragraphs discuss the variations of the tree structure from the general
structure discussed previously.

9.5.3.1 EARLY TERMINATION AND CONTIGUOUS MEMORY. The MMU provides the
ability to map a contiguous range of the logical address space (an integral number of logical
pages) to an equivalent contiguous physical address range with a single descriptor. This is
done by placing the code for page descriptor ($1) in the descriptor type (DT) field of a
descriptor at a level of the tree that would normally contain a table pointer, thereby deleting
a subtree of the table.

The table search ends when the search encounters a page descriptor, whether or not the
page descriptor is in a page descriptor table at the lowest level of the translation tree.

Termination of the table search by a page descriptor in a pointer descriptor table (i.e., the
MC68030 has not encountered a TIx field of zero) is called an early termination. The
terminating page descriptor is called an early termination page descriptor.

An early termination page descriptor takes the place of many page descriptors in a
translation table. It applies to all pages that would exist on the branch on which the
descriptor has been placed, and on any branches from that branch. An early termination
page descriptor can be used where contiguous pages in physical memory correspond to
contiguous logical pages. If an early termination page descriptor is a long format, the limit
field is applied to the next index field of the logical address. This allows the number of pages
mapped contiguously to be restricted. Refer to 9.1.2 Translation Table Descriptors for
additional information.

If n low-order bits of the logical page address are unused when a page descriptor encoding
is encountered, the single descriptor creates a mapping of a contiguous region of the logical
address space starting at the logical page address (with n unused bits set to zero) to a
contiguous region in the physical address space starting at the page frame base address
with a size of 2PS+n bytes.

Memory Management Unit

9-28 MC68030 USER’S MANUAL MOTOROLA

When a search is made for a logical address to which an early termination page descriptor
applies, the MC68030 creates an entry in the ATC for the logical address; the physical
address in the ATC entry is the sum of the page address field in the descriptor plus an offset.
The offset is the logical address with the bits used in the search set to zero.

Although the early termination page descriptor creates a contiguous logical-to-physical
mapping without having to maintain individual descriptors in the translation tree for each
page that is a member of the contiguous region, the ATC contains one entry for each page
mapped. These entries are created internally each time a page boundary (as determined by
the page size) is crossed in the contiguous region. Figure 9-21 shows an example
translation table with a portion of the logical address space translated as a contiguous block.

Note that the DT field can be set to page descriptor at any level of the translation tree
including the root pointer level. Setting the DT field of a root pointer to page descriptor
creates a direct mapping from the logical to the physical address space with a constant
offset as determined by the value in the table address field of the root pointer.

9.5.3.2 INDIRECTION. The MC68030 provides the ability to replace an entry in a page table
with a pointer to an alternate entry. The indirection capability allows multiple tasks to share
a physical page while maintaining only a single set of history information for the page (i.e.,
the "modified" indication is maintained only in the single descriptor). The indirection
capability also allows the page frame to appear at arbitrarily different addresses in the logical
address spaces of each task.

Using the indirection capability, single entries or entire tables can be shared between
multiple tasks. Figure 9-22 shows two tasks sharing a page using indirect descriptors.

When the MC68030 has completed a normal table search (has exhausted all index fields of
the logical page address), it examines the descriptor-type field of the last entry fetched from
the translation tables. If the DT field contains a "valid long" ($2) or "valid short" ($3)
encoding, this indicates that the address contained in the highest order 30 bits of the table
address field of the descriptor is a pointer to the page descriptor that is to be used to map
the logical address. The processor then fetches the page descriptor of the indicated format
from this address and uses the page address field of the page descriptor as the physical
mapping for the logical address.

Memory Management Unit

MOTOROLA MC68030 USER’S MANUAL 9-29

(UNABLE TO LOCATE ART)

Figure 9-21. Example Translation Tree Using Contiguous Memory

Memory Management Unit

9-30 MC68030 USER’S MANUAL MOTOROLA

The page descriptor located at the address given by the indirect descriptor must not have a
DT field with a long or short encoding (it must either be a page descriptor or invalid).
Otherwise, the descriptor is treated as invalid, and the MC68030 creates an ATC entry with
an error condition signaled (bit set).

9.5.3.3 TABLE SHARING BETWEEN TASKS . A page or pointer table can be shared
between tasks by placing a pointer to the shared table in the address translation tables of
more than one task. The upper (nonshared) tables can contain different settings of
protection bits allowing different tasks to use the area with different permissions. In Figure
9-23 two tasks share the memory translated by the table at the B level. Note that task "A"
cannot write to the shaded area. Task "B", however, has the WP bit clear in its pointer to the
shared table; thus, it can read and write the shared area. Also note that the shared area
appears at different logical addresses for each task.

9.5.3.4 PAGING OF TABLES. It is not required that the entire address translation tree for
an active task be resident in main memory at once. In the same way that only the working
set of pages must reside in main memory, only the tables that describe the resident set of
pages need be available in main memory. This paging of tables is implemented by placing
the "invalid" code ($0) in the DT field of the table descriptor that points to the absent table(s).
When a task attempts to use an address that would be translated by an absent table, the
MC68030 is unable to locate a translation and takes a bus error exception when the
execution unit retries the bus cycle that caused the table search to be initiated.

It is the responsibility of the system software to determine that the invalid code in the
descriptor corresponds to nonresident tables. This determination can be facilitated by using
the unused bits in the descriptor to store status information concerning the invalid encoding.
When the MC68030 encounters an invalid descriptor, it makes no interpretation (or
modification) of any fields of this descriptor other than the DT field, allowing the operating
system to store system-defined information in the remaining bits. Typical information that is
stored includes the reason for the invalid encoding (tables paged-out, region not allocated,
. . .etc.) and possibly the disk address for nonresident tables.

Figure 9-24 shows an address translation table in which only a single page table (table n) is
resident and all other page tables are not resident.

(UNABLE TO LOCATE ART)

Figure 9-22. Example Translation Tree Using Indirect Descriptors

Memory Management Unit

MOTOROLA MC68030 USER’S MANUAL 9-31

(UNABLE TO LOCATE ART)

Figure 9-23. Example Translation Tree Using Shared Tables

Memory Management Unit

9-32 MC68030 USER’S MANUAL MOTOROLA

9.5.3.5 DYNAMIC ALLOCATION OF TABLES. Similar to the case of paged tables, it is not
required that a complete translation tree exist for an active task. The translation tree can be
dynamically allocated by the operating system based on requests for access to particular
areas.

As in the case of demand paging, it is difficult, if not impossible, to predict the areas of
memory that are used by a task over any extended period of time. Instead of attempting to
predict the requirements of the task, the operating system performs no action for a task until
a demand is made requesting access to a previously unused area or an area that is no
longer resident in memory. This same technique can be used to efficiently create a
translation tree for a task.

For example, consider an operating system that is preparing the system to execute a
previously unexecuted task that has no translation tree. Rather than guessing what the
memory usage requirements of the task are, the operating system creates a translation tree
for the task that maps one page corresponding to the initial value of the program counter for
that task, and possibly, one page corresponding to the initial stack pointer of the task. All
other branches of the translation tree for this task remain unallocated until the task requests
access to the areas mapped by these branches. This technique allows the operating system
to construct a minimal translation tree for each task, conserving physical memory utilization
and minimizing operating system overhead.

9.5.4 Detail of Table Search Operations
The table search operations described in this section are shown in detail in Figures 9-25-9-
29.

(UNABLE TO LOCATE ART)

Figure 9-24. Example Translation Tree with Nonresident Tables

Memory Management Unit

MOTOROLA MC68030 USER’S MANUAL 9-33

(UNABLE TO LOCATE ART)

Figure 9-25. Detailed Flowchart of MMU Table Search Operation

Memory Management Unit

9-34 MC68030 USER’S MANUAL MOTOROLA

(UNABLE TO LOCATE ART)

Figure 9-26. Table Search Initialization Flowchart

(UNABLE TO LOCATE ART)

Figure 9-27. ATC Entry Creation Flowchart

Memory Management Unit

MOTOROLA MC68030 USER’S MANUAL 9-35

9.5.5 Protection
M68000 Family processors provide an indication of the context in which they are operating
on a cycle-by-cycle basis by means of the function code signals. These signals identify
accesses to the user program space, the user data space, the supervisor program space,
and the supervisor data space. The function code signals can be used for protection
mechanisms by setting the function code lookup (FCL) bit in the translation control (TC)
register.

The MC68030 MMU provides the capability for separate translation trees for supervisor and
user spaces to be used. When the supervisor root pointer enable bit (SRE) in the TC register
is set, the root pointer register for the supervisor space translation tree is selected for
supervisor program or data accesses.

The translation table trees contain both mapping and protection information. Each table and
page descriptor includes a write-protect (WP) bit, which can be set to provide write
protection at any level. Each long-format table and page descriptor also contains a
supervisor-only (S) bit, which can limit access to programs operating at the supervisor
privilege level.

(UNABLE TO LOCATE ART)

Figure 9-28. Limit Check Procedure Flowchart

Memory Management Unit

9-36 MC68030 USER’S MANUAL MOTOROLA

The protection mechanisms can be used individually or in any combination to protect:

• Supervisor program and data spaces from access by user programs.

• User program and data spaces from access by other user programs or supervisor pro-
grams (except with the MOVES instruction).

• Supervisor and user program spaces from write accesses (except by the supervisor us-
ing the MOVES instruction).

• One or more pages of memory from write accesses.

9.5.5.1 FUNCTION CODE LOOKUP. One way of protecting supervisor and user spaces
from unauthorized access is to set the FCL bit in the TC register. This effectively segments
the logical address space into a supervisor program space, a supervisor data space, a user
program space, and a user data space, as shown in Figure 9-30. Each task has an address
translation tree with unique mappings for the logical addresses in its user spaces. The
translation tables for mapping the supervisor spaces can be copied into each task's
translation tree. Figure 9-31 shows a translation tree using function code lookup, and Figure
9-32 shows translation trees for two tasks that share common supervisor spaces.

(UNABLE TO LOCATE ART)

Figure 9-29. Detailed Flowchart of Descriptor Fetch Operation

(UNABLE TO LOCATE ART)

Figure 9-30. Logical Address Map Using Function Code Lookup

Memory Management Unit

MOTOROLA MC68030 USER’S MANUAL 9-37

(UNABLE TO LOCATE ART)

Figure 9-31. Example Translation Tree Using Function Code Lookup

Memory Management Unit

9-38 MC68030 USER’S MANUAL MOTOROLA

9.5.5.2 SUPERVISOR TRANSLATION TREE. A second protection mechanism uses a
supervisor translation tree. A supervisor translation tree protects supervisor programs and
data from access by user programs and user programs and data from access by supervisor
programs. Access is granted to the supervisor programs which can access any area of
memory with the move address space (MOVES) instruction. When the SRE bit in the TC
register is set, the translation tree pointed to by the SRP is selected for all supervisor level
accesses. This translation tree can be common to all tasks. This technique segments the
logical address space into user and supervisor areas without adding the function code level
to the translation trees.

9.5.5.3 SUPERVISOR ONLY. A third mechanism protects supervisor programs and data
without segmenting the logical address space into supervisor and user address spaces. The
long formats of table descriptors and page descriptors contain S bits to protect areas of
memory from access by user programs. When a table search for a user access encounters
an S bit set in any table or page descriptor, the table search is completed and an ATC
descriptor corresponding to the logical address is created with the B bit set. The subsequent
retry of the user access results in a bus error exception being taken. The S bit can be used
to protect the entire area of memory defined in a branch of the translation tree or only one
or more pages from user program access.

9.5.5.4 WRITE PROTECT. The MC68030 provides write protection independently of the
segmented address spaces for programs and data. All table and page descriptors contain
WP bits to protect areas of memory from write accesses of any kind. When a table search
encounters a WP bit set in any table or page descriptor, the table search is completed and
an ATC descriptor corresponding to the logical address is created with the WP bit set. The
subsequent retry of the write access results in a bus error exception being taken. The WP
bit can be used to protect the entire area of memory defined in a branch of the translation
tree, or only one or more pages from write accesses. Figure 9-33 shows a memory map of
the logical address space organized to use S and WP bits for protection. Figure 9-34 shows
an example translation tree for this technique.

(UNABLE TO LOCATE ART)

Figure 9-32. Example Translation Tree Structure for Two Tasks

Memory Management Unit

MOTOROLA MC68030 USER’S MANUAL 9-39

(UNABLE TO LOCATE ART)

Figure 9-33. Exmple Logical Address Map with Shared Supervisor
and User Address Spaces

Memory Management Unit

9-40 MC68030 USER’S MANUAL MOTOROLA

(UNABLE TO LOCATE ART)

Figure 9-34. Exmple Translation Tree Using S and WP Bits to Set Protection

Memory Management Unit

MOTOROLA MC68030 USER’S MANUAL 9-41

9.6 MC68030 AND MC68851 MMU DIFFERENCES
The MC68851 paged memory management unit provides memory management for the
MC68020 as a coprocessor. The on-chip MMU of the MC68030 provides many of the
features of the MC68020/MC68851 combination. The following functions of the MC68851
are not available in the MC68030 MMU:

• Access Levels

• Breakpoint Registers

• Root Pointer Table

• Aliases for Tasks

• Lockable Entries in the ATC

• ATC Entries Defined as Shared Globally

In addition, the following features of the MC68030 MMU differ from the MC68020/MC68851
pair:

• 22-Entry ATC

• Reduced Instruction Set

• Only Control-Alterable Addressing Modes Supported for MMU Instructions

In general, the MC68030 is program compatible with the MC68020/MC68851 combination.
However, in a program for the MC68030, the following instructions must be avoided or
emulated in the exception routine for F-line unimplemented instructions: PVALID,
PFLUSHR, PFLUSHS, PBcc, PDBcc, PScc, PTRAPcc, PSAVE, PRESTORE, and PMOVE
for unsupported registers (CAL, VAL, SCC, BAD, BACx, DRP, and AC). Additionally, the
effective addressing modes supported on the MC68851 that are not emulated by the
MC68030 must be simulated or avoided.

Memory Management Unit

9-42 MC68030 USER’S MANUAL MOTOROLA

9.7 REGISTERS
The registers of the MMU described here are part of the supervisor programming model for
the MC68030.

The six registers that control and provide status information for address translation in the
MC68030 are the CPU root pointer register (CRP), the supervisor root pointer register
(SRP), the translation control register (TC), two independent transparent translation control
registers (TT0 and TT1), and the MMU status register (MMUSR). These registers can be
accessed directly by programs that execute only at the supervisor level.

9.7.1 Root Pointer Registers
The supervisor root pointer (SRP), used for supervisor accesses only, is enabled or disabled
in software. The CPU root pointer (CRP) corresponds to the current translation table for user
space (when the SRP is enabled) or for both user and supervisor space (when the SRP is
disabled). The CRP is a 64-bit[lz register that contains the address and related status
information of the root of the translation table tree for the current task. When a new task
begins execution, the operating system typically writes a new root pointer descriptor to the
CRP. A new translation table address implies that the contents of the address translation
cache (ATC) may no longer be valid. Therefore, the instruction that loads the CRP can
optionally flush the ATC.

The SRP is a 64-bit register that optionally contains the address and related status
information of the root of the translation table for supervisor area accesses. The SRP is used
when operating at the supervisor privilege level only when the supervisor root pointer enable
bit (SRE) of the translation control register (TC) is set. The instruction that loads the SRP
can optionally flush the ATC. The format of the CRP and SRP is shown in Figure 9-35 and
defines the following fields:

Lower/Upper (L/U)
Specifies that the value contained in the limit field is to be used as the unsigned lower
limit of indexes into the translation tables when this bit is set. When this bit is cleared,
the limit field is the unsigned upper limit of the translation table indexes.

Memory Management Unit

MOTOROLA MC68030 USER’S MANUAL 9-43

Limit
Specifies a maximum or minimum value for the index to be used at the next level of table
search (the function code level cannot be limited). To suppress the limit function, the L/U
bit is cleared and the limit field is set to ones ($7FFF in the word containing both fields),
or the L/U bit is set and the limit field is cleared ($8000 in that word).

Descriptor Type (DT)
Specifies the type of descriptor contained in either the root pointer or in the first level of
the translation table identified by the root pointer. The values are:

$0 INVALID
This value is not allowed at the root pointer level. When a root pointer register is
loaded with an invalid root pointer descriptor, an MMU configuration exception is
taken.

$1 PAGE DESCRIPTOR
A translation table for this root pointer does not exist. The MC68030 internally cal-
culates an ATC entry (page descriptor) for accesses using this root pointer within
the current page by adding (unsigned) the value in the table address field to the
incoming logical address. This results in direct mapping with a constant offset (the
table address). For this case, the processor performs a limit check, regardless of
the state of the FCL bit in the TC register.

$2 VALID 4 BYTE
The translation table at the root of the translation tree contains short-format de-
scriptors. The MC68030 must scale the table index for this level of the table
search by 4 bytes to access the next descriptor.

$3 VALID 8 BYTE
The translation table at the root of the translation tree contains long-format de-
scriptors. The MC68030 must scale the table index for this level of the table
search by 8 bytes to access the next descriptor.

Table Address
Contains the physical base address (in bits 31-4) of the translation table at the root
pointer level. When the DT field contains $1, the value in the table address field is the
offset used to calculate the physical address for the page descriptor. The table address
field can contain zero (for zero offset).

Unused
Bits 3-0 of the root pointer are not used and are ignored when written. All other unused
bits must always be zeros.

Memory Management Unit

9-44 MC68030 USER’S MANUAL MOTOROLA

9.7.2 Translation Control Register
The translation control register (TC) is a 32-bit register that contains the control fields for
address translation. All unimplemented fields of this register are read as zeros and must
always be written as zeros.

Writing to this register optionally causes a flush of the entire ATC. When written with the E
bit (bit 31) set (translation enabled), a consistency check is performed on the values of PS,
IS, and TIx as follows. The TIx fields are added together until a zero field is reached, and
this sum is added to PS and IS. The total must be 32, or an MMU configuration exception
(refer to 9.7.5.3 MMU Configuration Exception) is taken. If an MMU configuration
exception occurs, the TC register is updated with the data, and the E bit is cleared. The
translation control register is shown in Figure 9-36.

The fields of the TC register are:

Enable (E)
 This bit enables and disables address translation:

 0 — Translation disabled

 1 — Translation enabled
 A reset operation clears this bit. When translation is disabled, logical addresses are used
as physical addresses. The MMU instructions (PTEST, PLOAD, PMOVE, PFLUSH) can
be executed successfully, regardless of the state of the E bit. Additionally, even if the E
bit is set, the TC register can be updated with a value whose E bit is set. The state of the
E bit does not affect the use of the transparent translation registers.

Supervisor Root Pointer Enable (SRE)
 This bit controls the use of the supervisor root pointer register (SRP):

 0 — SRP disabled

 1 — SRP enabled
 When the SRP is disabled, both user and supervisor accesses use the translation table
defined by the CRP. When the SRP is enabled, user accesses use the CRP, and super-
visor accesses use the SRP.

(UNABLE TO LOCATE ART)

Figure 9-35. Root Pointer Register (CRP, SRP) Format

(UNABLE TO LOCATE ART)

Figure 9-36. Translation Control Register (TC) Format

Memory Management Unit

MOTOROLA MC68030 USER’S MANUAL 9-45

Function Code Lookup (FCL)
 This bit enables the use of function code lookup for searching the address translation ta-
bles:

 0 — Function code lookup disabled

 1 — Function code lookup enabled
 When function code lookup is disabled, the first level of pointer tables within the transla-
tion table structure is indexed by the logical address field defined by TIA. When function
code lookup is enabled, the first table of the translation table structure is indexed by func-
tion code. In this case, the limit field of CRP or SRP is ignored.

Memory Management Unit

9-46 MC68030 USER’S MANUAL MOTOROLA

Page Size (PS)
 This 4-bit field specifies the system page size:

 1000 — 256 bytes
 1001 — 512 bytes
 1010 — 1K bytes
 1011 — 2K bytes
 1100 — 4K bytes
 1101 — 8K bytes
 1110 — 16K bytes
 1111 — 32K bytes

 All other bit combinations are reserved by Motorola for future use; an attempt to load oth-
er values into this field of the TC register causes an MMU configuration exception.

Initial Shift (IS)
This 4-bit field contains the number of high-order bits of the logical address that are ig-
nored during table search operations. The field contains an integer, 0-15, which sets the
effective size of the logical address to 32-17 bits, respectively. Since all 32 bits of the ad-
dress are compared during address translation, bits ignored due to initial shift cannot have
random values. They must be specified and be consistent with the translation table values
in order to ensure that subsequent address translations match the corresponding entries
in the ATC.

Table Index (TIA, TIB, TIC, and TID)
These 4-bit fields specify the numbers of logical address bits used as the indexes for the
four possible levels of the translation tables (not including the optional level indexed by
the function codes). The index into the highest level table (following the function code,
when used) is specified by TIA, and the lowest level, by TID. The fields contain integers,
0-15. When a zero value in a TIx field is encountered during a table search operation, the
search is over unless the indexed descriptor is a table (indirect) descriptor.

Memory Management Unit

MOTOROLA MC68030 USER’S MANUAL 9-47

9.7.3 Transparent Translation Registers
The transparent translation registers (TT0 and TT1) are 32-bit registers that define blocks
of logical address space that are transparently translated. Logical addresses in a
transparently translated block are used as physical addresses, without modification and
without protection checking. The minimum size block that can be defined by either TTx
register is 16 Mbytes of logical address space. The two TTx registers can specify blocks that
overlap. The TTx registers operate independently of the E bit in the TC register and the state
of the MMUDIS signal. A transparent translation register is shown in Figure 9-37.

The fields of the transparent translation register are:

Enable (E)
 This bit enables transparent translation of the block defined by this register:

 0 — Transparent translation disabled

 1 — Transparent translation enabled

 A reset operation clears this bit.

Cache Inhibit (CI)
 This bit inhibits caching for the transparent block:

 0 — Caching allowed

 1 — Caching inhibited
 When this bit is set, the contents of a matching address are not stored in the internal in-
struction or data cache. Additionally, the cache inhibit out signal (CIOUT) is asserted
when this bit is set, and a matching address is accessed, signaling external caches to in-
hibit caching for those accesses.

Read/Write (R/W)
 This bit defines the type of access that is transparently translated (for a matching ad-
dress):

 0 — Write accesses transparent

 1 — Read accesses transparent

Read/Write Mask (RWM)
 This bit masks the R/W field:

 0 — R/W field used

 1 — R/W field ignored

(UNABLE TO LOCATE ART)

Figure 9-37. Transparent Translation Register (TT0 and TT1) Format

Memory Management Unit

9-48 MC68030 USER’S MANUAL MOTOROLA

 When RWM is set to one, both read and write accesses of a matching address are trans-
parently translated. For transparent translation of read-modify-write cycles with matching
addresses, RWM must be set to one. If the RWM bit equals zero, neither the read nor the
write of any read-modify-write cycle is transparently translated with the TTx register.

Function Code Base (FC BASE)
This 3-bit field defines the base function code for accesses to be transparently translated
with this register. Addresses with function codes that match the FC BASE field (and are
otherwise eligible) are transparently translated.

Function Code Mask (FC MASK)
This 3-bit field contains a mask for the FC BASE field. Setting a bit in this field causes
the corresponding bit of the FC BASE field to be ignored.

LOGICAL ADDRESS BASE
This 8-bit field is compared with address bits A31-A24. Addresses that match in this
comparison (and are otherwise eligible) are transparently translated.

Memory Management Unit

MOTOROLA MC68030 USER’S MANUAL 9-49

LOGICAL ADDRESS MASK
This 8-bit field contains a mask for the LOGICAL ADDRESS BASE field. Setting a bit in
this field causes the corresponding bit of the LOGICAL ADDRESS BASE field to be ig-
nored. Blocks of memory larger than 16 Mbytes can be transparently translated by setting
some of the logical address mask bits to ones. Normally, the low-order bits of this field are
set to define contiguous blocks larger than 16 Mbytes, although this is not required.

9.7.4 MMU Status Register
The MMU status register (MMUSR) is a 16-bit register that contains the status information
returned by execution of the PTEST instruction. The PTEST instruction searches either the
ATC (PTEST with level 0) or the translation tables (PTEST with levels of 1-7) to determine
status information about the translation of a specified logical address. The MMUSR is shown
in Figure 9-38.

(UNABLE TO LOCATE ART)

Figure 9-38. MMU Status Register (MMUSR) Format

Memory Management Unit

9-50 MC68030 USER’S MANUAL MOTOROLA

The bits in the MMUSR have different meanings for the two kinds of PTEST instructions, as
shown in Table 9-3.

Table 9-3. MMUSR Bit Definitions

MMUSR Bit PTEST, Level 0 PTEST, Level 1-7
Bus Error (B) This bit is set if the bus error bit is

set in the ATC entry for the
specified logical address.

This bit is set if a bus error is
encountered during the table
search for the PTEST instruction.

Limit (L) This bit is cleared. This bit is set if an index exceeds a
limit during the table search

Supervisor Violation (S) This bit is cleared This bit is set if the S bit of a long (S)
format table descriptor or long
format page descriptor
encountered during the search is
set, and the FC2 bit of the function
code specified by the PTEST
instruction is not equal to one. The
S bit is undefined if the I bit is set.

Write Protected (W) This bit is set if the WP bit of the
ATC entry is set. It is undefined if
the I bit is set

This bit is set if a descriptor or page
descriptor is encountered with the
WP bit set during the table search.
The W bit is undefined if the I bit is
set.

Invalid (I) This bit indicates an invalid
translation. The I bit is set if the
translation for the specified logical
address is not resident in the ATC
or if the B bit of the corresponding
ATC entry is set.

This bit indicates an invalid
translation. The I bit is set if the DT
field of a table or a page descriptor
encountered during the serach is
set to invalid or if either the B or L
bits of the MMUSR are set during
the table search.

Modified (M) This bit is set if the ATC entry
corresponding to the specified
address has the modified bit set. It
is undefined if the I bit is set.

This bit is set if the page descriptor
for the specified address has the
modified bit set. It is undefined if I is
set.

Transparent (T) This bit is set if a match occurred in
either (or both) of the transparent
translation registers (TT0 or TT1). If
the T bit is set, all remaining
MMUSR bits are undefined.

This bit is set to zero.

Number of Levels (N) This 3-bit field is cleared to zero. This 3-bit field contains the actual
number of tables accessed during
the search.

Memory Management Unit

MOTOROLA MC68030 USER’S MANUAL 9-51

9.7.5 Register Programming Considerations
If the entries in the address translation cache (ATC) are no longer valid when a reset
operation occurs, an explicit flush operation must be specified by the software. The
assertion of RESET disables translations by clearing the E bits of the TC and TTx registers,
but it does not flush the ATC. Flushing of the ATC is optional under control of the FD bit of
the PMOVE instruction that loads a new value into the SRP, CRP, TT0, TT1, or TC register.

The programmer of the MMU must be aware of effects resulting from loading certain
registers. A subsequent section describes these effects. The MMUSR values lend
themselves to the use of a case structure for branching to appropriate routines in a bus error
handler. An example of a flowchart that implements this technique is shown in another
section. A third section describes the conditions that result in MMU exceptions.

9.7.5.1 REGISTER SIDE EFFECTS. The PMOVE instruction is used to load or read any of
the MMU registers (CRP, SRP, TC, MMUSR, TT0, and TT1). Since loading the root
pointers, the translation control register, or the transparent translation registers with new
values can cause some or all of the address translations to change, it may be desired to
flush the ATC of its contents any time these registers are written. The opcodes of the
PMOVE instructions that write to CRP, SRP, TC, TT0, and TT1 contain a flush disable (FD)
bit that optionally flushes the ATC when these instructions are executed. If the FD bit equals
one, the ATC is not flushed when the instruction is executed. If the FD bit equals zero, the
ATC is flushed during the execution of the PMOVE instruction.

9.7.5.2 MMU STATUS REGISTER DECODING. The seven status bits in the MMU status
register (MMUSR) indicate conditions to which the operating system should respond. In a
typical bus error handler routine, the flows shown in Figures 9-39 and 9-40 can be used to
determine the cause of an MMU fault. The PTEST instructions set the bits in the MMUSR
appropriately, and the program can branch to the appropriate code segment for the
condition. Figure 9-39 shows the flow for a PTEST instruction for the ATC (level 0), and
Figure 9-40 shows the flow for a PTEST instruction that accesses an address translation
tree (levels 1-7).

Memory Management Unit

9-52 MC68030 USER’S MANUAL MOTOROLA

9.7.5.3 MMU CONFIGURATION EXCEPTION. The exception vector table in the MC68030
assigns a vector for an MMU configuration error exception. The configuration exception
occurs as the result of loading invalid data into the TC, SRP, or CRP register.

When the TC register is loaded with the E bit set, the MMU performs a consistency check
of the values in all the four bit fields. The values in the TIx fields are added until the first zero
is encountered. The values in the PS and IS fields are added to the sum of the TIx fields. If
the sum is not equal to 32, the PMOVE instruction causes an MMU configuration exception.
The instruction also causes a configuration exception when a reserved value ($0-$7) is
placed in the PS field of the TC register.

A PMOVE instruction that loads either the CRP or the SRP causes an MMU configuration
exception if the new value of the DT field is zero (invalid). In this case, the register is loaded
with the new value before the exception is taken.

(UNABLE TO LOCATE ART)

Figure 9-39. MMU Status Interpretation PTEST Level 0

Memory Management Unit

MOTOROLA MC68030 USER’S MANUAL 9-53

9.8 MMU INSTRUCTIONS
The MC68030 instruction set includes four privileged instructions that perform MMU
operations. A brief description of each of these instructions follows.

The PMOVE instruction transfers data between a CPU register or memory location and any
one of the six MMU registers. The operating system uses the PMOVE instruction to control
and monitor MMU operation by manipulating and reading these registers. Optionally, a
PMOVE instruction flushes the ATC when it loads a value into the TC, SRP, CRP, TT0, or
TT1 register.

(UNABLE TO LOCATE ART)

Figure 9-40. MMU Status Interpretation PTEST Level 7

Memory Management Unit

9-54 MC68030 USER’S MANUAL MOTOROLA

The PFLUSH instruction flushes (invalidates) address translation descriptors in the ATC.
PFLUSHA, a version of the PFLUSH instruction, flushes all entries. The PFLUSH instruction
flushes all entries with a specified function code or the entry with a specified function code
and logical address.

The PLOAD instruction performs a table search operation for a specified function code and
logical address and then loads the translation for the address into the ATC. The operating
system can use this instruction to initialize the ATC to minimize table searching during
program execution. Any existing entry in the ATC that translates the specified address is
flushed. The preload can be executed for either read or write attributes. If the write attribute
is selected (PLOADW), the MC68030 performs the table search and updates all history
information in the translation tables (used and modified bits) as if a write operation to that
address had occurred. Similarly, if the read attribute is selected (PLOADR), the history
information in the translation table (used bit) is updated as if a read operation had occurred.
The PLOAD instruction does not alter the MMUSR.

The PTEST instruction either searches the ATC or performs a table search operation for a
specified function code and logical address, and sets the appropriate bits in the MMUSR to
indicate conditions encountered during the search. The physical address of the last
descriptor fetched can be returned in an address register. The exception routines of the
operating system can use this instruction to identify MMU faults. The PTEST instruction
does not alter the ATC.

This instruction is primarily used in bus error handling routines. For example, if a bus error
has occurred, the handler can execute an instruction such as:

PTESTW #1,([A7, offset]),#7,A0

This instruction requests that the MC68030 search the translation tables for an address in
user data space (#1) and examine protection information. This particular logical address is
obtained from the exception stack frame ([A7, offset]). The MC68030 is instructed to search
to the bottom of the table (#7 — there cannot be more than six levels) and return the physical
address of the last table entry used in register A0. After executing this instruction, the
handler can examine the MMUSR for the source of the fault and use A0 to access the last
descriptor. Note that the PTESTR and PTESTW instructions have identical results except
for PTEST0 when either TTx register matches the logical address and the R/W bit of that
register is not masked.

The MMU instructions use the same opcodes and coprocessor identification (CpID) as the
corresponding instructions of the MC68851. All F-line instructions with CpID=0 (including
MC68851 instructions) that the MC68030 does not support automatically cause F-line
unimplemented instruction exceptions when their execution is attempted in the supervise
mode. If execution of a unimplemented F-line instruction with CpID=0 is attempted in the
user mode, the MC68030 takes a privilege violation exception. F-line instructions with a
CpID other than zero are executed as coprocessor instructions by the MC68030.

Memory Management Unit

MOTOROLA MC68030 USER’S MANUAL 9-55

9.9 DEFINING AND USING PAGE TABLES IN AN OPERATING SYSTEM
Many factors must be considered when determining how to use the MMU in an operating
system. The MC68030 provides the flexibility required to optimize an operating system for
many system implementations. The example operating system described in the next section
presents one approach to operating system design, with many of the tradeoffs discussed.

9.9.1 Root Pointer Registers
An operating system can use the CPU root pointer (CRP) register alone or both the CRP
and the supervisor root pointer (SRP) registers to point to the top level address translation
table(s). The choice depends on the complexity of the memory layout for the system. When
only the CRP is used, it must point to a translation table that maps all supervisor and user
references. However, the supervisor and user translation tables can be separate even when
only the CRP register is used. When the index to the top level translation table is the function
code value (FCL in TC register is set), supervisor and user tables are separate at all lower
levels. With proper structuring of the address tables, both methods can provide the same
functionality, but each has its advantages.

When the translation tables use the CRP and function code lookup, supervisor and user
accesses are separate, and each task can have different supervisor and user mappings.
Alternatively, the entries in the function code tables that correspond to the supervisor spaces
for each task can all point to the same tables to provide a common mapping for all supervisor
references.

When the mapping of the supervisor address space is identical for all tasks, the SRP can be
used in conjunction with the CRP to provide a more simple and efficient way to define the
mapping. This technique suppresses the use of the function code (unless the program and
data spaces require distinct mappings) and separates supervisor and user accesses at the
root pointer level of the translation tables. A single translation table maps all supervisor
accesses without maintaining a large number of supervisor pointers in the translation tables
for each task, resulting in reduced bus activity for table searches.

Memory Management Unit

9-56 MC68030 USER’S MANUAL MOTOROLA

9.9.2 Task Memory Map Definition
The MC68030 provides several different means by which the supervisor can access the
user address spaces. The supervisor can access any user address, regardless of how the
virtual space is partitioned, with the MOVES (move space) instruction. Some systems
provide a complete 4-Gbyte virtual memory map for each task. Indeed, an operating system
that runs other operating systems in a virtual machine environment must provide a complete
map to accurately emulate the full addressing range for the subordinate operating system.

With the large address space of the MC68030, each individual user task or all user tasks
can share the address space with the operating system. One method of performing this
function is implemented in the example operating system in the next section. Sharing the
address space provides direct access to user data items by the operating system. Another
advantage of this mapping method is that tasks can easily share code. Common routines
such as file I/O handlers and arithmetic conversion packages can be written re-entrantly and
be restricted to read-only access from all user tasks in the system.

The simplest example of a shared virtual address space system is one in which each user
and supervisor process is given a unique virtual address range within the single 4-Gbyte
virtual address space. In other words, the system has only one linear virtual address space;
all processes run somewhere in that space. Only one translation table tree is required for
the entire system, but each task can have individual tables if desired. With the common tree
approach, the operating system can access any item of any task without modifying the root
pointer. Otherwise, only the currently active task is immediately accessible, which often is
adequate. To switch tasks, the operating system only has to update the user program and
user data pointers in the highest level translation table indexed by the function code. This
gives each task access to its own data only. This scheme has the advantages of simple table
management and easy sharing of common items by giving them the same virtual address
for all tasks in the system. This scheme might be ideal for real-time systems that do not
require more complexity in memory management facilities.

Memory Management Unit

MOTOROLA MC68030 USER’S MANUAL 9-57

The next logical step toward increased operating system complexity, with shared user and
supervisor virtual memory maps, is to keep the supervisor addresses separate but to give
each user task its own use of the remainder of the virtual space. For example, each user
task could have the virtual memory space from zero to 512 Mbytes; the operating system
programs and data would occupy the remainder of the space, from 512 Mbytes up to 4
Gbytes. Each user task has its own set of translation tables. The supervisor root pointer may
or may not be used, depending on whether the user tables also map the supervisor space.
As in the preceding method, the user cannot access the operating system portion of the
address space unless the operating system allows it or wishes to share common routines.
The advantages of this scheme are that it provides a much larger virtual address space for
each user task and it avoids virtual memory fragmentation problems. Disadvantages of this
scheme include the requirement for slightly more complex table management and the
restriction of operating system access to only the current user task.

There are few absolute rules in the use of the MC68030 MMU. In general, the statement
regarding restricting operating system access to only one user task using the scheme
described in the preceding paragraph holds true. However, by using the entire 4-Gbyte
virtual address space and cross mapping the address space, the supervisor can access
each user task space as a distinct portion of its own supervisor map. If each user task is
limited to a 16-Mbyte virtual address space and the supervisor only requires a 16-Mbyte
address space, 256 such address spaces can be mapped simultaneously. The supervisor
translation tables can include each of these spaces, and the supervisor can access each
task using indexed addressing with a register that contains the proper constant for a
particular task. This constant provides a supervisor-to-user virtual address conversion. A
systems programmer can implement some very sophisticated functions that exploit the
flexibility of the MMU.

The most complex systems and those that implement virtual machine capability completely
separate the virtual address spaces of the supervisor and all user tasks, or possibly even
those of individual supervisor tasks. Each user or supervisor task has its own virtual memory
space starting at zero and extending to 4 Gbytes. Using the function code, a 4-Gbyte
address space for the program and another for its data can be provided for each task. Both
the SRP and the CRP are probably used, since nothing is common among the various
spaces. The operating system uses the MOVES instruction to interact with the user space.
The advantages of this implementation are the maximum availability of the virtual space and
a complete logical separation of addresses. Virtual machine implementations require
maximum availability of virtual space. The disadvantages are the more complex table
management and the more restrictive accesses to other address spaces.

Memory Management Unit

9-58 MC68030 USER’S MANUAL MOTOROLA

9.9.3 Impact of MMU Features On Table Definition
The features of the MMU that impact table definition are usually considered after deciding
how to map memory for the tasks. For some systems, these features can affect the mapping
decision and should be considered when making that decision.

9.9.3.1 NUMBER OF TABLE LEVELS. The MMU supports from zero to five levels (six
levels with the use of indirection) in the address translation tables. The zero-level case is
early termination at the root pointer. This provides a limit check on the range of physical
addresses for the system. It is used primarily in systems that require the limit check on
physical addresses.

Systems that support large page sizes or that require only limited amounts of virtual memory
space can use single-level tables. A single-level translation tree with 32K-byte pages may
be the best choice for systems that are primarily numerically intensive (i.e., the system is
involved in arithmetic manipulations rather than data movement) where the overhead of
virtual page faults and paging I/O must be minimized. This type of system can map a 16-
Mbyte address space with only 2K bytes of page table space. With this much mapped
address space, table search time becomes insignificant.

At another extreme is a single-user business system that only needs a 2-Mbyte[lz virtual
address space. A 512-byte page size might be best for this system, because the block size
formats of many Winchester hard disk file systems is 512 bytes. A page table that
completely maps the 2-Mbyte space requires only 16K bytes of memory, and the ATC
entries directly map 11K bytes of virtual space at any one time. The page tables for this
system and the one described in the preceding paragraph are small enough to be
permanently allocated in the operating system data area. They incur virtually no
management or swapping overhead.

A two-level address translation table provides a lower page level similar to the page tables
in the two preceding paragraphs and additional direction at a higher level. For example, in
a system using 32K-byte pages and 512-entry page tables, the upper level translation table
contains 256 entries of short-format descriptors, requiring 1K bytes for the table. Each of the
upper table entries maps a 16-Mbyte region of the virtual address space. The primary
advantage of a two-level table for large "number-crunching" system is the operating system
designer's ability to make a tradeoff between page size and table size. The system designer
may choose a smaller page size to fit the block sizes on available I/O devices, yet keep the
tables manageable. However, the designer must also consider the performance penalty
associated with smaller page sizes. Systems with smaller page sizes have a higher
frequency of page faults requiring more table search time and paging I/O. With the flexibility
of the MC68030 MMU, the designer has enough choices to optimize table structure design
and page size.

Memory Management Unit

MOTOROLA MC68030 USER’S MANUAL 9-59

Three-level translation tables are useful when the operating system makes heavy use of
shared memory spaces and/or shared page tables. Sophisticated systems often share
translation tables or program and data areas defined at the page table level. When a table
entry can point to a translation table also used by a different task, sharing memory areas
becomes efficient. The direct access to user address space by the supervisor is an example
of sharing memory.

Some artificial intelligence systems require very large virtual address spaces with only small
fragments of memory allocated among these widely differing addresses. This fragmentation
is due to the complex and recursive actions the system performs on lists of data. These
actions require the system to constantly allocate and free sophisticated pointers and linked
lists in the memory map. The fragmentation suggests a small page size to utilize memory
most efficiently. However, small pages in a large virtual memory map require relatively large
translation tables. For example, to map 4 Gbytes of virtual address space with 256-byte
pages, the page tables alone require 64 Mbytes. With a three- or four-level table structure,
the number of actual translation table entries can be drastically reduced. The designer can
use invalid descriptors to represent blocks of unused addresses and the limit fields in valid
descriptors to minimize the sizes of pointer and page tables. In addition, paging of the
address tables themselves reduces memory requirements.

9.9.3.2 INITIAL SHIFT COUNT. The initial shift field (IS) of the translation control register
(TC) can decrease the size of translation tables. When the required virtual address space
can be addressed with fewer than 32 bits, the IS field reduces the size of the virtual address
space by discarding the appropriate number of the most significant logical address bits. This
technique inhibits the system's ability to detect very large illegal (i.e., out-of-bounds)
addresses. Using the full 32-bit address and reducing the table size with invalid descriptors
and limited pointer and page table sizes prevents this problem.

Memory Management Unit

9-60 MC68030 USER’S MANUAL MOTOROLA

9.9.3.3 LIMIT FIELDS. Except for a table indexed by function code, every pointer and page
table can have a defined limit on its size. Defining limits provides flexibility in the operating
system and saves memory in the translation tables. The limit field of a table descriptor limits
the size of the table to which it points. The limit can be either an upper or a lower limit, using
either the lower or higher addresses within the range of the table. Since a task seldom
requires the maximum number of possible virtual pages, this reduction in table size is
practical.

For example, when an operating system uses 4K-byte pages and runs numerous small
tasks that average 80K bytes each in size, each task requires a 20-entry page table. The
system can limit the size of each table to 80 bytes, or 800 bytes for ten tasks. Without the
limit, an operating system running ten of these tasks would require 40K bytes of space for
the page tables alone (one table per page).

Memory savings required for translation tables is especially significant for artificial
intelligence systems these systems tend to require very large memory maps. By using limit
fields, each table is only as large as the number of active entries within it. This limit can
change as the table grows. For higher level tables, each table only grows as the additional
entries require. The use of three or four levels of tables facilitates the management of these
tables.

9.9.3.4 EARLY TERMINATION PAGE DESCRIPTORS. A page descriptor residing in a
pointer table is an early termination page descriptor mapping an entire block of pages. That
is, it maps a contiguous range of virtual addresses to a contiguous range of physical
addresses. For example, an operating system could reserve a 32K-byte area for special
supervisor I/O peripheral devices. This area can be mapped with a single early termination
descriptor to save translation table size and table search overhead. The descriptor can use
the limit field to reduce the size of the contiguous block when the block size is smaller than
the virtual address space that the particular descriptor represents. The MC68030 creates
multiple ATC entries (one for each page) for the range of virtual addresses represented by
the early termination descriptor as the pages are accessed.

Memory Management Unit

MOTOROLA MC68030 USER’S MANUAL 9-61

An operating system can use an early termination page descriptor to map a contiguous
block of memory for each task (both program and data). The tasks can be relocated by
changing the physical address portion of the descriptor. This scheme is useful when the
tasks in a system consist of one or a few sequential blocks of memory that can be swapped
as a group. The operating system memory map can treat the entire address space within
these blocks as a uniform virtual space available for all tasks. The system only requires one
translation table; by the use of limit fields and early termination page descriptors, it maps
complete segments of memory.

9.9.3.5 INDIRECT DESCRIPTORS. An indirect descriptor is a table descriptor residing in a
page table. It points to another page descriptor in the translation tree. Using an indirect
descriptor for a page makes the page common to several tasks. History information for a
common page is maintained in only one descriptor. Access to the page sets the used (U)
bit, and a write operation to the page sets the M (modified) bit for that page. When the
operating system is searching for an available page, it simply checks the page table
containing the descriptor for the common page to determine its status. With other methods
of page sharing, the system would have to check page tables for all sharing tasks to
determine the status of the common page.

9.9.3.6 USING UNUSED DESCRIPTOR BITS. In general, the bits in the unused fields of
many types of descriptors are available to the operating system for its own purposes. The
invalid descriptor, in particular, uses only two bits of the 32 (short) or 64 (long) bits available
with that format. An operating system typically uses these fields for the software flags,
indicating whether the virtual address space is allocated and whether an image resides on
the paging device. Also, these fields often contain the physical address of the image.

The operating system often maintains information in an unused field about a page resident
in memory. This information may be an aging counter or some other indication of the page's
frequency of use. This information helps the operating system to identify the pages that are
least likely to impact system performance if they are reallocated. The system should first use
physical page frames that are not allocated to a virtual page. Next it should use pages with
the longest time since the most recent access. Pages that do not have the M (modified) bit
set should be taken first, since they do not need to be copied to the paging device (the
existing image remains valid).

Memory Management Unit

9-62 MC68030 USER’S MANUAL MOTOROLA

An aging counter can be set up in an unused field of a page descriptor. The system can
periodically check the U (used) bit for the page and increment the count when the page has
not been used since the previous check. The system can identify the least recently used
page from the counts in the aging counter. When the counter for a page overflows, the
system can list the page in a queue of least recently used pages from which it chooses the
next page to be reallocated.

Many schemes afford the operating system designer a variety in selecting a page to be
taken. One operating system scans page tables, starting at the lowest priority task, looking
for aged pages to steal. Another system maintains a system-wide list of all page frames as
they are used and scans the list, starting at the oldest, to find a page to steal. A sophisticated
system keeps a working set model of active pages for each individual task. From this
information, it can swap a complete block of pages in and out with a single I/O operation.
The method chosen can have a dramatic impact on limiting page fault overhead in a heavily
used system.

9.10 AN EXAMPLE OF PAGING IMPLEMENTATION IN AN
OPERATING SYSTEM

This section describes an example operating system design that illustrates some of the
MMU features. The description suggests alternatives to provide variations of the design.
Memory management algorithms that can be implemented to derive the actual code are
shown. A bus error handler routine is shown also. Implementing the algorithms develops the
basic code for the memory management services of an operating system.

9.10.1 System Description
The example system has the ability to map a large virtual memory task space, which is
required for execution of predominantly numerically intensive processing tasks. Most of
these tasks do not need more than 16 Mbytes of memory, but the system can supply a larger
virtual memory space (as large as 496 Mbytes) to the occasional task that requires more.
The system uses the relatively large page size of 8K bytes to minimize thrashing and
translation table searches. With a larger page size, fewer descriptors can map a large area
of virtual memory. Also, in a given period of time, the MC68030 experiences fewer ATC
misses and performs fewer table searches. The larger page size requires the paging I/O
operations to transfer larger blocks of data, and sometimes only a small part of the page is
actually used. However, preliminary software model simulations show that 8K-byte pages
provide optimum performance for this type of processing.

Memory Management Unit

MOTOROLA MC68030 USER’S MANUAL 9-63

The average task for this system is a compiler or text editor that requires only 192K bytes of
memory, or 24 8K-byte pages. Using short page descriptors, the page table occupies 96
bytes.

Page tables can reside at any 16-byte boundary; the limit fields of the MMU can provide the
area needed without requiring excess space. This results in an address table area small
enough to be completely resident in physical memory. The operating system does not need
to page the table areas.

The paging hardware of many computer systems requires lower level tables to reside at
page boundaries, effectively using one or more entire pages. This requires 80K bytes for the
page tables for 10 tasks (10 tables, one 8K-byte page per table). Then, when the memory
required for an upper level of tables is added, at a minimum of 8K bytes per task, the total
comes to over 160K bytes. Table base addresses in the MC68030 are zero modulo 16
addresses. This results in a dramatic savings of memory for address table space; instead of
using 80K bytes for the page tables for 10 tasks, (10 tables, one 8K-byte page per table),
the MC68030 needs 960 bytes. Instead of 8K bytes per task for the upper level of tables,
the tables require 2560 bytes in the MC68030. The fragmentation that may occur in
allocating smaller tables could increase the memory requirement but would still remain less
than 160K bytes.

The translation table tree for the example system consists of two levels. The upper level is
a fixed table that contains 32 entries, each of which is a long-format table descriptor that
points to a lower level page table. Each page table maps as many as 16 Mbytes of virtual
address space. Since the upper level table is small (256 bytes), it can easily fit in the main
control block of the task. When the system dispatches a new task, it loads a pointer to the
upper level table for the task into the CRP register. Each lower level table consists of 0-2048
short-format page descriptors. The limit entry in the table descriptor for a page table
determines the size of the table. For the average 192K-byte task, the upper level table
usually has one valid entry, and this entry points to a lower level table with an average size
of 96 bytes. A task that requires more than 16 Mbytes uses more than one valid entry in the
higher level table.

Memory Management Unit

9-64 MC68030 USER’S MANUAL MOTOROLA

In a typical computer system, with 64K bytes of boot and diagnostics ROM, a 64K I/O area,
and 1 Mbyte of RAM, the physical mapping appears as follows:

The operating system must control memory allocation for physical memory (page frames)
to hold the pages of virtual memory. All available physical memory is divided into page
frames, each of which can hold a page of virtual memory. A system with 4 Mbytes of actual
memory is divided into 512 8K-byte frames that can theoretically hold 512 pages of active
virtual memory at any one time. Usually, operating system components (exception handlers,
the kernel, private memory pool) permanently reside in some of the memory. Only the
remaining page frames are available for virtual memory pages.

The operating system maintains a linked list of all unallocated page frames. One simple way
to do this is for each unallocated frame to contain a pointer to the next frame. The operating
system takes the first page frame on the list when a frame is required. An operating system
primitive called GetFrame performs this function and returns the physical address of an
available frame. When all frames are allocated, GetFrame steals a frame from another task.
GetFrame first looks for an unmodified frame to steal. An unmodified frame could be stolen
without waiting for the page to be copied back to the external storage device that stores
virtual page images. (This device is called the paging device or the backing store.) If no
unmodified page frame is available, GetFrame must wait while the system copies a modified
page to the paging device, then steals the page frame and returns to the caller with the
physical address.

Next, the operating system needs physical memory management routines to allocate and
free supervisor work memory. The routine must allocate pieces of memory on boundaries
of at least modulo 16, the requirement for address translation tables. Typically, this type of
routine allocates pieces of certain sizes. GetReal is the allocation routine; ReturnReal is the
return routine. They use physical addresses.

With physical memory allocation provided for, the operating system must be able to manage
virtual memory for all tasks. To do this, the system must be aware of the virtual memory map.
It must know the total amount of virtual memory space, how much is allocated, and which
areas are available to be assigned to tasks. The virtual memory map looks like this:

Virtual addresses for this virtual memory are subdivided:

(UNABLE TO LOCATE ART)

(UNABLE TO LOCATE ART)

(UNABLE TO LOCATE ART)

Memory Management Unit

MOTOROLA MC68030 USER’S MANUAL 9-65

The translation table structure consists of:

 CRP → upper level table in the task control block, which contains 32 long pointers:

 [0] → lower level table common to all tasks; maps all operating system areas (first 4
Mbytes of virtual space). This common table contains 512 short-page entries
(2K bytes).

 [1] → lower level table for first 16 Mbytes of user program/data/stack area.

 •
 •
 •

 [31] → lower level table for last 16 Mbytes (of 496 total) of user program/data/stack
area.

The user program can only access virtual addresses starting at 16 Mbytes and extending
upward to the limit of 512 Mbytes. The code, the data, and the stacks for user tasks are
allocated in this area of virtual memory. Supervisor programs can access the entire virtual
map; they can access addresses that directly access the I/O ports as well as the entire
physical memory at untranslated addresses. The address tables are set up so that virtual
addresses are equal to the physical addresses for the supervisor between 1 and 3 Mbytes.
Folding the physical address space into the virtual space greatly simplifies operations that
use physical addresses. The folding does not necessarily mean that the virtual addresses
are the same as the physical addresses. For example, the boot/diagnostic ROM at physical
address zero could be assigned a virtual address of 3 Mbytes. However, any external bus
masters or circuitry (such as breakpoint registers) resident on the physical side of the bus
must have physical addresses. This requires the overhead of operating system code to
perform address translation.

This virtual memory map provides supervisor addresses that are unique with respect to user
addresses; all supervisor routines can directly access any user area without being restricted
to certain instructions or addressing modes. The separate user and supervisor maps
suggest that two root pointers should be used, one for the supervisor map and one for the
user map. However, the supervisor must be able to access user translation tables for proper
access to user data items. With separate root pointers, the supervisor table structure must
be linked to that of the user. To do this requires an additional level of table lookup (function
code level) for the supervisor address table.

This example uses a simpler scheme instead. Only the CPU root pointer is used, and, for
each task, the first entry of the upper level table (for the supervisor portion, the first 16
Mbytes of virtual address space) points to the same lower level table. This common lower
level table has supervisor protection and maps the entire virtual operating system, physical
I/O, and physical memory areas. This scheme avoids the requirement for extra lookup levels
or pointer manipulations during a task switch to furnish correct access across the user/
supervisor boundary. All the operating system has to do when creating the address table for
a new task is to set the first upper level table entry to point to the common page table of the
supervisor.

Memory Management Unit

9-66 MC68030 USER’S MANUAL MOTOROLA

To solve the problem of accounting for virtual memory areas assigned to a user task, the
operating system uses the existing translation tables to identify these areas. When a valid
descriptor points to a given virtual address page, this 8K-byte page of memory has been
allocated. This scheme provides areas of memory that are multiples of the 8K-byte page
size. Due to the 8K granularity, this scheme would be inadequate for tasks that continually
request and return virtual memory space. As a result, some other technique would be used
(perhaps auxiliary tables to show virtual space availability). The tasks in this system seldom
request additional memory space; any request made is for a large area. This scheme
suffices. The application programs and utilities that run in the UNIX (r) environment have
similar requirements for memory.

The operating system primitive GetVirtual allocates virtual memory space for tasks. The
input parameter is a block size, in bytes; GetVirtual returns the virtual address for the new
block. GetVirtual first checks that the requested size is not too large. Then it scans the
translation tables looking for an unallocated virtual memory area large enough to hold the
requested block. If it does not find enough space, GetVirtual attempts to increase the page
table size to its maximum. If this does not provide the space, GetVirtual returns an error
indication. When the routine finds enough virtual space for the block, it sets the page
descriptors for the block to virgin status (invalid, but allocated). When these pages are first
used, a page fault is generated. The operating system allocates a page frame for the page
and replaces the descriptor with a valid page descriptor. The status (indicated by a software
flag in the invalid descriptor) tells the operating system that the paging device does not have
a page image for this page; no read operation from the paging device is required.

When the status of an invalid descriptor indicates that a page image must be read in,
primitive SwapInPage, reads in the image. The input parameter for this routine is the invalid
descriptor, which contains the disk address of the page image. Before returning,
SwapInPage replaces the invalid descriptor with a valid page descriptor that contains the
page address. The page is now ready for use.

Memory Management Unit

MOTOROLA MC68030 USER’S MANUAL 9-67

These routines provide many of the functions required for the memory management
services of an operating system, but a complete memory management system requires a
complementary function for each routine. The complementary function usually performs the
same steps in the reverse order. The complement of GetVirtual could be ReturnVirtual; for
SwapInPage, the complement might be SwapOutPage. These counterparts can be derived
to perform similar steps in the reverse order.

9.10.2 Allocation Routines
This section describes the central routine Vallocate, which user programs call to obtain
memory. In this section (and the next), a loose high-level language syntax is used for the
code. The code takes many liberties to enhance readability. For example, the code assigns
descriptive strings for return status values. These strings typically represent binary values.
Also, the code uses empty brackets to represent obvious subscripts in loops that scan
tables. In such a loop, the subscript on the second line is obvious:

 for Upper-Table-Index=1 to 31 do
 if Upper-Table [Upper-Table-Index].Status=invalid then ...

In the code shown here, the second line is:

 if Upper-Table [].Status=invalid then ...

The code uses flag operations that are assumed to be defined elsewhere in the system.
They may imply more complex operations than bit manipulations. For example, page table
status of invalid virgin can be implemented with an invalid descriptor instead of the page
descriptor, and a software flag bit in the descriptor that indicates the page is allocated but
has never been used (the paging device has no page image).

Vallocate has a single input parameter, the required memory size in bytes. It returns status
information and the virtual address of the start of the area (if the memory is allocated). To
simplify the routine, it always returns a multiple of the system page size and never allocates
a block that crosses a 16-Mbyte boundary. It could allocate a portion of a page by
implementing a control structure to subdivide a page, but, if the control structure were within
the allocated page, the user could corrupt it. The block could cross a 16-Mbyte boundary if
the routine included code to keep track of consecutive free blocks when scanning the lower
level tables, each of which represents 16 Mbytes of address space. Once the total area is
located, Vallocate allocates the consecutive blocks and returns the address of the lowest
block.

The 32 upper level table entries are long pointer types; each represents 16 Mbytes of virtual
address space. Each entry is either invalid (has no lower page tables) or allocated (has
lower page tables and a limit field that defines the table size). By convention, the first entry
maps the supervisor address space and has supervisor protection. The routine never
modifies this first entry. The 31 entries after the first are available to be allocated as user
address space.

Memory Management Unit

9-68 MC68030 USER’S MANUAL MOTOROLA

A routine similar to this that linearly extends (grows) a previously allocated memory block
could be written. A stack is a good example. The operating system can allocate the top of
the memory (the thirty-second upper level table entry) as a stack that grows downward from
the highest address. If a task needs several large stacks, a 16-Mbyte block can be used for
each stack, with a software flag set to indicate growth in a downward direction.

The logic of Vallocate is:

1. Validate the request and calculate number of pages required.

2. Scan each upper table entry's lower page tables (where they exist) looking for an ad-
equate group of unallocated pages.

3. If no space is found, see if the lower table is less than its maximum size and if the block
can be allocated by expanding it at the end.

4. If still no space is found, use the next free upper table entry and initialize its new lower
level page table to allocate the block here.

5. Set allocated page entries to indicate virgin status (allocated, invalid, and not swapped
out).

6. Return status. If status is OK, also return virtual address.

The code for Vallocate is:

9.10.3 Bus Error Handler Routine
The routine that processes bus error exceptions is the most critical part of the memory
management services provided by the example operating system. This routine must
determine the validity of page faults and perform the necessary processing. It must identify
the conditions that aborted the executing task. The PTEST instruction can investigate the
cause of a bus error by performing a table search using the address and type of access that
produced the error, accumulating status information during the search.

When the PTEST instruction does not find any error, the bus error was most likely a
malfunction (for example, a transient memory failure). The operating system must respond
appropriately.

(UNABLE TO LOCATE ART)

(UNABLE TO LOCATE ART)

(UNABLE TO LOCATE ART)

Memory Management Unit

MOTOROLA MC68030 USER’S MANUAL 9-69

The table search performed by the PTEST instruction may end in a bus error termination.
Either the address translation tables are not correctly built or main memory has failed (either
a transient or permanent failure).

A supervisor protection violation or a write protection violation usually indicates that the task
generating the exception attempted to access an area of the virtual address space that is
not part of the task's address space. The operating system usually recovers from such an
error by terminating (aborting) the task.

When the PTEST instruction returns the invalid status, the bus error is a page fault, and the
operating system must identify the specific type of page fault. When the limit violation bit
returned by the PTEST instruction is set, the task that took the exception was trying to
access a page that has not been allocated. The example system aborts the task in this case.
In other systems, this is an implicit request for more virtual memory, particularly if the
reference is in a stack area.

When no limit violation occurred, a descriptor is invalid. Typically, the descriptor contains
software flags that provide relevant information. The example operating system checks to
see if the invalid descriptor is in an upper level or a lower level table. When the descriptor is
in the upper level table, the task was attempting to access unallocated virtual memory, and
the system aborts the task. When the descriptor is in a lower level table, the system checks
software flags to identify the invalid descriptor.

When the software flags indicate that the descriptor corresponds to an unallocated page,
the system aborts the task. When the descriptor refers to a virgin page (allocated, but not
yet accessed) and the request for the page was a read request, the page is actually invalid
because the read operation reads unknown data. However, the example operating system
does not consider the type of request, but assigns a physical page frame to the page and
writes the page descriptor to the page table. Some systems clear virgin pages to zero.

Memory Management Unit

9-70 MC68030 USER’S MANUAL MOTOROLA

When the software flags indicate that the page is allocated and the image has been copied
to the paging device, the operating system assigns a page frame, reads the page image into
the frame, and writes the page descriptor to the page table. Another possible type of invalid
descriptor is one that requires special processing, such as one that refers to a virtual I/O
device area in a virtual machine.

Obtaining a page frame for a virtual page may be an obvious operation. However, when no
idle page frame is available, the system must steal one. If the page in the stolen frame has
been modified in memory, the system must save the page image on the paging device. The
system must alter the translation table of the task that loses the frame to show that the page
is allocated and swapped out. Typically, the translation table entry shows the address of the
page image on the paging device.

The method a system uses to select a page frame to steal varies a great deal from system
to system. A simple system may just steal a page from the lowest priority task. More
advanced systems select the page frame that has not been accessed for the longest time.
This process, called aging, is done in several ways. One method uses bits of the page
descriptor as an aging counter. Periodically, the operating system examines the U (used)
bits and increments the count for pages that have not been used. The system maintains a
list of pages with aging counters that have overflowed. The pages on this list are available
for stealing.

Some systems keep a separate list of pages that have not been modified since the page
image was read from memory. The page frames that contain these pages can be stolen
without swapping out because the existing page image on the paging device remains valid.

Page stealing software can involve many dynamics of the system. It can consider task
priority, I/O activity, working-set determinations, the number of executing tasks, a thrashing
level, and other factors.

Memory Management Unit

9-71 MC68030 USER’S MANUAL MOTOROLA

The example bus error exception routine is called BusErrorHandler. It is more general than
Vallocate because it relies on several operating-system-dependent items. The variable
pointer VictimTask is assumed to point to a table from a task that is losing a page frame.
This assumption is necessary because control block layout and the method of searching for
and finding other tasks in the example operating system are not defined. The code is further
simplified by omitting the function code value and the read/write status, which do not affect
the basic logic of the program.

(UNABLE TO LOCATE ART)

(UNABLE TO LOCATE ART)

(UNABLE TO LOCATE ART)

Memory Management Unit

9-72 MC68030 USER’S MANUAL MOTOROLA

MOTOROLA

MC68030 USER’S MANUAL

10-1

SECTION 10
COPROCESSOR INTERFACE DESCRIPTION

The M68000 Family of general-purpose microprocessors provides a level of performance
that satisfies a wide range of computer applications. Special-purpose hardware, however,
can often provide a higher level of performance for a specific application. The coprocessor
concept allows the capabilities and performance of a general-purpose processor to be
enhanced for a particular application without encumbering the main processor architecture.
A coprocessor can efficiently meet specific capability requirements that must typically be
implemented in software by a general-purpose processor. With a general-purpose main
processor and the appropriate coprocessor(s), the processing capabilities of a system can
be tailored to a specific application.

The MC68030 supports the M68000 coprocessor interface described in this section. The
section is intended for designers who are implementing coprocessors to interface with the
MC68030.

The designer of a system that uses one or more Motorola coprocessors (the MC68881 or
MC68882 floating-point coprocessor, for example) does not require a detailed knowledge of
the M68000 coprocessor interface. Motorola coprocessors conform to the interface
described in this section. Typically, they implement a subset of the interface, and that subset
is described in the coprocessor user's manual. These coprocessors execute Motorola
defined instructions that are described in the user's manual for each coprocessor.

10.1 INTRODUCTION

The distinction between standard peripheral hardware and a M68000 coprocessor is
important from a perspective of the programming model. The programming model of the
main processor consists of the instruction set, register set, and memory map available to the
programmer. An M68000 coprocessor is a device or set of devices that communicates with
the main processor through the protocol defined as the M68000 coprocessor interface. The
programming model for a coprocessor is different than that for a peripheral device. A
coprocessor adds additional instructions and generally additional registers and data types
to the programming model that are not directly supported by the main processor
architecture. The additional instructions are dedicated coprocessor instructions that utilize
the coprocessor capabilities. The necessary interactions between the main processor and
the coprocessor that provide a given service are transparent to the programmer. That is, the
programmer does not need to know the specific communication protocol between the main
processor and the coprocessor because this protocol is implemented in hardware. Thus, the
coprocessor can provide capabilities to the user without appearing separate from the main
processor.

Coprocessor Interface Description

10-2

MC68030 USER’S MANUAL

MOTOROLA

In contrast, standard peripheral hardware is generally accessed through interface registers
mapped into the memory space of the main processor. To use the services provided by the
peripheral, the programmer accesses the peripheral registers with standard processor
instructions. While a peripheral could conceivably provide capabilities equivalent to a
coprocessor for many applications, the programmer must implement the communication
protocol between the main processor and the peripheral necessary to use the peripheral
hardware.

The communication protocol defined for the M68000 coprocessor interface is described in

10.2 Coprocessor Instruction Types

. The algorithms that implement the M68000
coprocessor interface are provided in the microcode of the MC68030 and are completely
transparent to the MC68030 programmer's model. For example, floating-point operations
are not implemented in the MC68030 hardware. In a system utilizing both the MC68030 and
the MC68881 or MC68882 floating-point coprocessor, a programmer can use any of the
instructions defined for the coprocessor without knowing that the actual computation is
performed by the MC68881 or MC68882 hardware.

10.1.1 Interface Features

The M68000 coprocessor interface design incorporates a number of flexible capabilities.
The physical coprocessor interface uses the main processor external bus, which simplifies
the interface since no special-purpose signals are involved. With the MC68030, a
coprocessor can use either the asynchronous or synchronous bus transfer protocol. Since
standard bus cycles transfer information between the main processor and the coprocessor,
the coprocessor can be implemented in whatever technology is available to the coprocessor
designer. A coprocessor can be implemented as a VLSI device, as a separate system
board, or even as a separate computer system.

Since the main processor and a M68000 coprocessor can communicate using the
asynchronous bus, they can operate at different clock frequencies. The system designer
can choose the speeds of a main processor and coprocessor that provide the optimum
performance for a given system. If the coprocessor uses the synchronous bus interface all
coprocessor signals and data must be synchronized with the main processor clock. Both the
MC68881 and MC68882 floating-point coprocessors use the asynchronous bus handshake
protocol.

Coprocessor Interface Description

MOTOROLA

MC68030 USER’S MANUAL

10-3

The M68000 coprocessor interface also facilitates the design of coprocessors. The
coprocessor designer must only conform to the coprocessor interface and does not need an
extensive knowledge of the architecture of the main processor. Also, the main processor can
operate with a coprocessor without having explicit provisions made in the main processor
for the capabilities of that coprocessor. This provides a great deal of freedom in the
implementation of a given coprocessor.

10.1.2 Concurrent Operation Support

The programmer's model for the M68000 Family of microprocessors is based on sequential,
nonconcurrent instruction execution. This implies that the instructions in a given sequence
must appear to be executed in the order in which they occur. To maintain a uniform
programmer's model, any coprocessor extensions should also maintain the model of
sequential, nonconcurrent instruction execution at the user level. Consequently, the
programmer can assume that the images of registers and memory affected by a given
instruction have been updated when the next instruction in the sequence accessing these
registers or memory locations is executed.

The M68000 coprocessor interface provides full support of all operations necessary for
nonconcurrent operation of the main processor and its associated coprocessors. Although
the M68000 coprocessor interface allows concurrency in coprocessor execution, the
coprocessor designer is responsible for implementing this concurrency while maintaining a
programming model based on sequential nonconcurrent instruction execution.

For example, if the coprocessor determines that instruction “B” does not use or alter
resources to be altered or used by instruction “A”, instruction “B” can be executed
concurrently (if the execution hardware is also available). Thus, the required instruction
interdependencies and sequences of the program are always respected. The MC68882
coprocessor offers concurrent instruction execution while the MC68881 coprocessor does
not. However, the MC68030 can execute instructions concurrently with coprocessor
instruction execution in the MC68881.

Coprocessor Interface Description

10-4

MC68030 USER’S MANUAL

MOTOROLA

10.1.3 Coprocessor Instruction Format

The instruction set for a given coprocessor is defined by the design of that coprocessor.
When a coprocessor instruction is encountered in the main processor instruction stream, the
MC68030 hardware initiates communication with the coprocessor and coordinates any
interaction necessary to execute the instruction with the coprocessor. A programmer needs
to know only the instruction set and register set defined by the coprocessor in order to use
the functions provided by the coprocessor hardware.

The instruction set of an M68000 coprocessor uses a subset of the F-line operation words
in the M68000 instruction set. The operation word is the first word of any M68000 Family
instruction. The F-line operation word contains ones in bits 15-12 [15:12]=1111; refer to
Figure 10-1); the remaining bits are coprocessor and instruction dependent. The F-line
operation word may be followed by as many extension words as are required to provide
additional information necessary for the execution of the coprocessor instruction.

Figure 10-1. F-Line Coprocessor Instruction Operation Word

As shown in Figure 10-1, bits 9-11 of the F-line operation word encode the coprocessor
identification code (CpID). The MC68030 uses the coprocessor identification field to indicate
the coprocessor to which the instruction applies. F-line operation words, in which the CpID
is zero, are not coprocessor instructions for the MC68030. If the CpID (bits 9-11) and the
type field (bits 6-8) contain zeros, the instruction accesses the on-chip memory
management unit of the MC68030. Instructions with a CpID of zero and a nonzero type field
are unimplemented instructions that cause the MC68030 to begin exception processing.
The MC68030 never generates coprocessor interface bus cycles with the CpID equal to
zero (except via the MOVES instruction).

CpID codes of 001-101 are reserved for current and future Motorola coprocessors and CpID
codes of 110-111 are reserved for user-defined coprocessors. The Motorola CpID code that
is currently defined is 001 for the MC68881 or MC68882 floating-point coprocessor. By
default, Motorola assemblers will use CpID code 001 when generating the instruction
operation codes for the MC68881 or MC68882 coprocessor instructions.

15 14 13 12 11 9 8 6 5 0
1 1 1 1 CpID TYPE TYPE DEPENDENT

Coprocessor Interface Description

MOTOROLA

MC68030 USER’S MANUAL

10-5

The encoding of bits 0-8 of the coprocessor instruction operation word is dependent on the
particular instruction being implemented (see

10.2 Coprocessor Instruction Types

).

10.1.4 Coprocessor System Interface

The communication protocol between the main processor and coprocessor necessary to
execute a coprocessor instruction uses a group of interface registers, called coprocessor
interface registers, resident within the coprocessor. By accessing one of these interface
registers, the MC68030 hardware initiates coprocessor instructions. The coprocessor uses
a set of response primitive codes and format codes defined for the M68000 coprocessor
interface to communicate status and service requests to the main processor through these
registers. The coprocessor interface registers (CIRs) are also used to pass operands
between the main processor and the coprocessor. The CIR set, response primitives, and
format codes are discussed in

10.3 Coprocessor Interface Register Set

and

 10.4
Coprocessor Response Primitives

.

10.1.4.1 COPROCESSOR CLASSIFICATION.

M68000 coprocessors can be classified
into two categories depending on their bus interface capabilities. The first category, non-
DMA coprocessors, consists of coprocessors that always operate as bus slaves. The
second category, DMA coprocessors, consists of coprocessors that operate as bus slaves
while communicating with the main processor across the coprocessor interface, but also
have the ability to operate as bus masters, directly controlling the system bus.

If the operation of a coprocessor does not require a large portion of the available bus
bandwidth or has special requirements not directly satisfied by the main processor, that
coprocessor can be efficiently implemented as a non-DMA coprocessor. Since non-DMA
coprocessors always operate as bus slaves, all external bus-related functions that the
coprocessor requires are performed by the main processor. The main processor transfers
operands from the coprocessor by reading the operand from the appropriate CIR and then
writing the operand to a specified effective address with the appropriate address space
specified on the function code lines. Likewise, the main processor transfers operands to the
coprocessor by reading the operand from a specified effective address (and address space)
and then writing that operand to the appropriate CIR using the coprocessor interface. The
bus interface circuitry of a coprocessor operating as a bus slave is not as complex as that
of a device operating as a bus master.

Coprocessor Interface Description

10-6

MC68030 USER’S MANUAL

MOTOROLA

To improve the efficiency of operand transfers between memory and the coprocessor, a
coprocessor that requires a relatively high amount of bus bandwidth or has special bus
requirements can be implemented as a DMA coprocessor. DMA coprocessors can operate
as bus masters. The coprocessor provides all control, address, and data signals necessary
to request and obtain the bus and then performs DMA transfers using the bus. DMA
coprocessors, however, must still act as bus slaves when they require information or
services of the main processor using the M68000 coprocessor interface protocol.

10.1.4.2 PROCESSOR-COPROCESSOR INTERFACE.

 Figure 10-2 is a block diagram of
the signals involved in an asynchronous non-DMA M68000 coprocessor interface. The
synchronous interface is similar. Since the CpID on signals A13-A15 of the address bus is
used with other address signals to select the coprocessor, the system designer can use
several coprocessors of the same type and assign a unique CpID to each one.

The MC68030 accesses the registers in the CIR set using standard asynchronous or
synchronous bus cycles. Thus, the bus interface implemented by a coprocessor for its
interface register set must satisfy the MC68030 address, data, and control signal timing. The
MC68030 timing information for read and write cycles is illustrated in Figures 13-5-13-8 on
foldout pages in the back of this manual. The MC68030 never requests a burst operation

Figure 10-2. Asynchronous Non-DMA M68000 Coprocessor
Interface Signal Usage

FC2-FC0

A19-A13

COPROCESSOR
DECODE

LOGIC

CS COPROCESSOR

ASYNCHRONOUS
BUS

INTERFACE
LOGIC

AS

DS

R/W

A4-A1

D31-D0

DSACK1/DSACK0

MAIN CONTROLLER
MC68EC030

FC2-FC0 = 111 CPU SPACE CYCLE
A19-A16 = 0010 COPROCESSOR ACCESS IN CPU SPACE
A15-A13 = xxx COPROCESSOR IDENTIFICATION
A4-A1 = rrrr COPROCESSOR INTERFACE REGISTER SELECTOR

Chip select logic may be integrated into the coprocessor.
Address lines not specified above are "0" during coprocessor access.

➧
➧
➧
➧

*

*

Coprocessor Interface Description

MOTOROLA

MC68030 USER’S MANUAL

10-7

during a coprocessor (CPU space) bus cycle, nor does it internally cache data read or
written during coprocessor (CPU space) bus cycles. The MC68030 bus operation is
described in detail in

Section 7 Bus Operation

.

During coprocessor instruction execution, the MC68030 executes CPU space bus cycles to
access the CIR set. The MC68030 drives the three function code outputs high
(FC2:FC0=111) identifying a CPU space bus cycle. The CIR set is mapped into CPU space
in the same manner that a peripheral interface register set is generally mapped into data
space. The information encoded on the function code lines and address bus of the MC68030
during a coprocessor access is used to generate the chip select signal for the coprocessor
being accessed. Other address lines select a register within the interface set. The
information encoded on the function code and address lines of the MC68030 during a
coprocessor access is illustrated in Figure 10-3.

Address signals A16-A19 specify the CPU space cycle type for a CPU space bus cycle. The
types of CPU space cycles currently defined for the MC68030 are interrupt acknowledge,
breakpoint acknowledge, and coprocessor access cycles. CPU space type $2
(A19:A16=0010) specifies a coprocessor access cycle.

Signals A13-A15 of the MC68030 address bus specify the coprocessor identification code
CpID for the coprocessor being accessed. This code is transferred from bits 9-11 of the
coprocessor instruction operation word (refer to Figure 10-1) to the address bus during each
coprocessor access. Thus, decoding the MC68030 function code signals and bits A13-A19
of the address bus provides a unique chip select signal for a given coprocessor. The function
code signals and A16-A19 indicate a coprocessor access; A13-A15 indicate which of the
possible seven coprocessors (001-111) is being accessed. Bits A20-A31 and A5-A12 of the
MC68030 address bus are always zero during a coprocessor access.

The MC68010 can emulate coprocessor access cycles in CPU space using the MOVES
instruction.

10.1.4.3 COPROCESSOR INTERFACE REGISTER SELECTION.

 Figure 10-4 shows that
the value on the MC68030 address bus during a coprocessor access addresses a unique
region of the main processor's CPU address space. Signals A0–A4 of the MC68030 address
bus select the CIR being accessed. The register map for the M68000 coprocessor interface
is shown in Figure 10-5. The individual registers are described in detail in

10.3 Coprocessor
Interface Register Set

.

Figure 10-3. MC68030 CPU Space Address Encodings

1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 01 CpID 0 0 0 0 0 0 0 CIR0 0

FUNCTION
CODE

2 0 31 19 15 12 4 0

ADDRESS BUS

CPU SPACE
 TYPE FIELD

1320 16 5

Coprocessor Interface Description

10-8

MC68030 USER’S MANUAL

MOTOROLA

Figure 10-4. Coprocessor Address Map in MC68030 CPU Space

INTERFACE REGISTER SET

RESERVED

INTERFACE REGISTER SET

RESERVED

INTERFACE REGISTER SET

RESERVED

CPU SPACE ADDRESS

2000

2001F

22000

2201F

24000

2E000

2E01F

ADDRESS SPACE FOR
COPROCESSOR WITH
CpID = 0

ADDRESS SPACE FOR
COPROCESSOR WITH
CpID = 1

ADDRESS SPACE FOR
COPROCESSOR WITH
CpID = 7

Coprocessor Interface Description

MOTOROLA

MC68030 USER’S MANUAL

10-9

Figure 10-5. Coprocessor Interface Register Set Map

10.2 COPROCESSOR INSTRUCTION TYPES

The M68000 coprocessor interface supports four categories of coprocessor instructions:
general, conditional, context save, and context restore. The category name indicates the
type of operations provided by the coprocessor instructions in the category. The instruction
category also determines the CIR accessed by the MC68030 to initiate instruction and
communication protocols between the main processor and the coprocessor necessary for
instruction execution.

During the execution of instructions in the general or conditional categories, the coprocessor
uses the set of coprocessor response primitive codes defined for the MC68000 coprocessor
interface to request services from and indicate status to the main processor. During the
execution of the instructions in the context save and context restore categories, the
coprocessor uses the set of coprocessor format codes defined for the M68000 coprocessor
interface to indicate its status to the main processor.

10.2.1 Coprocessor General Instructions

The general coprocessor instruction category contains data processing instructions and
other general-purpose instructions for a given coprocessor.

31 15 0

00 RESPONSE* CONTROL*
04 SAVE* RESTORE*
08 OPERATION WORD COMMAND*
0C (RESERVED) CONDITION*
10 OPERAND*
14 REGISTER SELECT (RESERVED)
18 INSTRUCTION ADDRESS
1C OPERAND ADDRESS

Coprocessor Interface Description

10-10

MC68030 USER’S MANUAL

MOTOROLA

10.2.1.1 FORMAT.

Figure 10-6 shows the format of a general type instruction.

Figure 10-6. Coprocessor General Instruction Format (cpGEN)

The mnemonic cpGEN is a generic mnemonic used in this discussion for all general
instructions. The mnemonic of a specific general instruction usually suggests the type of
operation it performs and the coprocessor to which it applies. The actual mnemonic and
syntax used to represent a coprocessor instruction is determined by the syntax of the
assembler or compiler that generates the object code.

A coprocessor general type instruction consists of at least two words. The first word of the
instruction is an F-line operation code (bits [15:12]=1111). The CpID field of the F-line
operation code is used during the coprocessor access to indicate which of the coprocessors
in the system executes the instruction. During accesses to the coprocessor interface
registers (refer to

10.1.4.2 Processor-Coprocessor Interface

), the processor places the
CpID on address lines A13-A15.

Bits [8:6]=000 indicate that the instruction is in the general instruction category. Bits 0-5 of
the F-line operation code sometimes encodes a standard M68000 effective address
specifier (refer to

2.5 Effective Address Encoding Summary

). During the execution of a
cpGEN instruction, the coprocessor can use a coprocessor response primitive to request
that the MC68030 perform an effective address calculation necessary for that instruction.
Using the effective address specifier field of the F-line operation code, the processor then
determines the effective addressing mode. If a coprocessor never requests effective
address calculation, bits 0-5 can have any value (don't cares).

The second word of the general-type instruction is the coprocessor command word. The
main processor writes this command word to the command CIR to initiate execution of the
instruction by the coprocessor.

15 14 13 12 11 9 8 7 6 5 0

1 1 1 1 CpID 0 0 0 EFFECTIVE ADDRESS

COPROCESSOR COMMAND

OPTIONAL EFFECTIVE ADDRESS OR COMPRESSOR-DEFINED EXTENSION WORDS

Coprocessor Interface Description

MOTOROLA

MC68030 USER’S MANUAL

10-11

An instruction in the coprocessor general instruction category optionally includes a number
of extension words following the coprocessor command word. These words can provide
additional information required for the coprocessor instruction. For example, if the
coprocessor requests that the MC68030 calculate an effective address during coprocessor
instruction execution, information required for the calculation must be included in the
instruction format as effective address extension words.

10.2.1.2 PROTOCOL.

 The execution of a cpGEN instruction follows the protocol shown in
Figure 10-7. The main processor initiates communication with the coprocessor by writing the
instruction command word to the command CIR. The coprocessor decodes the command
word to begin processing the cpGEN instruction. Coprocessor design determines the
interpretation of the coprocessor command word; the MC68030 does not attempt to decode
it.

While the coprocessor is executing an instruction, it requests any required services from and
communicates status to the main processor by placing coprocessor response primitive
codes in the response CIR. After writing to the command CIR, the main processor reads the
response CIR and responds appropriately. When the coprocessor has completed the
execution of an instruction or no longer needs the services of the main processor to execute
the instruction, it provides a response to release the processor. The main processor can
then execute the next instruction in the instruction stream. However, if a trace exception is
pending, the MC68030 does not terminate communication with the coprocessor until the
coprocessor indicates that it has completed all processing associated with the cpGEN
instruction (refer to

10.5.2.5 Trace Exceptions

).

The coprocessor interface protocol shown in Figure 10-7 allows the coprocessor to define
the operation of each general category instruction. That is, the main processor initiates the
instruction execution by writing the instruction command word to the command CIR and by
reading the response CIR to determine its next action. The execution of the coprocessor
instruction is then defined by the internal operation of the coprocessor and by its use of
response primitives to request services from the main processor. This instruction protocol
allows a wide range of operations to be implemented in the general instruction category.

10.2.2 Coprocessor Conditional Instructions

The conditional instruction category provides program control based on the operations of
the coprocessor. The coprocessor evaluates a condition and returns a true/false indicator
to the main processor. The main processor completes the execution of the instruction based
on this true/false condition indicator.

The implementation of instructions in the conditional category promotes efficient use of both
the main processor's and the coprocessor's hardware. The condition specified for the
instruction is related to the coprocessor operation and is, therefore, evaluated by the

(UNABLE TO LOCATE ART)

Figure 10-7. Coprocessor Interface Protocol for
General Category Instructions

Coprocessor Interface Description

10-12

MC68030 USER’S MANUAL

MOTOROLA

coprocessor. The instruction completion following the condition evaluation is, however,
directly related to the operation of the main processor. The main processor performs the
change of flow, the setting of a byte, or the TRAP operation, since its architecture explicitly
implements these operations for its instruction set.

Coprocessor Interface Description

MOTOROLA

MC68030 USER’S MANUAL

10-13

Figure 10-8 shows the protocol for a conditional category coprocessor instruction. The main
processor initiates execution of an instruction in this category by writing a condition selector
to the condition CIR. The coprocessor decodes the condition selector to determine the
condition to evaluate. The coprocessor can use response primitives to request that the main
processor provide services required for the condition evaluation. After evaluating the
condition, the coprocessor returns a true/false indicator to the main processor by placing a
null primitive (refer to

10.4.4 Null Primitive

) in the response CIR. The main processor
completes the coprocessor instruction execution when it receives the condition indicator
from the coprocessor.

10.2.2.1 BRANCH ON COPROCESSOR CONDITION INSTRUCTION.

The conditional
instruction category includes two formats of the M68000 Family branch instruction. These
instructions branch on conditions related to the coprocessor operation. They execute
similarly to the conditional branch instructions provided in the M68000 Family instruction set.

10.2.2.1.1 Format.

 Figure 10-9 shows the format of the branch on coprocessor condition
instruction that provides a word-length displacement. Figure 10-10. shows the format of the
instruction that includes a long-word displacement.

Figure 10-9. Branch on Coprocessor Condition Instruction (cpBcc.W)

Figure 10-10. Branch On Coprocessor Condition Instruction (cpBcc.L)

The first word of the branch on coprocessor condition instruction is the F-line operation
word. Bits [15:12]=1111 and bits [11:9] contain the identification code of the coprocessor
that is to evaluate the condition. The value in bits [8:6] identifies either the word or the long-
word displacement format of the branch instruction, which is specified by the cpBcc.W or
cpBcc.L mnemonic, respectively.

(UNABLE TO LOCATE ART)

Figure 10-8. Coprocessor Interface Protocol for Conditional
Category Instructions

15 14 13 12 11 9 8 7 6 5 0

1 1 1 1 CpID 0 1 0 CONDITION SELECTOR

OPTIONAL COPROCESSOR-DEFINED WORDS

DISPLACEMENT

15 14 13 12 11 9 8 7 6 5 0

1 1 1 1 CpID 0 1 1 CONDITION SELECTOR

OPTIONAL COPROCESSOR-DEFINED WORDS

DISPLACEMENT-HIGH

DISPLACEMENT-LOW

Coprocessor Interface Description

10-14

MC68030 USER’S MANUAL

MOTOROLA

Bits [0-5] of the F-line operation word contain the coprocessor condition selector field. The
MC68030 writes the entire operation word to the condition CIR to initiate execution of the
branch instruction by the coprocessor. The coprocessor uses bits [0-5] to determine which
condition to evaluate.

If the coprocessor requires additional information to evaluate the condition, the branch
instruction format can include this information in extension words. Following the F-line
operation word, the number of extension words is determined by the coprocessor design.
The final word(s) of the cpBcc instruction format contains the displacement used by the main
processor to calculate the destination address when the branch is taken.

Coprocessor Interface Description

MOTOROLA

MC68030 USER’S MANUAL

10-15

10.2.2.1.2 Protocol.

 Figure 10-8 shows the protocol for the cpBcc.L and cpBcc.W
instructions. The main processor initiates the instruction by writing the F-line operation word
to the condition CIR to transfer the condition selector to the coprocessor. The main
processor then reads the response CIR to determine its next action. The coprocessor can
return a response primitive to request services necessary to evaluate the condition. If the
coprocessor returns the false condition indicator, the main processor executes the next
instruction in the instruction stream. If the coprocessor returns the true condition indicator,
the processor adds the displacement to the MC68030 scanPC (refer to

10.4.1 ScanPC

) to
determine the address of the next instruction for the main processor to execute. The scanPC
must be pointing to the location of the first word of the displacement in the instruction stream
when the address is calculated. The displacement is a twos-complement integer that can be
either a 16-bit word or a 32-bit long word. The processor sign-extends the 16-bit
displacement to a long-word value for the destination address calculation.

10.2.2.2 SET ON COPROCESSOR CONDITION INSTRUCTION.

 The set on coprocessor
condition instructions set or reset a flag (a data alterable byte) according to a condition
evaluated by the coprocessor. The operation of this instruction is similar to the operation of
the Scc instruction in the M68000 Family instruction set. Although the Scc instruction and
the cpScc instruction do not explicitly cause a change of program flow, they are often used
to set flags that control program flow.

10.2.2.2.1 Format.

Figure 10-11 shows the format of the set on coprocessor condition
instruction, denoted by the cpScc mnemonic.

Figure 10-11. Set On Coprocessor Condition (cpScc)

15 14 13 12 11 9 8 7 6 5 0

1 1 1 1 CpID 0 0 1 EFFECTIVE ADDRESS

CONDITION SELECTOR

OPTIONAL COPROCESSOR-DEFINED WORDS

OPTIONAL EFFECTIVE ADDRESS EXTENSION WORDS(0-5WORDS)

Coprocessor Interface Description

10-16

MC68030 USER’S MANUAL

MOTOROLA

The first word of the cpScc instruction is the F-line operation word. This word contains the
CpID field in bits [9-11] and 001 in bits [8:6] to identify the cpScc instruction. The lower six
bits of the F-line operation word are used to encode an M68000 Family effective addressing
mode (refer to

2.5 Effective Address Encoding Summary

).

The second word of the cpScc instruction format contains the coprocessor condition
selector in bits [0-5]. Bits [6-15] of this word are reserved by Motorola and should be zero to
ensure compatibility with future M68000 products. This word is written to the condition CIR
to initiate the cpScc instruction.

If the coprocessor requires additional information to evaluate the condition, the instruction
can include extension words to provide this information. The number of these extension
words, which follow the word containing the coprocessor condition selector field, is
determined by the coprocessor design.

The final portion of the cpScc instruction format contains zero to five effective address
extension words. These words contain any additional information required to calculate the
effective address specified by bits [0-5] of the F-line operation word.

10.2.2.2.2 Protocol.

 Figure 10-8 shows the protocol for the cpScc instruction. The
MC68030 transfers the condition selector to the coprocessor by writing the word 22following
the F-line operation word to the condition CIR. The main processor then reads the response
CIR to determine its next action. The coprocessor can return a response primitive to request
services necessary to evaluate the condition. The operation of the cpScc instruction
depends on the condition evaluation indicator returned to the main processor by the
coprocessor. When the coprocessor returns the false condition indicator, the main
processor evaluates the effective address specified by bits [0-5] of the F-line operation word
and sets the byte at that effective address to FALSE (all bits cleared). When the coprocessor
returns the true condition indicator, the main processor sets the byte at the effective address
to TRUE (all bits set to one).

Coprocessor Interface Description

MOTOROLA

MC68030 USER’S MANUAL

10-17

10.2.2.3 TEST COPROCESSOR CONDITION, DECREMENT AND BRANCH
INSTRUCTION.

The operation of the test coprocessor condition, decrement and branch
instruction is similar to that of the DBcc instruction provided in the M68000 Family instruction
set. This operation uses a coprocessor evaluated condition and a loop counter in the main
processor. It is useful for implementing DO-UNTIL constructs used in many high-level
languages.

10.2.2.3.1 Format.

Figure 10-12 shows the format of the test coprocessor condition,
decrement and branch instruction, denoted by the cpDBcc mnemonic.

Figure 10-12. Test Coprocessor Condition, Decrement and Branch
Instruction Format (cpDBcc)

The first word of the cpDBcc instruction is the F-line operation word. This word contains the
CpID field in bits [9-11] and 001001 in bits [8:3] to identify the cpDBcc instruction. Bits [0:2]
of this operation word specify the main processor data register used as the loop counter
during the execution of the instruction.

The second word of the cpDBcc instruction format contains the coprocessor condition
selector in bits [0-5] and should contain zeros in bits [6-15] to maintain compatibility with
future M68000 products. This word is written to the condition CIR to initiate execution of the
cpDBcc instruction by the coprocessor.

If the coprocessor requires additional information to evaluate the condition, the cpDBcc
instruction can include this information in extension words. These extension words follow
the word containing the coprocessor condition selector field in the cpDBcc instruction
format.

The last word of the instruction contains the displacement for the cpDBcc instruction. This
displacement is a twos-complement 16-bit value that is sign-extended to long-word size
when it is used in a destination address calculation.

15 14 13 12 11 9 8 7 6 5 4 3 2 0

1 1 1 1 CpID 0 0 1 0 0 1 EFFECTIVE ADDRESS

(RESERVED) CONDITION SELECTOR

OPTIONAL COPRCESSOR-DEFINED EXTENSION WORDS

DISPLACEMENT

Coprocessor Interface Description

10-18

MC68030 USER’S MANUAL

MOTOROLA

10.2.2.3.2 Protocol.

Figure 10-8 shows the protocol for the cpDBcc instructions. The
MC68030 transfers the condition selector to the coprocessor by writing the word following
the operation word to the condition CIR. The main processor then reads the response CIR
to determine its next action. The coprocessor can use a response primitive to request any
services necessary to evaluate the condition. If the coprocessor returns the true condition
indicator, the main processor executes the next instruction in the instruction stream. If the
coprocessor returns the false condition indicator, the main processor decrements the low-
order word of the register specified by bits [0-2] of the F-line operation word. If this register
contains minus one (—1) after being decremented, the main processor executes the next
instruction in the instruction stream. If the register does not contain minus one (—1) after
being decremented, the main processor branches to the destination address to continue
instruction execution.

The MC68030 adds the displacement to the scanPC (refer to

10.4.1 ScanPC

) to determine
the address of the next instruction. The scanPC must point to the 16-bit displacement in the
instruction stream when the destination address is calculated.

10.2.2.4 TRAP ON COPROCESSOR CONDITION.

The trap on coprocessor condition
instruction allows the programmer to initiate exception processing based on conditions
related to the coprocessor operation.

10.2.2.4.1 Format.

Figure 10-13 shows the format of the trap on coprocessor condition
instruction, denoted by the cpTRAPcc mnemonic.

Figure 10-13. Trap On Coprocessor Condition (cpTRAPcc)

15 14 13 12 11 9 8 7 6 5 4 3 2 0

1 1 1 1 CpID 0 0 1 1 1 1 OPMODE

(RESERVED) CONDITION SELECTOR

OPTIONAL COPRCESSOR-DEFINED EXTENSION WORDS

OPTIONAL WORD

OR LONG-WORD OPERAND

Coprocessor Interface Description

MOTOROLA

MC68030 USER’S MANUAL

10-19

The F-line operation word contains the CpID field in bits [9-11] and 001111 in bits [8:3] to
identify the cpTRAPcc instruction. Bits [0-2] of the cpTRAPcc F-line operation word specify
the number of optional operand words in the instruction format. The instruction format can
include zero, one, or two operand words.

The second word of the cpTRAPcc instruction format contains the coprocessor condition
selector in bits [0-5] and should contain zeros in bits [6-15] to maintain compatibility with
future M68000 products. This word is written to the condition CIR of the coprocessor to
initiate execution of the cpTRAPcc instruction by the coprocessor.

If the coprocessor requires additional information to evaluate a condition, the instruction can
include this information in extension words. These extension words follow the word
containing the coprocessor condition selector field in the cpTRAPcc instruction format.

The operand words of the cpTRAPcc F-line operation word follow the coprocessor-defined
extension words. These operand words are not explicitly used by the MC68030, but can be
used to contain information referenced by the cpTRAPcc exception handling routines. The
valid encodings for bits [0-2] of the F-line operation word and the corresponding numbers of
operand words are listed in Table 10-1. Other encodings of these bits are invalid for the
cpTRAPcc instruction.

10.2.2.4.2 Protocol. Figure 10-8 shows the protocol for the cpTRAPcc instructions. The
MC68030 transfers the condition selector to the coprocessor by writing the word following
the operation word to the condition CIR. The main processor then reads the response CIR
to determine its next action. The coprocessor can, using a response primitive, request any
services necessary to evaluate the condition. If the coprocessor returns the true condition
indicator, the main processor initiates exception processing for the cpTRAPcc exception
(refer to 10.5.2.4 cpTRAPcc Instruction Traps). If the coprocessor returns the false
condition indicator, the main processor executes the next instruction in the instruction
stream.

Table 10-1. cpTRAPcc Opmode

Opmode
Optional Words in

instructional Format
010 One
011 Two
100 Zero

Coprocessor Interface Description

10-20 MC68030 USER’S MANUAL MOTOROLA

10.2.3 Coprocessor Save and Restore Instructions
The coprocessor context save and context restore instruction categories in the M68000
coprocessor interface support multitasking programming environments. In a multitasking
environment, the context of a coprocessor may need to be changed asynchronously with
respect to the operation of that coprocessor. That is, the coprocessor may be interrupted at
any point in the execution of an instruction in the general or conditional category to begin
context change operations.

In contrast to the general and conditional instruction categories, the context save and
context restore instruction categories do not use the coprocessor response primitives. A set
of format codes defined by the M68000 coprocessor interface communicates status
information to the main processor during the execution of these instructions. These
coprocessor format codes are discussed in detail in 10.2.3.2 Coprocessor Format Words.

10.2.3.1 COPROCESSOR INTERNAL STATE FRAMES. The context save (cpSAVE) and
context restore (cpRESTORE) instructions transfer an internal coprocessor state frame
between memory and a coprocessor. This internal coprocessor state frame represents the
state of coprocessor operations. Using the cpSAVE and cpRESTORE instructions, it is
possible to interrupt coprocessor operation, save the context associated with the current
operation, and initiate coprocessor operations with a new context.

A cpSAVE instruction stores a coprocessor's internal state frame as a sequence of long-
word entries in memory. Figure 10-14 shows the format of a coprocessor state frame. During
execution of the cpSAVE instruction, the MC68030 calculates the state frame effective
address from information in the operation word of the instruction and stores a format word
at this effective address. The processor writes the long words that form the coprocessor
state frame to descending memory addresses, beginning with the address specified by the
sum of the effective address and the format word-length field multiplied by four. During
execution of the cpRESTORE instruction, the MC68030 reads the format word and long
words in the state frame from ascending addresses, beginning with the effective address
specified in the instruction operation word.

Coprocessor Interface Description

MOTOROLA MC68030 USER’S MANUAL 10-21

The processor stores the coprocessor format word at the lowest address of the state frame
in memory, and this word is the first word transferred for both the cpSAVE and the
cpRESTORE instructions. The word following the format word does not contain information
relevant to the coprocessor state frame, but serves to keep the information in the state frame
a multiple of four bytes in size. The number of entries following the format word (at higher
addresses) is determined.

The information in a coprocessor state frame describes a context of operation for that
coprocessor. This description of a coprocessor context includes the program invisible state
information and, optionally, the program visible state information. The program invisible
state information consists of any internal registers or status information that cannot be
accessed by the program but is necessary for the coprocessor to continue its operation at
the point of suspension. Program visible state information includes the contents of all
registers that appear in the coprocessor programming model and that can be directly
accessed using the coprocessor instruction set. The information saved by the cpSAVE
instruction must include the program invisible state information. If cpGEN instructions are
provided to save the program visible state of the coprocessor, the cpSAVE and
cpRESTORE instructions should only transfer the program invisible state information to
minimize interrupt latency during a save or restore operation.

Figure 10-14. Coprocessor State Frame Format in Memory

 SAVE
ORDER

RESTORE
ORDER

0

n

n-1

n-2

0

1

2

3

FORMAT LENGTH (UNUSED, RESERVED)

31 23 15 0

COPROCESSOR-DEPENDENT INFORMATION

n1

Coprocessor Interface Description

10-22 MC68030 USER’S MANUAL MOTOROLA

10.2.3.2 COPROCESSOR FORMAT WORDS. The coprocessor communicates status
information to the main processor during the execution of cpSAVE and cpRESTORE
instructions using coprocessor format words. The format words defined for the M68000
coprocessor interface are listed in Table 10-2.

The upper byte of the coprocessor format word contains the code used to communicate
coprocessor status information to the main processor. The MC68030 recognizes four types
of format words: empty/reset, not ready, invalid format, and valid format. The MC68030
interprets the reserved format codes ($03-$0F) as invalid format words. The lower byte of
the coprocessor format word specifies the size in bytes (which must be a multiple of four) of
the coprocessor state frame. This value is only relevant when the code byte contains the
valid format code (refer to 10.2.3.2.4 Valid Format Word).

10.2.3.2.1 Empty/Reset Format Word. the Coprocessor Returns the Empty/Reset Format
Code During a Cpsave Instruction to Indicate That the Coprocessor Contains No User-
Specific InformaTion. That Is, No Coprocessor Instructions Have Been Executed Since
Either a Previous CpreStore of An Empty/Reset Format Code or the Previous Hardware
Reset. If the Main Processor Reads the Empty/Reset Format Word from the Save Cir During
the Initiation of a Cpsave InstrucTion, It Stores the Format Word At the Effective Address
Specified in the Cpsave Instruction and Executes the Next Instruction.

When the main processor reads the empty/reset format word from memory during the
execution of the cpRESTORE instruction, it writes the format word to the restore CIR. The
main processor then reads the restore CIR and, if the coprocessor returns the empty/reset
format word, executes the next instruction. The main processor can initialize the
coprocessor by writing the empty/reset format code to the restore CIR. When the
coprocessor receives the empty/reset format code, it terminates any current operations and
waits for the main processor to initiate the next coprocessor instruction. In particular, after
the cpRESTORE of the empty/reset format word, the execution of a cpSAVE should cause
the empty/reset format word to be returned when a cpSAVE instruction is executed before
any other coprocessor instructions. Thus, an empty/reset state frame consists only of the
format word and the following reserved word in memory (refer to Figure 10-14).

Table 10-2. Coprocessor Format Word Encodings

Format Code Length Meaning
00 xx Empty/Reset
01 xx Not Ready, Come Again
02 xx Invalid Format

03-0F xx Undefined, Reserved
10-FF Length Valid Format, Coprocessor Defined

Coprocessor Interface Description

MOTOROLA MC68030 USER’S MANUAL 10-23

10.2.3.2.2 Not Ready Format Word. When the main processor initiates a cpSAVE
instruction by reading the save CIR the coprocessor can delay the save operation by
returning a not ready format word. The main processor then services any pending interrupts
and reads the save CIR again. The not ready format word delays the save operation until
the coprocessor is ready to save its internal state. The cpSAVE instruction can suspend
execution of a general or conditional coprocessor instruction; the coprocessor can resume
execution of the suspended instruction when the appropriate state is restored with a
cpRESTORE. If no further main processor services are required to complete coprocessor
instruction execution, it may be more efficient to complete the instruction and thus reduce
the size of the saved state. The coprocessor designer should consider the efficiency of
completing the instruction or of suspending and later resuming the instruction when the main
processor executes a cpSAVE instruction.

When the main processor initiates a cpRESTORE instruction by writing a format word to the
restore CIR, the coprocessor should usually terminate any current operations and restore
the state frame supplied by the main processor. Thus, the not ready format word should
usually not be returned by the coprocessor during the execution of a cpRESTORE
instruction. If the coprocessor must delay the cpRESTORE operation for any reason, it can
return the not ready format word when the main processor reads the restore CIR. If the main
processor reads the not ready format word from the restore CIR during the cpRESTORE
instruction, it reads the restore CIR again without servicing any pending interrupts.

10.2.3.2.3 Invalid Format Word. When the format word placed in the restore CIR to initiate
a cpRESTORE instruction does not describe a valid coprocessor state frame, the
coprocessor returns the invalid format word in the restore CIR. When the main processor
reads this format word during the cpRESTORE instruction, it writes the abort mask to the
control CIR and initiates format error exception processing. The two least significant bits of
the abort mask are 01; the fourteen most significant bits are undefined.

Coprocessor Interface Description

10-24 MC68030 USER’S MANUAL MOTOROLA

A coprocessor should usually not place an invalid format word in the save CIR when the
main processor initiates a cpSAVE instruction. A coprocessor, however, may not be able to
support the initiation of a cpSAVE instruction while it is executing a previously initiated
cpSAVE or cpRESTORE instruction. In this situation, the coprocessor can return the invalid
format word when the main processor reads the save CIR to initiate the cpSAVE instruction
while either another cpSAVE or cpRESTORE instruction is executing. If the main processor
reads an invalid format word from the save CIR, it writes the abort mask to the control CIR
and initiates format error exception processing (refer to 10.5.1.5 Format Errors).

10.2.3.2.4 Valid Format Word. When the main processor reads a valid format word from
the save CIR during the cpSAVE instruction, it uses the length field to determine the size of
the coprocessor state frame to save. The length field in the lower eight bits of a format word
is relevant only in a valid format word. During the cpRESTORE instruction, the main
processor uses the length field in the format word read from the effective address in the
instruction to determine the size of the coprocessor state frame to restore.

The length field of a valid format word, representing the size of the coprocessor state frame,
must contain a multiple of four. If the main processor detects a value that is not a multiple of
four in a length field during the execution of a cpSAVE or cpRESTORE instruction, the main
processor writes the abort mask (refer to 10.2.3.2.3 Invalid Format Word) to the control
CIR and initiates format error exception processing.

10.2.3.3 COPROCESSOR CONTEXT SAVE INSTRUCTION. The M68000 coprocessor
context save instruction category consists of one instruction. The coprocessor context save
instruction, denoted by the cpSAVE mnemonic, saves the context of a coprocessor
dynamically without relation to the execution of coprocessor instructions in the general or
conditional instruction categories. During the execution of a cpSAVE instruction, the
coprocessor communicates status information to the main processor by using the
coprocessor format codes.

10.2.3.3.1 Format. Figure 10-15 shows the format of the cpSAVE instruction. The first word
of the instruction is the F-line operation word, which contains the coprocessor identification
code in bits [9-11] and an M68000 effective address code in bits [0-5]. The effective address
encoded in the cpSAVE instruction is the address at which the state frame associated with
the current context of the coprocessor is saved in memory.

Coprocessor Interface Description

MOTOROLA MC68030 USER’S MANUAL 10-25

Figure 10-15. Coprocessor Context Save Instruction Format (cpSAVE)

The control alterable and predecrement addressing modes are valid for the cpSAVE
instruction. Other addressing modes cause the MC68030 to initiate F-line emulator
exception processing as described in 10.5.2.2 F-Line Emulator Exceptions.

The instruction can include as many as five effective address extension words following the
cpSAVE instruction operation word. These words contain any additional information
required to calculate the effective address specified by bits [0-5] of the operation word.

10.2.3.3.2 Protocol. Figure 10-16 shows the protocol for the coprocessor context save
instruction. The main processor initiates execution of the cpSAVE instruction by reading the
save CIR. Thus, the cpSAVE instruction is the only coprocessor instruction that begins by
reading from a CIR. (All other coprocessor instructions write to a CIR to initiate execution of
the instruction by the coprocessor.) The coprocessor communicates status information
associated with the context save operation to the main processor by placing coprocessor
format codes in the save CIR.

If the coprocessor is not ready to suspend its current operation when the main processor
reads the save CIR, it returns a “not ready'“ format code. The main processor services any
pending interrupts and then reads the save CIR again. After placing the not ready format
code in the save CIR, the coprocessor should either suspend or complete the instruction it
is currently executing.

15 14 13 12 11 9 8 7 6 5 0

1 1 1 1 CpID 1 0 0 EFFECTIVE ADDRESS

EFFECTIVE ADDRESS EXTENSION WORDS (0-5 WORDS)

Coprocessor Interface Description

10-26 MC68030 USER’S MANUAL MOTOROLA

Once the coprocessor has suspended or completed the instruction it is executing, it places
a format code representing the internal coprocessor state in the save CIR. When the main
processor reads the save CIR, it transfers the format word to the effective address specified
in the cpSAVE instruction. The lower byte of the coprocessor format word specifies the
number of bytes of state information, not including the format word and associated null word,
to be transferred from the coprocessor to the effective address specified. If the state
information is not a multiple of four bytes in size, the MC68030 initiates format error
exception processing (refer to 10.5.1.5 Format Errors). The coprocessor and main
processor coordinate the transfer of the internal state of the coprocessor using the operand
CIR. The MC68030 completes the coprocessor context save by repeatedly reading the
operand CIR and writing the information obtained into memory until all the bytes specified
in the coprocessor format word have been transferred. Following a cpSAVE instruction, the
coprocessor should be in an idle state =m that is, not executing any coprocessor
instructions.

The cpSAVE instruction is a privileged instruction. When the main processor identifies a
cpSAVE instruction, it checks the supervisor bit in the status register to determine whether
it is operating at the supervisor privilege level. If the MC68030 attempts to execute a
cpSAVE instruction while at the user privilege level (status register bit [13]=0), it initiates
privilege violation exception processing without accessing any of the coprocessor interface
registers (refer to 10.5.2.3 Privilege Violations).

The MC68030 initiates format error exception processing if it reads an invalid format word
(or a valid format word whose length field is not a multiple of four bytes) from the save CIR
during the execution of a cpSAVE instruction (refer to 10.2.3.2.3 Invalid Format Word). The
MC68030 writes an abort mask (refer to 10.2.3.2.3 Invalid Format Word) to the control CIR
to abort the coprocessor instruction prior to beginning exception processing. Figure 10-16
does not include this case since a coprocessor usually returns either a not ready or a valid
format code in the context of the cpSAVE instruction. The coprocessor can return the invalid
format word, however, if a cpSAVE is initiated while the coprocessor is executing a cpSAVE
or cpRESTORE instruction and the coprocessor is unable to support the suspension of
these two instructions.

10.2.3.4 COPROCESSOR CONTEXT RESTORE INSTRUCTION. The M68000
coprocessor context restore instruction category includes one instruction. The coprocessor
context restore instruction, denoted by the cpRESTORE mnemonic, forces a coprocessor
to terminate any current operations and to restore a former state. During the execution of a
cpRESTORE instruction, the coprocessor can communicate status information to the main
processor by placing format codes in the restore CIR.

10.2.3.4.1 Format. Figure 10-17 shows the format of the cpRESTORE instruction.

(UNABLE TO LOCATE ART)

Figure 10-16. Coprocessor Context Save Instruction Protocol

Coprocessor Interface Description

MOTOROLA MC68030 USER’S MANUAL 10-27

Figure 10-17. Coprocessor Context Restore Instruction Format (cpRESTORE)

The first word of the instruction is the F-line operation word, which contains the coprocessor
identification code in bits [9-11] and an M68000 effective addressing code in bits [0-5]. The
effective address encoded in the cpRESTORE instruction is the starting address in memory
where the coprocessor context is stored. The effective address is that of the coprocessor
format word that applies to the context to be restored to the coprocessor.

The instruction can include as many as five effective address extension words following the
first word in the cpRESTORE instruction format. These words contain any additional
information required to calculate the effective address specified by bits [0-5] of the operation
word.

All memory addressing modes except the predecrement addressing mode are valid. Invalid
effective address encodings cause the MC68030 to initiate F-line emulator exception
processing (refer to 10.5.2.2 F-Line Emulator Exceptions).

15 14 13 12 11 9 8 7 6 5 0

1 1 1 1 CpID 1 0 1 EFFECTIVE ADDRESS

EFFECTIVE ADDRESS EXTENSION WORDS (0-5 WORDS)

Coprocessor Interface Description

10-28 MC68030 USER’S MANUAL MOTOROLA

10.2.3.4.2 Protocol. Figure 10-18 shows the protocol for the coprocessor context restore
instruction. When the main processor executes a cpRESTORE instruction, it first reads the
coprocessor format word from the effective address in the instruction. This format word
contains a format code and a length field. During cpRESTORE operation, the main
processor retains a copy of the length field to determine the number of bytes to be
transferred to the coprocessor during the cpRESTORE operation and writes the format word
to the restore CIR to initiate the coprocessor context restore.

When the coprocessor receives the format word in the restore CIR, it must terminate any
current operations and evaluate the format word. If the format word represents a valid
coprocessor context as determined by the coprocessor design, the coprocessor returns the
format word to the main processor through the restore CIR and prepares to receive the
number of bytes specified in the format word through its operand CIR.

After writing the format word to the restore CIR the main processor continues the
cpRESTORE dialog by reading that same register. If the coprocessor returns a valid format
word, the main processor transfers the number of bytes specified by the format word at the
effective address to the operand CIR.

If the format word written to the restore CIR does not represent a valid coprocessor state
frame, the coprocessor places an invalid format word in the restore CIR and terminates any
current operations. The main processor receives the invalid format code, writes an abort
mask (refer to 10.2.3.2.3 Invalid Format Word) to the control CIR, and initiates format error
exception processing (refer to 10.5.1.5 Format Errors).

The cpRESTORE instruction is a privileged instruction. When the main processor accesses
a cpRESTORE instruction, it checks the supervisor bit in the status register. If the MC68030
attempts to execute a cpRESTORE instruction while at the user privilege level (status
register bit [13]=0), it initiates privilege violation exception processing without accessing any
of the coprocessor interface registers (refer to 10.5.2.3 Privilege Violations).

10.3 COPROCESSOR INTERFACE REGISTER SET
The instructions of the M68000 coprocessor interface use registers of the CIR set to
communicate with the coprocessor. These CIRs are not directly related to the coprocessor's
programming model.

Figure 10-4 is a memory map of the CIR set. The registers denoted by asterisks (*) must be
included in a coprocessor interface that implements coprocessor instructions in all four
categories. The complete register model must be implemented if the system uses all of the
coprocessor response primitives defined for the M68000 coprocessor interface.

The following paragraphs contain detailed descriptions of the registers.

(UNABLE TO LOCATE ART)

Figure 10-18. Coprocessor Context Restore Instruction Protocol

Coprocessor Interface Description

MOTOROLA MC68030 USER’S MANUAL 10-29

10.3.1 Response CIR
The coprocessor uses the 16-bit response CIR to communicate all service requests
(coprocessor response primitives) to the main processor. The main processor reads the
response CIR to receive the coprocessor response primitives during the execution of
instructions in the general and conditional instruction categories. The offset from the base
address of the CIR set for the response CIR is $00. Refer to 10.4 Coprocessor Response
Primitives.

Coprocessor Interface Description

10-30 MC68030 USER’S MANUAL MOTOROLA

10.3.2 Control CIR
The main processor writes to the 2-bit control CIR to acknowledge coprocessor-requested
exception processing or to abort the execution of a coprocessor instruction. The offset from
the base address of the CIR set for the control CIR is $02. The control CIR occupies the two
least significant bits of the word at that offset. The 14 most significant bits of the word are
undefined. Figure 10-19 shows the format of this register.

Figure 10-19. Control CIR Format

When the MC68030 receives one of the three take exception coprocessor response
primitives, it acknowledges the primitive by writing the exception acknowledge mask (102)
to the control CIR, which sets the exception acknowledge (XA) bit. The MC68030 writes the
abort mask (012), which sets the abort (AB) bit, to the control CIR to abort any coprocessor
instruction in progress. (The most significant 14 bits of both masks are undefined.) The
MC68030 aborts a coprocessor instruction when it detects one of the following exception
conditions:

• An F-line emulator exception condition after reading a response primitive

• A privilege violation exception as it performs a supervisor check in response to a su-
pervisor check primitive

• A format error exception when it receives an invalid format word or a valid format word
that contains an invalid length

10.3.3 Save CIR
The coprocessor uses the 16-bit save CIR to communicate status and state frame format
information to the main processor while executing a cpSAVE instruction. The main
processor reads the save CIR to initiate execution of the cpSAVE instruction by the
coprocessor. The offset from the base address of the CIR set for the save CIR is $04. Refer
to 10.2.3.2 Coprocessor Format Words.

15 2 1 0

(UNDEFINED, RESERVED) XA AB

Coprocessor Interface Description

MOTOROLA MC68030 USER’S MANUAL 10-31

10.3.4 Restore CIR
The main processor initiates the cpRESTORE instruction by writing a coprocessor format
word to the 16-bit restore register. During the execution of the cpRESTORE instruction, the
coprocessor communicates status and state frame format information to the main processor
through the restore CIR. The offset from the base address of the CIR set for the restore CIR
is $06. Refer to 10.2.3.2 Coprocessor Format Words.

10.3.5 Operation Word CIR
The main processor writes the F-line operation word of the instruction in progress to the 16-
bit operation word CIR in response to a transfer operation word coprocessor response
primitive (refer to 10.4.6 Transfer Operation Word Primitive). The offset from the base
address of the CIR set for the operation word CIR is $08.

10.3.6 Command CIR
The main processor initiates a general category instruction by writing the instruction
command word, which follows the instruction F-line operation word in the instruction stream,
to the 16-bit command CIR. The offset from the base address of the CIR set for the
command CIR is $0A.

10.3.7 Condition CIR
The main processor initiates a conditional category instruction by writing the condition
selector to the 16-bit condition CIR. The offset from the base address of the CIR set for the
condition CIR is $0E. Figure 10-20 shows the format of the condition CIR.

Figure 10-20. Condition CIR Format

15 6 5 0

(UNDEFINED, RESERVED) CONDITION SELECTOR

Coprocessor Interface Description

10-32 MC68030 USER’S MANUAL MOTOROLA

10.3.8 Operand CIR
When the coprocessor requests the transfer of an operand, the main processor performs
the transfer by reading from or writing to the 32-bit operand CIR. The offset from the base
address of the CIR set for the operand CIR is $10.

The MC68030 aligns all operands transferred to and from the operand CIR to the most
significant byte of this CIR. The processor performs a sequence of long-word transfers to
read or write any operand larger than four bytes. If the operand size is not a multiple of four
bytes, the portion remaining after the initial long-word transfers is aligned to the most
significant byte of the operand CIR. Figure 10-21 shows the operand alignment used by the
MC68030 when accessing the operand CIR.

Figure 10-21. Operand Alignment for Operand CIR Accesses

10.3.9 Register Select CIR
When the coprocessor requests the transfer of one or more main processor registers or a
group of coprocessor registers, the main processor reads the 16-bit register select CIR to
identify the number or type of registers to be transferred. The offset from the base address
of the CIR set for the register select CIR is $14. The format of this register depends on the
primitive that is currently using it. Refer to 10.4 Coprocessor Response Primitives.

31 23 15 7 0

BYTE OPERAND NO TRANSFER

WORD OPERAND

THREE BYTE OPERAND NO TRANSFER

LONG WORD OPERAND

TEN

BYTE

OPERAND NO TRANSFER

Coprocessor Interface Description

MOTOROLA MC68030 USER’S MANUAL 10-33

10.3.10 Instruction Address CIR
When the coprocessor requests the address of the instruction it is currently executing, the
main processor transfers this address to the 32-bit instruction address CIR. Any transfer of
the scanPC is also performed through the instruction address CIR (refer to 10.4.17 Transfer
Status Register and ScanPC Primitive). The offset from the base address of the CIR set
for the instruction address CIR is $18.

10.3.11 Operand Address CIR
When a coprocessor requests an operand address transfer between the main processor
and the coprocessor, the address is transferred through the 32-bit operand address CIR.
The offset from the base address of the CIR set for the operand address CIR is $1C.

10.4 COPROCESSOR RESPONSE PRIMITIVES
The response primitives are primitive instructions that the coprocessor issues to the main
processor during the execution of a coprocessor instruction. The coprocessor uses
response primitives to communicate status information and service requests to the main
processor. In response to an instruction command word written to the command CIR or a
condition selector in the condition CIR, the coprocessor returns a response primitive in the
response CIR. Within the general and conditional instruction categories, individual
instructions are distinguished by the operation of the coprocessor hardware and also by
services specified by coprocessor response primitives provided by the main processor.

Subsequent paragraphs, beginning with 10.4.2 Coprocessor Response Primitive
General Format, consist of detailed descriptions of the M68000 coprocessor response
primitives supported by the MC68030. Any response primitive that the MC68030 does not
recognize causes it to initiate protocol violation exception processing (refer to 10.5.2.1
Protocol Violations). This processing of undefined primitives supports emulation of
extensions to the M68000 coprocessor response primitive set by the protocol violation
exception handler. Exception processing related to the coprocessor interface is discussed
in 10.5 Exceptions.

Coprocessor Interface Description

10-34 MC68030 USER’S MANUAL MOTOROLA

10.4.1 ScanPC
Several of the response primitives involve the scanPC, and many of them require the main
processor to use it while performing services requested. These paragraphs describe the
scanPC and tell how it operates.

During the execution of a coprocessor instruction, the program counter in the MC68030
contains the address of the F-line operation word of that instruction. A second register,
called the scanPC, sequentially addresses the remaining words of the instruction.

If the main processor requires extension words to calculate an effective address or
destination address of a branch operation, it uses the scanPC to address these extension
words in the instruction stream. Also, if a coprocessor requests the transfer of extension
words, the scanPC addresses the extension words during the transfer. As the processor
references each word, it increments the scanPC to point to the next word in the instruction
stream. When an instruction is completed, the processor transfers the value in the scanPC
to the program counter to address the operation word of the next instruction.

The value in the scanPC when the main processor reads the first response primitive after
beginning to execute an instruction depends on the instruction being executed. For a cpGEN
instruction, the scanPC points to the word following the coprocessor command word. For
the cpBcc instructions, the scanPC points to the word following the instruction F-line
operation word. For the cpScc, cpTRAPcc, and cpDBcc instructions, the scanPC points to
the word following the coprocessor condition specifier word.

If a coprocessor implementation uses optional instruction extension words with a general or
conditional instruction, the coprocessor must use these words consistently so that the
scanPC is updated accordingly during the instruction execution. Specifically, during the
execution of general category instructions, when the coprocessor terminates the instruction
protocol, the MC68030 assumes that the scanPC is pointing to the operation word of the
next instruction to be executed. During the execution of conditional category instructions,
when the coprocessor terminates the instruction protocol, the MC68030 assumes that the
scanPC is pointing to the word following the last of any coprocessor-defined extension
words in the instruction format.

Coprocessor Interface Description

MOTOROLA MC68030 USER’S MANUAL 10-35

10.4.2 Coprocessor Response Primitive General Format
The M68000 coprocessor response primitives are encoded in a 16-bit word that is
transferred to the main processor through the response CIR. Figure 10-22 shows the format
of the coprocessor response primitives.

Figure 10-22. Coprocessor Response Primitive Format

The encoding of bits [0-12] of a coprocessor response primitive depends on the individual
primitive. Bits [13-15], however, specify optional additional operations that apply to most of
the primitives defined for the M68000 coprocessor interface.

Bit [15], the CA bit, specifies the “come again'” operation of the main processor. When the
main processor reads a response primitive from the response CIR with the come again bit
set to one, it performs the service indicated by the primitive and then reads the response
CIR again. Using the CA bit, a coprocessor can transfer several response primitives to the
main processor during the execution of a single coprocessor instruction.

Bit [4], the PC bit, specifies the pass program counter operation. When the main processor
reads a primitive with the PC bit set from the response CIR, the main processor immediately
passes the current value in its program counter to the instruction address CIR as the first
operation in servicing the primitive request. The value in the program counter is the address
of the F-line operation word of the coprocessor instruction currently executing. The PC bit is
implemented in all of the coprocessor response primitives currently defined for the M68000
coprocessor interface.

When an undefined primitive or a primitive that requests an illegal operation is passed to the
main processor, the main processor initiates exception processing for either an F-line
emulator or a protocol violation exception (refer to 10.5.2 Main-Processor-Detected
Exceptions). If the PC bit is set in one of these response primitives, however, the main
processor passes the program counter to the instruction address CIR before it initiates
exception processing.

When the main processor initiates a cpGEN instruction that can be executed concurrently
with main processor instructions, the PC bit is usually set in the first primitive returned by the
coprocessor. Since the main processor proceeds with instruction stream execution once the
coprocessor releases it, the coprocessor must record the instruction address to support any
possible exception processing related to the instruction. Exception processing related to
concurrent coprocessor instruction execution is discussed in 10.5.1 Coprocessor-
Detected Exceptions.

15 14 13 12 8 7 0

CA PC DR FUNCTION PARAMETER

Coprocessor Interface Description

10-36 MC68030 USER’S MANUAL MOTOROLA

Bit [13], the DR bit, is the direction bit. It applies to operand transfers between the main
processor and the coprocessor. If DR=0, the direction of transfer is from the main processor
to the coprocessor (main processor write). If DR=1, the direction of transfer is from the
coprocessor to the main processor (main processor read). If the operation indicated by a
given response primitive does not involve an explicit operand transfer, the value of this bit
depends on the particular primitive encoding.

10.4.3 Busy Primitive
The busy response primitive causes the main processor to reinitiate a coprocessor
instruction. This primitive applies to instructions in the general and conditional categories.
Figure 10-23 shows the format of the busy primitive.

Figure 10-23. Busy Primitive Format

This primitive uses the PC bit as previously described.

Coprocessors that can operate concurrently with the main processor but cannot buffer write
operations to their command or condition CIR use the busy primitive. A coprocessor may
execute a cpGEN instruction concurrently with an instruction in the main processor. If the
main processor attempts to initiate an instruction in the general or conditional instruction
category while the coprocessor is concurrently executing a cpGEN instruction, the
coprocessor can place the busy primitive in the response CIR. When the main processor
reads this primitive, it services pending interrupts (using a pre-instruction exception stack
frame, refer to Figure 10-41). The processor then restarts the general or conditional
coprocessor instruction that it had attempted to initiate earlier.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 PC 1 0 0 1 0 0 0 0 0 0 0 0 0 0

Coprocessor Interface Description

MOTOROLA MC68030 USER’S MANUAL 10-37

The busy primitive should only be used in response to a write to the command or condition
CIR. It should be the first primitive returned after the main processor attempts to initiate a
general or conditional category instruction. In particular, the busy primitive should not be
issued after program-visible resources have been altered by the instruction. (Program-
visible resources include coprocessor and main processor program-visible registers and
operands in memory, but not the scanPC.) The restart of an instruction after it has altered
program-visible resources causes those resources to have inconsistent values when the
processor reinitiates the instruction.

The MC68030 responds to the busy primitive differently in a special case that can occur
during a breakpoint operation (refer to 8.1.12 Multiple Exceptions). This special case
occurs when a breakpoint acknowledge cycle initiates a coprocessor F-line instruction, the
coprocessor returns the busy primitive in response to the instruction initiation, and an
interrupt is pending. When these three conditions are met, the processor re-executes the
breakpoint acknowledge cycle after the interrupt exception processing has been completed.
A design that uses a breakpoint to monitor the number of passes through a loop by
incrementing or decrementing a counter may not work correctly under these conditions. This
special case may cause several breakpoint acknowledge cycles to be executed during a
single pass through a loop.

10.4.4 Null Primitive
The null coprocessor response primitive communicates coprocessor status information to
the main processor. This primitive applies to instructions in the general and conditional
categories. Figure 10-24 shows the format of the null primitive.

Figure 10-24. Null Primitive Format

This primitive uses the CA and PC bits as previously described.

Bit [8], the IA bit, specifies the interrupts allowed optional operation. This bit determines
whether the MC68030 services pending interrupts prior to rereading the response CIR after
receiving a null primitive. Interrupts are allowed when the IA bit is set.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 `

CA PC 0 0 1 0 0 IA 0 0 0 0 0 0 PF TF

Coprocessor Interface Description

10-38 MC68030 USER’S MANUAL MOTOROLA

Bit [1], the PF bit, shows the “processing finished”status of the coprocessor. That is, PF=1
indicates that the coprocessor has completed all processing associated with an instruction.

Bit [0], the TF bit, indicates the true/false condition during the execution of a conditional
category instruction. TF=1 is the true condition specifier, and TF=0 is the false condition
specifier. The TF bit is only relevant for null primitives with CA=0 that are used by the
coprocessor during the execution of a conditional instruction.

The MC68030 processes a null primitive with CA=1 in the same manner whether executing
a general or conditional category coprocessor instruction. If the coprocessor sets CA and IA
to one in the null primitive, the main processor services pending interrupts (using a mid-
instruction stack frame, refer to Figure 10-43) and reads the response CIR again. If the
coprocessor sets CA to one and IA to zero in the null primitive, the main processor reads
the response CIR again without servicing any pending interrupts.

A null, CA=0 primitive provides a condition evaluation indicator to the main processor during
the execution of a conditional instruction and ends the dialogue between the main processor
and coprocessor for that instruction. The main processor completes the execution of a
conditional category coprocessor instruction when it receives the primitive. The PF bit is not
relevant during conditional instruction execution since the primitive itself implies completion
of processing.

Usually, when the main processor reads any primitive that does not have CA=1 while
executing a general category instruction, it terminates the dialogue between the main
processor and coprocessor. If a trace exception is pending, however, the main processor
does not terminate the instruction dialogue until it reads a null, CA=0, PF=1 primitive from
the response CIR (refer to 10.5.2.5 Trace Exceptions). Thus, the main processor continues
to read the response CIR until it receives a null, CA=0, PF=1 primitive, and then performs
trace exception processing. When IA=1, the main processor services pending interrupts
before reading the response CIR again.

Coprocessor Interface Description

MOTOROLA MC68030 USER’S MANUAL 10-39

A coprocessor can be designed to execute a cpGEN instruction concurrently with the
execution of main processor instructions and, also, buffer one write operation to either its
command or condition CIR. This type of coprocessor issues a null primitive with CA=1 when
it is concurrently executing a cpGEN instruction, and the main processor initiates another
general or conditional coprocessor instruction. This primitive indicates that the coprocessor
is busy and the main processor should read the response CIR again without reinitiating the
instruction. The IA bit of this null primitive usually should be set to minimize interrupt latency
while the main processor is waiting for the coprocessor to complete the general category
instruction.

Table 10-3 summarizes the encodings of the null primitive.

x = Don't Care
c = 1 or 0 Depending on Coprocessor Condition Evaluation

Table 10-3. Null Coprocessor Response Primitive Encodings

CA PC IA PF TF General Instructions Conditional Instructions
x 1 x x x Pass Program Counter to Instruction

Address CIR, Clear PC Bit, and Proceed
with Operation Specified by CA, IA, PF,
and TF Bits

Same as General Category

1 0 0 x x Reread Response CIR, Do Not Service
Pending Interrupts

Same as General Category

1 0 1 x x Service Pending Interrupts and Reread
the Response CIR

Same as General Category

0 0 0 0 c If (Trace Pending) Reread Response CIR;
Else, Execute Next Instruction

Main Processor Completes Instruction
Execution Based on TF=c.

0 0 1 0 c If (Trace Pending) Service Pending
Interrupts and Reread Response CIR;
Else, Execute Next Instruction

Main Processor Completes Instruction
Execution Based on TF=c.

0 0 x 1 c Coprocessor Instruction Completed;
Service Pending Exceptions or Execute
Next Instruction

Main Processor Completes Instruction
Execution Based on TF=c.

Coprocessor Interface Description

10-40 MC68030 USER’S MANUAL MOTOROLA

10.4.5 Supervisor Check Primitive
The supervisor check primitive verifies that the main processor is operating in the supervisor
state while executing a coprocessor instruction. This primitive applies to instructions in the
general and conditional coprocessor instruction categories. Figure 10-25 shows the format
of the supervisor check primitive.

Figure 10-25. Supervisor Check Primitive Format

This primitive uses the PC bit as previously described. Bit [15] is shown as one, but during
execution of a general category instruction, this primitive performs the same operations
regardless of the value of bit [15]. If this primitive is issued with bit [15]=0 during a conditional
category instruction, however, the main processor initiates protocol violation exception
processing.

When the main processor reads the supervisor check primitive from the response CIR, it
checks the value of the S bit in the status register. If S=0 (main processor operating at user
privilege level), the main processor aborts the coprocessor instruction by writing an abort
mask (refer to 10.3.2 Control CIR) to the control CIR. The main processor then initiates
privilege violation exception processing (refer to 10.5.2.3 Privilege Violations). If the main
processor is at the supervisor privilege level when it receives this primitive, it reads the
response CIR again.

The supervisor check primitive allows privileged instructions to be defined in the
coprocessor general and conditional instruction categories. This primitive should be the first
one issued by the coprocessor during the dialog for an instruction that is implemented as
privileged.

10.4.6 Transfer Operation Word Primitive
The transfer operation word primitive requests a copy of the coprocessor instruction
operation word for the coprocessor. This primitive applies to general and conditional
category instructions. Figure 10-26 shows the format of the transfer operation word
primitive.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 PC 0 0 0 1 0 0 0 0 0 0 0 0 0 0

Coprocessor Interface Description

MOTOROLA MC68030 USER’S MANUAL 10-41

Figure 10-26. Transfer Operation Word Primitive Format

This primitive uses the CA and PC bits as previously described. If this primitive is issued with
CA=0 during a conditional category instruction, the main processor initiates protocol
violation exception processing.

When the main processor reads this primitive from the response CIR, it transfers the F-line
operation word of the currently executing coprocessor instruction to the operation word CIR.
The value of the scanPC is not affected by this primitive.

10.4.7 Transfer from Instruction Stream Primitive
The transfer from instruction stream primitive initiates transfers of operands from the
instruction stream to the coprocessor. This primitive applies to general and conditional
category instructions. Figure 10-27 shows the format of the transfer from instruction stream
primitive.

Figure 10-27. Transfer from Instruction Stream Primitive Format

This primitive uses the CA and PC bits as previously described. If this primitive is issued with
CA=0 during a conditional category instruction, the main processor initiates protocol
violation exception processing.

Bits [0-7] of the primitive format specify the length, in bytes, of the operand to be transferred
from the instruction stream to the coprocessor. The length must be an even number of bytes.
If an odd length is specified, the main processor initiates protocol violation exception
processing (refer to 10.5.2.1 Protocol Violations).

This primitive transfers coprocessor-defined extension words to the coprocessor. When the
main processor reads this primitive from the response CIR, it copies the number of bytes
indicated by the length field from the instruction stream to the operand CIR. The first word
or long word transferred is at the location pointed to by the scanPC when the primitive is
read by the main processor, and the scanPC is incremented after each word or long word
is transferred. When execution of the primitive has completed, the scanPC has been
incremented by the total number of bytes transferred and points to the word following the
last word transferred. The main processor transfers the operands from the instruction
stream using a sequence of long-word writes to the operand CIR. If the length field is not an
even multiple of four bytes, the last two bytes from the instruction stream are transferred
using a word write to the operand CIR.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CA PC 0 0 0 1 1 1 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 0

CA PC 0 0 1 1 1 1 LENGTH

Coprocessor Interface Description

10-42 MC68030 USER’S MANUAL MOTOROLA

10.4.8 Evaluate and Transfer Effective Address Primitive
The evaluate and transfer effective address primitive evaluates the effective address
specified in the coprocessor instruction operation word and transfers the result to the
coprocessor. This primitive applies to general category instructions. If this primitive is issued
by the coprocessor during the execution of a conditional category instruction, the main
processor initiates protocol violation exception processing. Figure 10-28 shows the format
of the evaluate and transfer effective address primitive.

Figure 10-28. Evaluate and Transfer Effective Address Primitive Format

This primitive uses the CA and PC bits as previously described.

When the main processor reads this primitive while executing a general category instruction,
it evaluates the effective address specified in the instruction. At this point, the scanPC
contains the address of the first of any required effective address extension words. The main
processor increments the scanPC by two after it references each of these extension words.
After the effective address is calculated, the resulting 32-bit value is written to the operand
address CIR.

The MC68030 only calculates effective addresses for control alterable addressing modes in
response to this primitive. If the addressing mode in the operation word is not a control
alterable mode, the main processor aborts the instruction by writing a $0001 to the control
CIR and initiates F-line emulation exception processing (refer to 10.5.2.2 F-Line Emulator
Exceptions).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CA PC 0 0 1 0 1 0 0 0 0 0 0 0 0 0

Coprocessor Interface Description

MOTOROLA MC68030 USER’S MANUAL 10-43

10.4.9 Evaluate Effective Address and Transfer Data Primitive
The evaluate effective address and transfer data primitive transfers an operand between the
coprocessor and the effective address specified in the coprocessor instruction operation
word. This primitive applies to general category instructions. If the coprocessor issues this
primitive during the execution of a conditional category instruction, the main processor
initiates protocol violation exception processing. Figure 10-29 shows the format of the
evaluate effective address and transfer data primitive.

Figure 10-29. Evaluate Effective Address and Transfer Data Primitive

This primitive uses the CA, PC, and DR bits as previously described.

The valid effective address field (bits [8-10]) of the primitive format specifies the valid
effective address categories for this primitive. If the effective address specified in the
instruction operation word is not a member of the class specified by bits [8-10], the main
processor aborts the coprocessor instruction by writing an abort mask (refer to 10.3.2
Control CIR) to the control CIR and by initiating F-line emulation exception processing.
Table 10-4 lists the valid effective address field encodings.

15 14 13 12 11 10 8 7 0

CA PC DR 1 0 VALID EA LENGTH

Table 10-4. Valid EffectiveAddress Codes

Field Category
000 Control Alterable
001 Data Alterable
010 Memory Alterable
011 Alterable
100 Control
101 Data
110 Memory
111 Any Effective Address

(No Restriction)

Coprocessor Interface Description

10-44 MC68030 USER’S MANUAL MOTOROLA

Even when the valid effective address fields specified in the primitive and in the instruction
operation word match, the MC68030 initiates protocol violation exception processing if the
primitive requests a write to a nonalterable effective address.

The length in bytes of the operand to be transferred is specified by bits [0-7] of the primitive
format. Several restrictions apply to operand lengths for certain effective addressing modes.
If the effective address is a main processor register (register direct mode), only operand
lengths of one, two, or four bytes are valid; all other lengths (zero, for example) cause the
main processor to initiate protocol violation exception processing. Operand lengths of 0-255
bytes are valid for the memory addressing modes.

The length of 0-255 bytes does not apply to an immediate operand. The length of an
immediate operand must be one byte or an even number of bytes (less than 256), and the
direction of transfer must be to the coprocessor; otherwise, the main processor initiates
protocol violation exception processing.

When the main processor receives this primitive during the execution of a general category
instruction, it verifies that the effective address encoded in the instruction operation word is
in the category specified by the primitive. If so, the processor calculates the effective
address using the appropriate effective address extension words at the current scanPC
address and increments the scanPC by two for each word referenced. The main processor
then transfers the number of bytes specified in the primitive between the operand CIR and
the effective address using long-word transfers whenever possible. Refer to 10.3.8
Operand CIR for information concerning operand alignment for transfers involving the
operand CIR.

The DR bit specifies the direction of the operand transfer. DR=0 requests a transfer from the
effective address to the operand CIR, and DR=1 specifies a transfer from the operand CIR
to the effective address.

Coprocessor Interface Description

MOTOROLA MC68030 USER’S MANUAL 10-45

If the effective addressing mode specifies the predecrement mode, the address register
used is decremented by the size of the operand before the transfer. The bytes within the
operand are then transferred to or from ascending addresses beginning with the location
specified by the decremented address register. In this mode, if A7 is used as the address
register and the operand length is one byte, A7 is decremented by two to maintain a word-
aligned stack.

For the postincrement effective addressing mode, the address register used is incremented
by the size of the operand after the transfer. The bytes within the operand are transferred to
or from ascending addresses beginning with the location specified by the address register.
In this mode, if A7 is used as the address register and the operand length is one byte, A7 is
incremented by two after the transfer to maintain a word aligned stack. Transferring odd
length operands longer than one byte using the –(A7) or (A7)+ addressing modes can result
in a stack pointer that is not word aligned.

The processor repeats the effective address calculation each time this primitive is issued
during the execution of a given instruction. The calculation uses the current contents of any
required address and data registers. The instruction must include a set of effective address
extension words for each repetition of a calculation that requires them. The processor
locates these words at the current scanPC location and increments the scanPC by two for
each word referenced in the instruction stream.

The MC68030 sign-extends a byte or word-sized operand to a long-word value when it is
transferred to an address register (A0–A7) using this primitive with the register direct
effective addressing mode. A byte or word-sized operand transferred to a data register (D0–
D7) only overwrites the lower byte or word of the data register.

Coprocessor Interface Description

10-46 MC68030 USER’S MANUAL MOTOROLA

10.4.10 Write to Previously Evaluated Effective Address Primitive
The write to previously evaluated effective address primitive transfers an operand from the
coprocessor to a previously evaluated effective address. This primitive applies to general
category instructions. If the coprocessor uses this primitive during the execution of a
conditional category instruction, the main processor initiates protocol violation exception
processing. Figure 10-30 shows the format of the write to previously evaluated effective
address primitive.

Figure 10-30. Write to Previously Evaluated EffectiveAddress Primitive Format

This primitive uses the CA and PC bits as previously described.

Bits [0-7] of the primitive format specify the length of the operand in bytes. The MC68030
transfers operands between zero and 255 bytes in length.

When the main processor receives this primitive during the execution of a general category
instruction, it transfers an operand from the operand CIR to an effective address specified
by a temporary register within the MC68030. When a previous primitive for the current
instruction has evaluated the effective address, this temporary register contains the
evaluated effective address. Primitives that store an evaluated effective address in a
temporary register of the main processor are the evaluate and transfer effective address,
evaluate effective address and transfer data, and transfer multiple coprocessor registers
primitive. If this primitive is used during an instruction in which the effective address
specified in the instruction operation word has not been calculated, the effective address
used for the write is undefined. Also, if the previously evaluated effective address was
register direct, the address written to in response to this primitive is undefined.

The function code value during the write operation indicates either supervisor or user data
space, depending on the value of the S bit in the MC68030 status register when the
processor reads this primitive. While a coprocessor should request writes to only alterable
effective addressing modes, the MC68030 does not check the type of effective address
used with this primitive. For example, if the previously evaluated effective address was
program counter relative and the MC68030 is at the user privilege level (S=0 in status
register), the MC68030 writes to user data space at the previously calculated program
relative address (the 32-bit value in the temporary internal register of the processor).

15 14 13 12 11 10 9 8 7 0

CA PC 1 0 0 0 0 0 LENGTH

Coprocessor Interface Description

MOTOROLA MC68030 USER’S MANUAL 10-47

Operands longer than four bytes are transferred in increments of four bytes (operand parts)
when possible. The main processor reads a long-word operand part from the operand CIR
and transfers this part to the current effective address. The transfers continue in this manner
using ascending memory locations until all of the long-word operand parts are transferred,
and any remaining operand part is then transferred using a one-, two-, or three-byte transfer
as required. The operand parts are stored in memory using ascending addresses beginning
with the address in the MC68030 temporary register.

The execution of this primitive does not modify any of the registers in the MC68030
programmer's model, even if the previously evaluated effective address mode is the
predecrement or postincrement mode. If the previously evaluated effective addressing
mode used any of the MC68030 internal address or data registers, the effective address
value used is the final value from the preceding primitive. That is, this primitive uses the
value from an evaluate and transfer effective address, evaluate effective address and
transfer data, or transfer multiple coprocessor registers primitive without modification.

The take address and transfer data primitive described in the next section does not replace
the effective address value that has been calculated by the MC68030. The address that the
main processor obtains in response to the take address and transfer data primitive is not
available to the write to previously evaluated effective address primitive.

A coprocessor can issue an evaluate effective address and transfer data primitive followed
by this primitive to perform a read-modify-write operation that is not indivisible. The bus
cycles for this operation are normal bus cycles that can be interrupted, and the bus can be
arbitrated between the cycles.

Coprocessor Interface Description

10-48 MC68030 USER’S MANUAL MOTOROLA

10.4.11 Take Address and Transfer Data Primitive
The take address and transfer data primitive transfers an operand between the coprocessor
and an address supplied by the coprocessor. This primitive applies to general and
conditional category instructions. Figure 10-31 shows the format of the take address and
transfer data primitive.

Figure 10-31. Take Address and Transfer Data Primitive Format

This primitive uses the CA, PC, and DR bits as previously described. If the coprocessor
issues this primitive with CA=0 during a conditional category instruction, the main processor
initiates protocol violation exception processing.

Bits [0-7] of the primitive format specify the operand length, which can be from 0-255 bytes.

The main processor reads a 32-bit address from the operand address CIR. Using a series
of long-word transfers, the processor transfers the operand between this address and the
operand CIR. The DR bit determines the direction of the transfer. The processor reads or
writes the operand parts to ascending addresses, starting at the address from the operand
address CIR. If the operand length is not a multiple of four bytes, the final operand part is
transferred using a one-, two-, or three-byte transfer as required.

The function code used with the address read from the operand address CIR indicates either
supervisor or user data space according to the value of the S bit in the MC68030 status
register.

15 14 13 12 11 10 9 8 7 0

CA PC DR 0 0 1 0 1 LENGTH

Coprocessor Interface Description

MOTOROLA MC68030 USER’S MANUAL 10-49

10.4.12 Transfer to/from Top of Stack Primitive
The transfer to/from top of stack primitive transfers an operand between the coprocessor
and the top of the currently active main processor stack (refer to 2.8.1 System Stack). This
primitive applies to general and conditional category instructions. Figure 10-32 shows the
format of the transfer to/from top of stack primitive.

Figure 10-32. Transfer To/From Top of Stack Primitive Format

This primitive uses the CA, PC, and DR bits as previously described. If the coprocessor
issues this primitive with CA=0 during a conditional category instruction, the main processor
initiates protocol violation exception processing.

Bits [0-7] of the primitive format specify the length in bytes of the operand to be transferred.
The operand may be one, two, or four bytes in length; other length values cause the main
processor to initiate protocol violation exception processing.

If DR=0, the main processor transfers the operand from the currently active system stack to
the operand CIR. The implied effective address mode used for the transfer is the (A7)+
addressing mode. A one-byte operand causes the stack pointer to be incremented by two
after the transfer to maintain word alignment of the stack.

If DR=1, the main processor transfers the operand from the operand CIR to the currently
active stack. The implied effective address mode used for the transfer is the —(A7)
addressing mode. A one-byte operand causes the stack pointer to be decremented by two
before the transfer to maintain word alignment of the stack.

15 14 13 12 11 10 9 8 7 0

CA PC DR 0 1 1 1 0 LENGTH

Coprocessor Interface Description

10-50 MC68030 USER’S MANUAL MOTOROLA

10.4.13 Transfer Single Main Processor Register Primitive
The transfer single main processor register primitive transfers an operand between one of
the main processor's data or address registers and the coprocessor. This primitive applies
to general and conditional category instructions. Figure 10-33 shows the format of the
transfer single main processor register primitive.

Figure 10-33. Transfer Single Main Processor Register Primitive Format

This primitive uses the CA, PC, and DR bits as previously described. If the coprocessor
issues this primitive with CA=0 during a conditional category instruction, the main processor
initiates protocol violation exception processing.

Bit [3], the D/A bit, specifies whether the primitive transfers an address or data register. D/
A=0 indicates a data register, and D/A=1 indicates an address register. Bits [2-0] contain the
register number.

If DR=0, the main processor writes the long-word operand in the specified register to the
operand CIR. If DR=1, the main processor reads a long-word operand from the operand CIR
and transfers it to the specified data or address register.

10.4.14 Transfer Main Processor Control Register Primitive
The transfer main processor control register primitive transfers a long-word operand
between one of its control registers and the coprocessor. This primitive applies to general
and conditional category instructions. Figure 10-34 shows the format of the transfer main
processor control register primitive. This primitive uses the CA, PC, and DR bits as
previously described. If the coprocessor issues this primitive with CA=0 during a conditional
category instruction, the main processor initiates protocol violation exception processing.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

CA PC DR 0 1 1 0 0 0 0 0 0 D/A REGISTER

Coprocessor Interface Description

MOTOROLA MC68030 USER’S MANUAL 10-51

Figure 10-34. Transfer Main Processor Control Register Primitive Format

When the main processor receives this primitive, it reads a control register select code from
the register select CIR. This code determines which main processor control register is
transferred. Table 10-5 lists the valid control register select codes. If the control register
select code is not valid, the MC68030 initiates protocol violation exception processing (refer
to 10.5.2.1 Protocol Violations).

After reading a valid code from the register select CIR, if DR=0, the main processor writes
the long-word operand from the specified control register to the operand CIR. If DR=1, the
main processor reads a long-word operand from the operand CIR and places it in the
specified control register.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CA PC DR 0 1 1 0 1 0 0 0 0 0 0 0 0

Table 10-5. Main Processor Control Register

Hex Control Register
x000 Source Function Code (SFC) Register
x001 Destination Function Code (DFC) Register
x002 Cache Control Register (CACR)
x800 User Stack Pointer (USP)
x801 Vector Base Register (VBR)
x802 Cache Address Register (CAAR)
x803 Master Stack Pointer (MSP)
x804 Interrupt Stack Pointer (ISP)

All other codes cause a protocol violation exception

Coprocessor Interface Description

10-52 MC68030 USER’S MANUAL MOTOROLA

10.4.15 Transfer Multiple Main Processor Registers Primitive
The transfer multiple main processor registers primitive transfers long-word operands
between one or more of its data or address registers and the coprocessor. This primitive
applies to general and conditional category instructions. Figure 10-35 shows the format of
the transfer multiple main processor registers primitive.

Figure 10-35. Transfer Multiple Main Processor Registers Primitive Format

This primitive uses the CA, PC, and DR bits as previously described. If the coprocessor
issues this primitive with CA=0 during a conditional category instruction, the main processor
initiates protocol violation exception processing.

When the main processor receives this primitive, it reads a 16-bit register select mask from
the register select CIR. The format of the register select mask is shown in Figure 10-36. A
register is transferred if the bit corresponding to the register in the register select mask is set
to one. The selected registers are transferred in the order D0–D7 and then A0–A7.

Figure 10-36. Register Select Mask Format

If DR=0, the main processor writes the contents of each register indicated in the register
select mask to the operand CIR using a sequence of long-word transfers. If DR=1, the main
processor reads a long-word operand from the operand CIR into each register indicated in
the register select mask. The registers are transferred in the same order, regardless of the
direction of transfer indicated by the DR bit.

10.4.16 Transfer Multiple Coprocessor Registers Primitive
The transfer multiple coprocessor registers primitive transfers from 0-16 operands between
the effective address specified in the coprocessor instruction and the coprocessor. This
primitive applies to general category instructions. If the coprocessor issues this primitive
during the execution of a conditional category instruction, the main processor initiates
protocol violation exception processing. Figure 10-37 shows the format of the transfer
multiple coprocessor registers primitive.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CA PC DR 0 0 1 1 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A7 A6 A5 A4 A3 A2 A1 A0 D7 D6 D5 D4 D3 D2 D1 D0

Coprocessor Interface Description

MOTOROLA MC68030 USER’S MANUAL 10-53

Figure 10-37. Transfer Multiple Coprocessor Registers Primitive Format

This primitive uses the CA, PC, and DR bits as previously described.

Bits [7-0] of the primitive format indicate the length in bytes of each operand transferred. The
operand length must be an even number of bytes; odd length operands cause the MC68030
to initiate protocol violation exception processing (refer to 10.5.2.1 Protocol Violations).

When the main processor reads this primitive, it calculates the effective address specified
in the coprocessor instruction. The scanPC should be pointing to the first of any necessary
effective address extension words when this primitive is read from the response CIR; the
scanPC is incremented by two for each extension word referenced during the effective
address calculation. For transfers from the effective address to the coprocessor (DR=0), the
control addressing modes and the postincrement addressing mode are valid. For transfers
from the coprocessor to the effective address (DR=1), the control alterable and
predecrement addressing modes are valid. Invalid addressing modes cause the MC68030
to abort the instruction by writing an abort mask (refer to 10.3.2 Control CIR) to the control
CIR and to initiate F-line emulator exception processing (refer to 10.5.2.2 F-Line Emulator
Exceptions).

After performing the effective address calculation, the MC68030 reads a 16-bit register
select mask from the register select CIR. The coprocessor uses the register select mask to
specify the number of operands to transfer; the MC68030 counts the number of ones in the
register select mask to determine the number of operands. The order of the ones in the
register select mask is not relevant to the operation of the main processor. As many as 16
operands can be transferred by the main processor in response to this primitive. The total
number of bytes transferred is the product of the number of operands transferred and the
length of each operand specified in bits [0-7] of the primitive format.

15 14 13 12 11 10 9 8 7 0

CA PC DR 0 0 0 0 1 LENGTH

Coprocessor Interface Description

10-54 MC68030 USER’S MANUAL MOTOROLA

If DR=1, the main processor reads the number of operands specified in the register select
mask from the operand CIR and writes these operands to the effective address specified in
the instruction using long-word transfers whenever possible. If DR=0, the main processor
reads the number of operands specified in the register select mask from the effective
address and writes them to the operand CIR.

For the control addressing modes, the operands are transferred to or from memory using
ascending addresses. For the postincrement addressing mode, the operands are read from
memory with ascending addresses also, and the address register used is incremented by
the size of an operand after each operand is transferred. The address register used with the
(An)+ addressing mode is incremented by the total number of bytes transferred during the
primitive execution.

For the predecrement addressing mode, the operands are written to memory with
descending addresses, but the bytes within each operand are written to memory with
ascending addresses. As an example, Figure 10-38 shows the format in long-word-oriented
memory for two 12-byte operands transferred from the coprocessor to the effective address
using the —(An) addressing mode. The processor decrements the address register by the
size of an operand before the operand is transferred. It writes the bytes of the operand to
ascending memory addresses. When the transfer is complete, the address register has
been decremented by the total number of bytes transferred. The MC68030 transfers the
data using long-word transfers whenever possible.

NOTE: OP0, Byte (0) is the first byte written to memory
OP0, Byte (L-1) is the last byte of the first operand written to memory
OP1, Byte (0) is the first byte of the second operand written to memory
OP1, Byte (L-1) is the last byte written to memory

Figure 10-38. Operand Format in Memory for Transfer to —(An)

31 23 15 7 0
An-2•LENGTH=FINAL An → OP1, BYTE (0)

OP1, BYTE (L-1)
An-LENGTH → OP0, BYTE (0)

INITIAL An → OP0, BYTE (L-1)

Coprocessor Interface Description

MOTOROLA MC68030 USER’S MANUAL 10-55

10.4.17 Transfer Status Register and ScanPC Primitive
Both the transfer status register and the scanPC primitive transfers values between the
coprocessor and the main processor status register. On an optional basis, the scanPC also
makes transfers. This primitive applies to general category instructions. If the coprocessor
issues this primitive during the execution of a conditional category instruction, the main
processor initiates protocol violation exception processing. Figure 10-39 shows the format
of the transfer status register and scanPC primitive.

Figure 10-39. Transfer Status Register and ScanPC Primitive Format

This primitive uses the CA, PC, and DR bits as previously described.

Bit [8], the SP bit, selects the scanPC option. If SP=1, the primitive transfers both the
scanPC and status register. If SP=0, only the status register is transferred.

If SP=0 and DR=0, the main processor writes the 16-bit status register value to the operand
CIR. If SP=0 and DR=1, the main processor reads a 16-bit value from the operand CIR into
the main processor status register.

If SP=1 and DR=0, the main processor writes the long-word value in the scanPC to the
instruction address CIR and then writes the status register value to the operand CIR. If SP=1
and DR=1, the main processor reads a 16-bit value from the operand CIR into the status
register and then reads a long-word value from the instruction address CIR into the scanPC.

With this primitive, a general category instruction can change the main processor program
flow by placing a new value in the status register, in the scanPC, or new values in both the
status register and the scanPC. By accessing the status register, the coprocessor can
determine and manipulate the main processor condition codes, supervisor status, trace
modes, selection of the active stack, and interrupt mask level.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CA PC DR 0 0 0 1 SP 0 0 0 0 0 0 0 0

Coprocessor Interface Description

10-56 MC68030 USER’S MANUAL MOTOROLA

The MC68030 discards any instruction words that have been prefetched beyond the current
scanPC location when this primitive is issued with DR=1 (transfer to main processor). The
MC68030 then refills the instruction pipe from the scanPC address in the address space
indicated by the status register S bit.

If the MC68030 is operating in the trace on change of flow mode (T1:T0 in the status register
contains 01) when the coprocessor instruction begins to execute and if this primitive is
issued with DR=1 (from coprocessor to main processor), the MC68030 prepares to take a
trace exception. The trace exception occurs when the coprocessor signals that it has
completed all processing associated with the instruction. Changes in the trace modes due
to the transfer of the status register to main processor take effect on execution of the next
instruction.

10.4.18 Take Pre-Instruction Exception Primitive
The take pre-instruction exception primitive initiates exception processing using a
coprocessor-supplied exception vector number and the pre-instruction exception stack
frame format. This primitive applies to general and conditional category instructions. Figure
10-40 shows the format of the take pre-instruction exception primitive.

Figure 10-40. Take Pre-Instruction Exception Primitive Format

The primitive uses the PC bit as previously described. Bits [0-7] contain the exception vector
number used by the main processor to initiate exception processing.

When the main processor receives this primitive, it acknowledges the coprocessor
exception request by writing an exception acknowledge mask (refer to 10.3.2 Control CIR)
to the control CIR. The MC68030 then proceeds with exception processing as described in
8.1 Exception Processing Sequence. The vector number for the exception is taken from
bits [0-7] of the primitive, and the MC68030 uses the four-word stack frame format shown in
Figure 10-41.

15 14 13 12 11 10 9 8 7 0

0 PC 0 1 1 1 0 0 VECTOR NUMBER

Coprocessor Interface Description

MOTOROLA MC68030 USER’S MANUAL 10-57

The value of the program counter saved in this stack frame is the F-line operation word
address of the coprocessor instruction during which the primitive was received. Thus, if the
exception handler routine does not modify the stack frame, an RTE instruction causes the
MC68030 to return and reinitiate execution of the coprocessor instruction.

The take pre-instruction exception primitive can be used when the coprocessor does not
recognize a value written to either its command CIR or condition CIR to initiate a
coprocessor instruction. This primitive can also be used if an exception occurs in the
coprocessor instruction before any program-visible resources are modified by the instruction
operation. This primitive should not be used during a coprocessor instruction if program-
visible resources have been modified by that instruction. Otherwise, since the MC68030
reinitiates the instruction when it returns from exception processing, the restarted instruction
receives the previously modified resources in an inconsistent state.

One of the most important uses of the take pre-instruction exception primitive is to signal an
exception condition in a cpGEN instruction that was executing concurrently with the main
processor's instruction execution. If the coprocessor no longer requires the services of the
main processor to complete a cpGEN instruction and the concurrent instruction completion
is transparent to the programmer's model, the coprocessor can release the main processor
by issuing a primitive with CA=0. The main processor usually executes the next instruction
in the instruction stream, and the coprocessor completes its operations concurrently with the
main processor operation. If an exception occurs while the coprocessor is executing an
instruction concurrently, the exception is not processed until the main processor attempts to
initiate the next general or conditional instruction. After the main processor writes to the
command or condition CIR to initiate a general or conditional instruction, it then reads the
response CIR. At this time, the coprocessor can return the take pre-instruction exception
primitive. This protocol allows the main processor to proceed with exception processing
related to the previous concurrently executing coprocessor instruction and then return and
reinitiate the coprocessor instruction during which the exception was signaled. The
coprocessor should record the addresses of all general category instructions that can be
executed concurrently with the main processor and that support exception recovery. Since
the exception is not reported until the next coprocessor instruction is initiated, the processor
usually requires the instruction address to determine which instruction the coprocessor was
executing when the exception occurred. A coprocessor can record the instruction address
by setting PC=1 in one of the primitives it uses before releasing the main processor.

10.4.19 Take Mid-Instruction Exception Primitive
The take mid-instruction exception primitive initiates exception processing using a
coprocessor-supplied exception vector number and the mid-instruction exception stack
frame format. This primitive applies to general and conditional category instructions. Figure
10-42 shows the format of the take mid-instruction exception primitive.

(UNABLE TO LOCATE ART)

Figure 10-41. MC68030 Pre-Instruction Stack Frame

Coprocessor Interface Description

10-58 MC68030 USER’S MANUAL MOTOROLA

Figure 10-42. Take Mid-Instruction Exception Primitive Format

This primitive uses the PC bit as previously described. Bits ;ob7-0] contain the exception
vector number used by the main processor to initiate exception processing.

When the main processor receives this primitive, it acknowledges the coprocessor
exception request by writing an exception acknowledge mask (refer to 10.3.2 Control CIR)
to the control CIR. The MC68030 then performs exception processing as described in 8.1
Exception Processing Sequence. The vector number for the exception is taken from bits
[0-7] of the primitive and the MC68030 uses the 10-word stack frame format shown in Figure
10-43.

15 14 13 12 11 10 9 8 7 0

0 PC 0 1 1 1 0 1 VECTOR NUMBER

Coprocessor Interface Description

MOTOROLA MC68030 USER’S MANUAL 10-59

The program counter value saved in this stack frame is the operation word address of the
coprocessor instruction during which the primitive is received. The scanPC field contains the
value of the MC68030 scanPC when the primitive is received. If the current instruction does
not evaluate an effective address prior to the exception request primitive, the value of the
effective address field in the stack frame is undefined.

The coprocessor uses this primitive to request exception processing for an exception during
the instruction dialog with the main processor. If the exception handler does not modify the
stack frame, the MC68030 returns from the exception handler and reads the response CIR.
Thus, the main processor attempts to continue executing the suspended instruction by
reading the response CIR and processing the primitive it receives.

(UNABLE TO LOCATE ART)

Figure 10-43. MC68030 Mid-Instruction Stack Frame

Coprocessor Interface Description

10-60 MC68030 USER’S MANUAL MOTOROLA

10.4.20 Take Post-Instruction Exception Primitive
The take post-instruction exception primitive initiates exception processing using a
coprocessor-supplied exception vector number and the post-instruction exception stack
frame format. This primitive applies to general and conditional category instructions. Figure
10-44 shows the format of the take post-instruction exception primitive.

Figure 10-44. Take Post-Instruction Exception Primitive Format

This primitive uses the PC bit as previously described. Bits [0-7] contain the exception vector
number used by the main processor to initiate exception processing.

When the main processor receives this primitive, it acknowledges the coprocessor
exception request by writing an exception acknowledge mask (refer to 10.3.2 Control CIR)
to the control CIR. The MC68030 then performs exception processing as described in 8.1
Exception Processing Sequence. The vector number for the exception is taken from bits
[0-7] of the primitive, and the MC68030 uses the six-word stack frame format shown in
Figure 10-45.

The value in the main processor scanPC at the time this primitive is received is saved in the
scanPC field of the post-instruction exception stack frame. The value of the program counter
saved is the F-line operation word address of the coprocessor instruction during which the
primitive is received.

When the MC68030 receives the take post-instruction exception primitive, it assumes that
the coprocessor either completed or aborted the instruction with an exception. If the
exception handler does not modify the stack frame, the MC68030 returns from the exception
handler to begin execution at the location specified by the scanPC field of the stack frame.
This location should be the address of the next instruction to be executed.

The coprocessor uses this primitive to request exception processing when it completes or
aborts an instruction while the main processor is awaiting a normal response. For a general
category instruction, the response is a release; for a conditional category instruction, it is an
evaluated true/false condition indicator. Thus, the operation of the MC68030 in response to
this primitive is compatible with standard M68000 Family instruction related exception
processing (for example, the divide-by-zero exception).

15 14 13 12 11 10 9 8 7 0

0 PC 0 1 1 1 1 0 VECTOR NUMBER

(UNABLE TO LOCATE ART)

Figure 10-45. MC68030 Post-Instruction Stack Frame

Coprocessor Interface Description

MOTOROLA MC68030 USER’S MANUAL 10-61

10.5 EXCEPTIONS
Various exception conditions related to the execution of coprocessor instructions may occur.
Whether an exception is detected by the main processor or by the coprocessor, the main
processor coordinates and performs exception processing. Servicing these coprocessor-
related exceptions is an extension of the protocol used to service standard M68000 Family
exceptions. That is, when either the main processor detects an exception or is signaled by
the coprocessor that an exception condition has occurred, the main processor proceeds
with exception processing as described in 8.1 Exception Processing Sequence.

10.5.1 Coprocessor-Detected Exceptions
Exceptions that the coprocessor detects, also those that the main processor detects, are
usually classified as coprocessor-detected exceptions. These exceptions can occur during
M68000 coprocessor interface operations, internal operations, or other system-related
operations of the coprocessor.

Most coprocessor-detected exceptions are signaled to the main processor through the use
of one of the three take exception primitives defined for the M68000 coprocessor interface.
The main processor responds to these primitives as previously described. However, not all
coprocessor-detected exceptions are signaled by response primitives. Coprocessor-
detected format errors during the cpSAVE or cpRESTORE instruction are signaled to the
main processor using the invalid format word described in 10.2.3.2.3 Invalid Format Word.

Coprocessor Interface Description

10-62 MC68030 USER’S MANUAL MOTOROLA

10.5.1.1 COPROCESSOR-DETECTED PROTOCOL VIOLATIONS. Protocol violation
exceptions are communication failures between the main processor and coprocessor
across the M68000 coprocessor interface. Coprocessor-detected protocol violations occur
when the main processor accesses entries in the coprocessor interface register set in an
unexpected sequence. The sequence of operations that the main processor performs for a
given coprocessor instruction or coprocessor response primitive has been described
previously in this section.

A coprocessor can detect protocol violations in various ways. According to the M68000
coprocessor interface protocol, the main processor always accesses the operation word,
operand, register select, instruction address, or operand address CIRs synchronously with
respect to the operation of the coprocessor. That is, the main processor accesses these five
registers in a certain sequence, and the coprocessor expects them to be accessed in that
sequence. As a minimum, all M68000 coprocessors should detect a protocol violation if the
main processor accesses any of these five registers when the coprocessor is expecting an
access to either the command or condition CIR. Likewise, if the coprocessor is expecting
an access to the command or condition CIR and the main processor accesses one of these
five registers, the coprocessor should detect and signal a protocol violation.

According to the M68000 coprocessor interface protocol, the main processor can perform a
read of either the save or response CIRs or a write of either the restore or control CIRs
asynchronously with respect to the operation of the coprocessor. That is, an access to one
of these registers without the coprocessor explicitly expecting that access at that point can
be a valid access. Although the coprocessor can anticipate certain accesses to the restore,
response, and control coprocessor interface registers, these registers can be accessed at
other times also.

The coprocessor cannot signal a protocol violation to the main processor during the
execution of cpSAVE or cpRESTORE instructions. If a coprocessor detects a protocol
violation during the cpSAVE or cpRESTORE instruction, it should signal the exception to the
main processor when the next coprocessor instruction is initiated.

The main philosophy of the coprocessor-detected protocol violation is that the coprocessor
should always acknowledge an access to one of its interface registers. If the coprocessor
determines that the access is not valid, it should assert DSACKx, to the main processor and
signal a protocol violation when the main processor next reads the response CIR. If the
coprocessor fails to assert DSACKx, the main processor waits for the assertion of that signal
(or some other bus termination signal) indefinitely. The protocol previously described
ensures that the coprocessor cannot halt the main processor.

Coprocessor Interface Description

MOTOROLA MC68030 USER’S MANUAL 10-63

The coprocessor can signal a protocol violation to the main processor with the take mid-
instruction exception primitive. To maintain consistency, the vector number should be 13, as
it is for a protocol violation detected by the main processor. When the main processor reads
this primitive, it proceeds as described in 10.4.19 Take Mid-Instruction Exception
Primitive. If the exception handler does not modify the stack frame, the MC68030 returns
from the exception handler and reads the response CIR.

10.5.1.2 COPROCESSOR-DETECTED ILLEGAL COMMAND OR CONDITION WORDS.
 Illegal coprocessor command or condition words are values written to the command CIR or
condition CIR that the coprocessor does not recognize. If a value written to either of these
registers is not valid, the coprocessor should return the take pre-instruction exception
primitive in the response CIR. When it receives this primitive, the main processor takes a
pre-instruction exception as described in 10.4.18 Take Pre-Instruction Exception
Primitive. If the exception handler does not modify the main processor stack frame, an RTE
instruction causes the MC68030 to reinitiate the instruction that took the exception. The
coprocessor designer should ensure that the state of the coprocessor is not irrecoverably
altered by an illegal command or condition exception if the system supports emulation of the
unrecognized command or condition word.

All Motorola M68000 coprocessors signal illegal command and condition words by returning
the take pre-instruction exception primitive with the F-line emulator exception vector number
11.

10.5.1.3 COPROCESSOR DATA-PROCESSING EXCEPTIONS. Exceptions related to the
internal operation of a coprocessor are classified as data-processing-related exceptions.
These exceptions are analogous to the divide-by-zero exception defined by M68000
microprocessors and should be signaled to the main processor using one of the three take
exception primitives containing an appropriate exception vector number. Which of these
three primitives is used to signal the exception is usually determined by the point in the
instruction operation where the main processor should continue the program flow after
exception processing. Refer to 110.4.18 Take Pre-Instruction Exception Primitive,
10.4.19 Take Mid-Instruction Exception Primitive, and 10.4.20 Take Post-Instruction
Exception Primitive.

Coprocessor Interface Description

10-64 MC68030 USER’S MANUAL MOTOROLA

10.5.1.4 COPROCESSOR SYSTEM-RELATED EXCEPTIONS. System-related
exceptions detected by a DMA coprocessor include those associated with bus activity and
any other exceptions (interrupts, for example) occurring external to the coprocessor. The
actions taken by the coprocessor and the main processor depend on the type of exception
that occurs.

When an address or bus error is detected by a DMA coprocessor, the coprocessor should
store any information necessary for the main processor exception handling routines in
system-accessible registers. The coprocessor should place one of the three take exception
primitives encoded with an appropriate exception vector number in the response CIR. Which
of the three primitives is used depends upon the point in the coprocessor instruction at which
the exception was detected and the point in the instruction execution at which the main
processor should continue after exception processing.

10.5.1.5 FORMAT ERRORS. Format errors are the only coprocessor-detected exceptions
that are not signaled to the main processor with a response primitive. When the main
processor writes a format word to the restore CIR during the execution of a cpRESTORE
instruction, the coprocessor decodes this word to determine if it is valid (refer to 10.2.3.3
Coprocessor Context Save Instruction). If the format word is not valid, the coprocessor
places the invalid format code in the restore CIR. When the main processor reads the invalid
format code, it aborts the coprocessor instruction by writing an abort mask (refer to 10.3.2
Control CIR) to the control CIR. The main processor then performs exception processing
using a four-word pre-instruction stack frame and the format error exception vector number
14. Thus, if the exception handler does not modify the stack frame, the MC68030 restarts
the cpRESTORE instruction when the RTE instruction in the handler is executed. If the
coprocessor returns the invalid format code when the main processor reads the save CIR
to initiate a cpSAVE instruction, the main processor performs format error exception
processing as outlined for the cpRESTORE instruction.

Coprocessor Interface Description

MOTOROLA MC68030 USER’S MANUAL 10-65

10.5.2 Main-Processor-Detected Exceptions
A number of exceptions related to coprocessor instruction execution are detected by the
main processor instead of the coprocessor (they are still serviced by the main processor).
These exceptions can be related to the execution of coprocessor response primitives,
communication across the M68000 coprocessor interface, or the completion of conditional
coprocessor instructions by the main processor.

10.5.2.1 PROTOCOL VIOLATIONS . The main processor detects a protocol violation when
it reads a primitive from the response CIR that is not a valid primitive. The protocol violations
that can occur in response to the primitives defined for the M68000 coprocessor interface
are summarized in Table 10-6.

Coprocessor Interface Description

10-66 MC68030 USER’S MANUAL MOTOROLA

Table 10-6. Exceptions Related to Primitive Processing (Sheet 1 of 2)

Primitive Protocol F-Line Other
Busy
NULL
Supervisory Check*

Other: Priveledge Violation if “S” Bit =0
X

Transfer Operation Word*
Transfer From Instruction Seam*

Protocol: If Length Field is Odd (Zero Length Legal)
X

Evaluate and Transfer Effective Address
Protocol: If Used with Conditional Instruction
F-Line: If EA in OP - Word is NOT Control Alterable

X
X

Evaluate Effective Address and Transfer DataProtocol:
1. If Used with Conditional Instructions
2. Length is Not 1, 2, or 4 and EA=Register Direct
3. If EA=Immediate and Length Odd and Greater Than 1
4. Attempt to Write to Nonalterable Address Even if Address

Declared Legal in Primitive
F-Line: Valid EA Field Does Not Match EA in Op-Word

X

X

Write to Previously Evaluated Effective Address
Protocol: If Used with Conditional Instruction X

Busy
Take Address and Transfer Data*
Transfer To/From Top of Stack*

Protocol: Length Field Other Than 1, 2, or 4 X
Transfer To/From Main Processor Register*
Transfer To/From Main Processor Control Register

Protocol: Invalid Control Register Select Code X
Transfer Multiple Main Processor Registers*
Transfer Multiple Coprocessor Registers

Protocol:
1. If Used with Conditional Instructions
2 .Odd Length Value

F-Line:
1. EA Not Control Alterable or (An);pl for CP to Memory Transfer
 2. EA Not Control Alterable or —(An) for Memory to CP Transfer

X
X

Coprocessor Interface Description

MOTOROLA MC68030 USER’S MANUAL 10-67

*Use of this primitive with CA=0 will cause protocol violation on conditional instructions.
Abbreviations:
 EA=Effective Address
 CP=Coprocessor

When the MC68030 detects a protocol violation, it does not automatically notify the
coprocessor of the resulting exception by writing to the control CIR. The exception handling
routine may, however, use the MOVES instruction to read the response CIR and thus
determine the primitive that caused the MC68030 to initiate protocol violation exception
processing. The main processor initiates exception processing using the mid-instruction
stack frame (refer to Figure 10-43) and the coprocessor protocol violation exception vector
number 13. If the exception handler does not modify the stack frame, the main processor
reads the response CIR again following the execution of an RTE instruction to return from
the exception handler. This protocol allows extensions to the M68000 coprocessor interface
to be emulated in software by a main processor that does not provide hardware support for
these extensions. Thus, the protocol violation is transparent to the coprocessor if the
primitive execution can be emulated in software by the main processor.

Primitive Protocol F-Line Other
Transfer Status and/or ScanPC

Protocol: If Used with Conditional Instruction
Other:

1. Trace — Trace Made Pending if MC68020 in ``Trace on Change
of Flow'' Mode and DR=1

2. Address Error — If Odd value Written to ScanPC

X

X

Take Pre-Instruction, Mid-Instruction, or Post-Instruction Exception
Exception Depends on Vector Supplies in Primitive

X X X

Coprocessor Interface Description

10-68 MC68030 USER’S MANUAL MOTOROLA

10.5.2.2 F-LINE EMULATOR EXCEPTIONS. The F-line emulator exceptions detected by
the MC68030 are either explicitly or implicitly related to the encodings of F-line operation
words in the instruction stream. If the main processor determines that an F-line operation
word is not valid, it initiates F-line emulator exception processing. Any F-line operation word
with bits [8:6]=110 or 111 causes the MC68030 to initiate exception processing without
initiating any communication with the coprocessor for that instruction. Also, an operation
word with bits [8:6]=000-101 that does not map to one of the valid coprocessor instructions
in the instruction set causes the MC68030 to initiate F-line emulator exception processing.
If the F-line emulator exception is either of these two situations, the main processor does
not write to the control CIR prior to initiating exception processing.

F-line exceptions can also occur if the operations requested by a coprocessor response
primitive are not compatible with the effective address type in bits [0-5] of the coprocessor
instruction operation word. The F-line emulator exceptions that can result from the use of
the M68000 coprocessor response primitives are summarized in Table 10-6. If the exception
is caused by receiving an invalid primitive, the main processor aborts the coprocessor
instruction in progress by writing an abort mask (refer to 10.3.2 Control CIR) to the control
CIR prior to F-line emulator exception processing.

Another type of F-line emulator exception occurs when a bus error occurs during the
coprocessor interface register access that initiates a coprocessor instruction. The main
processor assumes that the coprocessor is not present and takes the exception.

When the main processor initiates F-line emulator exception processing, it uses the four-
word pre-instruction exception stack frame (refer to Figure 10-41) and the F-line emulator
exception vector number 11. Thus, if the exception handler does not modify the stack frame,
the main processor attempts to restart the instruction that caused the exception after it
executes an RTE instruction to return from the exception handler.

If the cause of the F-line exception can be emulated in software, the handler stores the
results of the emulation in the appropriate registers of the programmer's model and in the
status register field of the saved stack frame. The exception handler adjusts the program
counter field of the saved stack frame to point to the next instruction operation word and
executes the RTE instruction. The MC68030 then executes the instruction following the
instruction that was emulated.

Coprocessor Interface Description

MOTOROLA MC68030 USER’S MANUAL 10-69

The exception handler should also check the copy of the status register on the stack to
determine whether tracing is on. If tracing is on, the trace exception processing should also
be emulated. Refer to 8.1.7 Trace Exception.

10.5.2.3 PRIVILEGE VIOLATIONS. Privilege violations can result from the cpSAVE and
cpRESTORE instructions and, also, from the supervisor check coprocessor response
primitive. The main processor initiates privilege violation exception processing if it attempts
to execute either the cpSAVE or cpRESTORE instruction when it is in the user state (S=0
in status register). The main processor initiates this exception processing prior to any
communication with the coprocessor associated with the cpSAVE or cpRESTORE
instructions.

If the main processor is executing a coprocessor instruction in the user state when it reads
the supervisor check primitive, it aborts the coprocessor instruction in progress by writing an
abort mask (refer to 10.3.2 Control CIR) to the control CIR. The main processor then
performs privilege violation exception processing.

If a privilege violation occurs, the main processor initiates exception processing using the
four-word pre-instruction stack frame (refer to Figure 10-41) and the privilege violation
exception vector number 8. Thus, if the exception handler does not modify the stack frame,
the main processor attempts to restart the instruction during which the exception occurred
after it executes an RTE to return from the handler.

10.5.2.4 CPTRAPCC INSTRUCTION TRAPS. If, during the execution of a cpTRAPcc
instruction, the coprocessor returns the TRUE condition indicator to the main processor with
a null primitive, the main processor initiates trap exception processing. The main processor
uses the six-word post-instruction exception stack frame (refer to Figure 10-45) and the trap
exception vector number 7. The scanPC field of this stack frame contains the address of the
instruction following the cpTRAPcc instruction. The processing associated with the
cpTRAPcc instruction can then proceed, and the exception handler can locate any
immediate operand words encoded in the cpTRAPcc instruction using the information
contained in the six-word stack frame. If the exception handler does not modify the stack
frame, the main processor executes the instruction following the cpTRAPcc instruction after
it executes an RTE instruction to exit from the handler.

Coprocessor Interface Description

10-70 MC68030 USER’S MANUAL MOTOROLA

10.5.2.5 TRACE EXCEPTIONS. The MC68030 supports two modes of instruction tracing,
discussed in 8.1.7 Trace Exception. In the trace on instruction execution mode, the
MC68030 takes a trace exception after completing each instruction. In the trace on change
of flow mode, the MC68030 takes a trace exception after each instruction that alters the
status register or places an address other than the address of the next instruction in program
counter.

The protocol used to execute coprocessor cpSAVE, cpRESTORE, or conditional category
instructions does not change when a trace exception is pending in the main processor. The
main processor performs a pending trace on instruction execution exception after
completing the execution of that instruction. If the main processor is in the trace on change
of flow mode and an instruction places an address other than that of the next instruction in
the program counter, the processor takes a trace exception after it executes the instruction.

If a trace exception is not pending during a general category instruction, the main processor
terminates communication with the coprocessor after reading any primitive with CA=0.
Thus, the coprocessor can complete a cpGEN instruction concurrently with the execution of
instructions by the main processor. When a trace exception is pending, however, the main
processor must ensure that all processing associated with a cpGEN instruction has been
completed before it takes the trace exception. In this case, the main processor continues to
read the response CIR and to service the primitives until it receives either a null, CA=0,
PF=1 primitive, or until exception processing caused by a take post-instruction exception
primitive has completed. The coprocessor should return the null, CA=0 primitive with PF=0,
while it is completing the execution of the cpGEN instruction. The main processor may
service pending interrupts between reads of the response CIR if IA=1 in these primitives
(refer to Table 10-3). This protocol ensures that a trace exception is not taken until all
processing associated with a cpGEN instruction has completed.

If T1:T0=01 in the MC68030 status register (trace on change of flow) when a general
category instruction is initiated, a trace exception is taken for the instruction only when the
coprocessor issues a transfer status register and scanPC primitive with DR=1 during the
execution of that instruction. In this case, it is possible that the coprocessor is still executing
the cpGEN instruction concurrently when the main processor begins execution of the trace
exception handler. A cpSAVE instruction executed during the trace on change of flow
exception handler could thus suspend the execution of a concurrently operating cpGEN
instruction.

Coprocessor Interface Description

MOTOROLA MC68030 USER’S MANUAL 10-71

10.5.2.6 INTERRUPTS. Interrupt processing, discussed in 8.1.9 Interrupt Exceptions, can
occur at any instruction boundary. Interrupts are also serviced during the execution of a
general or conditional category instruction under either of two conditions. If the main
processor reads a null primitive with CA=1 and IA=1, it services any pending interrupts prior
to reading the response CIR. Similarly, if a trace exception is pending during cpGEN
instruction execution and the main processor reads a null primitive with CA=0, IA=1, and
PF=0 (refer to 10.5.2.5 Trace Exceptions), the main processor services pending interrupts
prior to reading the response CIR again.

The MC68030 uses the ten-word mid-instruction stack frame when it services interrupts
during the execution of a general or conditional category coprocessor instruction. Since it
uses this stack frame, the main processor can perform all necessary processing and then
return to read the response CIR. Thus, it can continue the coprocessor instruction during
which the interrupt exception was taken.

The MC68030 also services interrupts if it reads the not ready format word from the save
CIR during a cpSAVE instruction. The MC68030 uses the normal four word pre-instruction
stack frame when it services interrupts after reading the not ready format word. Thus, the
processor can service any pending interrupts and execute an RTE to return and re-initiate
the cpSAVE instruction by reading the save CIR.

10.5.2.7 FORMAT ERRORS . The MC68030 can detect a format error while executing a
cpSAVE or cpRESTORE instruction if the length field of a valid format word is not a multiple
of four bytes in length. If the MC68030 reads a format word with an invalid length field from
the save CIR during the cpSAVE instruction, it aborts the coprocessor instruction by writing
an abort mask (refer to 10.3.2 Control CIR) to the control CIR and initiates format error
exception processing. If the MC68030 reads a format word with an invalid length field from
the effective address specified in the cpRESTORE instruction, the MC68030 writes that
format word to the restore CIR and then reads the coprocessor response from the restore
CIR. The MC68030 then aborts the cpRESTORE instruction by writing an abort mask (refer
to 10.3.2 Control CIR) to the control CIR and initiates format error exception processing.

The MC68030 uses the four-word pre-instruction stack frame and the format error vector
number 14 when it initiates format error exception processing. Thus, if the exception handler
does not modify the stack frame, the main processor attempts to restart the instruction
during which the exception occurred after it executes an RTE to return from the handler.

Coprocessor Interface Description

10-72 MC68030 USER’S MANUAL MOTOROLA

10.5.2.8 ADDRESS AND BUS ERRORS. Coprocessor-instruction-related bus faults can
occur during main processor bus cycles to CPU space to communicate with a coprocessor
or during memory cycles run as part of the coprocessor instruction execution. If a bus error
occurs during the coprocessor interface register access that is used to initiate a coprocessor
instruction, the main processor assumes that the coprocessor is not present and takes an
F-line emulator exception as described in 10.5.2.2 F-Line Emulator Exceptions. That is,
the processor takes an F-line emulator exception when a bus error occurs during the initial
access to a CIR by a coprocessor instruction. If a bus error occurs on any other coprocessor
access or on a memory access made during the execution of a coprocessor instruction, the
main processor performs bus error exception processing as described in 8.1.2 Bus Error
Exception. After the exception handler has corrected the cause of the bus error, the main
processor can return to the point in the coprocessor instruction at which the fault occurred.

An address error occurs if the MC68030 attempts to prefetch an instruction from an odd
address. This can occur if the calculated destination address of a cpBcc or cpDBcc
instruction is odd or if an odd value is transferred to the scanPC with the transfer status
register and the scanPC response primitive. If an address error occurs, the MC68030
performs exception processing for a bus fault as described in 8.1.3 Address Error
Exception.

10.5.3 Coprocessor Reset
Either an external reset signal or a RESET instruction can reset the external devices of a
system. The system designer can design a coprocessor to be reset and initialized by both
reset types or by external reset signals only. To be consistent with the MC68030 design, the
coprocessor should be affected by external reset signals only and not by RESET
instructions, because the coprocessor is an extension to the main processor programming
model and to the internal state of the MC68030.

10.6 COPROCESSOR SUMMARY
Coprocessor instruction formats are presented for reference. Refer to the M68000PM/AD,
M68000 Programmer's Reference Manual, for detailed information on coprocessor
instructions.

Coprocessor Interface Description

MOTOROLA MC68030 USER’S MANUAL 10-73

The M68000 coprocessor response primitive formats are shown in this section. Any
response primitive with bits [13:8]=$00 or $3F causes a protocol violation exception.
Response primitives with bits [13:8]=$0B, $18-$1B, $1F, $28-$2B, and $38-3B currently
cause protocol violation exceptions; they are undefined and reserved for future use by
Motorola.

BUSY

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 PC 1 0 0 1 0 0 0 0 0 0 0 0 0 0

TRANSFER MULTIPLE COPROCESSOR REGISTERS

15 14 13 12 11 10 9 8 7 0

CA PC DR 0 0 0 0 1 LENGTH

TRANSFER STATUS REGISTER AND SCANPC

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CA PC DR 0 0 0 1 SP 0 0 0 0 0 0 0 0

SUPERVISOR CHECK

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 PC 0 0 0 1 0 0 0 0 0 0 0 0 0 0

TAKE ADDRESS AND TRANSFER DATA

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CA PC DR 0 0 1 0 1 LENGTH

TRANSFER MULTIPLE MAIN PROCESSOR REGISTERS

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CA PC DR 0 0 1 1 0 0 0 0 0 0 0 0 0

TRANSFER OPERATION WORD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CA PC 0 0 0 1 1 1 0 0 0 0 0 0 0 0

Coprocessor Interface Description

10-74 MC68030 USER’S MANUAL MOTOROLA

NULL

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CA PC 0 0 1 0 0 IA 0 0 0 0 0 0 PF TF

EVALUATE AND TRANSFER EFFECTIVE ADDRESS

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CA PC 0 0 1 0 1 0 0 0 0 0 0 0 0 0

TRANSFER SINGLE MAIN PROCESSOR REGISTER

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

CA PC DR 0 1 1 0 0 0 0 0 0 D/A REGISTER

TRANSFER MAIN PROCESSOR CONTROL REGISTER

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CA PC DR 0 1 1 0 1 0 0 0 0 0 0 0 0

TRANSFER TO/FROM TOP OF STACK

15 14 13 12 11 10 9 8 7 0

CA PC DR 0 1 1 1 0 LENGTH

TRANSFER FROM INSTRUCTION STREAM

15 14 13 12 11 10 9 8 7 0

CA PC 0 0 1 1 1 1 LENGTH

EVALUATE EFFECTIVE ADDRESS AND TRANSFER DATA

15 14 13 12 11 10 9 8 7 0

CA PC DR 1 0 VALID EA LENGTH

TAKE PRE-INSTRUCTION EXCEPTION

15 14 13 12 11 10 9 8 7 0

0 PC 0 1 1 1 0 0 VECTOR NUMBER

Coprocessor Interface Description

10-75 MC68030 USER’S MANUAL MOTOROLA

TAKE MID-INSTRUCTION EXCEPTION

15 14 13 12 11 10 9 8 7 0

0 PC 0 1 1 1 0 1 VECTOR NUMBER

TAKE POST-INSTRUCTION EXCEPTION

15 14 13 12 11 10 9 8 7 0

0 PC 0 1 1 1 1 0 VECTOR NUMBER

WRITE TO PREVIOUSLY EVALUATED EFFECTIVE ADDRESS

15 14 13 12 11 10 9 8 7 0

CA PC 1 0 0 0 0 0 LENGTH

MOTOROLA

MC68030 USER’S MANUAL

11-1

SECTION 11
INSTRUCTION EXECUTION TIMING

This section describes the instruction execution and operations (table searches, etc.) of the
MC68030 in terms of external clock cycles. It provides accurate execution and operation
timing guidelines but not exact timings for every possible circumstance. This approach is
used since exact execution time for an instruction or operation is highly dependent on
memory speeds and other variables. The timing numbers presented in this section allow the
assembly language programmer or compiler writer to predict actual cache-case and
average no-cache-case timings needed to evaluate the performance of the MC68030.
Additionally, the timings for exception processing, context switching, and interrupt
processing are included so that designers of multi-tasking or real-time systems can predict
task switch overhead, maximum interrupt latency, and similar timing parameters.

In this section, instruction and operation times are shown in clock cycles to eliminate clock
frequency dependencies.

11.1 PERFORMANCE TRADEOFFS

The MC68030 maximizes average performance at the expense of worst case performance.
The time spent executing one instruction can vary from zero to over 100 clocks. Factors
affecting the execution time are the preceding and following instructions, the instruction
stream alignment, residency of operands and instruction words in the caches, residency of
address translations in the address translation cache, and operand alignment.

To increase the average performance of the MC68030, certain tradeoffs were made to
increase best case performance and to decrease the occurrence of worst case behavior. For
example, burst filling increases performance by prefetching data for later accesses, but it
commits the external bus controller and a cache for a longer period.

The MC68030 can overlap data writes with instruction cache reads, data cache reads, and/
or microsequencer execution. Instruction cache reads can be overlapped with data cache
fills and/or microsequencer activity. Similarly, data cache reads can be overlapped with
instruction cache fills and/or microsequencer activity. The execution of an instruction that
only accesses on-chip registers can be overlapped entirely with a concurrent data write
generated by a previous instruction, if prefetches generated by that instruction are resident
in the instruction cache.

Instruction Execution Timing

11-2

MC68030 USER’S MANUAL

MOTOROLA

11.2 RESOURCE SCHEDULING

Some of the variability in instruction execution timings results from the overlap of resource
utilization. The processor can be viewed as consisting of eight independently scheduled
resources. Since very little of the scheduling is directly related to instruction boundaries, it
is impossible to make accurate estimates of the time required to execute a particular
instruction without knowing the complete context within which the instruction is executing.
The position of these resources within the MC68030 is shown in Figure 11-1.

11.2.1 Microsequencer

The microsequencer is either executing microinstructions or awaiting completion of
accesses that are necessary to continue executing microcode. The bus controller is
responsible for all bus activity. The microsequencer controls the bus controller, instruction
execution, and internal processor operations such as calculation of effective addresses and
setting of condition codes. The microsequencer initiates instruction word prefetches and
controls the validation of instruction words in the instruction pipe.

11.2.2 Instruction Pipe

The MC68030 contains a three-word instruction pipe where instruction opcodes are
decoded. As shown in Figure 11-1, instruction words (instruction operation words and all
extension words) enter the pipe at stage B and proceed to stages C and D. An instruction
word is completely decoded when it reaches stage D of the pipe. Each of the pipe stages
has a status bit that reflects whether the word in the stage was loaded with data from a bus
cycle that was terminated abnormally. Stages of the pipe are only filled in response to
specific prefetch requests issued by the microsequencer.

Words are loaded into the instruction pipe from the cache holding register. While the
individual stages of the pipe are only 16 bits wide, the cache holding register is 32 bits wide
and contains the entire long word. This long word is obtained from the instruction cache or
the external bus in response to a prefetch request from the microsequencer. When the
microsequencer requests an even-word (long-word aligned) prefetch, the entire long word
is accessed from the instruction cache or the external bus and loaded into the cache holding
register, and the high-order word is also loaded into stage B of the pipe. The instruction word
for the next sequential prefetch can then be accessed directly from the cache holding
register, and no external bus cycle or instruction cache access is required. The cache
holding register provides instruction words to the pipe, regardless of whether the instruction
cache is enabled or disabled.

Instruction Execution Timing

MOTOROLA

MC68030 USER’S MANUAL

11-3

Prefetch requests are simultaneously submitted to the cache holding register, the instruction
cache, and the bus controller. Thus, even if the instruction cache is disabled, an instruction
prefetch may hit in the cache holding register and cause an external bus cycle to be aborted.

11.2.3 Instruction Cache

The instruction cache services the instruction prefetch portion of the microsequencer. The
prefetch of an instruction that hits in the on-chip instruction cache causes no delay in
instruction execution since no external bus activity is required for the prefetch. The
instruction cache also interacts with the external bus during instruction cache fills following
instruction cache misses.

11.2.4 Data Cache

The data cache services data reads and is updated on data writes. Data operands required
by the execution unit that are accessed from the data cache cause no delay in instruction
execution due to external bus activity for the data fetch. The data cache also interacts with
the external bus during data cache fills following data cache misses.

11.2.5 Bus Controller Resources

Prefetches that miss in the instruction cache cause an external memory cycle to be
performed. Similarly, when data reads miss in the on-chip data cache, an external memory
cycle is required. The time required for either of these bus cycles may be overlapped with
other internal activity.

The bus controller and microsequencer can operate on an instruction concurrently. The bus
controller can perform a read or write while the microsequencer controls an effective
address calculation or sets the condition codes. The microsequencer may also request a
bus cycle that the bus controller cannot perform immediately. In this case, the bus cycle is
queued and the bus controller runs the cycle when the current cycle is complete.

Instruction Execution Timing

11-4

MC68030 USER’S MANUAL

MOTOROLA

Figure 11-1. Block Diagram – Eight Independent Resources

 M
IC

R
O

SE
Q

U
EN

C
ER

 A
N

D
C

O
N

TR
O

L

C
O

N
TR

O
L

ST
O

R
E

IN
ST

R
U

C
TI

O
N

C
AC

H
E

ST
AG

E
B

ST
AG

E
C

ST
AG

E
D

IN
TE

R
N

AL
D

AT
A

BU
S

IN
ST

R
U

C
TI

O
N

 P
IP

E

 IN
ST

R
U

C
TI

O
N

AD
D

R
ES

S
BU

S

AD
D

R
ES

S
SE

C
TI

O
N

PR
O

G
R

AM
C

O
U

N
TE

R
SE

C
TI

O
N

D
AT

A
SE

C
TI

O
N

EX
EC

U
TI

O
N

 U
N

IT

M
IS

AL
IG

N
M

EN
T

M
U

LT
IP

LE
XE

R

SI
ZE

M
U

LT
IP

LE
XE

R
D

AT
A

PA
D

S
D

AT
A

BU
S

W
R

IT
E

PE
N

D
IN

G
BU

FF
ER

PR
EF

ET
C

H
 P

EN
D

IN
G

BU
FF

ER

 M
IC

R
O

BU
S

 C
O

N
TR

O
LL

ER

BU
S

C
O

N
TR

O
LL

ER

BU
S

C
O

N
TR

O
L

SI
G

N
AL

S

AD
D

R
ES

S
BU

S

AD
D

R
ES

S
PA

D
S

AD
D

R
ES

S
BU

S

AD
D

R
ES

S

D
AT

A
C

AC
H

E

D
AT

A
AD

D
R

ES
S

BU
S

C
AC

H
E

H
O

LD
IN

G
R

EG
IS

TE
R

(C
AH

R
)

AC
C

ES
S

C
O

N
TR

O
L

U
N

IT

C
O

N
TR

O
L

LO
G

IC

Instruction Execution Timing

MOTOROLA

MC68030 USER’S MANUAL

11-5

The bus controller consists of the micro bus controller, the instruction fetch pending buffer,
and the write pending buffer. These three resources carry out all writes and reads that miss
in the on-chip caches.

11.2.5.1 INSTRUCTION FETCH PENDING BUFFER.

The instruction prefetch mechanism
includes a single long-word instruction fetch pending buffer. Interlocks are provided to
prevent this buffer from being overwritten by an instruction prefetch request before a
previously requested prefetch is completed.

11.2.5.2 WRITE PENDING BUFFER.

The MC68030 incorporates a single write pending
buffer, allowing the microsequencer to continue execution after the request for a write cycle
proceeds to the bus controller. Interlocks prevent the microsequencer from overwriting this
buffer.

11.2.5.3 MICRO BUS CONTROLLER.

The micro bus controller performs the bus cycles
issued to the bus controller by the rest of the processor. It implements any dynamic bus
sizing required and also controls burst operations.

When prefetching instructions from external memory, the micro bus controller utilizes long-
word read cycles. The processor reads two words, which may load two instructions at once
or two words of a multi-word instruction into the cache holding register (and the instruction
cache if it is enabled and not frozen). A special case occurs when prefetch, that corresponds
to an instruction word at an odd-word boundary, is not found in the cache holding register
(e.g., due to a branch to an odd-word location) with an instruction cache miss. From a 32-
bit memory, the MC68030 reads both the even and odd words associated with the long-word
base address in one bus cycle. From an 8- or 16-bit memory, the processor reads the even
word before the odd word. Both the even and odd word are loaded into the cache holding
register (and the instruction cache if it is enabled and not frozen).

Instruction Execution Timing

11-6

MC68030 USER’S MANUAL

MOTOROLA

11.2.6 Memory Management Unit

The MC68030 includes a memory management unit (MMU) that translates logical
addresses to physical addresses for external accesses when required. The MMU uses an
address translation cache (ATC) to store recently used translations. When the physical
address corresponding to a logical address resides in the ATC, the address translation time
is completely overlapped with on-chip cache accesses and has no effect on instruction
timing.

When the ATC does not contain the translation for a logical address, the processor performs
a table search operation to external memory. The amount of time required for a table search
depends on the structure of the address translation tree and whether a nonresident portion
of the translation tree is required.

The MMU supports demand-paged virtual memory. When a table search terminates with an
exception, indicating that the requested instruction or data is not resident, additional time to
bring the appropriate page into memory is required. The time required is dependent on the
handling routine for the exception.

11.3 INSTRUCTION EXECUTION TIMING CALCULATIONS

The instruction-cache-case timing, overlap, average no-cache-case timing, and actual
instruction-cache-case execution time calculations are discussed in the following
paragraphs.

11.3.1 Instruction-Cache Case

The instruction-cache-case (CC) time for an instruction is the total number of clock periods
required to execute the instruction, provided all the corresponding instruction prefetches are
resident in the on-chip instruction cache. All bus cycles are assumed to take two clock
periods. The instruction-cache-case time does not assume any overlap with other
instructions nor does it take into account hits in the on-chip data cache. The overall
instruction-cache-case time for some instructions is divided into the instruction-cache-case
time for the required effective address calculation (CCea) and the instruction-cache-case
time for the remainder of the operation (CCop). The instruction-cache-case times for all
instructions and addressing modes are listed in the tables of

11.6 Instruction Timing
Tables

.

Instruction Execution Timing

MOTOROLA

MC68030 USER’S MANUAL

11-7

11.3.2 Overlap and Best Case

Overlap is the time, measured in clock periods, that an instruction executes concurrently
with the previous instruction. In Figure 11-2, a portion of instructions A and B execute
simultaneously. The overlap time decreases the overall execution time for the two
instructions. Similarly, an overlap period between instructions B and C reduces the overall
execution time of these two instructions.

Each instruction contributes to the total overlap time. As shown in Figure 11-2, a portion of
time at the beginning of the execution of instruction B can overlap the end of the execution
time of instruction A. This time period is called the head of instruction B. The portion of time
at the end of instruction A that can overlap the beginning of instruction B is called the tail of
instruction A. The total overlap time between instructions A and B consists of the lesser of
the tail of instruction A or the head of instruction B. Refer to the instruction timing tables in

11.6 Instruction Timing Tables

for head and tail times.

Figure 11-3 shows the timing relationship of the factors that comprise the instruction-cache
case time for either an effective address calculation (CCea) or for an operation (CCop). In
Figure 11-12, the best case execution time for instruction B occurs when the instruction-
cache-case times for instruction B and instruction A overlap so that the head of instruction
B is completely overlapped with the tail of instruction A.

Figure 11-2. Simultaneous Instruction Execution

INSTRUCTION A

INSTRUCTION B

INSTRUCTION C

OVERLAP OVERLAP

Instruction Execution Timing

11-8

MC68030 USER’S MANUAL

MOTOROLA

The nature of the instruction overlap and the fact that the heads of some instructions equal
the total instruction-cache-case time for those instructions makes a zero net execution time
possible. The execution time of an instruction is completely absorbed by overlap with the
previous instruction.

11.3.3 Average No-Cache Case

The average no-cache-case (NCC) time for an instruction takes into account the time
required for the microcode to execute plus the time required for all external bus activity. This
time is calculated assuming both caches miss and the associated instruction prefetches
require one external bus cycle per two instruction prefetches. Refer to

11.2.2 Instruction
Pipe

. The average no-cache-case time also assumes no overlap.

All bus cycles are
assumed to take two clock periods

. Average no-cache-case times for instructions and
effective address calculations are listed in

11.6 Instruction Timing Tables.

Because the
no-cache-case times assume no overlap, the head and tail values listed in these tables do
not apply to the no-cache-case values

.

Since the actual no-cache-case time depends on the alignment of prefetches associated
with an instruction, both alignment cases were considered, and the value shown in the table
is the average of the odd-word-aligned case and the even-word-aligned case (rounded up
to an integral number of clocks). Similarly, the number of prefetch bus cycles is the average
of these two cases rounded up to an integral number of bus cycles.

Figure 11-3. Derivation of Instruction Overlap Time

CACHE CASE

BEST CASE

HEAD

MICROCODE TIME

TAIL

READ/WRITE BUS
TIME OR SYNC WRITE BUS TIME

Instruction Execution Timing

MOTOROLA

MC68030 USER’S MANUAL

11-9

The effect of instruction alignment on timing is illustrated by the following example. The
assumptions referred to in

11.6 Instruction Timing Tables

 apply. Both the data cache and
instruction cache miss on all accesses.

Instruction

1.MOVE.L (d

16

,An,Dn),Dn
2.CMPI.W #<data>.W,(d

16

,An)

The instruction stream is positioned with even alignment in 32-bit memory as:

Figure 11-4 shows processor activity for even alignment of the given instruction stream. It
shows the activity of the external bus, the bus controller, and the sequencer.

Figure 11-5 shows processor activity for odd alignment. The instruction stream is positioned
in 32-bit memory as:

Address n MOVE EA Ext
n+4 d

16

CMPI

n+8 #(data. W) d

16

n+12

Figure 11-4. Processor Activity – Even Alignment

Address n ... MOVE
n+4 EA Ext d

16

n+8 CMPI #(data.W)
n+12 d

16

...

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

CLOCK

BUS
ACTIVITY

PREFETCH READ PREFETCH

BUS
CONTROLLER

SEQUENCER

INSTRUCTION
EXECUTION TIME

CLOCK
COUNT

LEGEND:

2) #(data).W,(d ,An)

READ PREFETCH

IDLE PREFETCH
n + 8

READ FROM
d ,An,Dn16

CALCULATE AND FETCH
SOURCE EA
FOR MOVE

MOVE.L (d ,An,Dn),Dn16

IDLE READ FROM
(d ,An)16

CALCULATE AND FETCH
SOURCE EA

FOR CMPI

CMPI.W #(data).W,(d ,An)16

8

IDLEPREFETCH
n + 16

IDLE
PERFORM

CMPI

1) MOVE.L (d ,An,Dn),Dn16

16

PREFETCH
n + 12

PERFORM
MOVE

8

Instruction Execution Timing

11-10

MC68030 USER’S MANUAL

MOTOROLA

Comparing the two alignments, the execution time of the MOVE instruction is eight clocks
for even alignment and 10 clocks for odd alignment, an average of nine clocks. Referring to
the table in

11.6.6 MOVE Instruction

 and the table in

11.6.1 Fetch Effective Address
(fea)

, the average no-cache-case time is 2+7 = 9 clocks. A similar calculation can be made
of the CMPI instruction, which has an average no-cache-case time of seven clocks.

The average no-cache-case timing rather than the maximum no-cache-case timing gives a
closer approximation of the actual timing of an instruction stream in many cases. The total
execution time of the two instructions in the previous example is 16 clocks for both even and
odd alignment. Adding the average no-cache-case timing of the given instructions also gives
16 clocks (9+7 = 16 clocks). It should be noted again that the no-cache-case time assumes
no overlap. Therefore, the actual execution time of an instruction stream may be less than
that given by adding the no-cache-case times. To factor in the effect of wait states for the
no-cache case, refer to

11.5 Effect of Wait States

.

11.3.4 Actual Instruction-Cache-Case Execution Time Calculations

The overall execution time for an instruction may depend on the overlap with the previous
and following instructions. Therefore, to calculate instruction execution time estimations, the
entire code sequence to be evaluated must be analyzed as a whole. To derive the actual
instruction-cache-case execution times for an instruction sequence (under the assumptions
listed in

11.6 Instruction Timing Tables)

, the instruction-cache-case times listed in the
tables must be used, and the proper overlap must be subtracted for the entire sequence.
The formula for this calculation is:

CC

1

+[CC

2

–min(H

2

,T

1

)]+[(CC

3

–min(H

3

,T

2

)]+. . . (11-1)

where:

Figure 11-5. Processor Activity – Odd Alignment

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

CLOCK

BUS
ACTIVITY

READ PREFETCH

BUS
CONTROLLER

SEQUENCER

INSTRUCTION
EXECUTION TIME

CLOCK
COUNT

LEGEND:

2) #(data).W,(d ,An)

PREFETCHREADPREFETCH

IDLE IDLE

IDLE

READ FROM
d ,An,Dn16

CALCULATE AND FETCH
SOURCE EA
FOR MOVE

MOVE.L (d ,An,Dn),Dn16

READ FROM
(d ,An)16

CALCULATE AND FETCH
SOURCE EA

FOR CMPI

CMPI.W #(data).W,(d ,An)16

10

PREFETCH
n + 16

PREFETCH
n + 12

PERFORM
CMPI

1) MOVE.L (d ,An,Dn),Dn16

16

PREFETCH
n + 8

PERFORM
MOVE

6

Instruction Execution Timing

MOTOROLA

MC68030 USER’S MANUAL

11-11

CC

n

 is the instruction-cache-case time for an instruction,

T

n

 is the tail time for an instruction,

H

n

 is the head time for an instruction, and

min(a,b) is the minimum of parameters a and b.

The instruction-cache-case time for most instructions is composed of the instruction-cache-
case time for the effective address calculation (CCea) overlapped with the instruction-
cache-case time for the operation (CCop). The more specific formula is:

CCea

1

+[CCop

1

–min(Hop

1

,Tea

1

)]+[CCea

2

–min(Hea

2

,Top

1

)]+
[CCop

2

–min(Hop

2

,Tea

2

)]+[CCea

3

–min(Hea

3,

Top

2

)]+. . . (11-2)

where:

CCea

n

 is the effective address time for the instruction-cache case,

CCop

n

 is the instruction-cache-case time for the operation portion of an instruction,

Tea

n

 is the tail time for the effective address of an instruction,

Hop

n

 is the head time for the operation portion of an instruction,

Top

n is the tail time for the operation portion of an instruction,

Hean is the head time for the effective address of an instruction, and

min(a,b) is the minimum of parameters a and b.

Instruction Execution Timing

11-12 MC68030 USER’S MANUAL MOTOROLA

The instructions that require the instruction-cache case, head, and tail of an effective
address (CCea, Hea, and Tea) to be overlapped with CCop, Hop, and Top are footnoted in
11.6 Instruction Timing Tables.

The actual instruction-cache-case execution time for a stream of instructions can be
computed using Equation (11-1) or the general Equation (11-2). Equation (11-1) is used
unless the instruction-cache case, head, and tail of an effective address are required.

An example using a series of instructions that require Equation (11-1) to calculate the
instruction-cache-case execution time follows. The assumptions referred to in 11.6
Instruction Timing Tables apply.

Instruction

1. ADD.L A1,D1
2. SUBA.L D1,A2

Referring to the timing table in 11.6.8 Arithmetical/Logical Instructions, the head, tail, and
instruction-cache-case (CC) times for ADD.L A1,D1 and SUBA.L D1,A2 are found. There is
no footnote directing the user to add an effective address time for either instruction. Since
both of the instructions use register operands only, there is no need to add effective address
calculation times. Therefore, the general Equation (11-1) can be used for both.

Head Tail CC

1.ADD.L A1,D1 2 0 2
2.SUBA.L D1,A2 4 0 4

NOTE

The underlined numbers show the typical pattern for the com-
parison of head and tail in the following equation.

The following computations use Equation (11-1):

Execution Time = CC1+[CC2-min(H2,T1)]
 = 2+[4-min(4,0)]
 = 2+[4-0]
 = 6 clocks

Instruction Execution Timing

MOTOROLA MC68030 USER’S MANUAL 11-13

Instructions that require the addition of an effective address calculation time from an
appropriate table use the general Equation (11-2) to calculate the actual CC time. The
CCea, Hea, and Tea values must be extracted from the appropriate effective address table
(either fetch effective address, fetch immediate effective address, calculate effective
address, calculate immediate effective address, or jump effective address) as indicated and
included in Equation (11-2). All of the following instructions (except the last) require general
Equation (11-2). The last instruction uses Equation (11-1).

Instruction

 1. ADD.L -(A1),D1
 2. AND.L D1,([A2])
 3. MOVE.L (A6),(8,A1)
 4. TAS (A3)+
 5. NEG D3

Using the appropriate operation and effective address tables from 11.6 Instruction Timing
Tables:

Head Tail CC

1. ADD.L -(A1),D1
Fetch Effective Address (fea) -(An) 2 2 4
ADD EA,Dn 0 0 2

2. AND.L D1,(A2)
fea ([B]) 4 0 10
AND Dn,EA 0 1 3

3. MOVE.L (A6),(8,A1)
fea (An) 1 1 3
MOVE Source,(d 16,An) 2 0 4

4. TAS (A3)+
Calculate Effective Address (cea) (An)+ 0 0 2
TAS Mem 3 0 12

5. NEG D3 2 0 2

The following calculations use Equations (11-1) and (11-2):

ExecutionTime = CCea1+[CCop1-min(Hop1,Tea1)]+[CCea2-min(Hea2,Top1)]+
[CCop2-min(Hop2,Tea2)]+[CCea3-min(Hea3,Top2)]+
[CCop3-min(Hop3,Tea3)]+[CCea4-min(Hop4,Top3)]+
[CCop4-min(Hop4,Top3)]+[CCop5-min(Hop5,Top4)]

 = 4+[2-min(0,2)]+[10-min(4,0)]+[3-min(0,0)]+[3-min(1,1)]+
 = [4-min(2,1)]+[2-min(0,0)]+[12-min(3,0)]+[2-min(2,0)]
 = 4+2+10+3+2+3+2+12+2
 = 40 clock periods

Instruction Execution Timing

11-14 MC68030 USER’S MANUAL MOTOROLA

Notice that the last instruction did not require the general Equation (11-2) since there were
no effective address (ea) additions. Therefore, Equation (11-1) is used:

CCop5–min(Hop5,Top4)

When using the fetch immediate effective address (fiea) or the calculate immediate effective
address (ciea) tables, the size of the data is significant in the timing calculations. For each
effective address, a line is listed for word data, #<data>.W, and for long data, #<data>.L.

The total head of some effective address types extends through the effective address
calculation and includes the head of the operation. These effective address calculations are
marked in the head column as follows:

X+op head

where:

X is the head of the effective address alone.

An example using the fiea table and the X+op head notation is:

Instruction

 EORI.W #$400,-(A1)
 ADDI.L #$6000FF,D1

Head Tail CC

1. EORI.W #$400,-(A1)
fiea #<data>.W,-(An) 2 2 4
EORI #<data>,Mem

2. ADDI.L #$6000FF,D1
fiea #<data>.L,D1 4+op head 0 4

6 0 4
ADDI #<data>,Dn 2(op head) 0 2

The following calculations use the general Equation (11-2):

Execution Time: = CCea1+[CCop1-min(Hop1,Tea1]+[CCea2- min(Hea2,Top1)]+
[CCop2-min(Hop2,Tea2)]

 = 4+[3-min(0,2)]+[4-min(6,1)]+[2-min(2,0)]
 = 4+3+3+2
 = 2 clock periods

Instruction Execution Timing

MOTOROLA MC68030 USER’S MANUAL 11-15

Note that for the head of fiea #<data>.L,D1, 4+op head, the resulting head of 6 is larger than
the instruction-cache-case time of the fetch. A negative number for the execution time of that
portion could result (e.g., 4 –min(6,6) = –2). This result would produce the correct execution
time since the fetch was completely overlapped and the operation was partially overlapped
by the same tail. No changes in the calculation for the operation execution time are required.

Many two-word instructions (e.g., MULU.L, DIV.L, BFSET, etc.) include the fetch immediate
effective address (fiea) time or the calculate immediate effective address (ciea) time in the
execution time calculation. The timing for immediate data of word length (#<data>.W) is
used for these calculations. If the instruction has a source and a destination, the source EA
is used for the table lookup. If the instruction is single operand, the effective address of that
operand is used.

The following example includes multi-word instructions that refer to the fetch immediate
effective address and calculate immediate effective address tables in 11.6 Instruction
Timing Tables.

Instruction

 MULU.L (D7),D1:D2
 BFCLR $6000{0:8}
 DIVS.L #$10000,D3:D4

Head Tail CC

1. MULU.L (D7),D1:D2
fiea #<data>.W,Dn 2+op head 0 2

4 0 2
MUL.L EA, Dn 2(op head) 0 44

2. BFCLR $6000{0:8}
fiea #<data>.W,$XXX.W 4 2 6
BFCLR Mem(<5 bytes) 6 0 14

3. DIVS.L #$10000,D3:D4
fiea #<data>.W,#<data>.L 6+op head 0 6

6 0 6
DIVS.L EA,Dn 0(op head) 0 90

Instruction Execution Timing

11-16 MC68030 USER’S MANUAL MOTOROLA

Use the general Equation (11-2) to compute:

Execution Time: = CCea1+[CCop1-min(Hop1,Tea1)]+[CCea2-min(Hea2,Top1)]+
[CCop2-min(Hop2,Tea2)]+[CCea3-min(Hea3,Top2)]+
[CCop3- min(Hop3,Tea3)]

 = 2+[44-min(2,0)]+[6-min(4,0)]+[14-min(6,2)]+[6 -min(6,0)]+
[90 -min(0,0)]

 = 2+44+6+12+6+90
 = 60 clock periods

NOTE

This CC time is a maximum since the times given for the MU-
LU.L and DIVS.L are maximums.

11.4 EFFECT OF DATA CACHE

When the data accesses required by an instruction are in the data cache, reading these
operands requires no bus cycles, and the execution time for the instruction may be
minimized. Write accesses, however, always require bus cycles because the data cache is
a write through cache.

The effect of the data cache on operand read accesses can be factored into the actual
instruction execution time as follows.

When a data cache hit occurs for the data fetch corresponding to either the fetch effective
address table or the fetch immediate effective address table in 11.6 Instruction Timing
Tables, the following rules apply:

1a. if Tailt = 0: No change in timing.

1b. f Tailt = 1: Tail = Tailt–1
CC = CCt–1

1c. f Tailt>1: Tail = Tailt–(Tailt–1) = 1
CC = CCt–(Tailt–1)

where:

Tailt and CCt are the values listed in the tables.

2. If the EA mode is memory indirect (two data reads), the tail and CC time are calculated
as for one data read.

Instruction Execution Timing

MOTOROLA MC68030 USER’S MANUAL 11-17

NOTE

Data cache hits cannot easily be accounted for in instruction and
operation timings that include an operand fetch in the CCop
(e.g., BFFFO and CHK2). The effect of a data cache hit on such
CCop's has been ignored for computational purposes.

RMC cycles (e.g., TAS and CAS) are forced to miss on data
cache reads. Therefore, a data cache hit has no effect on these
instructions.

The following example assumes data cache hits. The lines that are corrected for data cache
hits are printed in boldface type. These lines are used to calculate the instruction-cache-
case execution time. References are to the preceding rules.

Instruction

1. ADD.L -(A1),D1
2. AND.L D1,([A2])
3. MOVE.L (A6),(8,A1)
4. TAS (A3)

Head Tail CC

1. ADD.L -(A1),D1
Fetch Effective Address
fea -(An) 2 2-1 4-1(1/0/0)
*1c 2 1 3(1/0/0)
*ADD EA,Dn 0 0 2(0/0/1)

2. AND.L D1,([A2])
*1a & 2 fea ([B]) 4 0 10(2/0/0)
*AND Dn,EA 0 1 3(0/0/1)

3. MOVE.L (A6),(8,A1)
 fea (An) 1 1-1 3–1(1/0/0)
*1b 1 0 2(1/0/0)
*MOVE Source, (d16,An) 2 0 4(0/0/1)

4.TAS (A3)+
*Cea (An)+ 0 0 2(0/0/0)
*TAS Mem 0 0 12(1/0/1)

*Corrected for data cache hits.

NOTE

It is helpful to include the number of operand reads and writes
along with the number of instruction accesses in the CC column
for computing the effect of data cache hits on execution time.

Instruction Execution Timing

11-18 MC68030 USER’S MANUAL MOTOROLA

The following computations use the general Equation (11-2):

Execution Time = CCea1+[CCop1-min(Hop1,Tea1)]+[CCea2-
min(Hea2,Top1)]+[CCop2-min(Hop2,Tea2)[+]CCea3-
min(Hea3,Top2)]+[CCop3-min(Hop3,Tea3)]+[CCea4-
min(Hea4,Top3)]+[CCop4-min(Hop4,Tea4)]

 = 3+[2-min(0,1)]+[10-min(4,0)]+[3-min(0,0)]+[2-min(1,1)]+
[4 -min(2,0)]+[2-min(0,0)[+]12-min(0,0)]

 = 3+2+10+3+1+4+2+12
 = 37 clock periods

11.5 EFFECT OF WAIT STATES

The constraints of a system design may require the insertion of wait states in memory
cycles. When the bus or the memory device requires many wait states, instruction execution
time is increased. However, one or two wait states may have little effect on instruction
timing. Often the only effect of one or more wait states is to reduce bus idle time.

The effect of wait states on data accesses may be accounted for in the instruction-cache-
case timings.

To add the effect of wait states on data accesses:

1a. For nonmemory indirect effective address timings that include an operand read, add
the number of wait states (in clocks) to the tail and instruction-cache-case (CC)
times. The head is not affected.

1b. For memory indirect effective address timings that use the calculate <ea> tables and
have only one data read (for the address fetch), add the number of wait states to the
CC time only. The head and tail are not affected.

1c. For memory indirect effective address timings (fetch <ea>) that have two data reads
(for the address fetch), add the number of wait states for two reads to the CC time.
Add the number of wait states for one data read to the tail. The head is not affected.

Instruction Execution Timing

MOTOROLA MC68030 USER’S MANUAL 11-19

2a. For operation timings that include a data read (e.g., BFFF0 and TAS), add the num-
ber of wait states to the CC time only. Neither the head nor the tail are affected.

NOTE

The CC timing and tail of the MOVEM instruction are special
cases for both data reads and writes. Equations for both the CC
timing and the tail as a function of wait states are footnoted in the
table in 11.6.7 Special-Purpose Move Instruction.

2b. If the operation has more than one data read, add the total amount of wait states for
all reads to the CC time. Neither the head nor the tail are affected. Refer to preceding
note.

3a. For operation timings that include a data write, the number of wait states is added
to the tail and the CC time. The head is not affected. Refer to preceding note.

3b. If there is more than one write in the operation, the tail is only increased by the wait
states for one write. The CC timing is increased by the total amount of wait states for
all writes. Refer to preceding note.

The following example calculates the instruction-cache-case execution time for the specified
instruction stream with two wait states (four-clock reads and writes). The lines that are
corrected for wait states are printed in boldface type and are used to calculate the instruction
execution time. References are to the preceding rules.

Instruction

1. MOVE.L ($800,A2,D3),(A5,D2)
2. ADD.L D1,([$30,A4])
3. BFCLR ($20,A5){1:5} - (<5 bytes)
4. BFTST ($10,A3,D3){31:31} - (5 bytes)
5. MOVEM ([A1,D1]),A1-A4 - 4 registers

Instruction Execution Timing

11-20 MC68030 USER’S MANUAL MOTOROLA

Wait States = 2

Head Tail CC

1. MOVE.L ($800,A2,D3),(A5,D2)
fea (d16,An,Xn) 4 0+2 6+2(1/0/0)
*1a 4 2 8(1/0/0)
MOVE Source,(B) 4 0+2 8+2(0/0/1)
*3a 4 2 10(0/0/1)

2. ADD.L D1,([$30,A4])
fea ([d16,B]) 4 0+2 12+4(2/0/0)
*1c 4 2 16(2/0/0)
ADD Dn,EA 0 1+2 3+2(0/0/1)
*3a 0 3 5(0/0/1)

3. BFCLR ($20,A5){1:5}
*ciea #<data>.W,(d16,An)
Single EA Format 10 0 4(0/0/0)
BFCLR Mem (< 5 bytes) 6 0+2 14+4(1/0/1)
*2a & 3a 6 2 18(1/0/1)

4. BFTST ($10,A3,D3){31:31}
*ciea (d16,An,Xn) 14 0 8(0/0/0)
BFTST Mem (5 bytes) 6 0 14+4(2/0/0)
*2b 6 0 18(2/0/0)

5. MOVEM ([A1,D1]),A1-A4
ciea ([B]) 6 0 12+2(1/0/0)
*1b 6 0 14(1/0/0)
MOVEM EA,RL 2 0 24+0(4/0/0)
*2a & 2b 2 0 24(4/0/0)

*Corrected for wait states.

NOTE

It is helpful to include the number of operand read and writes
along with the number of instruction accesses in the CC column
for computing the effect of wait states on execution time.

Instruction Execution Timing

MOTOROLA MC68030 USER’S MANUAL 11-21

Using the general Equation (11-2), calculate as follows:

Execution Time = CCea1+[CCop1-min(Hop1,Tea1)]+[CCea2-min(Hea2,Top1)]+
[CCop2-min(Hop2,Tea2)]+[CCea3-min(Hea3,Top2)]+
[CCop3-min(Hop3,Tea3)]+[CCea4-min(Hea4,Top3)]+
[CCop4-min(Hop4,Tea4)]+[CCea5-min(Hea5,Top4)]+
[CCop5-min(Hop5,Tea5)]

 = 8+[10-min(4,2)]+[16-min(4,2)]+
[5-min(0,2)]+[4-min(10,3)]+[18-min(6,0)]+[8-min(14,2)]+
[18-min(6,0)]+[14-min(6,0)]+[24-min(2,0)

 = 8+8+14+5+1+18;+6+18+14+24
 = 116 clock periods

The next example is the data cache hit example from 11.4 Effect of Data Cache with two
wait states per cycle (four-clock read/write). Hits in the data cache and instruction cache are
assumed. Three lines are shown for each timing. The first is the timing from the appropriate
table. The second is the timing adjusted for a data cache hit. The third adds wait states only
to write operations, since the read operations hit in the cache and cause no delay. The third
line for each timing is used to calculate the instruction cache execution time; it is shown in
boldface type.

Instruction

1. ADD.L -(A1),D1
2. AND.L D1,([A2])
3. MOVE.L (A6),(8,A1)
4. TAS (A3)+

Instruction Execution Timing

11-22 MC68030 USER’S MANUAL MOTOROLA

Head Tail CC

1. ADD.L -(A1),D1
fea -(An) 2 2 4(1/0/0)
* 2 1 3(1/0/0)
** 2 1 3(1/0/0)

ADD.L EA,Dn 0 0 2(0/1/0)
* 0 0 2(0/1/0)
** 0 0 2(0/1/0)

2. AND.L D1,([A1])
fea ([B]) 4 0 10(1/0/0)
* 4 0 10(1/0/0)
*** 4 0 12(1/0/0)

AND Dn,EA 0 1 3(0/0/1)
* 0 1 3(0/0/1)
** 0 3 5(0/0/1)

3. MOVE.L (A6),(8,A1)
fea (An) 1 1 3(1/0/0)
* 1 0 2(1/0/0)
** 1 0 2(1/0/0)

MOVE Source,(d16,An) 2 0 4(0/0/1)
* 2 0 4(0/0/1)
** 2 2 6(0/0/1)

4. TAS (A3)+
Cea (An) 0 0 2(0/0/0)
* 0 0 2(0/0/0)
** 0 0 2(0/0/0)

TAS Mem 3 0 12(1/0/1)
* 3 0 12(1/0/1)
** 3 0 14(1/0/1)

NOTES:
 *Corrected for data cache hits.
 **Corrected for wait states also (only on data writes).
***No data cache hit assumed for address fetch.

Instruction Execution Timing

MOTOROLA MC68030 USER’S MANUAL 11-23

Using the general Equation (11-2), calculate as follows:

Execution Time = CCea1+[CCop1-min(Hea1,Top1)]+[CCea2-min(Hea2,Top1)]+
[CCop2-min(Hop2,Tea2)]+[CCea3-min(Hea3,Top2)]+
[CCop3-min(Hop3,Tea3)]+[CCea4-min(Hea4,Top3)]+
[CCop4-min(Hop4,Tea4)]

 = 3+[2-min(0,1)]m+[12-min(4,0)]+
[5-min(0,0)]+[2-min(1,3)]+
[6-min(2,0)]+[2-min(0,2)]+
[14-min(3,0)

 = 3+2+12+5+1+6+2+14
 = 45 clock periods

A similar analysis can be constructed for the average no-cache case. Since the average no-
cache-case time assumes two clock periods per bus cycle (i.e., no wait states), the timing
given in the tables does not apply directly to systems with wait states. To approximate the
average no-cache-case time for an instruction or effective address with W wait states, use
the following formula:

NCC = NCCt+(# of data reads and writes)•W+
(max. # of instruction accesses)•W

where:

NCCt is the no-cache-case timing value from the appropriate table.

The number of data reads, data writes, and maximum instruction accesses are found in
the appropriate table.

The average no-cache-case timing obtained from this formula is equal to or greater than the
actual no-cache-case timing since the number of instruction accesses used is a maximum
(the values in the tables are always rounded up) and no overlap is assumed.

Instruction Execution Timing

11-24 MC68030 USER’S MANUAL MOTOROLA

11.6 INSTRUCTION TIMING TABLES

All the following assumptions apply to the times shown in the tables in this section:

• All memory accesses occur with two-clock bus cycles and no wait states.

• All operands in memory, including the system stack, are long-word aligned.

• A 32-bit bus is used for communications between the MC68030 and system memory.

• The data cache is not enabled.

• No exceptions occur (except as specified).

• Required address translations for all external bus cycles are resident in the address
translation cache.

Four values are listed for each instruction and effective address:

1. Head,

2. Tail,

3. Instruction-cache case (CC) when the instruction is in the cache but has no overlap,
and

4. Average no-cache case (NCC) when the instruction is not in the cache or the cache
is disabled and there is no instruction overlap.

The only instances for which the size of the operand has any effect are the instructions with
immediate operands and the ADDA and SUBA instructions. Unless specified otherwise,
immediate byte and word operands have identical execution times.

Instruction Execution Timing

MOTOROLA MC68030 USER’S MANUAL 11-25

The instruction-cache-case and average no-cache-case columns of the instruction timing
tables contain four sets of numbers, three of which are enclosed in parentheses. The outer
number is the total number of clocks for the given cache case and instruction. The first
number inside the parentheses is the number of operand read cycles performed by the
instruction. The second value inside the parentheses is the maximum number of instruction
bus cycles performed by the instruction, including all prefetches to keep the instruction pipe
filled. Because the second value is the average of the odd-word-aligned case and the even-
word-aligned case (rounded up to an integral number of bus cycles), it is always greater than
or equal to the actual number of bus cycles (one bus cycle per two instruction prefetches).
The third value within the parentheses is the number of write cycles performed by the
instruction. One example from the instruction timing table is:

The total numbers of bus-activity clocks and internal clocks (not overlapped by bus activity)
of the instruction in this example are derived as follows:

(2 Reads•2 Clocks/Read)+l(3 Instruction Accesses•2 Clocks/Access)+
(0 Writes•2 Clocks/Write) = 10 Clocks of Bus Activity

21 Total Clocks–10 Bus Activity Clocks = 11 Internal Clocks

The example used here is taken from a no-cache-case ‘fetch effective address' time. The
addressing mode is ([d32,B],I,d32). The same addressing mode under the instruction-
cache-case execution time entry is 18(2/0/0). For the instruction-cache-case execution time,
no instruction accesses are required because the cache is enabled and the sequencer does
not have to access external memory for the instruction words.

The first five timing tables deal exclusively with fetching and calculating effective addresses
and immediate operands. The remaining tables are instruction and operation timings. Some
instructions use addressing modes that are not included in the corresponding instruction
timings. These cases refer to footnotes that indicate the additional table needed for the
timing calculation. All read and write accesses are assumed to take two clock periods.

11.6.1 Fetch Effective Address (fea)

The fetch effective address table indicates the number of clock periods needed for the
processor to calculate and fetch the specified effective address. The effective addresses are
divided by their formats (refer to 2.5 Effective Address Encoding Summary). For
instruction-cache case and for no-cache case, the total number of clock cycles is outside the
parentheses. The number of read, prefetch, and write cycles is given inside the parentheses
as (r/p/w). The read, prefetch, and write cycles are included in the total clock cycle number.

TOTAL NUMBER OF CLOCKS

NUMBER OF READ CYCLES

MAXIMUM NUMBER OF INSTRUCTION ACCESS CYCLES

NUMBER OF WRITE CYCLES

21 (2 3 0)/ /

Instruction Execution Timing

11-26 MC68030 USER’S MANUAL MOTOROLA

All timing data assumes two-clock reads and writes.

Address Mode Head Tail I-Cache Case No-Cache Case

SINGLE EFFECTIVE ADDRESS INSTRUCTION FORMAT

% Dn – – 0(0/0/0) 0(0/0/0)
% An – – 0(0/0/0) 0(0/0/0)

(An) 1 1 3(1/0/0) 3(1/0/0)
(An)+ 0 1 3(1/0/0) 3(1/0/0)
–(An) 2 2 4(1/0/0) 4(1/0/0)
(d16,An) or (d16,PC) 2 2 4(1/0/0) 4(1/1/0)

(xxx).W 2 2 4(1/0/0) 4(1/1/0)
(xxx).L 1 0 4(1/0/0) 5(1/1/0)
#〈data〉.B 2 0 2(0/0/0) 2(0/1/0)
#〈data〉.W 2 0 2(0/0/0) 2(0/1/0)
#〈data〉.L 4 0 4(0/0/0) 4(0/1/0)

BRIEF FORMAT EXTENSION WORD

(d8,An,Xn) or (d8,PC,Xn) 4 2 6(1/0/0) 6(1/1/0)

Instruction Execution Timing

MOTOROLA MC68030 USER’S MANUAL 11-27

11.6.1 Fetch Effective Address (fea) (Continued)

B = Base Address; 0, An, PC, Xn, An+Xn, PC+Xn. Form does not affect timing.
I = Index; 0, Xn
% = No clock cycles incurred by effective address fetch.
NOTE: Xn cannot be in B and I at the same time. Scaling and size of Xn do not affect timing.

Address Mode Head Tail I-Cache Case No-Cache Case

FULL FORMAT EXTENSION WORD(S)

(d16,An) or (d16,PC) 2 0 6(1/0/0) 7(1/1/0)

(d16,An,Xn) or (d16,PC,Xn) 4 0 6(1/0/0) 7(1/1/0)

([d16,An]) or ([d16,PC]) 2 0 10(2/0/0) 10(2/1/0)

([d16,An],Xn) or ([d16,PC],Xn) 2 0 10(2/0/0) 10(2/1/0)

[d16,An],d16) or ([d16,PC],d16) 2 0 12(2/0/0) 13(2/2/0)

([d16,An],Xn,d16) or ([d16,PC],Xn,d16) 2 0 12(2/0/0) 13(2/2/0)

([d16,An],d32) or ([d16,PC],d32) 2 0 12(2/0/0) 14(2/2/0)

([d16,An],Xn,d32) or ([d16,PC],Xn,d32) 2 0 12(2/0/0) 14(2/2/0)

(B) 4 0 6(1/0/0) 7(1/1/0)
(d16,B) 4 0 8(1/0/0) 10(1/1/0)

(d32,B) 4 0 12(1/0/0) 13(1/2/0)

([B]) 4 0 10(2/0/0) 10(2/1/0)
([B],I) 4 0 10(2/0/0) 10(2/1/0)
([B],d16) 4 0 12(2/0/0) 13(2/1/0)

([B],I,d16) 4 0 12(2/0/0) 13(2/1/0)

([B],d32) 4 0 12(2/0/0) 14(2/2/0)

([B],I,d32) 4 0 12(2/0/0) 14(2/2/0)

([d16,B]) 4 0 12(2/0/0) 13(2/1/0)

([d16,B],I) 4 0 12(2/0/0) 13(2/1/0)

([d16,B],d16) 4 0 14(2/0/0) 16(2/2/0)

([d16B],I,d16) 4 0 14(2/0/0) 16(2/2/0)

([d16,B],d32) 4 0 14(2/0/0) 17(2/2/0)

([d16,B\,I,d32) 4 0 14(2/0/0) 17(2/2/0)

([d32,B]) 4 0 16(2/0/0) 17(2/2/0)

([d32,B],I) 4 0 16(2/0/0) 17(2/2/0)

([d32,B],d16) 4 0 18(2/0/0) 20(2/2/0)

([d32,B],I,d16) 4 0 18(2/0/0) 20(2/2/0)

([d32,B],d32) 4 0 18(2/0/0) 21(2/3/0)

([d32,B],I,d32) 4 0 18(2/0/0) 21(2/3/0)

Instruction Execution Timing

11-28 MC68030 USER’S MANUAL MOTOROLA

11.6.2 Fetch Immediate Effective Address (fiea)

The fetch immediate effective address table indicates the number of clock periods needed
for the processor to fetch the immediate source operand and to calculate and fetch the
specified destination operand. In the case of two-word instructions, this table indicates the
number of clock periods needed for the processor to fetch the second word of the instruction
and to calculate and fetch the specified source operand or single operand. The effective
addresses are divided by their formats (refer to 2.5 Effective Address Encoding
Summary). For instruction-cache case and for no-cache case, the total number of clock
cycles is outside the parentheses. The number of read, prefetch, and write cycles is given
inside the parentheses as (r/p/w). The read, prefetch, and write cycles are included in the
total clock cycle number.

All timing data assumes two-clock reads and writes.

Address Mode Head Tail I-Cache Case No-Cache Case

SINGLE EFFECTIVE ADDRESS INSTRUCTION FORMAT

% #〈data〉. W, Dn 2+op head 0 2(0/0/0) 2(0/1/0)
% #〈data〉. L, Dn 4+op head 0 4(0/0/0) 4(0/1/0)

#〈data〉.W,(An) 1 1 3(1/0/0) 4(1/1/0)
#〈data〉.L,(An) 1 0 4(1/0/0) 5(1/1/0)
#〈data〉.W,(An)+ 2 1 5(1/0/0) 5(1/1/0)
#〈data〉.L,(An)+ 4 1 7(1/0/0) 7(1/1/0)
#〈data〉.W,–(An) 2 2 4(1/0/0) 4(1/1/0)
#〈data〉.L,–(An) 2 0 4(1/0/0) 5(1/1/0)
#〈data〉.W,(d16,An) 2 0 4(1/0/0) 5(1/1/0)

#〈data〉.L,(d16,An) 4 0 6(1/0/0) 8(1/2/0)

#〈data〉.W,$XXX.W 4 2 6(1/0/0) 6(1/1/0)
#〈data〉.L,$XXX.W 6 2 8(1/0/0) 8(1/2/0)
#〈data〉.W,$XXX.L 3 0 6(1/0/0) 7(1/2/0)
#〈data〉.L,$XXX.L 5 0 8(1/0/0) 9(1/2/0)
〈data〉.W, #〈data〉. L 6+op head 0 6(0/0/0) 6(0/2/0)

BRIEF FORMAT EXTENSION WORD

#〈data〉.W,(d8,An,Xn) or (d8,PC,Xn) 6 2 8(1/0/0) 8(1/2/0)

#〈data〉.L,(d8,An,Xn) or (d8,PC,Xn) 8 2 10(1/0/0) 10(1/2/0)

Instruction Execution Timing

MOTOROLA MC68030 USER’S MANUAL 11-29

11.6.2 Fetch Immediate Effective Address (fiea) (Continued)
Address Mode Head Tail I-Cache Case No-Cache Case

FULL FORMAT EXTENSION WORD(S)

#〈data〉.W(d16,An) or (d16,PC) 4 0 8(1/0/0) 9(1/2/0)

#〈data〉.L(d16,An) or (d16,PC) 6 0 10(1/0/0) 11(1/2/0)

#〈data〉.W,(d16,An,Xn) or (d16,PC,Xn) 6 0 8(1/0/0) 9(1/2/0)

#〈data〉.L,(d16,An,Xn) or (d16,PC,Xn) 8 0 10(1/0/0) 11(1/2/0)

#〈data〉.W,([d16,An]) or ([d16,PC]) 4 0 12(2/0/0) 12(2/2/0)

#[data].L,([d16,An]) or ([d16,PC]) 6 0 14(2/0/0) 14(2/2/0)

#〈data〉.W,([d16,An],Xn) or (d16,PC],Xn) 4 0 12(2/0/0) 12(2/2/0)

#〈data〉.L,([d16,An],Xn) or ([d16,PC],Xn) 6 0 14(2/0/0) 14(2/2/0)

#〈data〉.W,([d16,An],d16) or ([d16,PC],d16) 4 0 14(2/0/0) 15(2/2/0)

#〈data〉.L,([d16,An],d16) or ([d16,PC],d16) 6 0 16(2/0/0) 17(2/3/0)

#〈data〉.W,([d16,An],Xn,d16) or ([d16,PC],Xn,d16) 4 0 14(2/0/0) 15(2/3/0)

#〈data〉.L,([d16,An],Xn,d16) or ([d16,PC],Xn,d16) 6 0 16(2/0/0) 17(2/3/0)

#〈data〉.W,([d16,An],d32) or ([d16,PC],d32) 4 0 14(2/0/0) 16(2/3/0)

#〈data〉.L,([d16,An],d32) or ([d16,PC],d32) 6 0 16(2/0/0) 18(2/3/0)

#〈data〉.W,([d16,An],Xn,d32) or ([d16,PC],Xn,d32) 4 0 14(2/0/0) 16(2/3/0)

#〈data〉.L,([d16,An],Xn,d32) or ([d16,PC],Xn,d32) 6 0 16(2/0/0) 18(2/3/0)

#〈data〉.W,(B) 6 0 8(1/0/0) 9(1/1/0)
#〈data〉.L,(B) 8 0 10(1/0/0) 11(1/2/0)
#〈data〉.W,(d16,B) 6 0 10(1/0/0) 12(1/2/0)

#〈data〉.L,(d16,B) 8 0 12(1/0/0) 14(1/2/0)

#〈data〉.W,(d32,B) 10 0 14(1/0/0) 16(1/2/0)

#〈data〉.L,(d32,B) 12 0 16(1/0/0) 18(1/3/0)

#〈data〉.W,([B]) 6 0 12(2/0/0) 12(2/1/0)
#〈data〉.L,([B]) 8 0 14(2/0/0) 14(2/2/0)
#〈data〉.W,([B],I) 6 0 12(2/0/0) 12(2/1/0)
#〈data〉.L,([B],I) 8 0 14(2/0/0) 14(2/2/0)
#〈data〉.W,([B],d16) 6 14(2/0/0) 15(2/2/0)

#〈data〉.L,([B],d16) 8 0 16(2/0/0) 17(2/2/0)

#〈data〉.W,([B],I,d16) 6 0 14(2/0/0) 15(2/2/0)

#〈data〉.L,([B],I,d16) 8 0 16(2/0/0) 17(2/2/0)

#〈data〉.W,([B],d32) 6 0 14(2/0/0) 16(2/2/0)

#〈data〉.L,([B],d32) 8 0 16(2/0/0) 18(2/3/0)

#〈data〉.W,([B],I,d32) 6 0 14(2/0/0) 16(2/2/0)

#〈data〉.L,([B],I,d32) 8 0 16(2/0/0) 18(2/3/0)

#〈data〉W,([d16,B]) 6 0 14(2/0/0) 15(2/0/0)

#〈data〉.L,([d16,B]) 8 0 16(2/0/0) 17(2/2/0)

#〈data〉.W,([d16,B],I) 6 0 14(2/0/0) 15(2/2/0)

#〈data〉.L,([d16,B],I) 8 0 16(2/0/0) 17(2/2/0)

Instruction Execution Timing

11-30 MC68030 USER’S MANUAL MOTOROLA

11.6.2 Fetch Immediate Effective Address (fiea) (Continued)

B = Base Address: 0, An, PC, Xn, An+Xn, PC+Xn. Form does not affect timing.
I = Index: 0, Xn
% = Total head for fetch immediate effective address timing includes the head time for the operation.
NOTE: Xn cannot be in B and I at the same time. Scaling and size of Xn do not affect timing.

11.6.3 Calculate Effective Address (cea)

The calculate effective address table indicates the number of clock periods needed for the
processor to calculate the specified effective address. Fetch time is only included for the first
level of indirection on memory indirect addressing modes. The effective addresses are
divided by their formats (refer to 2.5 Effective Address Encoding Summary). For
instruction-cache case and for no-cache case, the total number of clock cycles is outside the
parentheses. The number of read, prefetch, and write cycles is given inside the parentheses
as (r/p/w). The read, prefetch, and write cycles are included in the total clock cycle number.

All timing data assumes two-clock reads and writes.

Address Mode Head Tail I-Cache Case No-Cache Case

#〈data〉.W, ([d16, B],d16) 6 0 16(2/0/0) 18(2/2/0)

#〈data〉.L, ([d16, B}, d16) 8 0 18(2/0/0) 20(2/3/0)

#〈data〉.W,([d16,B],I,d16) 6 0 16(2/0/0) 18(2/2/0)

#〈data〉.L, ([d16,B],I,d16) 8 0 18(2/0/0) 20(2/3/0)

#〈data〉.W,([d16,B],d32) 6 0 16(2/0/0) 19(2/3/0)

#〈data〉.L, ([d16,B],d32) 8 0 18(2/0/0) 21(2/3/0)

#〈data〉.W,([d16,B],I,d32) 6 0 16(2/0/0) 19(2/3/0)

#〈data〉.L,([d16,B],I,d16) 8 0 18(2/0/0) 21(2/3/0)

#〈data〉.W,([d16,B]) 6 0 18(2/0/0) 19(2/2/0)

#〈data〉.L,([d16,B]) 8 0 20(2/0/0) 21(2/3/0)

#〈data〉.W,([d32,B],I) 6 0 18(2/0/0) 19(2/2/0)

#〈data〉.L,([d32,B],I) 8 0 20(2/0/0) 21(2/3/0)

#〈data〉.W,([d32,B],d16) 6 0 20(2/0/0) 22(2/3/0)

#〈data〉.L,([d32,B],d16) 8 0 22(2/0/0) 24(2/3/0)

#〈data〉.W,([d32,B],I,d16) 6 0 20(2/0/0) 22(2/3/0)

#〈data〉.L,([d32,B],I,d16) 8 0 22(2/0/0) 24(2/3/0)

#〈data〉.W,([d32,B],d32) 6 0 20(2/0/0) 23(2/3/0)

#〈data〉.L,([d32,B],d32) 8 0 22(2/0/0) 25(2/4/0)

#〈data〉.W,([d32,B],I,d32) 6 0 20(2/0/0) 23(2/3/0)

#〈data〉.L,([d32,B],I,d32) 8 0 22(2/0/0) 25(2/4/0)

Instruction Execution Timing

MOTOROLA MC68030 USER’S MANUAL 11-31

11.6.3 Calculate Effective Address (cea) (Continued)

Address Mode Head Tail I-Cache Case No-Cache Case

SINGLE EFFECTIVE ADDRESS INSTRUCTION FORMAT

% Dn – – 0(0/0/0) 0(0/0/0)
% An – – 0(0/0/0) 0(0/0/0)

(An) 2 + op head 0 2(0/0/0) 2(0/0/0)
(An)+ 0 0 2(0/0/0) 2(0/0/0)
–(An) 2 + op head 0 2(0/0/0) 2(0/0/0)
(d16,An) or (d16,PC) 2 + op head 0 2(0/0/0) 2(0/1/0)

(xxx).W 2 + op head 0 2(0/0/0) 2(0/1/0)
(xxx).L 4+ op head 0 4(0/0/0) 4(0/1/0)

BRIEF FORMAT EXTENSION WORD

(d8,An,Xn) or (d8,PC,Xn) 4+ op head 0 4(0/0/0) 4(0/1/0)

FULL FORMAT EXENSION WORD(S)

(d16,An) or (d16,PC) 2 0 6(0/0/0) 6(0/1/0)

(d16,An,Xn) or (d16,PC,Xn) 6 + op head 0 6(0/0/0) 6(0/1/0)

([d16,An]) or ([d16,PC]) 2 0 10(1/0/0) 10(1/1/0)

([d16,An],Xn) or ([d16,PC],Xn) 2 0 10(1/0/0) 10(1/1/0)

[d16,An],d16) or ([d16,PC],d16) 2 0 12(1/0/0) 13(1/2/0)

([d16,An],Xn,d16) or ([d16,PC],Xn,d16) 2 0 12(1/0/0) 13(1/2/0)

([d16,An],d32) or ([d16,PC],d32) 2 0 12(1/0/0) 13(1/2/0)

([d16,An],Xn,d32) or ([d16,PC],Xn,d32) 2 0 12(1/0/0) 13(1/2/0)

(B) 6 + op head 0 6(0/0/0) 6(0/1/0)
(d16,B) 4 0 8(0/0/0) 9(0/1/0)

(d32,B) 4 0 12(0/0/0) 12(0/2/0)

([B]) 4 0 10(1/0/0) 10(1/1/0)
([B],I) 4 0 10(1/0/0) 10(1/1/0)
([B],d16) 4 0 12(1/0/0) 13(1/1/0)

([B],I,d16) 4 0 12(1/0/0) 13(1/1/0)

([B],d32) 4 0 12(1/0/0) 13(1/2/0)

([B],I,d32) 4 0 12(2/0/0) 13(1/2/0)

([d16,B]) 4 0 12(1/0/0) 13(1/1/0)

([d16,B],I) 4 0 12(1/0/0) 13(1/1/0)

([d16,B],d16) 4 0 14(1/0/0) 16(2/2/0)

([d16B],I,d16) 4 0 14(1/0/0) 16(2/2/0)

Instruction Execution Timing

11-32 MC68030 USER’S MANUAL MOTOROLA

11.6.3 Calculate Effective Address (cea) (Continued)

B = Base address; 0, An, PC, Xn, An+Xn, PC+Xn. Form does not affect timing.
I = Index; 0, Xn
% = No clock cycles incurred by effective address calculation.
NOTE: Xn cannot be in B and I at the same time. Scaling and size of Xn do not affect timing.

11.6.4 Calculate Immediate Effective Address (ciea)

The calculate immediate effective address table indicates the number of clock periods
needed for the processor to fetch the immediate source operand and calculate the specified
destination effective address. In the case of two-word instructions, this table indicates the
number of clock periods needed for the processor to fetch the second word of the instruction
and calculate the specified source operand or single operand. Fetch time is only included
for the first level of indirection on memory indirect addressing modes. The effective
addresses are divided by their formats (refer to 2.5 Effective Address Encoding
Summary). For instruction-cache case and for no-cache case, the total number of clock
cycles is outside the parentheses. The number of read, prefetch, and write cycles is given
inside the parentheses as (r/p/w). The read, prefetch, and write cycles are included in the
total clock cycle number.

All timing data assumes two-clock reads and writes.

Address Mode Head Tail I-Cache Case No-Cache Case

([d16,B],d32) 4 0 14(1/0/0) 16(1/2/0)

[d16,B],I,d32) 4 0 14(1/0/0) 16(1/2/0)

[d16,B]) 4 0 16(1/0/0) 17(1/2/0)

([d16,B]I) 4 0 16(1/0/0) 17(1/2/0)

([d16,B]d16) 4 0 18(1/0/0) 20(1/2/0)

([d16,B],I,d16) 4 0 18(1/0/0) 20(1/2/0)

([d16,B],d32) 4 0 18(1/0/0) 20(1/3/0)

([d16,B],I,d32) 4 0 18(1/0/0) 20(1/3/0)

Instruction Execution Timing

MOTOROLA MC68030 USER’S MANUAL 11-33

11.6.4 Calculate Immediate Effective Address (ciea) (Continued)

Address Mode Head Tail I-Cache Case No-Cache Case

SINGLE EFFECTIVE ADDRESS INSTRUCTION FORMAT

% #〈data〉.W,Dn 2+op head 0 2(0/0/0) 2(0/1/0)
% #〈data〉.L,Dn 4+op head 0 4(0/0/0) 4(0/1/0)
% #〈data〉.W,(An) 2+op head 0 2(0/0/0) 2(0/1/0)
% #〈data〉.L,(An) 4+op head 0 4(0/0/0) 4(0/1/0)

#〈data〉.W,(An)+ 2 0 4(0/0/0) 4(0/1/0)
#〈data〉.L,(An)+ 4 0 6(0/0/0) 6(0/1/0)

% #〈data〉.W,–(An) 2+op head 0 2(0/0/0) 2(0/1/0)
% #〈data〉.L,–(An) 4+op head 0 4(0/0/0) 4(0/1/0)
% #〈data〉.W,(d16,An) 4+op head 0 4(0/0/0) 4(0/1/0)

% #〈data〉.L,(d16,An) 6+op head 0 6(0/0/0) 7(0/2/0)

% #〈data〉.W,$XXX.W 4+op head 0 4(0/0/0) 4(0/1/0)
% #〈data〉.L,$XXX.W 6+op head 0 6(0/0/0) 6(0/2/0)
% #〈data〉.W,$XXX.L 6+op head 0 6(0/0/0) 6(0/2/0)
% #〈data〉.L,$XXX.L 8+op head 0 8(0/0/0) 8(0/2/0)

BRIEF FORMAT EXTENSION WORD

#〈data〉.W,(d8,An,Xn) or (d8,PC,Xn) 6 + op head 0 6(0/0/0) 6(0/2/0)

#〈data〉.L,(d8,An,Xn) or (d8,PC,Xn) 8 + op head 0 8(0/0/0) 8(0/2/0)

FULL FORMAT EXENSION WORD(S)

#〈data〉.W,(d16,An) or (d16,PC) 4 0 8(0/0/0) 8(0/2/0)

#〈data〉.L,(d16,An) or (d16,PC) 6 0 10(0/0/0) 10(0/2/0)

% #〈data〉.W,(d16,An,Xn) or (d16,PC,Xn) 8 + op head 0 8(0/0/0) 8(0/2/0)

% #〈data〉.L,(d16,An,Xn) or (d16,PC,Xn) 10 + op head 0 10(0/0/0) 10(0/2/0)

#〈data〉.W,([d16,An]) or ([d16,PC]) 4 0 12(1/0/0) 12(1/2/0)

#〈data〉.L,([d16,An]) or ([d16,PC]) 6 0 14(1/0/0) 14(1/1/0)

#〈data〉.W,([d16,An],Xn) or [d16,PC],Xn) 4 0 12(1/0/0) 12(1/2/0)

#〈data〉.L,([d16,An],Xn) or [d16,PC],Xn) 6 0 14(1/0/0) 14(1/1/0)

#〈data〉.W,([d16,An],d16) or [d16,PC],d16) 4 0 14(1/0/0) 15(1/2/0)

#〈data〉.L,([d16,An],d16) or [d16,PC],d16) 6 0 16(1/0/0) 17(1/3/0)

#〈data〉.W,([d16,An],Xn,d16) or ([d16,PC],Xn,d16) 4 0 14(1/0/0) 15(1/2/0)

#〈data〉.L,([d16,An],Xn,d16) or ([d16,PC],Xn,d16) 6 0 16(1/0/0) 17(1/3/0)

#〈data〉.W,([d16,An],d32) or ([d16,PC],d32) 4 0 14(1/0/0) 16(1/3/0)

#〈data〉.L,([d16,An],d32) or ([d16,PC],d32) 6 0 16(1/0/0) 17(1/3/0)

#〈data〉.W,([d16,An],Xn,d32) or ([d16,PC],Xn,d32) 4 0 14(1/0/0) 15(1/3/0)

#〈data〉.L,([d16,An],Xn,d32) or ([d16,PC],Xn,d32) 6 0 16(1/0/0) 17(1/3/0)

% #〈data〉.W,(B) 8 + op head 0 8(0/0/0) 8(0/1/0)
% #〈data〉.L,(B) 10 + op head 0 10(0/0/0) 10(0/2/0)

Instruction Execution Timing

11-34 MC68030 USER’S MANUAL MOTOROLA

11.6.4 Calculate Immediate Effective Address (ciea) (Continued)

.

Address Mode Head Tail I-Cache Case No-Cache Case

FULL FORMAT EXTENSION WORD(S) (CONTINUED)
#〈data〉.W,(d16,B) 6 0 10(0/0/0) 11(0/2/0)

#〈data〉.L,(d16,B) 8 0 12(0/0/0) 13(0/2/0)

#〈data〉.W,(d32,B) 6 0 14(0/0/0) 15(0/2/0)

#〈data〉.L,(d32,B) 8 0 16(0/0/0) 17(0/3/0)

#〈data〉.W,([B]) 6 0 12(1/0/0) 12(1/1/0)
#〈data〉.L,([B]) 8 0 14(1/0/0) 14(1/2/0)
#〈data〉.W,([B],I) 6 0 12(1/0/0) 12(1/1/0)
#〈data〉.L,([B],I) 8 0 14(1/0/0) 14(1/2/0)
#〈data〉.W,([B],d16) 6 0 14(1/0/0) 15(1/2/0)

#〈data〉.L,([B],d16) 8 0 16(1/0/0) 17(1/2/0)

#〈data〉.W,([B],I,d16) 6 0 14(1/0/0) 15(1/2/0)

#〈data〉.L,([B],I,d16) 8 0 16(2/0/0) 17(1/2/0)

#〈data〉.W,([B],d32) 6 0 14(1/0/0) 15(1/2/0)

#〈data〉.L,([B],d32) 8 0 16(1/0/0) 17(1/3/0)

#〈data〉.W,([B],I,d32) 6 0 14(1/0/0) 15(1/2/0)

#〈data〉.L,([B],I,d32) 8 0 16(1/0/0) 17(1/3/0)

#〈data〉.W,([d16,B]) 6 0 14(1/0/0) 15(1/2/0)

#〈data〉.L,([d16,B]) 8 0 16(1/0/0) 17(1/2/0)

#〈data〉.W,([d16,B],I) 6 0 14(1/0/0) 15(1/2/0)

#〈data〉.L,([d16,B],I) 8 0 16(1/0/0) 17(1/2/0)

#〈data〉.W,([d16,B],d16) 6 0 16(1/0/0) 18(1/2/0)

#〈data〉.L,([d16,B],d16) 8 0 18(1/0/0) 20(1/3/0)

#〈data〉.W,([d16,B],I,d16) 6 0 16(1/0/0) 18(1/2/0)

#〈data〉.L,([d16,B],I,d16) 8 0 18(1/0/0) 20(1/3/0)

#〈data〉.W,([d16,B],d32) 6 0 16(1/0/0) 18(1/3/0)

#〈data〉.L,([d16,B],d32) 8 0 18(1/0/0) 20(1/3/0)

#〈data〉.W,([d16,B],I,d32) 6 0 16(1/0/0) 18(1/3/0)

#〈data〉.L,([d16,B],I,d32) 8 0 18(1/0/0) 20(1/3/0)

#〈data〉.W,([d32,B]) 6 0 18(1/0/0) 19(1/2/0)

#〈data〉.L,([d32,B]) 8 0 20(1/0/0) 21(1/3/0)

#〈data〉.W,([d32,B],I) 6 0 18(1/0/0) 19(1/2/0)

#〈data〉.L,([d32,B],I) 8 0 20(1/0/0) 21(1/3/0)

#〈data〉.W,([d32,B],d16) 6 0 20(1/0/0) 22(1/3/0)

#〈data〉.L,([d32,B],d16) 8 0 22(1/0/0) 24(1/3/0)

#〈data〉.W,([d32,B],I,d16) 6 0 20(1/0/0) 22(1/3/0)

#〈data〉.L,([d32,B],I,d16) 8 0 22(1/0/0) 24(1/3/0)

Instruction Execution Timing

MOTOROLA MC68030 USER’S MANUAL 11-35

11.6.4 Calculate Immediate Effective Address (ciea) (Continued)

B = Base address; 0, An, PC, Xn, An+Xn, PC+Xn. Form does not affect timing.
I = Index; 0, Xn
% = Total head for address timing includes the head time for the operation.
NOTE: Xn cannot be in B and I at the same time. Scaling and size of Xn do not affect timing

11.6.5 Jump Effective Address

The jump effective address table indicates the number of clock periods needed for the
processor to calculate the specified effective address for the JMP or JSR instructions. Fetch
time is only included for the first level of indirection on memory indirect addressing modes.
The effective addresses are divided by their formats (refer to 2.5 Effective Address
Encoding Summary). For instruction-cache case and for no-cache case, the total number
of clock cycles is outside the parentheses. The number of read, prefetch, and write cycles
is given inside the parentheses as (r/p/w). The read, prefetch, and write cycles are included
in the total clock cycle number.

All timing data assumes two-clock reads and writes.

Address Mode Head Tail I-Cache Case No-Cache Case

FULL FORMAT EXTENSION WORD(S) (CONTINUED)
#〈data〉.W,([d32,B],d32) 6 0 20(1/0/0) 22(1/3/0)

#〈data〉.L,([d32,B],d32) 8 0 22(1/0/0) 24(1/4/0)

#〈data〉.W,([d32,B],I,d32) 6 0 20(1/0/0) 22(1/3/0)

#〈data〉.L,([d32,B],I,d32) 8 0 22(1/0/0) 24(1/4/0)

Address Mode Head Tail I-Cache Case No-Cache Case

SINGLE EFFECTIVE ADDRESS INSTRUCTION FORMAT

% Dn 2+op head 0 2(0/0/0) 2(0/0/0)
% An 4+op head 0 4(0/0/0) 4(0/0/0)
% (xxx).W 2+op head 0 2(0/0/0) 2(0/0/0)
% (xxx).L 2+op head 0 2(0/0/0) 2(0/0/0)

BRIEF FORMAT EXTENSION WORD

(d8,An,Xn) or (d8,PC,Xn) 6+op head 0 6(0/0/0) 6(0/0/0)

Instruction Execution Timing

11-36 MC68030 USER’S MANUAL MOTOROLA

11.6.5 Jump Effective Address (Continued)

)

B = Base address; 0, An, PC, Xn, An+Xn, PC+Xn. Form does not affect timing.
I = Index; 0, Xn
% = Total head for effective address timing includes the head time for the operation.
NOTE: Xn cannot be in B and I at the same time. Scaling and size of Xn do not affect timing.

Address Mode Head Tail I-Cache Case No-Cache Case

FULL FORMAT EXTENSION WORD(S)

(d16,An) or (d16,PC) 2 0 6(0/0/0) 6(0/0/0)

% (d16,An,Xn) or (d16,PC,Xn) 6+op head 0 6(0/0/0) 6(0/0/0)

([d16,An]) or ([d16,PC]) 2 0 10(1/0/0) 10(1/1/0)

([d16,An],Xn) or ([d16,PC],Xn) 2 0 10(1/0/0) 10(1/1/0)

([d16,An],d16) or ([d16,PC],d16) 2 0 12(1/0/0) 12(1/1/0)

([d16,An],Xn,d16) or ([d16,PC],Xn,d16) 2 0 12(1/0/0) 12(1/1/0)

([d16,An],d32) or ([d16,PC],d32) 2 0 12(1/0/0) 12(1/1/0)

([d16,An],Xn,d32) or ([d16,PC],Xn,d32) 2 0 12(1/0/0) 12(1/1/0)

% (B) 6+op head 0 6(0/0/0) 6(0/0/0)
(d16,B) 4 0 8(0/0/0) 9(0/1/0)

(d32,B) 4 0 12(0/0/0) 13(0/1/0)

([B]) 4 0 10(1/0/0) 10(1/1/0)
([B],I) 4 0 10(1/0/0) 10(1/1/0)
([B],d16) 4 0 12(1/0/0) 12(1/1/0)

([B],I,d16) 4 0 12(1/0/0) 12(1/1/0)

([B],d32) 4 0 12(1/0/0) 12(1/1/0)

([B],d32) 4 0 12(1/0/0) 12(1/1/0)

([B],I,d32) 4 0 12(1/0/0) 12(1/1/0)

([d16,B]) 4 0 12(1/0/0) 13(1/1/0)

([d16,B],I) 4 0 12(1/0/0) 13(1/1/0)

([d16,B],d16) 4 0 14(1/0/0) 15(1/1/0)

([d16,B],I,d16) 4 0 14(1/0/0) 15(1/1/0)

 ([d16,B],d32) 4 0 14(1/0/0) 15(1/1/0)

([d16,B],I,d32) 4 0 14(1/0/0) 15(1/1/0)

 ([d32,B]) 4 0 16(1/0/0) 17(1/2/0)

([d32,B],I) 4 0 16(1/0/0) 17(1/2/0)

([d32,B],d16) 4 0 18(1/0/0) 19(1/2/0)

([d32,B],I,d16) 4 0 18(1/0/0) 19(1/2/0)

([d32,B],d32) 4 0 18(1/0/0) 19(1/2/0)

([d32,B],I,d32) 4 0 18(1/0/0) 19(1/2/0)

Instruction Execution Timing

MOTOROLA MC68030 USER’S MANUAL 11-37

11.6.6 MOVE Instruction

The MOVE instruction timing table indicates the number of clock periods needed for the
processor to calculate the destination effective address and perform the MOVE or MOVEA
instruction, including the first level of indirection on memory indirect addressing modes. The
fetch effective address table is needed on most MOVE operations (source, destination
dependent). The destination effective addresses are divided by their formats (refer to 2.5
Effective Address Encoding Summary). For instruction-cache case and for no-cache
case, the total number of clock cycles is outside the parentheses. The number of read,
prefetch, and write cycles is given inside the parentheses as (r/p/w). The read, prefetch, and
write cycles are included in the total clock cycle number.

All timing data assumes two-clock reads and writes.
MOVE Source,Destination Head Tail I-Cache Case No-Cache Case

SINGLE EFFECTIVE ADDRESS INSTRUCTION FORMAT
MOVE Rn, Dn 2 0 2(0/0/0) 2(0/1/0)
MOVE Rn, An 2 0 2(0/0/0) 2(0/1/0)
MOVE EA,An 0 0 2(0/0/0) 2(0/1/0)
MOVE EA,Dn 0 0 2(0/0/0) 2(0/1/0)
MOVE Rn,(An) 0 1 3(0/0/1) 4(0/1/1)
MOVE SOURCE, (An) 2 0 4(0/0/1) 5(0/1/1)
MOVE Rn,(An)+ 0 1 3(0/0/1) 4(0/1/1)
MOVE SOURCE, (An)+ 2 0 4(0/0/1) 5(0/1/1)
MOVE Rn,–(An) 0 2 4(0/0/1) 4(0/1/1)
MOVE SOURCE, –(An) 2 0 4(0/0/1) 5(0/1/1)
MOVE EA, (d16,An) 2 0 4(0/0/1) 5(0/1/1)

MOVE EA,XXX.W 2 0 4(0/0/1) 5(0/1/1)
MOVE EA,XXX.L 0 0 6(0/0/1) 7(0/2/1)

BRIEF FORMAT EXTENSION WORD
MOVE EA, (d8,An,Xn) 4 0 6(0/0/1) 7(0/1/1)

Instruction Execution Timing

11-38 MC68030 USER’S MANUAL MOTOROLA

11.6.6 MOVE Instruction (Continued)

* Add Fetch Effective Address Time SOURCE Is Memory or Immediate Data Address Mode
Rn Is a Data or Address Register EA Is any Effective Address

MOVE Source,Destination Head Tail I-Cache Case No-Cache Case

FULL FORMAT EXTENSION WORD(S)
MOVE EA, (d16,An) or (d16,PC) 2 0 8(0/0/1) 9(0/2/1)

MOVE EA, (d16,An,Xn) or (d16,PC,Xn) 2 0 8(0/0/1) 9(0/2/1)

MOVE EA, ([d16,An],Xn) or ([d16,PC],Xn) 2 0 10(1/0/1) 11(1/2/1)

MOVE EA,([d16,An],d16) or ([d16,PC],d16) 2 0 12(1/0/1) 14(1/2/1)

MOVE EA,([d16,An],Xn,d16) or ([d16,PC],Xn,d16) 2 0 12(1/0/1) 14(1/2/1)

MOVE EA,([d16,An],d32) or [d16,PC],d32) 2 0 14(1/0/1) 16(1/3/1)

MOVE EA,([d16,An],Xn,d32) or ([d16,PC],Xn,d32) 2 0 14(1/0/1) 16(1/3/1)

MOVE EA,(B) 4 0 8(0/0/1) 9(0/1/1)
MOVE EA,(d16,B) 4 0 10(0/0/1) 12(0/2/1)

MOVE EA,(d32,B) 4 0 14(0/0/1) 16(0/2/1)

MOVE EA,([B]) 4 0 10(1/0/1) 11(1/1/1)
MOVE EA,([B],I) 4 0 10(1/0/1) 11(1/1/1)
MOVE EA,([B],d16) 4 0 12(1/0/1) 14(1/2/1)

MOVE EA,([B],I,d16) 4 0 12(1/0/1) 14(1/2/1)

MOVE EA,([B],d32) 4 0 14(1/0/1) 16(1/2/1)

MOVE EA,([B],I,d32) 4 0 14(1/0/1) 16(1/2/1)

MOVE EA,([d16,B]) 4 0 12(1/0/1) 14(1/2/1)

MOVE EA,([d16,B],I) 4 0 12(1/0/1) 14(1/2/1)

MOVE EA,([d16,B],d16) 4 0 14(1/0/1) 17(1/2/1)

MOVE EA,([d16,B],I,d16) 4 0 14(1/0/1) 17(1/2/1)

MOVE EA,([d16,B],d32) 4 0 16(1/0/1) 19(1/3/1)

MOVE EA,([d16,B],I,d32) 4 0 16(1/0/1) 19(1/3/1)

MOVE EA,([d32,B]) 4 0 16(1/0/1) 18(1/2/1)

MOVE EA,([d32,B],I) 4 0 16(1/0/1) 18(1/2/1)

MOVE EA,([d32,B],d16) 4 0 18(1/0/1) 21(1/3/1)

MOVE EA,([d32,B],I,d16) 4 0 18(1/0/1) 21(1/3/1)

MOVE EA,([d32,B],d32) 4 0 20(1/0/1) 23(1/3/1)

MOVE EA,([d32,B],I,d32) 4 0 20(1/0/1) 23(1/3/1)

Instruction Execution Timing

MOTOROLA MC68030 USER’S MANUAL 11-39

11.6.7 Special-Purpose Move Instruction

The special-purpose MOVE timing table indicates the number of clock periods needed for
the processor to fetch, calculate, and perform the special-purpose MOVE operation on the
control registers or specified effective address. Footnotes indicate when to account for the
appropriate effective address times. The total number of clock cycles is outside the
parentheses. The number of read, prefetch, and write cycles is given inside the parentheses
as (r/p/w). The read, prefetch, and write cycles are included in the total clock cycle number.

All timing data assumes two-clock reads and writes.

CA-A Control Registers USP, VBR, CAAR, MSP, and ISP + MOVEM RL,EA – For n Registers (n > 0) and w Wait States
CR-B Control Registers SFC, DFC, and CACR I-Cache Case Timing = w < 2: (8+4n)
n Number of Register to Transfer (n>0) w > 2: (8+4n)+(w–2)n
RL Register List Tail = 0 for all Wait States
* Add Calculate Effective Address Time MOVEM EA,RL – For n Registers (n > 0) and w Wait States
Add Fetch Effective Address Time I-Cache Case Timing = w ≤ 2: (4+2n)+(n–1)w
% Add Calculate Immediate Address Time w > 2: (4+2n)+(n–1)w+(w–2)

Tail = w ≤ 2: (n–1)w
w > 2: (n)w+(n)(w–2)

Instruction Head Tail I-Cache Case No-Cache Case
EXG Ry,Rx 4 0 4(0/0/0) 4(0/1/0)
MOVEC Cr,Rn 6 0 6(0/0/0) 6(0/1/0)
MOVEC Rn,Cr–A 6 0 6(0/0/0) 6(0/1/0)
MOVEC Rn,Cr–B 4 0 12(0/0/0) 12(0/1/0)
MOVE CCR,Dn 2 0 4(0/0/0) 4(0/1/0)
MOVE CCR,Mem 2 0 4(0/0/1) 5(0/1/1)
MOVE Dn,CCR 4 0 4(0/0/0) 4(0/1/0)
MOVE EA,CCR 0 0 4(0/0/0) 4(0/1/0)
MOVE SR,Dn 2 0 4(0/0/0) 4(0/1/0)
MOVE SR,Mem 2 0 4(0/0/1) 5(0/1/1)

MOVE EA,SR 0 0 8(0/0/0) 10(0/2/0)
% + MOVEM EA,RL 2 0 8+4n(n/0/0) 8+4n(n/1/0)
% + MOVEM RL,EA 2 0 4+2n(0/0/n) 4+2n(0/1/n)

MOVEP.W Dn,(d16,An) 4 0 10(0/0/2) 10(0/1/2)

MOVEP.W (d16,An),Dn 2 0 10(2/0/0) 10(2/1/0)

MOVEP.L Dn,(d16,An) 4 0 14(0/0/4) 14(0/1/4)

MOVEP.L (d16,An),Dn 2 0 14(4/0/0) 14(4/1/0)

% MOVES EA,Rn 3 0 7(1/0/0) 7(1/1/0)
% MOVE Rn,EA 2 1 5(0/0/1) 6(0/1/1)

MOVE USP,An 4 0 4(0/0/0) 4(0/1/0)
MOVE An,USP 4 0 4(0/0/0) 4(0/1/0)
SWAP Dn 4 0 4(0/0/0) 4(0/1/0)

Instruction Execution Timing

11-40 MC68030 USER’S MANUAL MOTOROLA

11.6.8 Arithmetical/Logical Instructions

The arithmetical/logical operation timing table indicates the number of clock periods needed
for the processor to perform the specified arithmetical/logical instruction using the specified
addressing mode. Footnotes indicate when to account for the appropriate fetch effective
address or fetch immediate effective address times. For instruction-cache case and for no-
cache case, the total number of clock cycles is outside the parentheses. The number of
read, prefetch, and write cycles is given inside the parentheses as (r/p/w). The read,
prefetch, and write cycles are included in the total clock cycle number.

All timing data assumes two-clock reads and writes.

Instruction Head Tail I-Cache Case No-Cache Case
ADD Rn,Dn 2 0 2(0/0/0) 2(0/1/0)
ADDA.W Rn,An 4 0 4(0/0/0) 4(0/1/0)
ADDA.L Rn,An 2 0 2(0/0/0) 2(0/1/0)
ADD EA,Dn 0 0 2(0/0/0) 2(0/1/0)
ADD.W EA,An 0 0 4(0/0/0) 4(0/1/0)
ADDA.L EA,An 0 0 2(0/0/0) 2(0/1/0)
ADD Dn,EA 0 1 3(0/0/1) 4(0/1/1)
AND Dn,Dn 2 0 2(0/0/0) 2(0/1/0)
AND EA,Dn 0 0 2(0/0/0) 2(0/1/0)
AND Dn,EA 0 1 3(0/0/1) 4(0/1/1)
EOR Dn,Dn 2 0 2(0/0/0) 2(0/1/0)
EOR Dn,EA 0 1 3(0/0/1) 4(0/1/1)
OR Dn,Dn 2 0 2(0/0/0) 2(0/1/0)
OR EA,Dn 0 0 2(0/0/0) 2(0/1/0)
OR Dn,EA 0 1 3(0/0/1) 4(0/1/1)
SUB Rn,Dn 2 0 2(0/0/0) 2(0/1/0)
SUB EA,Dn 0 0 2(0/0/0) 2(0/1/0)

Instruction Execution Timing

MOTOROLA MC68030 USER’S MANUAL 11-41

11.6.8 Arithmetical/Logical Instructions (Continued)

 * Add Fetch Effective Address Time
**Add Fetch Immediate Effective Address Time
 + Indicates Maximum Time (Acutal time is data dependent)

Instruction Head Tail I-Cache Case
No-Cache

Case
* SUB Dn,EA 0 1 3(0/0/1) 4(0/1/1)

SUBA.W Rn,An 4 0 4(0/0/0) 4(0/1/0)
SUBA.L Rn,An 2 0 2(0/0/0) 2(0/1/0)

* SUBA.W EA,An 0 0 4(0/0/0) 4(0/1/0)
* SUBA.L EA,An 0 0 2(0/0/0) 2(0/1/0)

CMP Rn,Dn 2 0 2(0/0/0) 2(0/1/0)
* CMP EA,Dn 0 0 2(0/0/0) 2(0/1/0)

CMPA Rn,An 4 0 4(0/0/0) 4(0/1/0)
* CMPA EA,An 0 0 4(0/0/0) 4(0/1/0)
** + CMP2 EA,Rn 2 0 20(1/0/0) 20(1/1/0)
* + MULS.W EA,Dn 2 0 28(0/0/0) 28(0/1/0)
** + MULS.L EA,Dn 2 0 44(0/0/0) 44(0/1/0)
* + MULU.W EA,Dn 2 0 28(0/0/0) 28(0/1/0)
** + MULU.L EA,Dn 2 0 44(0/0/0) 44(0/1/0)
+ DIVS.W Dn,Dn 2 0 56(0/0/0) 56(0/1/0)
* + DIVS.W EA,Dn 0 0 56(0/0/0) 56(0/1/0)
** + DIVS.L Dn,Dn 6 0 90(0/0/0) 90(0/1/0)
** + DIVS.L EA,Dn 0 0 90(0/0/0) 90(0/1/0)
+ DIVU.W Dn,Dn 2 0 44(0/0/0) 44(0/1/0)
* + DIVU.W EA,Dn 0 0 44(0/0/0) 44(0/1/0)
** + DIVU.L Dn,Dn 6 0 78(0/0/0) 78(0/1/0)
** + DIVU.L EA,Dn 0 0 78(0/0/0) 78(0/1/0)

Instruction Execution Timing

11-42 MC68030 USER’S MANUAL MOTOROLA

11.6.9 Immediate Arithmetical/Logical Instructions

The immediate arithmetical/logical operation timing table indicates the number of clock
periods needed for the processor to fetch the source immediate data value and to perform
the specified arithmetic/logical operation using the specified destination addressing mode.
Footnotes indicate when to account for the appropriate fetch effective or fetch immediate
effective address times. For instruction-cache case and for no-cache case, the total number
of clock cycles is outside the parentheses. The number of read, prefetch, and write cycles
is given inside the parentheses as (r/p/w). The read, prefetch, and write cycles are included
in the total clock cycle number.

All timing data assumes two-clock reads and writes.

 * Add Fetch Effective Address Time
**Add Fetch Immediate Effective Address Time

Instruction Head Tail I-Cache Case
No-Cache

Case
MOVEQ #〈data〉,Dn 2 0 2(0/0/0) 2(0/1/0)
ADDQ #〈data〉,Rn 2 0 2(0/0/0) 2(0/1/0)
ADDQ #〈data〉,Mem 0 1 3(0/0/1) 4(0/1/1)
SUBQ #〈data〉,Rn 2 0 2(0/0/0) 2(0/1/0)
SUBQ #〈data〉,Mem 0 1 3(0/0/1) 4(0/1/1)
ADDI #〈data〉,Dn 2 0 2(0/0/0) 2(0/1/0)
ADDI #〈data〉,Mem 0 1 3(0/0/1) 4(0/1/1)
ANDI #〈data〉,Dn 2 0 2(0/0/0) 2(0/1/0)
ANDI #〈data〉,Mem 0 1 3(0/0/1) 4(0/1/1)
EORI #〈data〉,Dn 2 0 2(0/0/0) 2(0/1/0)
EORI #〈data〉,Mem 0 1 3(0/0/1) 4(0/1/1)
ORI #〈data〉,Dn 2 0 2(0/0/0) 2(0/1/0)
ORI #〈data〉,Mem 0 1 3(0/0/1) 4(0/1/1)
SUBI #〈data〉,Dn 2 0 2(0/0/0) 2(0/1/0)
SUBI #〈data〉,Mem 0 1 3(0/0/1) 4(0/1/1)
CMPI #〈data〉,Dn 2 0 2(0/0/0) 2(0/1/0)
CMPI #〈data〉,Mem 0 0 2(0/0/0) 2(0/1/0)

Instruction Execution Timing

MOTOROLA MC68030 USER’S MANUAL 11-43

11.6.10 Binary-Coded Decimal and Extended Instructions

The binary-coded decimal and extended instruction table indicates the number of clock
periods needed for the processor to perform the specified operation using the given
addressing modes. No additional tables are needed to calculate total effective execution
time for these instructions. For instruction-cache case and for no-cache case, the total
number of clock cycles is outside the parentheses. The number of read, prefetch, and write
cycles is given inside the parentheses as (r/p/w). The read, prefetch, and write cycles are
included in the total clock cycle number.

All timing data assumes two-clock reads and writes.

Instruction Head Tail I-Cache Case No-Cache Case
ABCD Dn,Dn 0 0 4(0/0/0) 4(0/1/0)
ABCD –(An),–(An) 2 1 13(2/0/1) 14(2/1/1)
SBCD Dn,Dn 0 0 4(0/0/0) 4(0/1/0)
SBCD –(An),–(An) 2 1 13(2/0/1) 14(2/1/1)
ADDX Dn,Dn 2 0 2(0/0/0) 2(0/1/0)
ADDX –(An),–(An) 2 1 9(2/0/1) 10(2/1/1)
SUBX Dn,Dn 2 0 2(0/0/0) 2(0/1/0)
SUBX –(An) 2 1 9(2/0/1) 10(2/1/1)
CMPM (An)+,(An)+ 0 0 8(2/0/0) 8(2/1/0)
PACK Dn,Dn,#〈data〉 6 0 6(0/0/0) 6(0/1/0)
PACK –(An),–(An),#〈data〉 2 1 11(1/0/1) 11(1/1/1)
UNPK Dn,Dn,#〈data〉 8 0 8(0/0/0) 8(0/1/0)
UNPK –(An),–(An),#〈data〉 2 1 11(1/0/1) 11(1/1/1)

Instruction Execution Timing

11-44 MC68030 USER’S MANUAL MOTOROLA

11.6.11 Single Operand Instructions

The single operand instruction table indicates the number of clock periods needed for the
processor to perform the specified operation on the given addressing mode. Footnotes
indicate when it is necessary to account for the appropriate effective address time. For
instruction-cache case and for no-cache case, the total number of clock cycles is outside the
parentheses. The number of read, prefetch, and write cycles is given inside the parentheses
as (r/p/w). The read, prefetch, and write cycles are included in the total clock cycle number.

All timing data assumes two-clock reads and writes.

 * Add Fetch Effective Address Time
**Add Calculate Effective Address Time

Instruction Head Tail I-Cache Case
No-Cache

Case
CLR Dn 2 0 2(0/0/0) 2(0/1/0)

** CLR Mem 0 1 3(0/0/1) 4(0/1/1)
NEG Dn 2 0 2(0/0/0) 2(0/1/0)

* NEG Mem 0 1 3(0/0/1) 4(0/1/1)
NEGX Dn 2 0 2(0/0/0) 2(0/1/0)

* NEGX Mem 0 1 3(0/0/1) 4(0/1/1)
NOT Dn 2 0 2(0/0/0) 2(0/1/0)

* NOT Mem 0 1 3(0/0/1) 4(0/1/1)
EXT Dn 4 0 4(0/0/0) 4(0/1/0)
NBCD Dn 0 0 6(0/0/0) 6(0/1/0)
Scc Dn 4 0 4(0/0/0) 4(0/1/0)

** Scc Mem 0 1 5(0/0/1) 5(0/1/1)
TAS Dn 4 0 4(0/0/0) 4(0/1/0)

** TAS Mem 3 0 12(1/0/1) 12(1/1/1)
TST Dn 0 0 2(0/0/0) 2(0/1/0)

* TST Mem 0 0 2(0/0/0) 2(0/1/0)

Instruction Execution Timing

MOTOROLA MC68030 USER’S MANUAL 11-45

11.6.12 Shift/Rotate Instructions

The shift/rotate instruction table indicates the number of clock periods needed for the
processor to perform the specified operation on the given addressing mode. Footnotes
indicate when it is necessary to account for the appropriate effective address time. The
number of bits shifted does not affect the execution time, unless noted. For instruction-cache
case and for no-cache case, the total number of clock cycles is outside the parentheses. The
number of read, prefetch, and write cycles is given inside the parentheses as (r/p/w). The
read, prefetch, and write cycles are included in the total clock cycle number.

All timing data assumes two-clock reads and writes.

d Direction of shift/rotate: L or R
* Add Fetch Effective Address Time
% Indicates shift count is less than or equal to the size of data
+ Indicates shift count is greater than size of data

Instruction Head Tail I-Cache Case
No-Cache

Case
LSd #〈data〉,Dy 4 0 4(0/0/0) 4(0/1/0)

% LSd Dx,Dy 6 0 6(0/0/0) 6(0/1/0)
+ LSd Dx,Dy 8 0 8(0/0/0) 8(0/1/0)
* LSd Mem by 1 0 0 4(0/0/1) 4(0/1/1)

ASL #〈data〉,Dy 2 0 6(0/0/0) 6(0/1/0)
ASL Dx,Dy 4 0 8(0/0/0) 8(0/1/0)

* ASL Mem by 1 0 0 6(0/0/1) 6(0/1/1)
ASR #〈data〉,Dy 4 0 4(0/0/0) 4(0/1/0)

% ASR Dx,Dy 6 0 6(0/0/0) 6(0/1/0)
+ ASR Dx,Dy 10 0 10(0/0/0) 10(0/1/0)
* ASR Mem by 1 0 0 4(0/0/1) 4(0/1/1)

ROd #〈data〉,Dy 4 0 6(0/0/0) 6(0/1/0)
ROd Dx,Dy 6 0 8(0/0/0) 8(0/1/0)

* ROd Mem by 1 0 0 6(0/0/1) 6(0/1/1)
ROXd Dn 10 0 12(0/0/0) 12(0/1/0)

* ROXd Mem by 1 0 0 4(0/0/0) 4(0/1/0)

Instruction Execution Timing

11-46 MC68030 USER’S MANUAL MOTOROLA

11.6.13 Bit Manipulation Instructions

The bit manipulation instruction table indicates the number of clock periods needed for the
processor to perform the specified bit operation on the given addressing mode. Footnotes
indicate when it is necessary to account for the appropriate effective address time. For
instruction-cache case and for no-cache case, the total number of clock cycles is outside the
parentheses. The number of read, prefetch, and write cycles is given inside the parentheses
as (r/p/w). The read, prefetch, and write cycles are included in the total clock cycle number.

All timing data assumes two-clock reads and writes.

 * Add Fetch Effective Address Time
Add Fetch Immediate Effective Address Time

Instruction Head Tail I-Cache Case No-Cache Case
BTST #〈data〉,Dn 4 0 4(0/0/0) 4(0/1/0)
BTST Dn,Dn 4 0 4(0/0/0) 4(0/1/0)

BTST #〈data〉,Mem 0 0 4(0/0/0) 4(0/1/0)
* BTST Dn,Mem 0 0 4(0/0/0) 4(0/1/0)

BCHG #〈data〉,Dn 6 0 6(0/0/0) 6(0/1/0)
BCHG Dn,Dn 6 0 6(0/0/0) 6(0/1/0)

BCHG #〈data〉,Mem 0 0 6(0/0/1) 6(0/1/1)
* BCHG Dn,Mem 0 0 6(0/0/1) 6(0/1/1)

BCLR #〈data〉,Dn 6 0 6(0/0/0) 6(0/1/0)
BCLR Dn,Dn 6 0 6(0/0/0) 6(0/1/0)

BCLR #〈data〉,Mem 0 0 6(0/0/1) 6(0/1/1)
* BCLR Dn,Mem 0 0 6(0/0/1) 6(0/1/1)

BSET #〈data〉,Dn 6 0 6(0/0/0) 6(0/1/0)
BSET Dn,Dn 6 0 6(0/0/0) 6(0/1/0)

BSET #〈data〉,Mem 0 0 6(0/0/1) 6(0/1/1)
* BSET Dn,Mem 0 0 6(0/0/1) 6(0/1/1)

Instruction Execution Timing

MOTOROLA MC68030 USER’S MANUAL 11-47

11.6.14 Bit Field Manipulation Instructions

The bit field manipulation instruction table indicates the number of clock periods needed for
the processor to perform the specified bit field operation using the given addressing mode.
Footnotes indicate when it is necessary to account for the appropriate effective address
time. For instruction-cache case and for no-cache case, the total number of clock cycles is
outside the parentheses. The number of read, prefetch, and write cycles is given inside the
parentheses as (r/p/w). The read, prefetch, and write cycles are included in the total clock
cycle number.

All timing data assumes two-clock reads and writes.

*Add Calculate Immediate Effective Address Time
NOTE: A bit field of 32 bits may span 5 bytes that require two operand cycles to access or may span 4 bytes that

require only one operand cycle to access.

Instruction Head Tail I-Cache Case
No-Cache

Case
BFTST Dn 8 0 8(0/0/0) 8(0/1/0)

* BFTST Mem (<5 Bytes) 6 0 10(1/0/0) 10(1/1/0)
* BFTST Mem (5 Bytes) 6 0 14(2/0/0) 14(2/1/0)

BFCHG Dn 14 0 14(0/0/0) 14(0/1/0)
* BFCHG Mem (<5 Bytes) 6 0 14(1/0/1) 14(1/1/1)
* BFCHG Mem (5 Bytes) 6 0 22(2/0/2) 22(2/1/2)

BFCLR Dn 14 0 14(0/0/0) 14(0/1/0)
* BFCLR Mem (<5 Bytes) 6 0 14(1/0/1) 14(1/1/1)
* BFCLR Mem (5 Bytes) 6 0 22(2/0/2) 22(2/1/2)

BFSET Dn 14 0 14(0/0/0) 14(0/1/0)
* BFSET Mem (<5 Bytes) 6 0 14(1/0/1) 14(1/1/1)
* BFSET Mem (5 Bytes) 6 0 22(2/0/2) 22(2/1/2)

BFEXTS Dn 10 0 10(0/0/0) 10(0/1/0)
* BFEXTS Mem (<5 Bytes) 6 0 12(1/0/0) 12(1/1/0)
* BFEXTS Mem (5 Bytes) 6 0 18(2/0/0) 18(2/1/0)

BFEXTU Dn 10 0 10(0/0/0) 10(0/1/0)
* BFEXTU Mem (<5 Bytes) 6 0 12(1/0/0) 12(1/1/0)
* BFEXTU Mem (5 Bytes) 6 0 18(2/0/0) 18(2/1/0)

BFINS Dn 12 0 12(0/0/0) 12(0/1/0)
* BFINS Mem (<5 Bytes) 6 0 12(1/0/1) 12(1/1/1)
* BFINS Mem (5 Bytes) 6 0 18(2/0/2) 18(2/1/2)

BFFFO Dn 20 0 20(0/0/0) 20(0/1/0)
* BFFFO Mem (<5 Bytes) 6 0 22(1/0/0) 22(1/1/0)
* BFFFO Mem (5 Bytes) 6 0 28(2/0/0) 28(2/1/0)

Instruction Execution Timing

11-48 MC68030 USER’S MANUAL MOTOROLA

11.6.15 Conditional Branch Instructions

The conditional branch instruction table indicates the number of clock periods needed for
the processor to perform the specified branch on the given branch size, with complete
execution times given. No additional tables are needed to calculate total effective execution
time for these instructions. For instruction-cache case and for no-cache case, the total
number of clock cycles is outside the parenthees. The number of read, prefetch, and write
cycles is given inside the parentheses as (r/p/w). The read, prefetch, and write cycles are
included in the total clock cycle number.

All timing data assumes two-clock reads and writes.

Instruction Head Tail I-Cache Case
No-Cache

Case
Bcc (Taken) 6 0 6(0/0/0) 8(0/2/0)
Bcc.B (Not Taken) 4 0 4(0/0/0) 4(0/1/0)
Bcc.W (Not Taken) 6 0 6(0/0/0) 6(0/1/0)
Bcc.L (Not Taken) 6 0 6(0/0/0) 8(0/2/0)
DBcc (cc = False, Count Not Expired) 6 0 6(0/0/0) 8(0/2/0)
DBcc (cc = False, Count Expired) 10 0 10(0/0/0) 13(0/3/0)
DBcc (cc = True) 6 0 6(0/0/0) 8(0/1/0)

Instruction Execution Timing

MOTOROLA MC68030 USER’S MANUAL 11-49

11.6.16 Control Instructions

The control instruction table indicates the number of clock periods needed for the processor
to perform the specified operation. Footnotes indicate when it is necessary to account for
the appropriate effective address time. For instruction-cache case and for no-cache case,
the total number of clock cyclces is outside the parentheses. The number of read, prefetch,
and write cycles is given inside the parentheses as (r/p/w). The read, prefetch, and write
cycles are included in the total clock cycle number.

All timing data assumes two-clock reads and writes.

+ Indicates Maximum Time
Add Fetch Immediate Address Time
* Add Fetch Effective Address Time

Add Calculate Immediate Address Time
** Add Calculate Effective Address Time
% Add Jump Effective Address Time

Instruction Head Tail I-Cache Case
No-Cache

Case
ANDI to SR 4 0 12(0/0/0) 14(0/2/0)
EORI to SR 4 0 12(0/0/0) 14(0/2/0)
ORI to SR 4 0 12(0/0/0) 14(0/2/0)
ANDI to CCR 4 0 12(0/0/0) 14(0/2/0)
EORI to CCR 4 0 12(0/0/0) 14(0/2/0)
ORI to CCR 4 0 12(0/0/0) 14(0/2/0)
BSR 2 0 6(0/0/1) 9(0/2/1)

CAS (Successful Compare) 1 0 13(1/0/1) 13(1/1/1)
CAS (Unsuccessful Compare) 1 0 11(1/0/0) 11(1/1/0)
+ CAS2 (Successful Compare) 2 0 24(2/0/2) 26(2/2/2)
+ CAS2 (Unsuccessful Compare) 2 0 24(2/0/0) 24(2/2/0)

CHK Dn,Dn (No Exception) 8 0 8(0/0/0) 8(0/1/0)
+ CHK Dn,Dn(Exception Taken) 4 0 28(1/0/4) 30(1/3/4)
* CHK EA,Dn (No Exception) 0 0 8(0/0/0) 8(0/1/0)
* + CHK EA,Dn (Exception Taken) 0 0 28(1/0/4) 30(1/3/4)
+ CHK2 Mem,Rn (No Exception) 2 0 18(1/0/0) 18(1/1/0)
+ CHK2 Mem,Rn (Exception Taken) 2 0 40(2/0/4) 42(2/3/4)
% JMP 4 0 4(0/0/0) 6(0/2/0)
% JSR 0 0 4(0/0/1) 7(0/2/1)
** LEA 2 0 2(0/0/0) 2(0/1/0)

LINK.W 0 0 4(0/0/1) 5(0/1/1)
LINK.L 2 0 6(0/0/1) 7(0/2/1)
NOP 0 0 2(0/0/0) 2(0/1/0)

** PEA 0 2 4(0/0/1) 4(0/1/1)
RTD 2 0 10(1/0/0) 12(1/2/0)
RTR 1 0 12(2/0/0) 14(2/2/0)
RTS 1 0 9(1/0/0) 11(1/2/0)
UNLK 0 0 5(1/0/0) 5(1/1/0)

Instruction Execution Timing

11-50 MC68030 USER’S MANUAL MOTOROLA

11.6.17 Exception-Related Instructions and Operations

The exception-related instruction and operation table indicates the number of clock periods
needed for the processor to perform the specified exception-related action. No additional
tables are needed to calculate total effective execution time for these operations. For
instruction-cache case and for no-cache case, the total number of clock cycles is outside the
parentheses. The number of read, prefetch, and write cycles is given inside the parentheses
as (r/p/w). The read, prefetch, and write cycles are included in the total clock cycle number.

All timing data assumes two-clock reads and writes.

Instruction Head Tail I-Cache Case
No-Cache

Case
BKPT 1 0 9(1/0/0) 9(1/0/0)
Interrupt (I-Stack) 0 0 23(2/0/4) 24(2/2/4)
Interrupt (M-Stack) 0 0 33(2/0/8) 34(2/2/8)
RESET Instruction 0 0 518(0/0/0) 518(0/1/0)
STOP 0 0 8(0/0/0) 8(0/2/0)
TRACE 0 0 22(1/0/5) 24(1/2/5)
TRAP #n 0 0 18(1/0/4) 20(1/2/4)
Illegal Instruction 0 0 18(1/0/4) 20(1/2/4)
A-Line Trap 0 0 18(1/0/4) 20(1/2/4)
F-Line Trap 0 0 18(1/0/4) 20(1/2/4)
Privilege Violation 0 0 18(1/0/4) 20(1/2/4)
TRAPcc (Trap) 2 0 22(1/0/5) 24(1/2/5)
TRAPcc (No Trap) 4 0 4(0/0/0) 4(0/1/0)
TRAPcc.W (Trap) 5 0 24(1/0/5) 26(1/3/5)
TRAPcc.W (No Trap) 6 0 6(0/0/0) 6(0/1/0)
TRAPcc.L (Trap) 6 0 26(1/0/5) 28(1/3/5)
TRAPcc.L (No Trap) 8 0 8(0/0/0) 8(0/2/0)
TRAPV (Trap) 2 0 22(1/0/5) 24(1/2/5)
TRAPV (No Trap) 4 0 4(0/0/0) 4(0/1/0)

Instruction Execution Timing

MOTOROLA MC68030 USER’S MANUAL 11-51

11.6.18 Save and Restore Operations

The save and restore operation table indicates the number of clock periods needed for the
processor to perform the specified state save or to return from exception, with complete
execution times and stack length given. No additional tables are needed to calculate total
effective execution time for these operations. For instruction-cache case and for no-cache
case, the total number of clock cycles is outside the parentheses. The number of read,
prefetch, and write cycles is given inside the parentheses as (r/p/w). The read, prefetch, and
write cycles are included in the total clock cycle number.

All timing data ssumes two-clock reads and writes.

11.7 ADDRESS TRANSLATION TREE SEARCH TIMING

The time required for a search of the address translation tree depends on the configuration
of the tree structure and the descriptors in the tree, the states of the used (U) and modified
(M) bits in the descriptors, bus cycle time, and other factors. The large number of variables
involved implies that search time can best be calculated by a program. To determine the
time required for the MC68030 to perform the table search for a specific configuration, the
following interactive program can be used. It is a shell script suitable for use with sh(1) on
either UNIX System V or BSD 4.2. To use the program, run the script and answer the
questions about the system configuration and current state. The values shown in square
brackets at the ends of the question lines are the default values that the program uses when
carriage returns are entered.

The shell script assumes that the data bus between the MC68030 and memory is 32 bits
wide. To calculate the search time for a narrower bus, enter the appropriate multiple of the
bus cycle time in response to the bus cycle time prompt. Use the time required for two bus
cycles in the case of a 16-bit data bus. Use the time required for four bus cycles in the case
of an 8-bit data bus.

UNIX is a registered trademark of AT&T Bell Laboratories.

Operation Head Tail I-Cache Case
No-Cache

Case
Bus Cycle Fault (Short) 0 0 36(1/0/10) 38(1/2/10)
Bus Cycle Fault (Long) 0 0 62(1/0/24) 64(1/2/24)
RTE (Normal Four Word) 1 0 18(4/0/0) 20(4/2/0)
RTE (Six Word) 1 0 18(4/0/0) 20(4/2/0)
RTE (Throwaway) 1 0 12(4/0/0) 12(4/0/0)
RTE (Coprocessor) 1 0 26(7/0/0) 26(7/2/0)
RTE (Short Fault) 1 0 36(10/0/0) 26(10/2/0)
RTE (Long Fault) 1 0 76(25/0/0) 76(25/2/0)

Instruction Execution Timing

11-52 MC68030 USER’S MANUAL MOTOROLA

The times provided by this program include all phases of the translation tree search. With
various mask versions of the MC68030, times may differ slightly from those calculated by
the program.

(UNABLE TO LOCATE ART)

Instruction Execution Timing

MOTOROLA MC68030 USER’S MANUAL 11-53

(UNABLE TO LOCATE ART)

Instruction Execution Timing

11-54 MC68030 USER’S MANUAL MOTOROLA

(UNABLE TO LOCATE ART)

Instruction Execution Timing

MOTOROLA MC68030 USER’S MANUAL 11-55

(UNABLE TO LOCATE ART)

Instruction Execution Timing

11-56 MC68030 USER’S MANUAL MOTOROLA

The following table gives some sample times obtained using the shell script. Each row of the
table indicates a translation table configuration. The identifier on each row consists of five
positions. Each position may have either an "x", meaning that there is no table at the level;
an "S", meaning that the table at the level is composed of short-format descriptors; or an "L",
meaning that the table at the level is composed of long-format descriptors. The format of the
entries is:

Each entry in the table consists of three numbers that give the number of clock cycles, the
number of bus reads, and the number of bus writes required for a table search. An RMC
cycle to set the U bit is counted as one read and one write. The format of the entires is:

The table is calculated based on the following assumptions:

1. Bus cycle time is two clock cycles,

2. There are no indirect descriptors,

3. There are no page descriptors encountered unexpectedly (no early termination), and

4. The memory port is 32 bits wide.

(UNABLE TO LOCATE ART)

Table
Format

All U and M Bits
Must be Set

Page U and M Bits
Only Must be Set

No U and M Bits
Must be Set

LLxxx 41/4/2 37/4/1 35/4/0
LLLxx 53/6/3 45/6/1 43/6/0
LLLLx 65/8/4 53/8/1 51/8/0
LLLLL 77/10/5 61/10/1 59/10/0
SSxxx 37/2/2 33/2/1 31/2/0
SSSxx 46/3/3 38/3/1 36/3/0
SSSSx 55/4/4 43/4/1 41/4/0
SSSSS 64/5/5 48/5/1 46/5/0
xSSxx 39/2/2 35/2/1 33/2/0

XX XX/ /XX

FUNCTION CODE TABLE

XX/XX/

LEVEL A TABLE

LEVEL B TABLE

LEVEL C TABLE

LEVEL D TABLE

XX XX XX/ /

 NUMBER OF CLOCK CYCLES

NUMBER OF READ BUS CYCLES

NUMBER OF WRITE BUS CYCLES

Instruction Execution Timing

MOTOROLA MC68030 USER’S MANUAL 11-57

11.7.1 MMU Effective Address Calculation

The calculate effective address table for MMU instructions lists the number of clock periods
needed for the processor to calculate various effective addresses. Fetch time is only
included for the first level of indirection on memory indirect addressing modes. The total
number of clock cycles is outside the parentheses. This total includes the number of read,
prefetch, and write cycles, which are shown inside the parentheses as (r/pr/w).

xSLxx 40/3/2 36/3/1 34/3/0
xLSxx 42/3/2 38/3/1 36/3/0
xLLxx 43/4/2 39/4/1 37/4/0
xSSSx 48/3/3 40/3/1 38/3/0
xSSLx 49/4/3 41/4/1 39/4/0
xSLSx 51/4/3 43/4/1 41/4/0
xSLLx 52/5/3 44/5/1 44/5/0
xLSSx 51/4/3 43/4/1 41/4/0
xLSLx 52/5/3 44/5/1 42/5/0
xLLSx 54/5/3 46/5/1 44/5/0
xLLLx 55/6/3 47/6/1 45/6/0

Address Mode Head Tail I-Cache Case
No-Cache

Case
(An) 4+op head 0 4(0/0/0) 4(0/1/0)
(d16,An) 4+op head 0 4(0/0/0) 4(0/1/0)

(xxx).W 4+op head 0 4(0/0/0) 4(0/1/0)
(xxx).L 6+op head 0 6(0/0/0) 6(0/2/0)
(d8,An,Xn) 4+op head 0 4(0/0/0) 4(0/1/0)

FULL FORMAT EXTENSION WORD(S)

(d16,An) 4 0 8(0/0/0) 8(0/2/0)

(d16,An,Xn) 4 0 8(0/0/0) 8(0/2/0)

([d16,An]) 4 0 12(1/0/0) 12(1/2/0)

([d16,An],Xn) 4 0 12(1/0/0) 12(1/2/0)

([d16,An],d16) 2 0 12(1/0/0) 12(1/2/0)

([d16,An],Xn,d16) 4 0 12(1/0/0) 12(1/2/0)

([d16,An],d32) 4 0 14(1/0/0) 14(1/3/0)

([d16,An],Xn,d32) 4 0 14(1/0/0) 14(1/3/0)

(B) 8+op head 0 8(0/0/0) 8(0/1/0)
(d16,B) 6 0 10(0/0/0) 10(0/2/0)

(d32,B) 6 0 16(0/0/0) 16(0/2/0)

([B]) 6 0 12(1/0/0) 12(1/1/0)
([B],I) 6 0 12(1/0/0) 12(1/1/0)
([B],d16) 6 0 12(1/0/0) 12(1/2/0)

([B],I,d16) 6 0 12(1/0/0) 12(1/2/0)

([B],d32) 6 0 14(1/0/0) 14(1/2/0)

([B],I,d32) 6 0 14(1/0/0) 14(1/2/0)

([d16,B]) 6 0 14(1/0/0) 14(1/2/0)

([d16,B],I) 6 0 14(1/0/0) 14(1/2/0)

Instruction Execution Timing

11-58 MC68030 USER’S MANUAL MOTOROLA

([d16,B],d16) 6 0 14(1/0/0) 14(1/2/0)

([d16,B],I,d16) 6 0 14(1/0/0) 14(1/2/0)

([d16,B],I,d32) 6 0 16(1/0/0) 16(1/3/0)

FULL FORMAT EXTENSION WORD(S)

Instruction Execution Timing

MOTOROLA MC68030 USER’S MANUAL 11-59

11.7.1 MMU Effective Address Calculation (Continued)

B = Base address; O, An, Xn, An+Xn. Form does not affect timing.
I = Index; O, Xn
*No separation on effective address and operation in timing. Head and tail are the operation's.
NOTE: Xn cannot be in B and I at the same time. Scaling and size of Xn do not affect timing.

Address Mode Head Tail I-Cache Case No-Cache Case

FULL FORMAT EXTENSION WORD(S)

([d32,B]) 6 0 20(1/0/0) 20(1/2/0)

([d32,B],I) 6 0 20(1/0/0) 20(1/2/0)

([d32,B],d16) 6 0 20(1/0/0) 20(1/3/0)

([d32,B],I,d16) 6 0 20(1/0/0) 20(1/3/0)

([d32,B],d32) 6 0 22(1/0/0) 22(1/3/0)

([d32,B],I,d32) 6 0 22(1/0/0) 22(1/3/0)

Instruction Execution Timing

11-60 MC68030 USER’S MANUAL MOTOROLA

11.7.2 MMU Instruction Timing

The MMU instruction timing table lists the numbers of clock periods needed for the MMU to
perform the MMU instructions. The total number of clock cycles is outside the parentheses.
It includes the numbers of read, prefetch, and write cycles, which are shown inside the
parentheses as (r/pr/w).

NOTES:
1. Attempt to load invalid root pointer.
2. Translation enabled.
3. Number is maximum, assuming valid page size but TIx fields do not add up to 32. Translation enabled.
4. Translation disabled.
 * Add the appropriate effective address calculation time.
 ** Add the appropriate effective address calculation time and the table search time.
*** Number given is the maximum for a six-level table (FC lookup, a, b, c, and d levels with indirect level, all long

descriptors).

Instruction Head Tail I-Cache Case No-Cache Case
PMOVE (from CRP, SRP)* 0 0 4(0/0/2) 5(0/1/2)
PMOVE (to CRP, SRP, valid)* 0 0 12(2/0/0) 14(2/2/0)

PMOVE (to CRP, SRP, invalid)1* 0 0 28(3/0/4) 30(3/2/4)

PMOVE (from TT0, TT1)* 0 0 8(0/0/1) 8(0/1/1)
PMOVE (to TT0, TT1)* 0 0 12(1/0/0) 14(1/2/0)
PMOVE (from MMUSR)* 2 0 4(0/0/1) 5(0/1/1)
PMOVE (to MMUSR)* 0 0 6(1/0/0) 6(1/1/0)
PMOVE (from TC)* 2 0 4(0/0/1) 5(0/1/1)

PMOVE (to TC, valid)2* 0 0 38(1/0/0) 40(1/2/0)

PMOVE (to TC, invalid)3* 0 0 56(2/0/4) 58(2/2/4)

PMOVE (to TC)4* 0 0 14(1/0/0) 16(1/2/0)

PFLUSHA 0 0 12(0/0/0) 14(0/2/0)
PFLUSH (fc),#〈mask〉 (fc is immediate or data register) 0 0 16(0/0/0) 18(0/2/0)
PFLUSH (fc),#〈mask〉 (fc is in SFC or DFC register) 0 0 20(0/0/0) 22(0/2/0)
PFLUSH (fc),#〈mask〉,〈ea〉 (fc is immediate or data register)* 0 0 16(0/0/0) 18(0/2/0)
PFLUSH (fc),#〈mask〉,〈ea〉 (fc is in SFC or DFC register)* 0 0 20(0/0/0) 22(0/2/0)
PLOAD[R:W] (fc),〈ea〉 (fc is immediate or data register)** 0 0 8(0/0/0) 10(0/2/0)
PLOAD[R:W] (fc),〈ea〉 (fc is in SFC or DFC register)** 0 0 12(0/0/0) 14(0/2/0)
PTEST[R:W] (fc),〈ea〉,#6 * *** 0 1 88(12/0/0) 88(12/1/0)
PTEST[R:W] (fc),〈ea〉,#0* 0 0 22(0/0/0) 22(0/1/0)

Instruction Execution Timing

MOTOROLA MC68030 USER’S MANUAL 11-61

11.8 INTERRUPT LATENCY

In real-time systems, the response time required for a processor to service an interrupt is a
very important factor pertaining to overall system performance. Processors in the M68000
Family support asynchronous assertion of interrupts and begin processing them on
subsequent instruction boundaries. The average interrupt latency is quite short, but the
maximum latency is often critical because real-time interrupts cannot require servicing in
less than the maximum interrupt latency. The maximum interrupt latency for the MC68030
alone is approximately 200 clock cycles (for the MOVEM.L ([d32,An],Xn,d32), D0-D7/A0-A7
instruction where the last data fetch is aborted with a bus error), but when the MMU is
enabled, some operations can take several times longer to execute.

Interrupt latency in systems using the MMU is affected by the length of the main processor
instructions, the address translation tree configuration, the number of translation tree
searches required by the instructions, the access time of main memory, and the width of the
data bus connecting the MC68030 to main memory. It is important to note that the address
translation tree configuration is under software control and can strongly affect the system
interrupt latency. The maximum interrupt latency for a given system configuration can be
computed by adding the length of the longest main processor instruction to the time required
for the maximum number of translation tree searches that the instruction could require. For
the MC68030 microprocessor, one instruction of particular interest is a memory-to-memory
move with memory indirect addressing for both the source and destination, with all of the
code and data items crossing page boundaries. The assembler syntax for this instruction is:

MOVE.L (od,[bd,An,Rm]),(od,[bd,An,Rm])

This instruction can cause ten address translation tree searches: two for the instruction
stream, two for the source indirect address, two for the destination indirect address, two for
the operand fetch, and two for the destination write. System software can reduce the
maximum number of translation searches by placing additional restrictions on generated
code. For example, if the language translators in the system only generate long words
aligned on long-word boundaries, the indirect address and operands can cause only one
translation search each. This reduces the number of searches for the instruction to a
maximum of six.

Instruction Execution Timing

11-62 MC68030 USER’S MANUAL MOTOROLA

11.9 BUS ARBITRATION LATENCY

In a system that uses the MMU, the bus arbitration latency is affected by several factors.
The MC68030 does not relinquish the physical bus while it is performing a read-modify-write
operation. Since the address translation search is an extended read-modify-write operation,
the no-cache-case latency is incurred by the longest address translation search required by
the system.

Another bus arbitration delay occurs when a coprocessor or other device delays or fails to
assert DSACKx or STERM signals to terminate a bus cycle. The maximum delay in this case
is undefined; it depends on the length of the delay in asserting the signals.

MOTOROLA

MC68030 USER’S MANUAL

12-1

SECTION 12
APPLICATIONS INFORMATION

This section provides guidelines for using the MC68030. First, it discusses the requirements
for adapting the MC68030 to MC68020 designs. Then, it describes the use of the MC68881
and MC68882 coprocessors with the MC68030. The byte select logic is described next,
followed by memory interface information. A description of external caches, the use of the
STATUS and REFILL signals, and power and ground considerations complete the section.

12.1 ADAPTING THE MC68030 TO MC68020 DESIGNS

Perhaps the easiest way to first utilize the MC68030 is in a system designed for the
MC68020. This is possible due to the complete compatibility of the asynchronous buses of
the MC68020 and MC68030. This section describes how to configure an adapter for the
MC68030 to allow insertion into an existing MC68020-based system. Software and
architectural differences between the two processors are also discussed. The need for an
adapter is absolute because the MC68020 and MC68030 are NOT pin compatible. Use of
the adapter board provides the immediate capability for evaluating the programmer's model
and instruction set of the MC68030 and for developing software to utilize the MC68030's
additional enhanced features. This adapter board also provides a relatively simple method
for increasing the performance of an existing MC68020 or MC68020/MC68851 system by
insertion of a more advanced 32-bit MPU with an on-chip data cache and an on-chip MMU.
Since the adapter board does not support of the synchronous bus interface of the MC68030,
performance measurements for the MC68030 used in this manner may be misleading when
compared to a system designed specifically for the MC68030.

The adapter board plugs into the CPU socket of an MC68020 target system, drawing power,
ground, and clock signals through the socket and running bus cycles in a fashion compatible
with the MC68030. The only support hardware necessary is a single 1K-ohm pullup resistor
and two capacitors for decoupling power and ground on the adapter board.

Applications Information

12-2

MC68030 USER’S MANUAL

MOTOROLA

12.1.1 Signal Routing

Figure 12-1 shows the complete schematic for routing the signals of the MC68030 to the
MC68020 header. All signals common to both processors are directly routed to the
corresponding signal of the other processor. The signals on the MC68030 that do not have
a compatible signal on the MC68020 are either pulled up or left unconnected:

Pulled Up No Connect

TERM STATUS

CBACK REFILL

CIIN CBREQ

MMUDIS CIOUT

12.1.2 Hardware Differences

Before enabling the on-chip caches of the MC68030, an important system feature must be
checked. Because of the MC68030 cache organization and implementation, cachable read
bus cycles are expected to transfer the entire port width of data (as indicated by the DSACKx
encoding), regardless of how many bytes are actually requested by the SIZx pins. The
MC68020 did not have this requirement, and system memory banks or peripherals may or
may not supply the amount of data required by the MC68030. If the target system does not
supply the full port width with valid data for any cachable instruction or data access the user
should either designate that area of memory as noncachable (with the MMU) or not enable
the corresponding on-chip cache(s). In some systems, modifying the target system
hardware may also be an option; frequently, the byte select logic is generated by a single
PAL, which might easily be replaced or reprogrammed to select all bytes during read cycles
from multibyte ports.

The HALT input-only signal of the MC68030 is slightly different than the bidirectional HALT
signal of the MC68020. However, this should not cause any problems beyond eliminating
an indication to the external system (e.g., lighting an LED) that the processor has halted due
to a double bus fault.

When used in a system originally designed for both an MC68020 and an MC68851, the
MC68851 may be left in the system or removed (and replaced with a jumpered header).
However, if left in the system, the MC68851 is not accessible to the programmer with the
M68000 coprocessor interface. All MMU instructions access the MC68030's on-chip MMU.
This is true even if the MC68030's MMUDIS signal is asserted. The benefit in removing the
MC68851 is that the minimum asynchronous bus cycle time to the physical bus is reduced
from four clock cycles to three.

Applications Information

MOTOROLA

MC68030 USER’S MANUAL

12-3

Figure 12-1. Signal Routing for Adapting the MC68030 to MC68020 Designs

STATUS
REFILL

IPL2
IPL1
IPL0
IPEND
AVEC

CLK

RESET

ECS
OCS

CDIS
CIOUT
CBREQ
CBACK
CIIN

STERM

BR
BG
BGACK

HALT
BERR

DSACK1
DSACK0

SIZ0
SIZ1

RMC
DBEN
R/W
DS
AS

D31–D0

FC2–FC0

A31–A0

IPL2
IPL1
IPL0

IPEND
AVEC

CLK

RESET

ECS
OCS

CDIS

BR
BG

BGACK

HALT
BERR

DSACK1
DSACK0

SIZ0
SIZ1

RMC
DBEN

R/W
DS
AS

D31–D0

FC2–FC0

A31–A0

MC68EC030 MC68020 HEADER

1k

Applications Information

12-4

MC68030 USER’S MANUAL

MOTOROLA

If the MC68851 is removed and replaced with a jumpered header, the following MC68851
signals may need special system-specific consideration: CLI, RMC, LBRO, LBG, LBGACK,
and LBGI. During translation table searches, the MC68851 asserts the cache load inhibit
(CLI) signal but not RMC; whereas, the MC68030 asserts RMC but not CIOUT. In simple
MC68020/MC68851 systems without logical bus arbitration or logical caches, the
MC68851's jumper can have the following signals connected together:

LAS

↔

 PAS

LBRO

↔

 PBR

LBGI

↔

 PBG

LBGACK

↔

 PBGACK

LA(8-31)

↔

 PA(8-31)

CLI

↔

 no connect or LAS

CLI has two connection options because some systems may use CLI to qualify the
occurrence of CPU space cycles since the MC68851's PAS does not assert.

12.1.3 Software Differences

The instruction cache control bits in the cache control register (CACR) of the MC68030 are
in the identical bit positions as the corresponding bits as the MC68020's CACR. However,
the MC68030 has additional control bits for burst enable and data cache control. Because
this adapter board does not support synchronous bus cycles (and thus burst mode),
enabling burst mode through the CACR does not affect system operation in any way. Refer
to

Section 6 On-Chip Cache Memories

 for more information on the bit positions and
functions of the CACR bits.

When used in a system originally designed for an MC68020, a difference a programmer
must be aware of is that the MC68030 does not support the CALLM and RTM instructions
of the MC68020. If code is executed on the MC68030 using either the CALLM or RTM
instructions, an unimplemented instruction exception is taken. If no MMU software
development capability is desired and the cache behavior described under hardware
differences is understood, the user may ignore the MC68030 MMU.

When the adapter is used in a system originally designed for the MC68020/MC68851 pair,
the software differences described below also apply. The MC68030's MMU offers a subset
of the MC68851 features. The features not supported by the MC68030 MMU are listed be-
low:

• On-chip breakpoint registers

• Task aliasing

• Instructions: PBcc, PDBcc, PRESTORE, PSAVE, PScc, PTRAPcc, PVALID

Applications Information

MOTOROLA

MC68030 USER’S MANUAL

12-5

Only control-alterable addressing modes are allowed for MMU instructions on the MC68030.

A feature new to the MC68030 MMU (and not on the MC68851) is the transparent
translation of two logical address blocks with the transparent translation registers. See

Section 9 Memory Management Unit

.

12.2 FLOATING-POINT UNITS

Floating-point support for the MC68030 is provided by the MC68881 floating-point
coprocessor and the MC68882 enhanced floating-point coprocessor. Both devices offer a
full implementation of the

IEEE Standard for Binary Floating-Point Arithmetic

(754). The
MC68882 is a pin and software-compatible upgrade of the MC68881, with an optimized
MPU interface that provides over 1.5 times the performance of the MC68881 at the same
clock frequency.

Both coprocessors provide a logical extension to the integer data processing capabilities of
the main processor. They contain a very high performance floating-point arithmetic unit and
a set of floating-point data registers that are utilized in a manner that is analagous to the use
of the integer data registers of the processor. The MC68881/MC68882 instruction set is a
natural extension of all earlier members of the M68000 Family and supports all of the
addressing modes and data types of the host MC68030. The programmer perceives the
MC68030/coprocessor execution model as if both devices are implemented on one chip. In
addition to supporting the full IEEE standard, the MC68881 and MC68882 provide a full set
of trigonometric and transcendental functions, on-chip constants, and a full 80-bit extended-
precision-real data format.

The interface of the MC68030 to the MC68881 or the MC68882 is easily tailored to system
cost/performance needs. The MC68030 and the MC68881/MC68882 communicate via
standard asynchronous M68000 bus cycles. All data transfers are performed by the main
processor at the request of the MC68881/MC68882; thus memory management, bus errors,
address errors, and bus arbitration function as if the MC68881/MC68882 instructions are
executed by the main processor. The floating-point unit and the processor may operate at
different clock speeds, and up to seven floating-point coprocessors may reside in an
MC68030 system simultaneously.

Figure 12-2 illustrates the coprocessor interface connection of an MC68881/MC68882 to an
MC68030 (uses entire 32-bit data bus). The MC68881/MC68882 is configured to operate
with a 32-bit data bus when both the A0 SIZE and pins are connected to V

CC

. Refer to the
MC68881UM/AD

MC68881/MC68882 Floating-Point Coprocessor User's Manual

for
configuring the MC68881/MC68882 for smaller data bus widths. Note that the MC68030
cache inhibit input (CIIN) signal is not used for the coprocessor interface because the
MC68030 does not cache data obtained during CPU space accesses.

Applications Information

12-6

MC68030 USER’S MANUAL

MOTOROLA

The chip select (CS) decode circuitry is asynchronous logic that detects when a particular
floating-point coprocessor is addressed. The MC68030 signals used by the logic include the
function code signals (FC=FC2), and the address lines (A13=A19). Refer to

Section 10
Coprocessor Interface Description

for more information concerning the encoding of these
signals. All or just a subset of these lines may be decoded depending on the number of
coprocessors in the system and the degree of redundant mapping allowed in the system.

Figure 12-2. 32-Bit Data Bus Coprocessor Connection

MC68EC030 MC68881/MC68882

CHIP
SELECT
DECODE

FC2–FC0

A31–A20
A19–A16
A15–A13

A12–A5
A4–A1

A0

 AS
DS

R/W

D31–D24
D23–D16
D15–D8

D7–D0

DSACK0
DSACK1

CIIN

MAIN CONTROLLER
CLOCK

CS

SIZE
A4–A1
A0

AS
DS
R/W

D31–D24
D23–D16
D15–D8
D7–D0

DSACK0
DSACK1

COPROCESSOR
CLOCK

VCC

VCC

Applications Information

MOTOROLA

MC68030 USER’S MANUAL

12-7

The major concern of a system designer is to design a CS interface that meets the AC
electrical specifications for both the MC68030 (MPU) and the MC68881/MC68882 (FPCP)
without adding unnecessary wait states to FPCP accesses. The following maximum
specifications (relative to CLK low) meet these objectives:

 t

CLK

 low to AS low

≤

(MPU Spec 1–MPU Spec 47A–FPCP Spec 19) (1)

 t

CLK

 low to CS low

≤

(MPU Spec 1–MPU Spec 47A–FPCP Spec 19) (2)

Even though requirement (1) is not met under worst case conditions, if the MPU AS is
loaded within specifications and the AS input to the FPCP is unbuffered, the requirement is
met under typical conditions. Designing the CS generation circuit to meet requirement (2)
provides the highest probability that accesses to the FPCP occur without unnecessary wait
states. A PAL 16L8 (see Figure 12-3) with a maximum propagation delay of 10 ns,
programmed according to the equations in Figure 12-4, can be used to generate CS. For a
25-MHz system,

t

CLK low to CS low is less than or equal to 10 ns when this design is used.
Should worst case conditions cause t

CLK

 low to AS low to exceed requirement (1), one wait
state is inserted in the access to the FPCP; no other adverse effect occurs. Figure 12-5
shows the bus cycle timing for this interface. Refer to MC68881UM/AD,

MC68881/MC68882
Floating-Point Coprocessor User's Manual

, for FPCP specifications.

The circuit that generates CS must meet another requirement. When a nonfloating-point
access immediately follows a floating-point access, CS (for the floating-point access) must
be negated before AS and DS (for the subsequent access) are asserted. The PAL circuit
previously described also meets this requirement.

For example, if a system has only one coprocessor, the full decoding of the ten signals
(FC0–FC2 and A13–A19) provided by the PAL equations in Figure 12-4 is not absolutely
necessary. It may be sufficient to use only FC0–FC1 and A16–A17. FC0–FC1 indicate when
a bus cycle is operating in either CPU space ($7) or user-defined space ($3), and A16–A17
encode CPU space type as coprocessor space ($2). A13–A15 can be ignored in this case
because they encode the coprocessor identification code (CpID) used to differentiate
between multiple coprocessors in a system. Motorola assemblers always default to a CpID
of $1 for floating-point instructions; this can be controlled with assembler directives if a
different CpID is desired or if multiple coprocessors exist in the system.

Applications Information

12-8

MC68030 USER’S MANUAL

MOTOROLA

12.3 BYTE SELECT LOGIC FOR THE MC68030

The architecture of the MC68030 allows it to support byte, word, and long-word operand
transfers to any 8-, 16-, or 32-bit data port regardless of alignment. This feature allows the
programmer to write code that is not bus-width specific. When accessed, the peripheral or
memory subsystem reports its actual port size to the processor, and the MC68030 then
dynamically sizes the data transfer accordingly, using multiple bus cycles when necessary.
Hardware designers also have the flexibility to choose implementations independent of
software prejudices. The following paragraphs describe the generation of byte select control
signals that enable the dynamic bus sizing mechanism, the transfer of differently sized
operands, and the transfer of misaligned operands to operate correctly.

The following signals control the MC68030 operand transfer mechanism:

• A1, A0 = Address lines. The most significant byte of the operand to be transferred is
addressed directly.

• SIZ1, SIZ0 = Transfer size. Output of the MC68030. These indicate the number of
bytes of an operand remaining to be transferred during a given bus cycle.

• R/W = Read/Write. Output of the MC68030. For byte select generation in MC68030
systems, R/W must be included in the logic if the data from the device is cach-
able.

Figure 12-3. Chip-Select Generation PAL

(UNABLE TO LOCATE ART)

Figure 12-4. PAL Equations

(UNABLE TO LOCATE ART)

Figure 12-5. Bus Cycle Timing Diagram

CLK
AS

FC2

FC1
FC0
A19
A18

A17
A16

GND

V
NC
NC

NC
NC
A13
A14

CLKD
CS
A15

CC

PAL 16L8
10 ns

Applications Information

MOTOROLA

MC68030 USER’S MANUAL

12-9

• DSACK1, DSACK0 = Data transfer and size acknowledge. Driven by an asynchronous
port to indicate the actual bus width of the port.

• STERM = Synchronous termination. Driven by a 32-bit synchronous port only.

The MC68030 assumes that 16-bit ports are situated on data lines D16–D31, and that 8-bit
ports are situated on data lines D24–D31. This ensures that the following logic works
correctly with the MC68030's on-chip internal-to-external data bus multiplexer. Refer to

Section 7 Bus Operation

 for more details on the dynamic bus sizing mechanism.

The need for byte select signals is best illustrated by an example. Consider a long-word
write cycle to an odd address in word-organized memory. The transfer requires three bus
cycles to complete. The first bus cycle transfers the most significant byte of the long word
on D16–D23. The second bus cycle transfers a word on D16–D31, and the last bus cycle
transfers the least significant byte of the original long word on D24–D31. In order not to
overwrite those bytes which are not used these transfers, a unique byte data strobe must be
generated for each byte when using devices with 16- and 32-bit port widths.

For noncachable read cycles and all write cycles, the required active bytes of the data bus
for any given bus transfer are a function of the size (SIZ0/SIZ1) and lower address (A0/A1)
outputs and are shown in Table 12-1. Individual strobes or select signals can be generated
by decoding these four signals for every bus cycle. Devices residing on 8-bit ports can utilize
data strobe (DS) alone since there is only one valid byte for any transfer.

During cachable read cycles, the addressed device must provide valid data over its full bus
width (as indicated by DSACKx or STERM). While instructions are always prefetched as
long-word-aligned accesses, data fetches can occur with any alignment and size. Because
the MC68030 assumes that the entire data bus port size contains valid data, cachable data
read bus cycles must provide as much data as signaled by the port size during a bus cycle.
To satisfy this requirement, the R/W signal must be included in the byte select logic for the
MC68030.

Figure 12-6 shows a block diagram of an MC68030 system with two memory banks. The
PAL provides memory-mapped byte select signals for an asynchronous 32-bit port and
unmapped byte select signals for other memory banks or ports. Figure 12-7 provides sample
equations for the PAL.

Applications Information

12-10

MC68030 USER’S MANUAL

MOTOROLA

The PAL equations and circuits presented here are not intended to be the optimal
implementation for every system. Depending on the CPU's clock frequency, memory
access times, and system architecture, different circuits may be required.

12.4 MEMORY INTERFACE

The MC68030 is capable of running three types of external bus cycles as determined by the
cycle termination and handshake signals (refer to

Section 7 Bus Operation

). These three
types of bus cycles are:

1. Asynchronous cycles, terminated by the DSACKx signals, have a minimum duration
of three processor clock periods in which up to four bytes are transferred.

2. Synchronous cycles, terminated by the STERM signal, have a minimum duration of
two processor clock periods in which up to four bytes are transferred.

3. Burst operation cycles, terminated by the STERM and CBACK signals, have a dura-
tion of as little as five processor clock periods in which up to four long words (16 bytes)
are transferred.

Table 12-1. Data Bus Activity for Byte, Word, and Long-Word Ports

TransferSi
ze SIZ1 SIZ0 A1 A0

Data Bus Active Sections
Byte (B) ;en Word (W) ;en Long-Word (L) Ports

D31-D24 D23-D16 D15-D8 D7-D0

Byte 0
0
0
0

1
11

1

0
0
1
1

0
1
0
1

BWL
B
BW
B

—
WL
—
W

—
—
L
—

—
—
—
L

Word 1
1
1
1

0
0
0
0

0
0
1
1

0
1
0
1

BWL
B
BW
B

WL
WL
W
W

—
L
L
—

—
—
L
L

Three Byte 1
1
1
1

1
1
1
1

0
0
1
1

0
1
0
1

BWL
B
BW
B

WL
WL
W
W

L
L
L
—

—
L
L
L

Long Word 0
0
0
0

0
0
0
0

0
0
1
1

0
1
0
1

BWL
B
BW
B

WL
WL
W
W

L
L
L
—

L
L
L
L

Applications Information

12-12

MC68030 USER’S MANUAL

MOTOROLA

Figure 12-6. Example MC68030 Byte Select PAL System Configuration

SY
N

C
H

R
O

N
O

U
S

M
O

D
E

AN
D

BU
R

ST
 M

O
D

E
C

O
N

TR
O

L
LO

G
IC

U
U

D
A

U
M

D
A

LM
D

A
LL

D
A

U
U

D
B

U
M

D
B

LM
D

B
LL

D
B

M
C

68
EC

03
0

PA
L1

6L
8

D
7–

D
0

D
15

–D
8

D
23

–D
16

D
31

–D
24

W
E

W
E

W
E

W
E

A3
1–

A2

32
-B

IT
 P

O
R

T

32
-B

IT
 B

U
R

ST
 M

O
D

E
PO

R
T

D
7–

D
0

D
15

–D
8

D
23

–D
16

D
31

–D
24

C
O

N
TR

O
L

AN
D

AD
D

R
ES

S

LL
D

A
LM

D
A

U
M

D
A

U
U

D
A

U
N

M
AP

PE
D

 B
YT

E
SE

LE
C

TS
 F

O
R

 O
TH

ER
32

-B
IT

 P
O

R
TS

C
PU

A1
,A

0

SI
Z0

SI
Z1 A0 A1 FC
0

FC
1

A3
1–

A0 AS R
/W

D
31

–D
0

Applications Information

MOTOROLA

MC68030 USER’S MANUAL

12-13

During read operations, M68000 processors latch data on the last falling clock edge of the
bus cycle, one-half clock before the bus cycle ends (burst mode is a special case). Latching
data here, instead of the next rising clock edge, helps to avoid data bus contention with the
next bus cycle and allows the MC68030 to receive the data into its execution unit sooner for
a net performance increase.

Write operations also use this data bus timing to allow data hold times from the negating
strobes and to avoid any bus contention with the following bus cycle. This usually allows the
system to be designed with a minimum of bus buffers and latches.

One of the benefits of the MC68030's on-chip caches is that the effect of external wait states
on performance is lessened because the caches are always accessed in fewer than “no wait
states” regardless of the external memory configuration. This feature makes the MC68030
(and MC68020) unique among other general-purpose microprocessors.

12.4.1 Access Time Calculations

The timing paths that are typically critical in any memory interface are illustrated and defined
in Figure 12-8. For burst transfers, the first long word transferred also uses these
parameters, but the subsequent transfers are different and are discussed in

12.4.2 Burst
Mode Cycles

.

The type of device that is interfaced to the MC68030 determines exactly which of the paths
is most critical. The address-to-data paths are typically the critical paths for static devices
since there is no penalty for initiating a cycle to these devices and later validating that access
with the appropriate bus control signal. Conversely, the address-strobe-to-data-valid path is
often most critical for dynamic devices since the cycle must be validated before an access
can be initiated. For devices that signal termination of a bus cycle before data is validated
(e.g., error detection and correction hardware and some external caches) to improve
performance, the critical path may be from the address or strobes to the assertion of BERR
(or BERR and HALT). Finally, the address-valid-to-DSACKx-or-STERM-asserted path is
most critical for very fast devices and external caches, since the time available between
when the address is valid and when DSACKx or STERM must be asserted to terminate the
bus cycle is minimal. Table 12-2 provides the equations required to calculate the various
memory access times assuming a 50-percent duty cycle clock.

(UNABLE TO LOCATE ART)

Figure 12-7. MC68030 Byte Select PAL Equations

Applications Information

12-14

MC68030 USER’S MANUAL

MOTOROLA

During asynchronous bus cycles, DSACK1 and DSACK0 are used to terminate the current
bus cycle. In true asynchronous operations, such as accesses to peripherals operating at a
different clock frequency, either or both signals may be asserted without regard to the clock,
and then data must be valid a certain amount of time later as defined by specification #31.
With a 16.67-MHz processor, this time is 50 ns after DSACKx asserts; with a 20.0-MHz
processor, this time is 43 ns after DSACK asserts (both numbers vary with the actual clock
frequency).

Figure 12-8. Access Time Computation Diagram

Parameter Description System Equation

a

b

c

d

e

f

g

h

Address Valid to DSACKx Asserted

Address Strobe Asserted to DSACKx Asserted

Address Valid to STERM Asserted

Address Strobe Asserted to STERM Asserted

Address Valid to BERR/HALT Asserted

Address Strobe Asserted to BERR/HALT Asserted

Address Valid to Data Valid

Address Strobe Asserted to Data Valid

t

AVDL

t

AVSL

t

SADL

t

SASL

t

AVBHL

t

SABHL

t

AVDV

t

SADV

12-1

2-2

2-3

2-4

2-5

2-6

2-7

2-8

MC68EC030
(40 MHz)

10-MHz
OSCILLATOR

CONTROLLER
CLOCK (40 MHz)

BUS CLOCKS
(20 MHz)

3

FIG 12-8
M

C
88

91
6

Applications Information

MOTOROLA

MC68030 USER’S MANUAL

12-15

where:
tX = Refers to AC Electrical Specification #X
t1 = The Clock Period
t2 = The Clock Low Time
t3 = The Clock High Time
t6 = The Clock High to Address Valid Time
t9 = he Clock Low to AS Low Delay
t27 = The Data-In to Clock Low Setup Time
t27A = The BERR/HALT to Clock Low Setup Time
t47A = The Asynchronous Input Setup Time
t60 = The Synchronous Input to CLK High Setup Time
N = The Total Number of Clock Periods in the Bus Cycle (Nonburst)

(N

≥

2 for Synchronous Cycles; N

≥

3 for Asynchronous Cycles)

However, many local memory systems do not operate in a truly asynchronous manner
because the memory control logic can either be related to the MC68030's clock or worst
case propagation delays are known; thus, asynchronous setup times for the DSACKx
signals can be guaranteed. The timing requirements for this pseudo-synchronous DSACKx
generation is governed by the equation for t

AVDL

.

Synchronous cycles use the STERM signal to terminate the current bus cycle. In bus cycles
of equal length, STERM has more relaxed timing requirements than DSACKx since an
additional 30 ns is available when comparing t

AVSL

(or t

SASL

) to t

AVDL

 (or t

SADL

). The only
additional restriction is that STERM must meet the setup and hold times as defined by
specifications #60 and #61, respectively, for all rising edges of the clock during a bus cycle.
The value for tSASL when the total number of clock periods (N) equals two in Table 12-2
requires further explanation. Because the calculated value of this access time (see Equation
12-4 of Table 12-2) is zero under certain conditions, hardware cannot always qualify STERM
with AS at all frequencies. However, such qualification is not a requirement for the
MC68030. STERM can be generated by the assertion of ECS, the falling edge of S0, or most
simply by the output(s) of an address decode or comparator logic. Note that other devices
in the system may require qualification of the access with AS since the MC68030 has the
capability to initiate bus cycles and then abort them before the assertion of AS.

Table 12-2. Memory Access Time Equations at 20 MHz

N=2 N=3 N=4 N=5 N=6

(12-1) t

AVDL

=(N-1)

•

t1–t2–t6–t47A
(12-2) t

SADL

=(N-2)t

•

1–t9–t47A
—
—

46 ns
26 ns

96 ns
76 ns

146 ns
126 ns

196 ns
176 ns

(12-3) t

AVSL

=(N-1)t

•

1–t6–t60
(12-4) t

SASL=(N-1)t•1–t3–t9–t60
21 ns
 1 ns

71 ns
51 ns

121 ns
101 ns

171 ns
151 ns

221 ns
201 ns

(12-5) tAVBHL=Nt•1;mst2–t6–t27A
(12-6) tSABHL=(N-1)t•1–t9–t27A

40 ns
20 ns

90 ns
70 ns

140 ns
120 ns

190 ns
170 ns

240 ns
220 ns

(12-7) tAVDV=Nt•1–t2–t6–t27
(12-8) tSADV=(N-1)t•1–t9–t27

46 ns
26 ns

96 ns
76 ns

146 ns
126 ns

196 ns
176 ns

246 ns
226 ns

Applications Information

12-16 MC68030 USER’S MANUAL MOTOROLA

Another way to optimize the CPU to memory access times in a system is to use a clock
frequency less than the rated maximum of the specific MC68030 device. Table 12-3
provides calculated tAVDV (see Equation 12-7 of Table 12-2) results for an MC68030RC16
and MC68030RC20 operating at various clock frequencies. If the system uses other clock
frequencies, the above equations can be used to calculate the exact access times.

12.4.2 Burst Mode Cycles
The memory access times for burst mode bus cycles follow the above equations for the first
access only. For the subsequent (second, third, and fourth) accesses, the memory access
time calculations depend on the architecture of the burst mode memory system.

Architectural tradeoffs include the width of the burst memory and the type of memory used.
If the memory is 128 bits wide, the subsequent operand accesses do not affect the critical
timing paths. For example, if a 3-1-1-1 burst accesses 128-bit-wide memory, the first access
is governed by the equations in Table 12-2 for N equal to three. The subsequent accesses
also use these values as a base but have additional clock periods added in. The second
access has one additional clock period, the third access has two additional clock periods,
and the fourth has three additional clock periods. Thus, the access time for the first cycle
determines the critical timing paths.

Table 12-3. Calculated tAVDV Values for Operation at Frequencies
Less Than or Equal to the CPU Maximum Frequency Rating

Equation 12-7 tAVDV MC68030RC20 MC68030RC25
Clocks Per BusCycle (N) and

Type
Wait

States
Clock at

16.67 MHz
Clock at
20 MHz

Clock at
16.67 MHz

Clock at
20 MHz

Clock at
25 MHz

2 Clock Synchronous 0 61 46 68 53
38
—

3 Clock Synchronous
3 Clock Asynchronous

1
0

121
121

96
96

128
128

103
103

78
78

4 Clock Synchronous
4 Clock Asynchronous

2
1

181
181

146
146

188
188

153
153

118
118

5 Clock Synchronous
5 Clock Asynchronous

3
2

241
241

196
196

248
248

203
203

158
158

6 Clock Synchronous
6 Clock Asynchronous

4
3

301
301

246
246

308
308

253
253

198
198

Applications Information

MOTOROLA MC68030 USER’S MANUAL 12-17

Memory that is 64 bits wide presents a compromise between the two configurations listed
above.

12.5 STATIC RAM MEMORY BANKS
When the MC68030 is operating at a high clock frequency, a no-wait-state external memory
system will most likely be composed of static RAMs. The following paragraphs discuss three
static memory banks, which may be used as shown or as a starting point for an external
cache design. The designs offer different levels of performance, bus utilization, and cost.

12.5.1 A Two-Clock Synchronous Memory Bank Using SRAMS
The MC68030 normally attains its highest performance when the external memory system
can support a two-clock synchronous bus protocol. This section describes a complete
memory bank containing 64K bytes that can operate with a 20-MHz MC68030 using two-
clock accesses. Also discussed are several options and minor alterations to reduce cost or
power consumption.

Figure 12-9 shows the complete memory bank and its connection to the MC68030. As
drawn, the required parts include:

(8) 16K•4 SRAMs, 35-ns access time with separate I/O pins

(4) 74F244 buffers

(2) 74F32 OR gates

(1) PAL16L8D (or equivalent)

The system must also provide any STERM consolidation circuitry as required (e.g., by the
presence of multiple synchronous memory banks or ports). In Figure 12-9, this consolidation
circuitry is shown as an AND gate.

The memory bank can be divided into three sections:

1. The byte select and address decode section (provided by the PAL),

2. The actual memory section (SRAMs), and

3. The buffer section.

Applications Information

12-18 MC68030 USER’S MANUAL MOTOROLA

The first section consists of two 74F32 OR gates, a 74F74 D-type flip-flop, and a PAL16L8D.
Example PAL equations are provided in Figure 12-10. The PAL generates six memory-
mapped signals; four byte select signals for write operations, a buffer control signal, and the
cycle termination signal. The byte select signals are only asserted during write operations
when the processor is addressing the 64K bytes contained in the memory bank, and then
only when the appropriate byte (or bytes) is being written to as indicated by the SIZ0, SIZ1,
A0, and A1 signals. The four signals, UUCS, UMCS, LMCS, and LLCS, control data bits
D24=D31, D16=D23, D8=D15, and D0=D7, respectively. AS is used to qualify the byte
select signals to avoid spurious writes to memory before the address is valid. During read
operations, the read chip select (RDCS) signal, qualified with AS, controls the data buffers
only (since the memory is already enabled with its E input grounded). The last signal
generated by the PAL is the TERM signal. As its equation shows, TERM consists of two
events: one for read cycles and the other for write cycles. For read cycles, TERM is an
address decode signal that is asserted whenever the address corresponds to the encoded
memory-mapped bank of SRAM. For write operations, a delayed form of AS (DAS) is used
to qualify the same address decode, which lengthens write operations to three clock cycles.
The DAS signal generation is delayed from the clock edge by running the clock signal
through two 74F32 OR gates before connecting to the 74F74 D-type flip-flop. This
guarantees that the maximum propagation delay to generate the TERM signal does not
violate the synchronous input hold time of the MC68030. By increasing write operation to
three clock cycles, the MC68030 can easily meet the specified data setup time to the
SRAMs before the negation of the write strobes (W). TERM is then connected to the
system's STERM consolidation circuity. The consolidation circuitry should have no more
than 15 ns of propagation delay. If the system has no other synchronous memory or ports,
TERM may be connected directly to STERM.

Figure 12-9. Example Two-Clock Read, Three-Clock Write Memory Bank

MC68EC030
(40 MHz)

20-MHz
OSCILLATOR

CONTROLLER
CLOCK (40 MHz)

BUS CLOCKS
(40 MHz)

3

M
C

88
91

6

FIG 12-9

Applications Information

MOTOROLA MC68030 USER’S MANUAL 12-19

Figure 12-10. Example PAL Equations for Two-Clock Memory Bank

CLK

A31-A0

FIG 12-10

S0 S1 S2 S0

AS

DSACK1/DSACK0

STERM

a c e g

b d f h

BERR, HALT

D31-D0

NOTE: This diagram illustrates access time calculations only. DSACK1/DSACK0 and STERM should never be asserted
 together during the same bus cycle.

Applications Information

12-20 MC68030 USER’S MANUAL MOTOROLA

The second section contains the memory devices. Eight devices are used, but some
designs may wish to increase this to support EDAC or to increase density. The most
important feature of the memory devices used in this design is the separate data-in and
data-out pins, which allow the SRAMs to be enabled before address decode is complete
without causing data bus contention. The enable pins on the SRAMs have been grounded
for both simplicity and improved memory access timing. If the designer wishes to include
some type of enable circuitry to take advantage of low bus utilization for lower power
consumption, the timing in this design will be preserved if the memory's E signal is asserted
before the falling edge of state S0 (at the same time as or before the address becomes
valid). Two possible enable circuits are shown in Figure 12-11.

The third section of the memory bank is the data buffers. The data buffers are shown as
74F244, but 74AS244s may also be used. The RDCS signal, qualified with AS, controls the
data buffers during read operations as described above.

To maximize performance, both read and write operations should be capable of completing
in two clock cycles. Figure 12-12 shows a two-clock read and write memory bank. The
required parts include:

(8) 16K*4 SRAMs, 25-ns access time with separate I/O pins

(4) 74F244 buffers

(2) 74F32 OR gates

(1) PAL16L8D (or equivalent)

(1) 74F74 D-type flip-flop

(2) 74F373 transparent latches

(1) 74AS21 AND gate

(1) 74F04 inverter

Figure 12-11. Additional Memory Enable Circuits

CLK

REFILL

STATUS

INSTRUCTION
BOUNDARIES

FIG 12-11

Applications Information

MOTOROLA MC68030 USER’S MANUAL 12-21

The structure of this design is very similiar to the previous design and can similarly be
divided into three main sections:

1. The byte select and address decode section (provided by the PAL).

2. The actual memory section (SRAMs).

3. The buffer/latch section (address and data).

The same PAL equations listed in Figure 12-10 are used with the exception of the TERM
signal. Figure 12-13 shows the equation for TERM, which is used by the two clock read and
write design.

TERM = /A16 * /A17 * /A16 * A30 ;immediate STERM for both reads and writes

Figure 12-13. Example PAL Equation for Two-Clock Read and Write
Memory Bank

TERM is simply an address decode signal in this design because both read and write
operations complete in two clock periods. The other signals generated by the PAL have
already been discussed in the previous design and are not repeated here. A latched version
of AS is generated by a 74F74 D-type flip-flop and used to qualify the individual byte select
signals from the PAL. The required SRAM data setup time on write cycles is ensured by
keeping the write strobes (W) active to the SRAMs until the rising edge of the clock that
completes the MC68030 write operation.

The memory section in this design uses 25-ns SRAMs rather than the 35-ns SRAMs used
in the previous design. The faster SRAMs compensate for the 74F373 transparent latches
used on the address lines. Since the memory write operations complete after the MC68030
write bus cycle, both address and data are latched and held valid to the SRAMs until the
write strobes (W) negate. During read operations, the transparent latches on the address
lines remain in the transparent mode, allowing the SRAMs to provide data through the
74F244 buffers in time to meet the specified data setup time to the MC68030.

Figure 12-12. Example Two-Clock Read and Write Memory Bank

CLK

REFILL

STATUS

INSTRUCTION
BOUNDARIES

FIG 12-12

PENDING TRACE OR
INTERRUPT EXCEPTION
PROCESSING

Applications Information

12-22 MC68030 USER’S MANUAL MOTOROLA

Not all systems require the performance of 20-MHz two-clock bus cycles, nor will all systems
be able to afford the fast devices. Fortunately, several small changes to this design could
assist designers with different cost/performance ratios. The simplest and most direct
method is to reduce the clock frequency of the MC68030. For instance, if the clock
frequency is below approximately 18.1 MHz, the same control logic supports two-clock bus
cycles with 45-ns memory (55 ns if < 15.8 MHz). If 20 MHz is still the frequency of choice,
the designer may choose to run three-clock bus cycles. This can be accomplished with the
addition of a flip-flop to delay the TERM signal by one clock. The resulting memory access
time is over 85 ns with a 20-MHz processor running with three-clock bus cycles.

Applications Information

MOTOROLA MC68030 USER’S MANUAL 12-23

12.5.2 A 2-1-1-1 Burst Mode Memory Bank Using SRAMS
The MC68030 normally attains its lowest bus utilization when the external memory system
can support a 2-1-1-1 burst protocol. However, exceptions to this can occur. For instance,
when a large amount of memory accesses are not governed by the locality of reference
principles, burst accesses may not decrease bus utilization. This section describes a
complete 2-1-1-1 memory bank with 256K bytes that can operate with a 20-MHz MC68030.
Nonburst reads and all write cycles execute in two clocks.

Figure 12-14 shows the complete memory bank and its connection to the MC68030. The
required parts include:

(32) 64K x 1 SRAMs 25 ns access time (Motorola's MCM6287-25 or equivalent)

(2) 74ALS244 buffers

(4) 74AS373 latches

(2) 74F32 OR gates

(4) 74F191 counters

(1) PAL16L8D (or equivalent)

(1) 74F04 inverter

The system must also provide any STERM or CBACK consolidation circuitry as required
(e.g., due to the presence of multiple synchronous memory banks or ports). In Figure 12-14,
this consolidation circuitry is shown as an AND gate.

The memory bank can be divided into four sections:

1. The byte select and address decode section (provided by the PAL).

2. The burst address generator (provided by the counters).

3. The actual memory section (SRAMs).

4. The buffer section (address and data).

Applications Information

12-24 MC68030 USER’S MANUAL MOTOROLA

The first section is completely contained within the PAL16L8D. The PAL equations are the
same as those provided in Figure 12-8 for the two-clock read, three-clock write memory
bank, although slightly modified to support the larger block of memory (use A18=A20
instead of A16=A18). The PAL generates six memory-mapped signals: four byte select
signals for write operations, a buffer control signal, and the cycle termination signal. The
byte select signals are only asserted during write operations when the processor is
addressing the 256K bytes contained in the memory bank, and then only when the
appropriate byte or bytes is being written to as indicated by the SIZ0, SIZ1, A0, and A1
signals. The four signals, UUCS, UMCS, LMCS, and LLCS, control data bits D24=D31,
D16=D23, D8=15, and D0=D7 respectively. AS is used to qualify the byte select signals to
avoid spurious writes to memory before the address is valid. During read operations, the
read chip select (RDCS) signal, qualified with AS, controls the data latches only (since the
memory is already enabled with its E input grounded). The last signal generated by the PAL
is the TERM signal. As the equation shows, TERM consists of two events: one for read
cycles and the other for write cycles. For read cycles, TERM is an address decode signal
that is asserted whenever the address corresponds to the encoded memory-mapped bank
of SRAM. Write operations use the DAS signal to qualify the address decode, which
lengthens write cycles to three clock periods. If a two-clock write cycle is required, this
design can be modified to incorporate the address and data latches used in Figure 12-12.
TERM is connected to the system's STERM and CBACK consolidation circuitry such that
both are asserted when TERM is asserted. The consolidation circuitry should have a
maximum propagation delay of 15 ns or less. If the system has no other synchronous
memory or ports, TERM can be connected directly to STERM, and CBACK may be
grounded.

The second section is the burst address generator which contains the four counters and the
inverter. The counters serve to both buffer the MC68030's address lines (A2 and A3) and to
provide the next long-word address during a burst operation. The 74F191s are
asynchronously preset at the beginning of every bus cycle when AS is negated. When AS
asserts, the counting is dependent on the CBREQ signal and the CLK signal. During writes,
CBREQ is always negated, and the counters serve only as address buffers. During reads,
if CBREQ asserts, the current value of counter bits Q1:Q0 are incremented on every falling

Figure 12-14. Example 2-1-1-1 Burst Mode Memory Bank at 20 MHz, 256K Bytes

CLK

REFILL

STATUS

FIG 12-14

Applications Information

MOTOROLA MC68030 USER’S MANUAL 12-25

clock edge of the MC68030's clock after AS asserts. Four counters are used to provide
enough drive capability to avoid an additional buffer propagation delay. Each counter drives
eight memory devices.

The third section contains the memory devices. The most important feature of the memory
devices used in this design is the separate data-in and data-out pins, which allow the
SRAMs to be constantly enabled before address decode is complete without causing data
bus contention. If the designer wishes to include some type of enable circuitry to take
advantage of low bus utilization, the timing in this design will be preserved if the memory's
E signal is asserted within 13 ns after the falling edge of state S0.

Applications Information

12-26 MC68030 USER’S MANUAL MOTOROLA

The fourth and last section of the memory bank is the address and data buffers. The address
buffers are shown as 74ALS244s, but 74AS244s and 74F244s are also acceptable. Two
inputs to the address buffers remain unused allowing the possibility for expansion up to 1
Mbyte without any additional devices when SRAMs of suitable density become available.
The RDCS signal, qualified with AS, controls the data buffers during read operations. The
address buffers are always enabled.

Some modifications to this design can improve performance. Specifically, circuitry to control
CBACK and thus prevent or discontinue a burst cycle is a simple addition. The circuitry
should have two functions: to prevent wraparound and to prevent bursting when a data
operand crosses a long-word boundary.

Not all systems require the performance of 20-MHz 2-1-1-1 burst cycles, nor will all systems
be able to afford the fast devices of this design. If the clock frequency is below approximately
17.5 MHz, the same support logic supports 2-1-1-1 burst cycles with 35-ns memory. If 20
MHz is still the frequency of choice, the designer may choose to run 3-1-1-1 burst cycles.

12.5.3 A 3-1-1-1 Burst Mode Memory Bank Using SRAMS
Figure 12-15 shows the complete 3-1-1-1 memory bank with 256K bytes that can operate
with a 20-MHz MC68030. The required parts include:

(32) 64K x 1 SRAMs 35-ns access time (Motorola's MCM6287-35 or equivalent)

(4) 74ALS244 buffers

(4) 74F374 latches

(2) 74F32 OR gates

(4) 74F191 counters

(1) PAL16L8D (or equivalent)

(2) inverters

(1) flip-flop

Applications Information

MOTOROLA MC68030 USER’S MANUAL 12-27

The structure of this memory bank is very similiar to the 2-1-1-1 memory bank described in
12.5.2 A 2-1-1-1 Burst Mode Memory Bank Using SRAMS. In fact, the PAL and address
buffers are exactly the same. The PAL equations are provided in Figure 12-10. The most
important differences occur in the data latches, which are now flip-flops. Also, the D-type flip-
flop has been moved from the input side of the PAL to the TERM output.

The data flip-flops allow the long words out of the memory to be pipelined such that setup
and hold times are easier to satisfy. The memory devices are generating the next long word
of data even before the MC68030 has latched the “current”long word. This alteration eases
access timing requirements such that 35-ns memory can be used with a clock frequency of
20 MHz. If the clock frequency is less than 17 MHz, 45-ns memory can be used. Another
benefit of the slower cycle is a relaxed timing requirement for the enable inputs of the
SRAMs. Although Figure 12-15 has all the SRAM chip enables grounded, the timing in this
design will be preserved if the memory's E signal is asserted within 10 ns after the rising
edge of state S2. Figure 12-16 shows four possible enable circuits.

Figure 12-15. Example 3-1-1-1 Pipelined Burst Mode Memory Bank at
20 MHz, 256K Bytes

(UNABLE TO LOCATE ART)

Figure 12-16. Additional Memory Enable Circuits

STATUSQ

VCC

I
I
I
I
I
I
I
I SAMPLE

CLKOUT

20

Q
Q
Q
Q
Q
Q

2
3
4
5
6

7
8
9

18
17
16
15
14
13

19
12

SECS

PHALT
FILL

EP
IE

PAL 16R6D

VCC

1

11
10

VSS

OE

CP

10
10

6

2

33

DSQ0

SD
Q

Q

CD

CP

D
9

SD
Q

Q

CD

CP

D
5

DSACK

13

VCC

DSACK0

1

2

74F00

DSACK1 12

11 8

DSQ1

74F00
4 6
5

VCC

CLK

AS
RESET

REFILLQ

STERMQ

ECSC

SD

Q

Q

CD

CP

D
9

VCC

10 74F74

8

13

12

11

SD

Q

Q

CD

CP

D
5

VCC

4 74F74

6

1

2

3

74F004

5
6

ECSQ

STERM
ECS

SD1
SD2
J1
K1
 CP
J2
K2

Q1
Q1
Q2
Q2

4
10

3
2

13
11
12

9
8

5
6

CD

VCC

STATUS
REFILL

74F114

1

10 74F74

74F744

DSACK
CLK
AS
RESET

ECSQ

1

FIG 12-15

Applications Information

12-28 MC68030 USER’S MANUAL MOTOROLA

The flip-flop connected to the TERM signal serves two purposes: first, the TERM signal is
delayed at the beginning of the cycle to insert the wait state for the first long word, and
second, the burst address generator is also prevented from incrementing the long word base
address until the first long-word has been latched by the 74F374s.

The performance enhancing modifications described for the 2-1-1-1 design also apply to this
design. Specifically, circuitry can be added to control CBACK and thus prevent or
discontinue a burst cycle. The circuitry should have two functions: first, to prevent
wraparound and second, to prevent bursting when a data operand crosses a long-word
boundary. Another enhancement might be to alter the TERM control circuitry with the
addition of a write latch mechanism to run two-clock writes.

The critical path for the 3-1-1-1 memory bank is not the first long-word access as in the 2-1-
1-1 memory bank, but rather the subsequent long words during burst cycles. No alternative
architecture can correct the critical path for the 2-1-1-1 burst cycle. However, for 3-1-1-1
burst cycles, the designer might consider memory banks which are 64 or 128 bits wide. In
this manner, the access time for the subsequent long words can be hidden underneath the
access of the previous long word(s).

12.6 EXTERNAL CACHES
To provide lower average access times to memory, some systems implement caches local
to the main processor that store recently used instructions and/or data. For the MC68030,
several architectural options are available to the cache designer. The primary decisions are
whether to configure the cache as an asynchronous or synchronous device and whether the
cache accesses are terminated early (before the cache lookup is complete) or only after
validation.

The MC68030 late BERR/HALT facility allows an external device to signal completion of a
bus cycle by asserting DSACKx or STERM and later (approximately one clock period or
one-half clock, respectively) aborting or retrying that cycle if an error condition is detected.
Since one critical access path in many memory structures is the assertion of DSACKx/
STERM to avoid additional wait states, the late abort capability allows the memory controller
to terminate a bus cycle before data is valid on the processor data bus. If the data validation
fails, the memory controller can then abort (BERR) or retry (BERR/HALT) the cycle. This
technique is useful in memory error detection schemes where the cycle can be terminated
as soon as data becomes available and the error checking can occur during the period
between the signaling of termination of the cycle and the latching of data by the processor
with a late retry or abort signaled upon error indication. Likewise, this technique can be used
in cache implementations in which the cache tag validation cannot be completed before
termination of the cycle must be signaled but the validation is completed before late abort or
retry must be indicated.

The major consideration in choosing whether or not to utilize late retry for an external cache
miss is the overhead involved in retrying a bus cycle after a miss in the cache. The minimum
penalty is the four clock periods required to retry the cycle (two clocks during which the miss
is detected and two clocks idle bus time), assuming that the bus control strobes (BERR and
HALT) are negated soon enough after the completion of the aborted cycle that the next cycle
can begin immediately. In evaluating this overhead, the projected cache miss rate

Applications Information

MOTOROLA MC68030 USER’S MANUAL 12-29

determines the percentage of cycles that must be retried. Additionally, the degree of
parallelism in the system should be considered. If, after a cache miss, it is possible to
continue the bus cycle to main memory while the processor is retrying the cycle, it is possible
to avoid some, or all, of the performance penalty associated with late retry (although the
control circuitry required may be more complex).

Applications Information

12-30 MC68030 USER’S MANUAL MOTOROLA

For a two-clock bus or burst capability, use of the synchronous bus is mandated, but for a
three or more clock, nonburst cache, the choice of synchronous versus asynchronous
operation must be made. If the bus cycle is terminated only after validation, use of the
synchronous bus is recommended since the address-valid-to-STERM-asserted timing
requirement is longer than the address-valid-to-DSACK-asserted timing for bus cycles of the
same length. If the cache implements late retry, the choice of which bus control mode to use
is less important and depends on system-specific features and control structures. Some
external caches might use both synchronous and asynchronous transfers: synchronous for
hits and asynchronous for misses or vice versa. The following discussion assumes that the
external cache uses the synchronous two-clock protocol, but most statements also apply to
the asynchronous protocol.

If the MC68030 MMU is disabled, all bus cycles use logical addresses. If the MMU is
enabled, the external address bus uses physical addresses (including directly mapped
logical-to-physical addresses from the transparent translation (TTx) registers). These two
modes of operation, logical and physical, affect the maintenance of external caches. For
example, when the external cache uses physical addresses, the cache need not be flushed
on each context switch. Since each task in a system may have its own unique mapping of
the logical address space, a logical cache must be flushed of all entries any time the logical-
to-physical mapping of the system changes (as occurs during a context switch). Since there
is only a single physical address space, this problem does not occur with a physical cache
because all references to a particular operand must utilize the same physical address.

The intended cache size should be evaluated when considering the utility of allowing
multiple tasks to maintain cache entries. If the cache is relatively small and the time between
context switches is large, each task will tend to fill the cache and remove all entries created
during the execution of previous tasks. Conversely, if the cache size is relatively large and
the period between context switches is relatively small, the cache may provide an efficient
sharing of entries.

Applications Information

MOTOROLA MC68030 USER’S MANUAL 12-31

12.6.1 Cache Implementation
An example organization of an external cache is shown in Figure 12-15. With this
organization, the cache timing controller does not terminate a bus cycle until the cache has
had sufficient time to validate the access as a “hit”or a “miss”. When a hit decision is made,
the cache controller asserts the STERM signal and also blocks propagation of AS (A) to the
external system. If the cache decision cannot be completed before AS would normally be
asserted by the MC68030, some provision must be made to delay the propagation of AS
until the decision is valid. Otherwise, spurious assertions of the AS signal are likely to occur.

The cache control circuit (B) contains all logic required to clear or create cache entries. Also
contained in (B) is the decision logic required to determine whether a hit or miss has
occurred and the timing logic that is required to prevent propagation of the ``hit'' signal until
the lookup and compare circuitry has had sufficient time to generate a valid decision. The
critical path in the design of this cache is from the output of valid address by the MC68030
to the assertion of STERM by the cache controller (see Equation 12-3 of Table 12-2). After
a cache hit decision has been made, the hit signal directly drives the STERM signal.
Qualifying STERM with AS is not necessary assuming the appropriate setup and hold times
are respected when AS is asserted. Operating at 20 MHz with no wait states, 21 ns are
available from the presentation of valid address by the MC68030 to the assertion of STERM
by the cache controller while 46 ns are available from valid address to data valid at the
processor.

If the access times cannot be met due to the particular cache architecture, size, cost, or
other consideration, the system designer may choose to utilize an early termination
approach, as discussed above, that increases the decision time available to the cache
controller by meeting the critical path from address valid to BERR/HALT asserted (see
Equation 12-5 of Table 12-2). The only required changes to the cache structure shown in
Figure 12-17 is the generation of STERM. Figure 12-18 shows an example circuit that could
be positioned between the MC68030 and the external cache to provide the early termination
or late retry function.

Applications Information

12-32 MC68030 USER’S MANUAL MOTOROLA

Normally, as soon as AS is asserted, circuit (C) immediately asserts the STERM signal to
terminate the bus cycle, assuming that the cache will produce a valid hit later in the cycle.
Circuit (C) also prevents the early termination from occurring from those cycles that access
operands that are noncachable or had missed in the cache on the previous cycle (and have
not already been retried). In this example, (C) prevents early termination of all CPU space
accesses, all write cycles (assuming a writethrough cache is implemented), cycles with
CIOUT asserted, and all cycles that missed in the cache on the previous cycle and were not
accesses to noncachable locations. The flip-flop in (C) latches the termination condition of
the current bus cycle at the rising edge of AS, and this status is used during the next cycle.
Other conditions to suppress early termination may be included as required by a particular
system, but propagation delays must be carefully considered in order that the output of (C)
be valid before the rising edge of state S1 (see Equation 12-3 of Table 12-2).

(UNABLE TO LOCATE ART)

Figure 12-17. Example MC68030 Hardware Configuration with
External Physical Cache

Applications Information

MOTOROLA MC68030 USER’S MANUAL 12-33

The late termination circuit is formed by the gates (D) and (E). If the current cycle is
accessing a cachable location, as determined by the output of (C), and a cache hit has not
occurred (D), then the BERR and HALT signals are driven low (E).

Note that the logic depicted in Figure 12-18 is designed to support a cache operating with
no wait states. A provision for generating wait states may be included by placing additional
timing stages between (C) and the MC68030 to delay propagation of this output by the
required number of clock periods.

(UNABLE TO LOCATE ART)

Figure 12-18. Example Early Termination Control Circuit

Applications Information

12-34 MC68030 USER’S MANUAL MOTOROLA

To minimize the potential for delays in retrying a bus cycle, the negation path of the bus error
and halt signals should be carefully controlled. Light capacitive loading of these signals lines
as well as the use of a properly sized pullup resistor for any open collector drivers, or some
equivalent method, is recommended.

The available cache tag lookup, compare, and logic delay (D) and (E) time for this
implementation is given by Equation 12-5 of Table 12-2 (40 ns at 20.0 MHz with no wait
states).

A further design consideration is the response of the main memory controller to accesses
that miss in the cache and are retried. During a retry operation and in the absence of
arbitration for the logical bus, the MC68030 continuously drives the address bus with the
address that caused the retry to be signaled. This presents the designer with the opportunity
to utilize this information to continue (or initiate) the access in the main memory (by latching
the state of the AS signal during the initial bus cycle and holding it asserted for the duration
of the retry), thus decreasing the overhead associated with retrying the cycle.

12.6.2 Instruction-Only External Cache Implementations
In some cases, particularly in multiprocessing systems where cache coherence is a
concern, it is desirable to store only instruction operands since they are not considered to
be alterable and, hence, cannot generate stale data. In general, this is feasible with the
MC68000 architecture as long as PC relative addressing modes are not used. This
restriction allows program and data accesses to be distinguished externally by decoding the
function code signals.

12.7 DEBUGGING AIDS
The MC68030 supports the monitoring of internal microsequencer activity with the STATUS
and REFILL signals. The use of these signals is described in the following paragraph. A
useful device to aid programming debugging is described in 12.7.2 Real-Time Instruction
Trace.

Applications Information

MOTOROLA MC68030 USER’S MANUAL 12-35

12.7.1 Status and Refill
The MC68030 provides the STATUS and REFILL signals to identify internal
microsequencer activity associated with the processing of data in the pipeline. Since bus
cycles are independently controlled and scheduled by the bus controller, information
concerning the processing state of the microsequencer is not available by monitoring bus
signals by themselves. The internal activity identified by the STATUS and REFILL signals
include instruction boundaries, some exception conditions, when the microsequencer has
halted, and instruction pipeline refills. STATUS and REFILL track only the internal
microsequencer activity and are not directly related to bus activity.

As shown in Table 12-4, the number of consecutive clocks during which STATUS is
asserted indicates an instruction boundary, an exception to be processed, or that the
processor has halted. Note that the processor halted condition is an internal error state in
which the microsequencer has shut itself down due to a double bus fault and is not related
to the external assertion of the HALT input signal. The HALT signal only affects bus
operation, not the microsequencer.

The REFILL signal identifies when the microsequencer requests an instruction pipeline refill.
Refill requests are a result of having to break sequential instruction execution to handle
nonsequential events. Both exceptions and instructions can cause the assertion of REFILL.
Instructions that cause refills include branches, jumps, instruction traps, returns,
coprocessor general instructions that modify the program counter flow, and status register
manipulations. Logical and arithmetic operations affecting the condition codes of the status
register do not result in a refill request. However, operations like the MOVE <ea>,SR
instruction, which updates the status register, cause a refill request since this can change
the program space as defined by the function codes. When the program space changes, the
processor must fetch data from the new space to replace data already prefetched from the
old program space. Similarly, operations which affect the address translation mechanism of
the memory management unit (MMU) cause a refill request. An instruction like the PMOVE
<ea>,TC, which changes the translation control register, requires the processor to fetch data

Table 12-4. Microsequencer STATUS Indications

Asserted for Indicates
1 Clock Sequencer at instruction boundary will begin execution of next instruction
2 Clocks Sequencer at instruction boundary but will not begin next instruction

immediately due to:
• pending trace exception

OR
• pending interrupt exception

3 Clocks MMU address translation cache miss — processor to begin table search
OR

Exception processing to begin for:
• reset OR
• bus error OR
• address error OR
• spurious interrupt OR
• autovectored interrupt OR
• F-line instruction (no coprocessor responded)

Continuously Processor halted due to double bus fault

Applications Information

12-36 MC68030 USER’S MANUAL MOTOROLA

from the new address translation base. The Test Condition, Decrement, and Branch (DBcc)
instruction causes two refill requests when the condition being tested is false. To optimize
branching performance, the DBcc instruction requests a refill before the condition is tested.
If the condition is false, another refill is requested to continue with the next sequential
instruction.

Figure 12-19 illustrates the relation between the CLK signal and normal instruction
boundaries as identified by the STATUS signal. STATUS asserting for one clock cycle
identifies normal instruction boundaries. Note that the assertion of REFILL does not
necessarily correspond to the assertion of STATUS. Both STATUS and REFILL assert and
negate from the falling edge of the CLK signal.

Figure 12-20 shows a normal instruction boundary followed by a trace or interrupt exception
boundary. STATUS asserting for two clock cycles identifies a trace or interrupt exception.
Instruction boundary information is still present since both trace and interrupt exceptions are
processed only at instruction boundaries. Before the exception handler instructions are
prefetched, the REFILL signal asserts (not shown) to identify a change in program flow.

(UNABLE TO LOCATE ART)

Figure 12-19. Normal Instruction Boundaries

Applications Information

MOTOROLA MC68030 USER’S MANUAL 12-37

Figure 12-21 illustrates the assertion of the STATUS signal for other exception conditions,
which include MMU address translation cache miss, reset, bus error, address error,
spurious interrupt, autovectored interrupt, and F-line instruction when no coprocessor
responds. Exception processing causes STATUS to assert for three clock cycles to indicate
that normal instruction processing has stopped. Instruction boundaries cannot be
determined in this case since these exceptions are processed immediately, not just at
instruction boundaries.

Figure 12-22 shows the assertion of STATUS, indicating that the processor has halted due
to a double bus fault. Once a bus error has occurred, any additional bus error exception
occurring before the execution of the first instruction of the bus error handler routine
constitutes a double bus fault. The processor also halts if it receives a bus error or address
error during the vector table read operations or the prefetch for the first instruction after an
external reset. STATUS remains asserted until the processor is reset.

(UNABLE TO LOCATE ART)

Figure 12-20. Trace or Interrupt Exception

(UNABLE TO LOCATE ART)

Figure 12-21. Other Exceptions

Applications Information

12-38 MC68030 USER’S MANUAL MOTOROLA

12.7.2 Real-Time Instruction Trace
Microprocessor-based systems used for real-time applications typically lack development
aids for program debug. The real-time environment does not allow program instruction
execution to arbitrarily stop to handle debugging events. These systems include control
applications where mechanical events cannot halt, such as robotics, automotive, and
industrial control and emulator systems which may need to keep the target system executing
in real time.

To solve the problems inherent with real-time systems, the MC68030 incorporates extra
hardware-based features to enhance program debug. Real-time systems cannot take
advantage of the trace exception mechanism built into all M68000 Family processors since
this takes processing time away from real-time events. Additional output pins have been
incorporated into the MC68030 to gain real-time visibility into the processor. Tracing
capability can be added by decoding MC68030 control signals to detect which cycles are
important for tracking. Post analysis of collected data allows for program debug.

Several problems exist with an external trace mechanism. These problems include
determining which cycles are important for tracking program flow, detecting if instructions
obtained in prefetch operations are discarded by the execution unit, and the inability of
external trace circuitry to capture accesses to on-chip cache memories.

External trace hardware used for program debug must be synchronized to the MC68030 bus
activity. Since all clock cycles are not traced in a program debug environment, the trace
hardware requires a sampling signal. For external read and write operations, trace sampling
occurs when the data bus contains valid data. Two modes of external bus operation are
possible: the synchronous mode in which the system returns the STERM signal and the
asynchronous mode in which the system responds with the DSACK1 and/or the DSACK0
signals. Both modes of bus operation need to generate a sampling signal when valid data
is present on the bus. This allows for tracing data flow in and out of the processor, which is
the basis for tracking program execution.

(UNABLE TO LOCATE ART)

Figure 12-22. Processor Halted

Applications Information

12-39 MC68030 USER’S MANUAL MOTOROLA

The pipelined architecture of the MC68030 prefetches instructions and operands to keep the
three stages of the instruction pipe full. The pipeline allows concurrent operations to occur
for up to three words of a single instruction or for up to three consecutive instructions. While
sequential instruction execution is the norm, it is possible that prefetched data is not used
by the execution unit due to a nonsequential event. The STATUS signal allows trace
hardware to mark the progress of the execution unit as it processes program memory
operands and allows marking of some exceptions. Nonsequential events, where the entire
pipeline needs to reload before continuing execution, are marked by the REFILL signal.

External hardware typically has no visibility into on-chip cache memory operations.
However, the MC68030 provides a local address reference to increase visibility. Write
operations are totally visible since the MC68030 implements a writethrough policy allowing
external hardware to capture data. For read operations from on-chip cache memories, the
least significant byte of the address bus provides a local address reference.

The MC68030 begins an external cycle by driving the address bus and asserting the
external cycle start (ECS) signal. Address strobe (AS) asserts later in the cycle to validate
the address. If a hit occurs in the cache or the cache holding register, then the external cycle
is aborted and AS is not asserted. In addition, the low-order address bits (A0=A7) are not
involved in the address translation process performed by the on-chip MMU, creating a local
address reference which can be used by trace functions. All read cycles from the on-chip
cache memories cannot be captured externally since the cache access does not depend on
the availability of the external bus.

Figure 12-23 shows a trace interface circuit which can be used with a logic analyzer for
program debug. The nine input signals (DSACK1, DSACK0, CLK, AS, RESET, STATUS,
REFILL, STERM, and ECS) are connected to the MC68030 processor in the system under
development. Six output signals are generated to aid in capturing and analyzing data. In
addition to connecting the logic analyzer to the address bus, the data bus, and the bus
control signals, the trace interface signals (SAMPLE, PHALT, FILL, EP, IE, and ECSC)
should also be connected. The external clock probe of the logic analyzer connects to the
system CLK signal for synchronization. Setting up the logic analyzer for data capture
requires that samples be taken on the falling edge of the CLK signal when the SAMPLE
signal is high. Table 12-5 lists the parts required to implement this circuit.

Applications Information

12-40 MC68030 USER’S MANUAL MOTOROLA

The sample signal (SAMPLE) is an active-high signal which qualifies the next falling edge
of the CLK signal as the sampling point. Five types of conditions cause SAMPLE to assert:

1. An external bus cycle

2. An internal cache hit, including a hit in the cache holding register

3. An instruction boundary

4. Exception processing as marked by the EP signal discussed below

5. The processor halting

The remaining five output signals are used to qualify the information collected.

The processor halt (PHALT) signal indicates that the MC68030 has received a double bus
fault and needs a reset operation to continue processing. PHALT asserts after the assertion
of STATUS for greater than three clock cycles and generates a SAMPLE signal.

The FILL signal indicates a break in sequential instruction execution. FILL is a latched
version of the REFILL signal and remains asserted until a sample is collected as indicated
by the assertion of SAMPLE. The assertion of FILL does not generate a SAMPLE signal.

The exception pending (EP) signal indicates that the MC68030 is beginning exception
processing for either a reset, bus error, address error, spurious interrupt, autovectored
interrupt, F-line instruction, MMU address translation cache miss, trace exception, or
interrupt exception. The EP signal asserts after STATUS negates from a two- or three-clock
cycle assertion. The assertion of EP does generate a SAMPLE signal.

(UNABLE TO LOCATE ART)

Figure 12-23. Trace Interface Circuit

Table 12-5. List of Parts

Quantity Part Part Description
1 74F00 Quad 2 Input NAND Gate
2 74F114 Dual JK Negative Edge-Triggered Flip-Flop
1 74F74 Dual D-Type Positive Edge-Triggered Flip-Flop
1 PAL16R6D Programmable Logic Array, Ultra High Speed

Applications Information

12-41 MC68030 USER’S MANUAL MOTOROLA

The instruction executed (IE) signal indicates the execution unit has just finished processing
an instruction. The IE signal asserts after STATUS negates from a one-clock cycle
assertion. The assertion of IE also generates a SAMPLE signal.

The external cycle start condition (ECSC) signal is used in conjunction with the AS signal to
determine if the address bus and data bus are valid in the current trace sample. Table 12-
6 lists the possible combinations of AS and ECSC and shows what parts of the traced
address and data bus are valid. The assertion of ECSC does not generate a SAMPLE
signal.

Figure 12-24 shows the pin definitions for the PAL16R6 package used in the trace circuit.
These definitions are used by the PAL equations listed in Figure 12-25.

12.8 POWER AND GROUND CONSIDERATIONS
The MC68030 is fabricated in Motorola's advanced HCMOS process, contains
approximately 275,000 total transistor sites, and is capable of operating at clock frequencies
of up to 33.33 MHz. While the use of CMOS for a device containing such a large number of
transistors allows significantly reduced power consumption in comparison to an equivalent
NMOS circuit, the high clock speed makes the characteristics of power supplied to the
device very important. The power supply must be able to supply large amounts of
instantaneous current when the MC68030 performs certain operations, and it must remain
within the rated specification at all times. To meet these requirements, more detailed
attention must be given to the power supply connection to the MC68030 than is required for
NMOS devices that operate at slower clock rates.

Table 12-6. AS and ECSC Indicates

AS ECSC Indicates
0 0 Both Address and Data Bus Are Valid
0 1 Both Address and Data Bus Are Valid
1 0 Address Bits (A0=A7) are Valid

Address Bits (A8=A31) Are Invalid
Data Bus Is Invalid

1 1 Both Address and Data Bus Are Invalid

Applications Information

12-42 MC68030 USER’S MANUAL MOTOROLA

To supply a solid power supply interface, 10 VCC pins and 14 GND pins are provided. This
allows two VCC and four GND pins to supply power for the address bus and two VCC and
four GND pins to supply the data bus; the remaining VCC and GND pins are used by the
internal logic and clock generation circuitry. Table 12-7 lists the VCC and GND pin
assignments.

To reduce the amount of noise in the power supplied to the MC68030 and to provide for
instantaneous current requirements, common capacitive decoupling techniques should be
observed. While there is no recommended layout for this capacitive decoupling, it is
essential that the inductance between these devices and the MC68030 be minimized to
provide sufficiently fast response time to satisfy momentary current demands and to
maintain a constant supply voltage. It is suggested that a combination of low, middle, and
high frequency, high-quality capacitors be placed as close to the MC68030 as possible (e.g.,
a set of 10 µF, 0.1 µF, and 330 pF capacitors in parallel provides filtering for most
frequencies prevalent in a digital system). Similar decoupling techniques should also be
observed for other VLSI devices in the system.

(UNABLE TO LOCATE ART)

Figure 12-24. PAL Pin Definition

Applications Information

12-43 MC68030 USER’S MANUAL MOTOROLA

In addition to the capacitive decoupling of the power supply, care must be taken to ensure
a low-impedance connection between all MC68030 VCC and GND pins and the system
power supply planes. Failure to provide connections of sufficient quality between the
MC68030 power supply pins and the system supplies will result in increased assertion
delays for external signals, decreased voltage noise margins, and potential errors in internal
logic.

(UNABLE TO LOCATE ART)

Figure 12-25. Logic Equations

Table 12-7. VCC and GND Pin Assignments

Pin Group VCC GND

Address Bus C6, D10 C5, C7, C9, E11

Data Bus L6, K10 J11, L9, L7, L5

ECS, SIZx, DS, AS, DBEN, CBREQ, R/W K4 J3

FC0=FC2, RMC, OCS, CIOUT, BG D4 E3

Internal Logic, RESET, STATUS, REFILL, Misc. H3, F2, F11, H11 L8, G3, F3, G11

MOTOROLA

MC68030 USER’S MANUAL

13-1

SECTION 13
ELECTRICAL CHARACTERISTICS

The following paragraphs provide information on the maximum rating and thermal
characteristics for the MC68030. Detail information on timing specifications for power
considerations, DC electrical characteristics and AC timing specifications can be found in
the MC68030EC/D,

MC68030 Electrical Specifications

.

13.1 MAXIMUM RATINGS

*A continuous clock must be supplied to the MC68030 when it is powered up.

13.2 THERMAL CHARACTERISTICS — PGA PACKAGE

*Estimated

Rating Symbol Value Unit

Supply Voltage V

CC

–0.3 to +7.0 V

Input Voltage V

in

–0.5 to +7.0 V

Operating Temperature Range T

A

0 to 70

°

C

Storage Temperature Range T

stg

–55 to 150

°

C

Characteristic Symbol Value Rating

Thermal Resistance - Plastic
Junction to Ambient
Junction to case

θ

JA

θ

JC

32*
15*

°

C/W

MOTOROLA

MC68030 USER’S MANUAL

14-1

SECTION 14
ORDERING INFORMATION
AND MECHANICAL DATA

This section contains the pin assignments and package dimensions of the MC68030. In
addition, detailed information is provided to be used as a guide when ordering.

14.1 STANDARD MC68030 ORDERING INFORMATION

Package Type
Frequency

(MHz)
Temperature Order Number

Pin Grid Array
RC Suffix

20.0
25.0
33.33

0

°

C to 70

°

C
0

°

C to 70

°

C
0

°

C to 70

°

C

MC68030RC20
MC68030RC25
MC68030RC33

Ceramic Surface Mount
FE Suffix

20.0
25.0
33.33

0

°

C to 70

°

C
0

°

C to 70

°

C
0

°

C to 70

°

C

MC68030FE20
MC68030FE25
MC68030FE33

Ordering Information and Mechanical Data

14-2

MC68030 USER’S MANUAL

MOTOROLA

14.2 PIN ASSIGNMENTS — PIN GRID ARRAY (RC SUFFIX)

The V

CC

 and GND pins are separated into three groups to provide individual power supply
connections for the address bus buffers, data bus buffers, and all other output buffers and
internal logic.

14.3 PIN ASSIGNMENTS — CERAMIC SURFACE MOUNT (FE SUFFIX)

Pin Group V

CC

GND

Address Bus C6, D10 C5, C7, C9, E11

Data Bus L6, K10 J11, L9, L7, L5

ECS, SIZx, DS, AS, DBEN, CBREQ, R/W K4 J3

FC0-FC2, RMC, OCS, CIOUT, BG D4 E3

Internal Logic, RESET, STATUS, REFILL, Misc. H3, F2, F11, H11 L8, G3, F3, G11

(UNABLE TO LOCATE ART)

(UNABLE TO LOCATE ART)

Ordering Information and Mechanical Data

MOTOROLA

MC68030 USER’S MANUAL

14-3

14.4 PACKAGE DIMENSIONS

MC68030

 RC Suffix Package
 Case 789C-01

(UNABLE TO LOCATE ART)

Ordering Information and Mechanical Data

14-4

MC68030 USER’S MANUAL

MOTOROLA

MC68030

 FE Suffix Package
 Case 831-01

(UNABLE TO LOCATE ART)

MOTOROLA

MC68030 USER’S MANUAL

A-1

APPENDIX A
M68000 FAMILY SUMMARY

This Appendix summarizes the characteristics of the microprocessors in the M68000 Family.
Refer to M68000 PM/AD, M68000 Programmer's Reference Manual, for more detailed infor-
mation about MC68000 and MC68010 differences.

Note 1. The MC68010 supports a three-word cache for the loop mode.

Virtual Memory/Machine

MC68010,
MC68020, and Provide Bus Error Detection, Fault Recovery
MC68030
MC68030 On-Chip MMU

Coprocessor Interface

MC68000,
MC68008, and Emulated in Software
MC68010
MC68020 and
MC68030 In Microcode

MC68000 MC68008 MC68010 MC68020 MC68030

Data Bus Size (Bits) 16 8 16 8,16,32 8,16,32

 Address Bus Size

(Bits)
24 20 24 32 32

Instruction Cache

(in words)
— — 3

1

128 128

Data Cache (in words) — — — — 128

M68000 Family Summary

A-2

MC68030 USER’S MANUAL

MOTOROLA

Word/Long-Word Data Alignment

MC68000,
MC68008, and Word/Long Data, Instructions, and Stack Must be
MC68010 Word Aligned
MC68020 and Only Instructions Must be Word Aligned
MC68030 (Data Alignment Improves Performance)

Control Registers

MC68000 and
MC68008 None
MC68010 SFC, DFC, VBR
MC68020 SFC, DFC, VBR, CACR, CAAR
MC68030 SFC, DFC, VBR, CACR, CAAR, CRP, SRP, TC, TT0,

 TT1, PSR

Stack Pointers

MC68000,
MC68008, and USP, SSP
MC68010
MC68020 and
MC68030 USP, SSP (MSP, ISP)

Status Register Bits

MC68000,
MC68008, and T, S, I0/I1/I2, X/N/Z/V/C
MC68010
MC68020 and
MC68030 T0/T1, S, M, I0/I1/I2, X/N/Z/V/C

M68000 Family Summary

MOTOROLA

MC68030 USER’S MANUAL

A-3

Function Code/Address Space

MC68000 and
MC68008 FC0–FC2=7 is Interrupt Acknowledge Only
MC68010,
MC68020, and FC0–FC2=7 is CPU Space
MC68030

Indivisible Bus Cycles

MC68000,
MC68008, and Use AS Signal
MC68010
MC68020 and
MC68030 Use RMC Signal

Stack Frames

MC68000 and
MC68008 Support Original Set
MC68010 Supports Formats $0, $8
MC68020 and
MC68030 Support Formats $0, $1, $2, $9, $A, $B

Addressing Modes

MC68020 and Memory indirect addressing modes, scaled index,
MC68030 extensions: and larger displacements. Refer to specific data

sheets for details.

M68000 Family Summary

A-4

MC68030 USER’S MANUAL

MOTOROLA

MC68020 and MC68030 Instruction Set Extensions

Bcc Supports 32-Bit Displacements
BFxxxx Bit Field Instructions (BFCHG, BFCLR, BFEXTS, BFEXTU,

BFFFO, BFINS, BFSET, BFTST)
BKPT New Instruction Functionality
BRA Supports 32-Bit Displacements
BSR Supports 32-Bit Displacements
CALLM New Instruction (MC68020 only)
CAS, CAS2 New Instructions
CHK Supports 32-Bit Operands
CHK2 New Instruction
CMPI Supports Program Counter Relative Addressing Modes
CMP2 New Instruction
cp Coprocessor Instructions
DIVS/DIVU Supports 32-Bit and 64-Bit Operands
EXTB Supports 8-Bit Extend to 32 Bits
LINK Supports 32-Bit Displacement
MOVEC Supports New Control Registers
MULS/MULU Supports 32-Bit Operands
PACK New Instruction
PFLUSH MMU Instruction (MC68030 only)
PLOAD MMU Instruction (MC68030 only)
PMOVE MMU Instruction (MC68030 only)
PTEST MMU Instruction (MC68030 only)
RTM New Instruction (MC68020 only)
TST Supports Program Counter Relative Addressing Modes
TRAPcc New Instruction
UNPK New Instruction

MOTOROLA

MC68030 USER’S MANUAL

Index-1

INDEX

A

Abort Task Routine 9-82
Absolute Long Address Mode 2-20
Absolute Short Address Mode 2-20
Access Time Calculations, Memory 12-14
Accesses, Read-Modify-Write 6-10
Acknowledge, Breakpoint 8-10
Activity

Data Bus 12-11
Processor

Even Alignment 11-9
Odd Alignment 11-10

Actual Instruction Cache Case 11-11
Adapter Board

MC68020 12-1
Signal Routing 12-2

Address Bus 5-4, 7-4, 7-30, 12-4
Address Encoding, CPU Space 7-69
Address Error Exception 8-8, 10-72
Address Offset Encoding 7-8
Address Register

Direct Mode 2-10
Indirect Displacement Mode 2-12
Indirect Index (Base Displacement)

Mode 2-13
Indirect Index (8-Bit Displacement) Mode

2-12
Indirect Mode 2-10
Indirect Postincrement Mode 2-10
Indirect Predecrement Mode 2-11

Address Registers 1-6, 2-4
Address Space Types 4-5
Address Strobe Signal 5-5, 7-3–7-4, 7-26
Address Translation 9-13

Cache 7-3, 9-4, 9-17
Cache Entry 9-18
General Flowchart 9-13

Addressing
Capabilities 2-25
Compatibility, M68000 2-36
Indexed 2-26
Indirect 2-28
Indirect Absolute Memory 2-28
Mode Summary 2-31

Modes 1-10, 2-8
Structure 2-36

Aids, Debugging 12-35
Arbitration, Bus 7-96
Arithmetic/Logical Instruction

Immediate, Timing Table 11-42
Timing Table 11-40

AS Signal 5-5, 7-3–7-4, 7-26
Assignments, Exception Vector 8-2
Assignment, Pin 14-2–14-3
Asynchronous

Bus Operation 7-27
Byte

Read Cycle Flowchart 7-31
Read Cycle, 32-Bit Port, Timing 7-31
Read-Modify-Write Cycle, 32-Bit

Port, Timing 7-43
Write Cycle, 32-Bit Port, Timing 7-37

Cycle Signal Assertion Results 7-78
Long-Word Read Cycle Flowchart 7-31
Read Cycle 7-31

32-Bit Port, Timing 7-31
Read-Modify-Write Cycle 7-43

Flowchart 7-43
Sample Window 7-3
Word

Read Cycle, 32-Bit Port, Timing 7-31
Write Cycle, 32-Bit Port, Timing 7-37

Write Cycle 7-37
Flowchart 7-37
32-8it Port, Timing 7-37

ATC 7-3, 9-4, 9-17
Entry 9-17

Creation Flowchart 9-42
Autovector Interrupt Acknowledge Cycle 7-71

Timing 7-71
Autovector Signal 5-8, 7-6, 7-29, 7-71, 8-20
AVEC Signal 5-8, 7-6, 7-29, 7-71, 8-20
Average No Cache Case 11-8
A0-A1 Signals 7-8, 7-22
A0-A31 Signals 5-4, 7-4, 7-31
A0-A7 1-6

Index

Index

-2

MC68030 USER’S MANUAL

MOTOROLA

B

BERR Signal 5-9, 6-11, 7-6, 7-27, 8-7, 8-22,
8-25

Best Case 11-7
BG Signal 5-9, 7-43, 7-95–7-96
BGACK Signal 5-9, 7-97
Binary-Coded Decimal Instruction Timing

Table 11-43
Binary-Coded Decimal Instructions 3-10
Bit

CA 10-35
CD 6-21
CED 6-21
CEI 6-22
CI 6-22
Clear Data Cache 6-21
Clear Entry in Data Cache 6-21
Clear Entry in Instruction Cache 6-22
Clear Instruction Cache 6-22
Data Burst Enable 6-21
DBE 6-21
DR 10-36
ED 6-22
EI 6-23
Enable Data Cache 6-22
Enable Instruction Cache 6-23
FD 6-22
FI 6-23
Freeze Data Cache 6-22
Freeze Instruction Cache 6-23
IBE 6-22
Instruction Burst Enable 6-22
PC 10-35
WA 6-21
Write Allocate 6-21

Bit Field
Instruction Timing Table 11-47
Instructions 3-9
Operations 3-31

Bit Manipulation
Instruction Timing Table 11-46
Instructions 3-8

BKPT Instruction 7-74, 8-12, 8-22
Block Diagram 1-2, 9-2

MMU 9-2
Processor Resource 11-3

BR Signal 5-8, 7-43, 7-60, 7-96

Branch on Coprocessor Condition Instruction
10-13

Breakpoint Acknowledge 8-10
Cycle 7-74

Exception Signaled, Timing 7-74
Timing 7-74

Flowchart 7-74
Breakpoint Instruction 7-74, 8-22

Exception 8-22
Buffer

Instruction Fetch Pending 11-5
Write Pending 11-5

Burst
Cycle 7-59, 12-17
Mode

Cache Filling 6-10
Static RAM 12-24

Operation 7-59
Flowchart 7-61

Bus
Address 5-4, 7-3, 7-30, 12-4
Arbitration 7-96

Bus Inactive, Timing 7-103
Control 7-100
Flowchart 7-97
Latency 11-62
State Diagram 7-100
Timing 7-97

Control Signals 7-3
Controller 11-4
Data 5-4, 7-5, 7-30, 12-9, 12-24
Error

Exception 8-7, 10-72
Late, STERM, Timing 7-83
Late, Third Access, Timing 7-86
Late, With DSACKx, Timing 7-83
Second Access, Timing 7-86
Signal 5-9, 6-11, 7-6, 7-27, 8-7, 8-22
Without DSACKx Timing 7-83

Errors 7-82
Exceptions 7-75
Fault Recovery 8-27
Operation

Asynchronous 7-27
Synchronous 7-28–7-29

Synchronization 7-95
Timing 7-96

Transfer Signals 7-1

 Index

MOTOROLA

MC68030 USER’S MANUAL

Index-3

Bus Grant 7-99
Signal 5-9, 7-43, 7-96

Bus Grant Acknowledge 7-100
Signal 5-9, 7-97

Bus Request 7-98
Signal 5-8, 7-43, 7-60, 7-96

Busy Primitive 10-36
Byte

Data Select 7-23
Read Cycle, Asynchronous

Flowchart 7-31
32-Bit Port, Timing 7-31

Select Logic 12-9
Write Cycle, Asynchronous, 32-Bit Port,

Timing 7-37

C

CA Bit 10-35
CAAR 1-9, 2-5, 6-23
Cache

Address Translation 7-3, 9-4, 9-17
Data 1-16, 6-6, 11-4, 11-16
External 12-32
Filling 7-24

Burst Mode 6-15
Single Entry 6-10

Instruction 1-16, 6-1, 6-4, 11-4
Interactions 7-26
Organization 6-1
Reset 6-20

Cache Address Register 1-9, 2-5, 6-23
Cache Burst Acknowledge Signal 5-7, 6-16,

7-24, 7-30
Cache Burst Request Signal 5-7, 6-16, 7-6,

7-30, 7-48
Cache Control Register 1-9, 2-5, 6-3–6-4,

6-20–6-21
Cache Disable Signal 5-10, 6-3
Cache Inhibit Input Signal 5-7, 6-3, 6-9, 6-15,

7-3, 7-26
Cache Inhibit Output Signal 5-7, 6-3, 6-9,

7-30, 9-2, 9-13
CACR 1-5, 2-5, 6-3–6-4, 6-20
Calculate Effective Address Timing Table

11-30
Calculate Immediate Effective Address

Timing

Table 11-32
Calculations, Execution Time 11-6
Capabilities, Addressing 2-25
CAS Instruction 7-43

Example 3-25
Case

Actual Instruction Cache 11-11
Average No Cache 11-8
Best 11-7
Instruction Cache 11-6

CAS2 Instruction 7-43
Example 3-26

CBACK Signal 5-7, 6-16, 7-24, 7-30
CBREQ Signal 5-7, 6-16, 7-6, 7-30, 7-48
CCR 2-4, 3-14
CD Bit 6-21
CDIS Signal 5-10, 6-3
CED Bit 6-21
CEI Bit 6-22
Changing Privilege Level 4-4
CI Bit 6-22
CIIN Signal 5-7, 6-3, 6-9, 6-15, 7-3, 7-26
CIOUT Signal 5-7, 6-3, 6-9, 7-30, 9-2, 9-17
CIR 10-8, 10-29

Command 10-31
Condition 10-31
Control 10-30
Instruction Address 10-33
Operand 10-32
Operand Address 10-33
Operation Word 10-31
Register Select 10-32
Response 10-29
Restore 10-31
Save 10-30

Clear Data Cache Bit 6-21
Clear Entry in Data Cache Bit 6-21
Clear Entry in Instruction Cache Bit 6-22
Clear Instruction Cache Bit 6-22
CLK Signal 5-11, 7-54
Clock Signal 5-11, 7-54
Command CIR 10-31
Command Words, Illegal, Coprocessor

Detected 10-63
Compare and Swap Instruction 7-43
Compatibility, M68000 Addressing 2-36
Computation, Condition Code 3-15
Concurrent Operation 10-3

Index

Index

-4

MC68030 USER’S MANUAL

MOTOROLA

Condition CIR 10-31
Condition Code

Computation 3-15
Register 2-4, 3-14

Condition Tests 3-17
Conditional Branch Instruction Timing Table

11-48
Connections, Power Supply 5-11
Considerations

Ground 12-43
Power 12-43

Contiguous Memory 9-33–9-34
Example 9-34

Control
Bus Arbitration 7-100
Early Termination 12-34

Control CIR 10-30
Control Instruction Timing Table 11-49
Controller

Bus 11-4
Micro Bus 11-5

Coprocessor
Communication Cycle 7-74
Conditional Instructions 10-12
Context Restore Instruction 10-27
Context Save Instruction 10-24
Data Processing Exceptions 10-63
DMA 10-6
Format Words 10-22
General Instruction Protocol 10-11
General Instructions 10-9
Identification Code 10-4
Instruction Format 10-4
Instruction Summary 10-72
Instructions 3-21
Interface 10-1, 10-6
MC68881 12-5
MC68882 12-5
Non-DMA 10-6
Reset 10-72
Response Primitive 10-33
Response Primitive Format 10-35
State Frames 10-20–10-21
System Related Exceptions 10-64

Coprocessor Detected
Exceptions 10-61
Format Errors 10-64
Illegal Command Words 10-63

Illegal Condition Words 10-63
Protocol Violations 10-62

Coprocessor Interface Register 10-8, 10-29
Count, Initial Shift 9-69
cpBcc Instruction 10-14
cpDBcc Instruction 10-17
CpID 7-74, 10-4
cpRESTORE Instruction 10-27
cpSAVE Instruction 10-25
cpScc Instruction 10-15
cpTRAPcc Instruction 10-18
cpTRAPcc Instruction Exception 10-69
CPU Root Pointer 1-9, 2-5, 9-23, 9-52, 9-54,

9-65
CPU Space 7-68, 7-70, 10-7
CPU Space Address Encoding 7-69
CRP 1-9, 2-5, 9-23, 9-52, 9-54, 9-65
Cycle

Asynchronous Read 7-31
Breakpoint Acknowledge 7-74
Burst 7-59, 12-17
Coprocessor Communication 7-74
Interrupt Acknowledge 7-69
Interrupt Acknowledge, Autovector 7-71

Cycles, Data Transfer 7-30

D

Data
Bus 5-4, 7-5, 7-30, 12-9

Activity 12-11
Requirements, Read Cycle 7-9
Write Enable Signals 7-22

Cache 1-16, 6-1, 6-6, 11-4, 11-16
Movement Instructions 3-4
Port Organization 7-8
Register Direct Mode 2-9
Registers 1-6, 2-2
Select, Byte 7-23
Transfer

Cycles 7-30
Transfer Mechanism 7-6

Types 1-10
Data Buffer Enable Signal 5-6, 7-5, 7-31
Data Burst Enable Bit 6-21
Data Strobe Signal 5-6, 7-5, 7-27
Data Transfer and Size Acknowledge Signals

5-6, 6-11, 6-14, 7-5–7-6, 7-26

 Index

MOTOROLA

MC68030 USER’S MANUAL

Index-5

Data, Immediate 2-21
DBE Bit 6-21
DBEN Signal 5-6, 7-5, 7-31
Debugging Aids 12-35
Decoding, MMU Status Register 9-61
Definition, Task Memory Map 9-66
Delay, Input 7-2
Derivation, Table Index 9-9
Description, General 1-1
Descriptor

Bits, Unused 9-71
Fetch Operation Flowchart 9-44
Indirect

Long Format 9-28
Short Format 9-27

Invalid
Long Format 9-28
Short Format 9-26

Page
Long Format 9-26
Short Format 9-26

Page, Early Termination
Long Format 9-25
Short Format 9-25

Root Pointer 9-23
Table

Long Format 9-24
Short Format 9-24

Descriptors, Translation Table 9-10, 9-20
DFC 1-8, 2-2, 2-5
Differences

MC68020 Hardware 12-3
MC68020 Software 12-4
MMU 9-51

DMA Coprocessor 10-5
Double Bus Fault 7-94, 8-7
Doubly-Linked List

Deletion Example 3-28
Insertion Example 3-28

DR Bit 10-36
DS Signal 5-6, 7-5, 7-27
DSACK0 Signal 5-6, 6-11, 6-14, 7-5–7-6,

7-26
DSACK1 Signal 5-6, 6-11, 6-14, 7-5–7-6,

7-26
Dynamic Allocation, Table 9-40
Dynamic Bus Sizing 7-6, 7-19, 7-24
D0-D31 Signals 5-4, 7-5, 7-30

D0-D7 1-6

E

Early Termination 9-25, 9-70
Early Termination Control 12-34
ECS Signal 5-5, 7-3, 7-26
ED Bit 6-22
Effective Address Encoding Summary 2-22
EI Bit 6-23
Empty/Reset Format Word 10-22
Enable Data Cache Bit 6-22
Enable Instruction Cache Bit 6-23
Encoding

Address Offset 7-8
Size Signal 7-9

Entry, Address Translation Cache 9-17
Errors, Bus 7-82
EU 6-16
Example

CAS Instruction 3-25
CAS2 Instruction 3-26
Contiguous Memory 9-34
Doubly-Linked List

Deletion 3-28
Insertion 3-28

Function Code Lookup 9-46
Indirection 9-34
Linked List

Deletion 3-27
Insertion 3-26

Protection, Translation Tree 9-50
System Paging Implementation 9-72
Table Paging 9-37
Table Sharing 9-34
Two Task Translation Tree 9-47

Exception
Address Error 8-8, 10-72
Breakpoint Instruction 8-22
Bus Error 8-7, 10-72
cpTRAPcc Instruction 10-69
Format Error 8-14
Illegal Instruction 8-9
Instruction Trap 8-9
Interrupt 8-14, 10-71
MMU Configuration 8-21, 9-62
Priority 8-16
Privilege Violation 8-11, 10-69

Index

Index

-6

MC68030 USER’S MANUAL

MOTOROLA

Processing 4-6
Sequence 8-1
State 4-1

Reset 8-2, 8-5
Return from 8-24
Stack Frame 4-6, 8-32
Trace 8-12, 10-70
Unimplemented Instruction 8-9
Vector

Assignments 8-2
Numbers 8-1

Vectors 4-6
Exception Related

Instruction Timing Table 11-50
Operation Timing Table 11-50

Exceptions
Bus 7-75
Coprocessor Data Processing 10-63
Coprocessor Detected 10-62
Coprocessor System Related 10-64
F-Line Emulator 8-10, 10-68
Multiple 8-23
Primitive Processing 10-66

Execution Time Calculations 11-6
Execution Unit 6-16
Extended Instruction Timing Table 11-43
External Cache 12-32

Implementation 12-32
Instruction Only 12-35

External Cycle Start Signal 5-5, 7-3, 7-26

F

Fault, Double Bus 7-94, 8-7
FC0-FC2 Signals 5-4, 6-6, 7-4, 7-31
FD Bit 6-22
Fetch Effective Address Timing Table 11-26
Fetch Immediate Effective Address Timing

Table 11-28
FI Bit 6-23
Fields, Limit 9-70
F-Line 10-4

Emulator Exceptions 8-10, 10-68
Floating Point Units 12-5
Flowchart

Address Translation, General 9-13
Asynchronous Byte Read Cycle 7-31
Asynchronous Long Word Read Cycle

7-31
Asynchronous Read-Modify-Write Cycle

7-43
Asynchronous Write Cycle 7-37
ATC Entry Creation 9-42
Breakpoint Acknowledge 7-74
Burst Operation 7-61
Bus Arbitration 7-97
Descriptor Fetch Operation 9-44
Interrupt Acknowledge Cycle 7-70
Limit Check Procedure 9-43
Synchronous Long-Word Read Cycle

7-48
Synchronous Read-Modify-Write Cycle

7-54
Table Search

Detailed 9-41
Initialization 9-42
Simplified 9-28

Format
Coprocessor Instruction 10-4
Coprocessor Response Primitive 10-35
Instruction 3-1
Instruction Description 3-18

Format Error Exception 8-14
Format Errors

Coprocessor Detected 10-61
Main Processor Detected 10-71

Format Word
Empty/Reset 10-22
Invalid 10-23
Not Ready 10-23
Valid 10-24

Format Words, Coprocessor 10-22
Formula, Instruction Cache Case Time 11-11
Freeze Data Cache Bit 6-22
Freeze Instruction Cache Bit 6-23
Function Code Lookup 9-45–9-46

Example 9-46
Logical Address Map 9-46

Function Code Registers 1-8, 2-5
Function Code Signals 5-4, 6-6, 7-4, 7-31

G

General Description 1-1
GetFrame Routine 9-74
GND Pin Assignments 12-46

 Index

MOTOROLA

MC68030 USER’S MANUAL

Index-7

Grant, Bus 7-99
Ground Considerations 12-43
Groups, Signal 5-1

H

Halt Operation 7-91
Timing 7-92

HALT Signal 5-9, 7-6, 7-27
Halt Signal 5-9, 7-6, 7-27
Halted State 4-1

I

IBE Bit 6-22
Identification Code, Coprocessor 10-4
Illegal Instruction Exception 8-9
Immediate Data 2-21
Indexed Addressing 2-26
Index, Signal 5-2
Indirect Absolute Memory Addressing 2-29
Indirect Addressing 2-29
Indirection 9-34

Example 9-34
Information, Ordering 14-1
Initial Reset Timing 7-103
Initial Shift Count 9-69
Input Delay 7-2
Instruction

BKPT 8-22
Branch on Coprocessor Condition 10-13
Breakpoint 7-74, 8-22
CAS 7-43
CAS2 7-43
Compare and Swap 7-43
Coprocessor Context Restore 10-27
Coprocessor Context Save 10-24
cpBcc 10-14
cpDBcc 10-17
cpRESTORE 10-27
cpSAVE 10-25
cpScc 10-15
cpTRAPcc 10-18
Move Address Space 7-74
MOVES 7-74
No Operation 7-95
NOP 7-95
Set on Coprocessor Condition 10-15
STOP 8-14

TAS 7-43
Test and Set 7-43
Test Coprocessor Condition, Decrement

and
Branch 10-17

Trap on Coprocessor Condition 10-18
Instruction Address CIR 10-33
Instruction Boundary Signals 12-37
Instruction Burst Enable Bit 6-22
Instruction Cache 1-16, 6-1, 6-4, 11-4

Case 11-6
Instruction Description

Format 3-18
Notation 3-3

Instruction Fetch Pending Buffer 11-5
Instruction Format 3-1

Summary 3-18
Instruction Set 1-13
Instruction Timing Tables 11-24
Instruction Trace, Real-Time 12-39
Instruction Trap Exception 8-9
Instructions

Binary Coded Decimal 3-10
Bit Field 3-9
Bit Manipulation 3-8
Coprocessor 3-21

Conditional 10-12
General 10-9

Data Movement 3-4
Integer Arithmetic 3-5
Logical 3-6
MMU 3-13, 9-62
Multiprocessor 3-13
Privileged 8-11
Program Control 3-11
Rotate 3-7
Shift 3-7
System Control 3-12

Integer Arithmetic Instructions 3-5
Interactions, Cache 7-26
Interface

Coprocessor 10-1, 10-5
Memory 12-11

Internal Microsequencer Status Signal 5-10,
7-94

Internal Operand Representation 7-7
Internal to External Data Bus Multiplexer 7-10
Interrupt

Index

Index

-8

MC68030 USER’S MANUAL

MOTOROLA

Cycle, Spurious 7-74
Exception 8-14, 10-71
Latency 11-61
Levels 8-16

Interrupt Acknowledge Cycle 7-69
Flowchart 7-70
Timing 7-71

Interrupt Pending Signal 5-8, 8-17–8-18
Interrupt Priority Level Signals 5-8, 7-69, 8-15
Invalid Format Word 10-23
IPEND_Signal 5-8, 8-17–8-18
IPL0-IPL2 Signals 5-8, 7-69, 8-15

J

Jump Effective Address Timing Table 11-35

L

Late Bus Error
STERM, Timing 7-83
Third Access, Timing 7-86
With DSACKx, Timing 7-83

Late Retry Operation, Burst, Timing 7-89
Latency

Bus Arbitration 11-62
Interrupt 11-61

Levels, Interrupt 8-16
Limit Check Procedure Flowchart 9-43
Limit Fields 9-70
Linked List

Deletion Example 3-27
Insertion Example 3-26

Logical Address Map
Function Code Lookup 9-45
Shared Supervisor/User Address Space

9-46
Logical Instructions 3-6
Logic, Byte Select 12-9
Long Format

Early Termination Page Descriptor 9-25
Indirect Descriptor 9-28
Invalid Descriptor 9-28
Page Descriptor 9-26
Table Descriptor 9-24

Long-Word Operand Request
Burst Fill Deferred, Timing 7-61
Burst Request

CBACK Negated, Timing 7-61

Wait States, Timing 7-61
Burst, CBACK and CIIN Asserted, Timing

7-61
Long-Word Read Cycle

Asynchronous, Flowchart 7-31
Synchronous, Flowchart 7-48
16-Bit Port, Timing 7-31
32-Bit Port, Timing 7-31
8-Bit Port, CIOUT Asserted, Timing 7-31

Long-Word to Long-Word Transfer
Misaligned 7-19

Cachable 7-19
Long-Word to Word Transfer 7-10

Misaligned 7-15
Long-Word Write Cycle

16-Bit Port, Timing 7-37
8-Bit Port, Timing 7-37

Lookup, Function Code 9-45–9-46

M

Machine, Virtual 1-14
Main Processor Detected

Format Errors 10-71
Protocol Violations 10-67

MC68020
Adapter Board 12-1
Hardware Differences 12-3
Software Differences 12-4

MC68851 Signals 12-4
MC68881 Coprocessor 12-6
MC68882 Coprocessor 12-6
Mechanism, Data Transfer 7-6
Memory

Contiguous 9-33–9-34
Interface 12-11
Virtual 1-12, 9-76

Memory Access Time Calculations 12-14
Memory Data Organization 2-5
Memory Indirect Postindexed Mode 2-14
Memory Indirect Preindexed Mode 2-15
Memory Management Unit 1-15, 7-3,

7-37–7-38, 7-43, 9-1, 11-6
Micro Bus Controller 11-5
Microsequencer 11-2
Mid-Instruction Stack Frame 10-59
Misaligned

Cachable

 Index

MOTOROLA

MC68030 USER’S MANUAL

Index-9

Long-Word to Long-Word Transfer
7-19

Word to Long-Word Transfer 7-15
Word to Word Transfer 7-15

Long-Word to Long-Word Transfer 7-19
Long-Word to Word Transfer 7-15

Timing 7-15
Operand 7-13, 7-19
Word to Word Transfer 7-15
Word to Word Transfer Timing 7-15

MMU 1-15, 7-3, 7-37–7-38, 7-43, 9-1, 11-6
Block Diagram 9-2
Configuration Exception 8-21, 9-62
Differences 9-51
Disable Signal 5-10, 9-2, 9-15
Effective Address Timing Table 11-58
Instruction Timing Table 11-60
Instructions 3-13, 9-62
Programming Model 9-2
Register Side Effects 9-61
Status Register 1-9, 2-5, 9-59, 9-61–9-63

Decoding 9-61
MMUDIS Signal 5-10, 9-2, 9-15, 12-2–12-3
MMUSR 1-9, 2-5, 9-59
Mode

Absolute
Long Address 2-20
Short Address 2-20

Address Registers
Direct 2-10
Indirect 2-10
Indirect Displacement 2-12
Indirect Index (Base Displacement)

2-13
Indirect Index (8-Bit Displacement)

2-12
Indirect Postincrement 2-10
Indirect Predecrement 2-11

Data Register Direct 2-9
Memory Indirect

Postindexed 2-14
Preindexed 2-15

Program Counter
Indirect Displacement 2-16
Indirect Index (Base Displacement)

2-17
Indirect Index (8-Bit Displacement)

2-16

Memory Indirect Postindexed 2-14
Memory Indirect Preindexed 2-15

Model, Programming 1-7, 9-2
Modes, Addressing 1-10, 2-8
Move Address Space Instruction 7-74
MOVE Instruction

Special-Purpose, Timing Table 11-39
Timing Table 11-37

MOVES Instruction 7-74
Multiple Exceptions 8-23
Multiplexer, Data Bus, Internal to External

7-10
Multiprocessor Instructions 3-13
M68000 Family 1-4, 2-36

Summary A-1

N

Nested Subroutine Calls 3-30
No Operation Instruction 7-95
Non-DMA Coprocessor 10-5
NOP Instruction 7-95
Normal Processing State 4-1
Not Ready Format Word 10-23
Notation, Instruction Description 3-3
Null Primitive 10-37–10-38
Number of Table Levels 9-68

O

OCS Signal 5-5, 7-3, 7-31
Operand Address CIR 10-33
Operand CIR 10-32
Operand Cycle Start Signal 5-5, 7-3, 7-26
Operands 2-1
Operand, Misaligned 7-13, 7-19
Operation

Burst 7-59
Concurrent 10-3
Halt 7-91
Reset 7-103
Retry 7-89

Operation Word CIR 10-31
Operations, Bit Field 3-31
Ordering Information 14-1
Organization

Cache 6-3
Data Port 7-8
Memory Data 2-5

Index

Index

-10

MC68030 USER’S MANUAL

MOTOROLA

Register Data 2-2
Overlap 11-7

P

Package Dimensions 14-4
Paging

Implementation Example System 9-72
Table 9-37

Performance Tradeoffs 11-1
Pin Assignment 14-2–14-3
Pin Assignments

GND 12-46
V

CC

 12-46
Pipeline 1-12, 1-16, 11-2
Pipeline Refill Signal 5-10, 6-5
Pipeline Synchronization 3-32
Pipelined Burst Mode Static RAM 12-30
Pointer

CPU Root 1-9, 2-5, 9-23, 9-52, 9-54, 9-65
Supervisor Root 1-9, 2-5, 9-23, 9-52,

9-54, 9-65
Post-instruction Stack Frame 10-60
Power Supply Connections 5-11
Pre-Instruction Stack Frame 10-57
Primitive

Busy 10-36
Coprocessor Response 10-11, 10-33
Evaluate and Transfer Effective Address

10-42
Evaluate Effective Address and Transfer

Data 10-43
Null 10-37–10-38
Supervisor Check 10-40
Take Address and Transfer Data 10-48
Take Mid-instruction Exception 10-58
Take Post-Instruction Exception 10-60
Take Pre-Instruction Exception 10-56
Transfer from Instruction Stream 10-41
Transfer Main Processor Control

Register 10-50, 10-52
Transfer Multiple Coprocessor Registers

10-52
Transfer Multiple Main Processor

Registers 10-52
Transfer Operation Word 10-40
Transfer Single Main Processor Register

10-50, 10-52

Transfer Status Register and ScanPC
10-55

Transfer to
from Top of Stack 10-49

Write to Previously Evaluated Effective
Address 10-46

Primitive Processing Exception 10-66
Priority, Exception 8-16
Privilege Level

Changing 4-4
Supervisor 4-2
User 4-3

Privilege Violation Exception 8-11, 10-69
Privileged Instructions 8-11
Processing, Exception 4-6
Processor Activity

Even Alignment 11-9
Odd Alignment 11-10

Processor Generated Reset Timing 7-105
Processor Resource Block Diagram 11-3
Program Control Instructions 3-11
Program Counter

Indirect Displacement Mode 2-12
Indirect Index (Base Displacement)

Mode 2-13
Indirect Index (8-Bit Displacement) Mode

2-12
Memory Indirect Postindexed Mode 2-14
Memory Indirect Preindexed Mode 2-14

Programming Model 1-4, 9-2
MMU 9-2

Protection 9-43
Supervisor Only 9-48
Write 9-48

Protocol
Processor General Instruction 10-7
Violations

Coprocessor Detected 10-62
Main Processor Detected 10-65

Q

Queue 2-39

R

RAM, Static 12-18
Ratings, Maximum 13-1
Read Cycle

 Index

MOTOROLA

MC68030 USER’S MANUAL

Index-11

Asynchronous, 32-Bit Port, Timing 7-31
Data Bus Requirements 7-9
Synchronous 7-48

CIIN Asserted, CBACK Negated,
Timing 7-48

Read-Modify-Write
Accesses 6-10
Cycle

Asynchronous 7-43
Asynchronous, Byte, 32-Bit Port,

Timing 7-43
Asynchronous, Flowchart 7-43
Synchronous 7-54
Synchronous, CIIN Asserted, Flow-

chart 7-54
Synchronous, Flowchart 7-54

Signal 5-5, 7-4, 7-43, 12-4
Read/Write Signal 5-5, 7-4, 7-36
Real Time Instruction Trace 12-39
Recovery

Bus Fault 8-27
RTE 8-25

REFILL Signal 5-10, 6-5
Register

Cache Address 1-9, 2-5, 6-23
Cache Control 1-9, 2-5, 6-3–6-4,

6-20–6-21
Condition Code 2-4, 3-14
Coprocessor interface 10-8, 10-29
Data Organization 2-2
MMU Status 1-9, 2-5, 9-59
Status 1-5, 2-4, 6-5
Translation Control 1-9, 2-5, 9-8, 9-54
Vector Base 1-8, 2-5

Register Select CIR 10-32
Registers

Address 1-6, 2-4
Data 1-6, 2-2
Function Code 1-8, 2-5
Transparent Translation 1-9, 2-5, 9-16,

9-57
Representation, Internal Operand 7-7
Request, Bus 7-98
Requirements, Data Bus, Read Cycle 7-9
Reset

Cache 6-20
Coprocessor 10-72
Exception 8-5

Operation 7-103
Signal 5-9, 7-97, 9-15, 9-61

RESET Signal 5-9, 7-97, 9-15, 9-61
Resource Scheduling 11-2
Response CIR 10-29
Restore CIR 10-31
Restore Operation Timing Table 11-51
Retry Operation 7-89

Late
Asynchronous, Timing 7-89
Burst, Timing 7-89
Synchronous, Timing 7-89

Return from Exception 8-24
RMC Signal 5-5, 7-4, 7-43
Root Pointer Descriptor 9-23
Rotate Instructions 3-7
Routine

AbortTask 9-82
Bus Error 9-82
GetFrame 9-74
SwapPagein 9-83
Vallocate 9-79

RTE
Bus Fault Recovery 8-25
Instruction 8-24

R/W Signal 5-5, 7-4, 7-36

S

Save CIR 10-30
Save Operation Timing Table 11-51
ScanPC 10-15, 10-18, 10-34
Scheduling, Resource 11-2
Script, Table Search Timing 11-51
Search, Table 9-28, 9-30
Sequence, Exception Processing 8-1
Set on Coprocessor Condition Instruction

10-15
Set, Instruction 1-10, 1-13
SFC 1-8, 2-5
Shared Supervisor/User Address Space

Logical
Address Map 9-49

Sharing, Table 9-37
Shift Instructions 3-7
Shift/Rotate Instruction Timing Table 11-45
Short Format

Early Termination Page Descriptor 9-25

Index

Index

-12

MC68030 USER’S MANUAL

MOTOROLA

Indirect Descriptor 9-27
Invalid Descriptor 9-26
Page Descriptor 9-25
Table Descriptor 9-24

Side Effects, MMU Register 9-61
Signal

Address Strobe 5-5, 7-3–7-4, 7-26
AS 5-5, 7-3–7-4, 7-26
Autovector 5-8, 7-6, 7-29, 7-71
AVEC 5-8, 7-6, 7-29, 7-71
BERR 5-9, 6-19, 7-6, 7-27, 8-7, 8-22,

8-25
BG 5-9, 7-43, 7-96
BGACK 5-9, 7-97
BR 5-8, 7-43, 7-60, 7-96
Bus Error 5-9, 6-11, 7-6, 7-27, 8-7, 8-22,

8-25
Bus Grant 5-9, 7-43, 7-96
Bus Grant Acknowledge 5-9, 7-97
Bus Request 5-8, 7-43, 7-60, 7-96
Cache Burst Acknowledge 5-7, 6-16,

7-24, 7-30
Cache Burst Request 5-7, 6-16, 7-6,

7-30, 7-48
Cache Disable 5-10, 6-3
Cache Inhibit Input 5-7, 6-3, 6-9, 7-3,

7-30
Cache Inhibit Output 5-7, 6-3, 6-9, 7-30,

9-2, 9-13
CBACK 5-7, 6-16, 7-3, 7-24, 7-30
CBREQ 5-7, 6-16, 7-6, 7-30, 7-48
CDIS 5-10, 6-3
CIIN 5-7, 6-3, 6-9, 6-15, 7-3, 7-26
CIOUT 5-7, 6-3, 6-9, 7-30, 9-2, 9-17
CLK 5-11, 7-54
Clock 5-11, 7-54
Data Buffer Enable 5-6, 7-5, 7-51
Data Strobe 5-6, 7-5, 7-27
DBEN 5-6, 7-5, 7-31
DS 5-6, 7-5, 7-27
DSACK0 5-6, 6-11, 6-14, 7-5–7-6, 7-26
DSACK1 5-6, 6-11, 6-14, 7-5–7-6, 7-26
ECS 5-5, 7-3, 7-26
External Cycle Start 5-5, 7-3, 7-26
HALT 5-9, 7-6, 7-27
Halt 5-9, 7-6, 7-27
Internal Microsequencer Status 5-10,

7-94, 8-4, 8-18, 8-25

Interrupt Pending 5-8, 8-17–8-18
IPEND 5-8, 8-17–8-18
MMU Disable 5-10, 9-2, 9-15
MMUDIS 5-10, 9-2, 9-15
OCS 5-5, 7-3, 7-31
Operand Cycle Start 5-5, 7-3, 7-31
Pipeline Refill 5-10, 6-5
Read-Modify-Write 5-5, 7-4, 7-43
Read/Write 5-5, 7-4, 7-36
REFILL 5-10, 6-5
RESET 5-9, 7-97, 9-15, 9-61, 12-40
Reset 5-9, 7-97, 9-15, 9-61, 12-40
RMC 5-5, 7-4, 7-43, 12-4
R/W 5-5, 7-4, 7-36
SIZ0 5-4, 7-4, 7-8–7-9, 7-13, 7-22
SIZ1 5-4, 7-4, 7-8–7-9, 7-13, 7-22
STATUS 5-10, 7-94, 8-4, 8-7–8-8
STERM 5-6, 6-14, 6-16, 7-3, 7-6, 7-26

Signal Assertion Results, Asynchronous
Cycle 7-78

Signal Groups 5-1
Signal Index 5-2
Signal Routing, Adapter Board 12-2
Signal Summary 5-11
Signals

A0-A1 7-8, 7-22
A0-A31 5-4, 7-4, 7-31
Bus Control 7-3
Bus Transfer 7-1
Data Bus Write Enable 7-22
Data Transfer and Size Acknowledge

5-6, 6-11, 6-14, 7-5–7-6, 7-26
D0-D31 5-4, 7-5, 7-30
FC0-FC2 5-4, 6-6, 7-4, 7-31
Function Code 5-4, 6-6, 7-4, 7-31
Instruction Boundary 12-37
Interrupt Exception 12-38
Interrupt Priority Level 5-8, 7-69, 8-13
IPL0-IPL2 5-8, 7-69, 8-13
MC68851 12-4
Other Exception 12-38
Processor Halted 12-39
Trace Exception 12-38
Transfer Size 5-4, 7-4, 7-8–7-9, 7-22

Single Entry Cache Filling 6-10
Single Operand Instruction Timing Table

11-44
Size Restrictions, Table Index 9-10

 Index

MOTOROLA

MC68030 USER’S MANUAL

Index-13

Size Signal Encoding 7-8
Sizing, Dynamic Bus 7-6, 7-19, 7-24
SIZ0 Signal 5-4, 7-4, 7-8–7-9, 7-22
SIZ1 Signal 5-4, 7-4, 7-8–7-9, 7-22
Software Bus Fault Recovery 8-27
Space, CPU 7-68, 7-70, 10-7
Special Status Word 8-28
Spurious Interrupt Cycle 7-74
SR 1-8, 2-4, 6-5, 8-11, 8-13, 8-15
SRP 1-5, 1-9, 2-5, 9-23, 9-52, 9-65
Stack

System 2-36
User Program 2-38

Stack Frame
Exception 4-7, 8-32
Mid-Instruction 10-59
Post-Instruction 10-60
Pre-Instruction 10-57

State
Diagram, Bus Arbitration 7-101
Exception Processing 4-1
Halted 4-1
Normal Processing 4-1

State Frames, Coprocessor 10-20–10-21
States, Wait 11-18
Static RAM 12-18

Burst Mode 12-24
Pipelined Burst Mode 12-30
Two Clock Synchronous 12-18

Status Register 1-8, 2-4, 6-5, 8-11, 8-13, 8-15
STATUS Signal 5-10, 7-94, 8-4, 8-7–8-8
Status Word, Special 8-28
STERM Signal 5-6, 6-14, 6-16, 7-3, 7-6, 7-26
Structure Addressing 2-25
Subroutine Calls, Nested 3-30
Summary

Addressing Mode 2-31
Coprocessor Instruction 10-72
Effective Address Encoding 2-22
M68000 Family A-1
Signal 5-11

Supervisor
Privilege Level 4-2
Root Pointer 1-9, 2-5, 9-23, 9-52, 9-54,

9-65
Translation Tree 9-48

Supervisor Check Primitive 10-40
Supervisor Only Protection 9-48

Synchronization
Bus 7-95
Pipeline 3-32

Synchronous
Bus Operation 7-28–7-29
CIIN Asserted, CBACK Negated, Timing

7-48
Cycle Signal Assertion Results 7-78
Long Word Read Cycle Flowchart 7-48
Read Cycle 7-48
Read-Modify-Write Cycle 7-52
Read-Modify-Write Cycle Flowchart 7-54
Read-Modify-Write Cycle, CIIN Asserted,

Timing 7-54
Termination Signal 5-6, 6-14, 6-16, 7-3,

7-6, 7-26
Write Cycle

Flowchart 7-52
Wait States, CIOUT Asserted, Tim-

ing 7-52
Synchronous Termination 5-6, 6-16, 7-3, 7-6,

7-26
System

Control Instructions 3-12
Stack 2-36

T

Table
Dynamic Allocation 9-40
Index

Derivation 9-10
Size Restrictions 9-10

Levels, Number of 9-68
Paging 9-37

Example 9-37
Sharing 9-34, 9-37

Example 9-37
Table Search 9-30

Flowchart
Detailed 9-41
Simplified 9-28

Initialization Flowchart 9-42
Timing 11-52

Script 11-52
Table 11-57

Tables, Instruction Timing 11-24
Take Address and Transfer Data Primitive

Index

Index

-14

MC68030 USER’S MANUAL

MOTOROLA

10-48
Take Mid-instruction Exception Primitive

10-58
Take Post-instruction Exception Primitive

10-60
Take Pre-Instruction Exception Primitive

10-56
TAS Instruction 7-43
Task Memory Map Definition 9-66
TC 1-9, 2-5, 9-8, 9-54
Test and Set Instruction 7-43
Tests, Condition 3-17
Timing

Asynchronous
Byte Read Cycle, 32-Bit Port 7-31
Byte Read-Modify-Write Cycle,

32-Bit Port 7-43
Byte Write Cycle, 32-Bit Port 7-37
Read Cycle, 32-Bit Port 7-31
Word Read Cycle, 32-Bit Port 7-31
Word Write Cycle, 32-Bit Port 7-37
Write Cycle, 32-Bit Pori 7-37

Autovector Interrupt Acknowledge Cycle
7-71

Breakpoint Acknowledge Cycle 7-74
Exception Signaled 7-74

Bus Arbitration 7-95
Bus Inactive 7-103

Bus Error
Late, STERM 7-83
Late, Third Access 7-86
Late, With DSACKx 7-83
Second Access 7-86
Without DSACKx 7-83

Bus Synchronization 7-95
Halt Operation 7-89
Initial Reset 7-103
Interrupt Acknowledge Cycle 7-69
Long Word

Operand Request, Burst Fill De-
ferred 7-61

Operand Request, Burst Request
CBACK Negated 7-61

Operand Request, Burst Request,
Wait States 7-61

Operand Request, Burst, CBACK
and CIIN Assert 7-61

Read Cycle, 16-Bit Port 7-31

Read Cycle, 32-Bit Port 7-31
Read Cycle, 8-Bit Port, CIOUT As-

serted 7-31
Write 7-10
Write Cycle, 16-Bit Port 7-37
Write Cycle, 8-Bit Port 7-37

Misaligned
Long-Word to Word Transfer 7-10
Word to Word Transfer 7-19

Processor-Generated Reset 7-105
Retry Operation, Late

Asynchronous 7-89
Burst 7-89
Synchronous 7-89

Synchronous
Read Cycle, CIIN Asserted, CBACK

Negated 7-48
Read-Modify-Write Cycle, CIIN As-

serted 7-54
Table Search 11-51
Write Cycle, Wait States, CIOUT As-

serted 7-52
Write, Long-Word 7-10
Write, Word 7-13

Timing Table
Arithmetic/Logical Instruction 11-40

Immediate 11-42
Binary Coded Decimal Instruction 11-43
Bit Field Instruction 11-47
Bit Manipulation Instruction 11-46
Calculate Effective Address 11-30
Calculate Immediate Effective Address

11-32
Conditional Branch Instruction 11-48
Control Instruction 11-49
Exception Related

Instruction 11-50
Operation 11-50

Extended Instruction 11-43
Fetch Effective Address 11-26
Fetch Immediate Effective Address

11-28
Jump Effective Address 11-35
MMU

Effective Address 11-58
Instruction 11-60

MOVE Instruction 11-37
Special Purpose 11-39

 Index

MOTOROLA

MC68030 USER’S MANUAL

Index-15

Restore Operation 11-51
Save Operation 11-51
Shift/Rotate Instruction 11-45
Single Operand Instruction 11-44
Table Search 11-51

Trace Exception 8-12, 10-70
Signals 12-38

Tradeoffs, Performance 11-1
Transfer

Long Word to Long Word, Misaligned
Cachable 7-19

Long Word to Word 7-10
Misaligned

Cachable Word to Long Word 7-15
Cachable Word to Word 7-15
Long Word to Long Word 7-19
Long Word to Word 7-15
Word to Word 7-15
Word to Word, Timing 7-15

Word to Byte 7-13
Transfer Main Processor Control Register

Primitive 10-50, 10-52
Transfer Multiple Coprocessor Registers

Primitive 10-52
Transfer Multiple Main Processor Registers

Primitive 10-52
Transfer Operation Word Primitive 10-40
Transfer Single Main Processor Register

Primitive 10-50, 10-52
Transfer Size Signals 5-4, 7-4, 7-8–7-9, 7-22
Transfer Status Register and ScanPC

Primitive 10-55
Transfer to/from Top of Stack Primitive 10-49
Translation Control Register 1-9, 2-5, 9-8,

9-54
Translation Table Descriptors 9-10, 9-20
Translation Table Tree 9-5–9-6, 9-11, 9-28,

9-47–9-48, 9-65
Translation Tree, Supervisor 9-48

Protection Example 9-50
Translation, Address 9-13
Transparent Translation Registers 1-9, 2-5,

9-16, 9-57
Tree, Translation Table 9-5–9-6, 9-11, 9-28,

9-47–9-48, 9-65
TT0 1-9, 2-5, 9-16, 9-57
TT1 1-9, 2-5, 9-16, 9-57
Two Clock Synchronous Static RAM 12-18

Types
Address Space 4-5
Data 1-10

U

Unimplemented Instruction Exception 8-9
Unit

Execution 6-16
Memory Management 1-15, 7-3,

7-37–7-38, 7-43, 9-1, 11-6, 12-5
Units, Floating Point 12-5
Unused Descriptor Bits 9-71
User Privilege Level 4-2, 4-4
User Program Stack 2-38

V

Valid Format Word 10-24
Vallocate Routine 9-78
VBR 1-8, 2-5
V

CC

 Pin Assignments 12-46
Vector

Base Register 1-8, 2-5
Numbers, Exception 8-1

Vectors, Exception 4-6
Virtual Machine 1-12
Virtual Memory 1-12, 9-77

W

WA Bit 6-21
Wait States 11-18
Window

Asynchronous Sample 7-3
Word Read Cycle, Asynchronous, 32-Bit Port

Timing 7-31
Word to Byte Transfer 7-13
Word to Long-Word Transfer, Misaligned

7-15
Word to Word Transfer, Misaligned Cachable

7-15
Word Write Cycle, Asynchronous, 32-Bit Port

Timing 7-37
Word Write Timing 7-13
Word, Special Status 8-28
Write Allocate Bit 6-21
Write Cycle

Asynchronous 7-37

Index

Index

-16

MC68030 USER’S MANUAL

MOTOROLA

Flowchart 7-37
32-Bit Port, Timing 7-37

Synchronous 7-51
Flowchart 7-52

Wait States, CIOUT Asserted, Timing
7-52

Write Pending Buffer 11-5
Write Protection 9-48
Write Timing

Long Word 7-10
Word 7-13

Write to Previously Evaluated Effective
Address

Primitive 10-46

MOTOROLA Figures Missing from Section 9

Figures Missing from Section 9
The following figures are missing from Section 9, “Memory Management Unit.” In this
document, the figure title in Section 9 is hyperlinked to the corresponding image below.

	Preface
	Table of Contents
	List of Illustrations
	List of Tables
	Sec. 1- Introduction
	1.1 Features
	1.2 MC68030 Extensions to the M68000 Family
	1.3 Programming Model
	1.4 Data Types and Addressing Modes
	1.5 Instruction Set Overview
	1.6 Virtual Memory and Virtual Machine Concepts
	1.6.1 Virtual Memory
	1.6.2 Virtual Machine

	1.7 The Memory Management Unit
	1.8 Pipelined Achitecture
	1.9 The Cache Memories

	Sec. 2- Data Organization and Addressing Capabilities
	2.1 Instruction Operands
	2.2 Organization of Data in Registers
	2.2.1 Data Registers
	2.2.2 Address Registers
	2.2.3 Control Registers

	2.3 Organization of Data In Memory
	2.4 Addressing Modes
	2.4.1 Data Register Direct Mode
	2.4.2 Address Register Direct Mode
	2.4.3 Address Register Indirect Mode
	2.4.4 Address Register Indirect with Postincrement Mode
	2.4.5 Address Register Indirect with Predecrement Mode
	2.4.6 Address Register Indirect with Displacement Mode
	2.4.7 Address Register Indirect with Index Mode
	2.4.8 Address Register Indirect with Index Mode
	2.4.9 Memory Indirect Postindexed Mode
	2.4.10 Memory Indirect Preindexed Mode
	2.4.11 Program Counter Indirect with Displacement Mode
	2.4.12 Program Counter Indirect with Index Mode
	2.4.13 Program Counter Indirect with Index Mode
	2.4.14 Program Counter Memory Indirect Postindexed Mode
	2.4.15 Program Counter Memory Indirect Preindexed Mode
	2.4.16 Absolute Short Addressing Mode
	2.4.17 Absolute Long Addressing Mode
	2.4.18 Immediate Data

	2.5 Effective Address Encoding Summary
	2.6 Programmer's View of Addressing Modes
	2.6.1 Addressing Capabilities
	2.6.2 General Addressing Mode Summary

	2.7 M68000 Family Addressing Compatibility
	2.8 Other Data Structures
	2.8.1 System Stack
	2.8.2 User Program Stacks
	2.8.3 Queues

	Sec. 3- Instruction Set Summary
	3.1 Instruction Format
	3.2 Instruction Summary
	3.2.1 Data Movement Instructions
	3.2.2 Integer Arithmetic Instructions
	3.2.3 Logical Instructions
	3.2.4 Shift and Rotate Instructions
	3.2.5 Bit Manipulation Instructions
	3.2.6 Bit Field Operations
	3.2.7 Binary-coded Decimal Instructions
	3.2.8 Program Control Instructions
	3.2.9 System Control Instructions
	3.2.10 Memory Management Unit Instructions
	3.2.11 Multiprocessor Instructions

	3.3 Integer Condition Codes
	3.3.1 Condition Code Computation
	3.3.2 Conditional Tests

	3.4 Instruction Set Summary
	3.5 Instruction Examples
	3.5.1 Using the CAS and CAS2 Instructions
	3.5.2 Nested Subroutine Calls
	3.5.3 Bit Field Operations
	3.5.4 Pipeline Synchronization with the Nop Instruction

	Sec. 4 - Processing States
	4.1 Privilege Levels
	4.1.1 Supervisor Privilege Level
	4.1.2 User Privilege Level
	4.1.3 Changing Privilege Level

	4.2 Address Space Types
	4.3 Exception Processing
	4.3.1 Exception Vectors
	4.3.2 Exception Stack Frame

	Sec. 5 - Signal Description
	5.1 Signal Index
	5.2 Function Code Signals
	5.3 Address Bus
	5.4 Data Bus
	5.5 Transfer Size Signals
	5.6 Bus Control Signals
	5.6.1 Operand Cycle Start
	5.6.2 External Cycle Start
	5.6.3 Read/Write
	5.6.4 Read-Modify-Write Cycle
	5.6.5 Address Strobe
	5.6.6 Data Strobe
	5.6.7 Data Buffer Enable
	5.6.8 Data Transfer and Size Acknowledge
	5.6.9 Synchronous Termination

	5.7 Cache Control Signals
	5.7.1 Cache Inhibit Input
	5.7.2 Cache Inhibit Output
	5.7.3 Cache Burst Request
	5.7.4 Cache Burst Acknowledge

	5.8 Interrupt Control Signals
	5.8.1 Interrupt Priority Level Signals
	5.8.2 Interrupt Pending
	5.8.3 Autovector

	5.9 Bus Arbitration Control Signals
	5.9.1 Bus Request
	5.9.2 Bus Grant
	5.9.3 Bus Grant Acknowledge

	5.10 Bus Exception Control Signals
	5.10.1 Reset
	5.10.2 Halt
	5.10.3 Bus Error

	5.11 Emulator Support Signals
	5.11.1 Cache Disable
	5.11.2 MMU Disable
	5.11.3 Pipeline Refill
	5.11.4 Internal Microsequencer Status

	5.12 Clock
	5.13 Power Supply Connections
	5.14 Signal Summary

	Sec. 6- On-Chip Cache Memories
	6.1 On-Chip Cache Organization and Operation
	6.1.1 Instruction Cache
	6.1.2 Data Cache
	6.1.3 Cache Filling

	6.2 Cache Reset
	6.3 Cache Control
	6.3.1 Cache Control Register
	6.3.2 Cache Address Register

	Sec. 7 - Bus Operation
	7.1 Bus Transfer Signals
	7.1.1 Bus Control Signals
	7.1.2 Address Bus
	7.1.3 Address Strobe
	7.1.4 Data Bus
	7.1.5 Data Strobe
	7.1.6 Data Buffer Enable
	7.1.7 Bus Cycle Termination Signals

	7.2 Data Transfer Mechanism
	7.2.1 Dynamic Bus Sizing
	7.2.2 Misaligned Operands
	7.2.3 Effects of Dynamic Bus Sizing and Operand Misalignment
	7.2.4 Address, Size, and Data Bus Relationships
	7.2.5 MC68030 versus MC68020 Dynamic Bus Sizing
	7.2.6 Cache Filling
	7.2.7 Cache Interactions
	7.2.8 Asynchronous Operation
	7.2.9 Synchronous Operation with DSACKx
	7.2.10 Synchronous Operation with STERM

	7.3 Data Transfer Cycles
	7.3.1 Asynchronous Read Cycle
	7.3.2 Asynchronous Write Cycle
	7.3.3 Asynchronous Read-Modify-Write Cycle
	7.3.4 Synchronous Read Cycle
	7.3.5 Synchronous Write Cycle
	7.3.6 Synchronous Read-Modify-Write Cycle
	7.3.7 Burst Operation Cycles

	7.4 CPU Space Cycles
	7.4.1 Interrupt Acknowledge Bus Cycles
	7.4.2 Breakpoint Acknowledge Cycle
	7.4.3 Coprocessor Communication Cycles

	7.5 Bus Exception Control Cycles
	7.5.1 Bus Errors
	7.5.2 Retry Operation
	7.5.3 Halt Operation
	7.5.4 Double Bus Fault

	7.6 Bus Synchronization
	7.7 Bus Arbitration
	7.7.1 Bus Request
	7.7.2 Bus Grant
	7.7.3 Bus Grant Acknowledge
	7.7.4 Bus Arbitration Control

	7.8 Reset Operation

	Sec. 8- Exception Processing
	8.1 Exception Processing Sequence
	8.1.1 Reset Exception
	8.1.2 Bus Error Exception
	8.1.3 Address Error Exception
	8.1.4 Instruction Trap Exception
	8.1.5 Illegal Instruction and Unimplemented Instruction Exceptions
	8.1.6 Privilege Violation Exception
	8.1.7 Trace Exception
	8.1.8 Format Error Exception
	8.1.9 Interrupt Exceptions
	8.1.10 MMU Configuration Exception
	8.1.11 Breakpoint Instruction Exception
	8.1.12 Multiple Exceptions
	8.1.13 Return from Exception

	8.2 Bus Fault Recovery
	8.2.1 Special Status Word
	8.2.2 Using Software to Complete the Bus Cycles
	8.2.3 Completing the Bus Cycles with Rte

	8.3 Coprocessor Considerations
	8.4 Exception Stack Frame Formats

	Sec. 9- Memory Management Unit
	9.1 Translation Table Structure
	9.1.1 Translation Control
	9.1.2 Translation Table Descriptors

	9.2 Address Translation
	9.2.1 General Flow for Address Translation
	9.2.2 Effect of RESET on MMU
	9.2.3 Effect of MMUDIS on Address Translation

	9.3 Transparent Translation
	9.4 Address Translation Cache
	9.5 Translation Table Details
	9.5.1 Descriptor Details
	9.5.2 General Table Search
	9.5.3 Variations in Translation Table Structure
	9.5.4 Detail of Table Search Operations
	9.5.5 Protection

	9.6 MC68030 and MC68851 MMU Differences
	9.7 Registers
	9.7.1 Root Pointer Registers
	9.7.2 Translation Control Register
	9.7.3 Transparent Translation Registers
	9.7.4 MMU Status Register
	9.7.5 Register Programming Considerations

	9.8 MMU Instructions
	9.9 Defining and Using Page Tables in an Operating System
	9.9.1 Root Pointer Registers
	9.9.2 Task Memory Map Definition
	9.9.3 Impact of MMU Features on Table Definition

	9.10 An Example of Paging Implementation in an Operating System
	9.10.1 System Description
	9.10.2 Allocation Routines
	9.10.3 Bus Error Handler Routine

	Sec. 10- Coprocessor Interface Description
	10.1 Introduction
	10.1.1 Interface Features
	10.1.2 Concurrent Operation Support
	10.1.3 Coprocessor Instruction Format
	10.1.4 Coprocessor System Interface

	10.2 Coprocessor Instruction Types
	10.2.1 Coprocessor General Instructions
	10.2.2 Coprocessor Conditional Instructions
	10.2.3 Coprocessor Save and Restore Instructions

	10.3 Coprocessor Interface Register Set
	10.3.1 Response CIR
	10.3.2 Control CIR
	10.3.3 Save CIR
	10.3.4 Restore CIR
	10.3.5 Operation Word CIR
	10.3.6 Command CIR
	10.3.7 Condition CIR
	10.3.8 Operand CIR
	10.3.9 Register Select CIR
	10.3.10 Instruction Address CIR
	10.3.11 Operand Address CIR

	10.4 Coprocessor Response Primitives
	10.4.1 ScanPC
	10.4.2 Coprocessor Response Primitive General Format
	10.4.3 Busy Primitive
	10.4.4 Null Primitive
	10.4.5 Supervisor Check Primitive
	10.4.6 Transfer Operation Word Primitive
	10.4.7 Transfer from Instruction Stream Primitive
	10.4.8 Evaluate and Transfer Effective Address Primitive
	10.4.9 Evaluate Effective Address and Transfer Data Primitive
	10.4.10 Write to Previously Evaluated Effective Address Primitive
	10.4.11 Take Address and Transfer Data Primitive
	10.4.12 Transfer to/from Top of Stack Primitive
	10.4.13 Transfer Single Main Processor Register Primitive
	10.4.14 Transfer Main Processor Control Register Primitive
	10.4.15 Transfer Multiple Main Processor Registers Primitive
	10.4.16 Transfer Multiple Coprocessor Registers Primitive
	10.4.17 Transfer Status Register and ScanPC Primitive
	10.4.18 Take Pre-Instruction Exception Primitive
	10.4.19 Take Mid-Instruction Exception Primitive
	10.4.20 Take Post-Instruction Exception Primitive

	10.5 Exceptions
	10.5.1 Coprocessor-Detected Exceptions
	10.5.2 Main-Processor-Detected Exceptions
	10.5.3 Coprocessor Reset

	10.6 Coprocessor Summary

	Sec. 11- Instruction Exeution Timing
	11.1 Performance Tradeoffs
	11.2 Resource Scheduling
	11.2.1 Microsequencer
	11.2.2 Instruction Pipe
	11.2.3 Instruction Cache
	11.2.4 Data Cache
	11.2.5 Bus Controller Resources
	11.2.6 Memory Management Unit

	11.3 Instruction Execution Timing Calculations
	11.3.1 Instruction-Cache Case
	11.3.2 Overlap and Best Case
	11.3.3 Average No-Cache Case
	11.3.4 Actual Instruction-Cache-Case Execution Time Calculations

	11.4 Effect of Data Cache
	11.5 Effect of Wait States
	11.6 Instruction Timing Tables
	11.6.1 Fetch Effective Address
	11.6.2 Fetch Immediate Effective Address
	11.6.3 Calculate Effective Address
	11.6.4 Calculate Immediate Effective Address
	11.6.5 Jump Effective Address
	11.6.6 MOVE Instruction
	11.6.7 Special-Purpose Move Instruction
	11.6.8 Arithmetical/Logical Instructions
	11.6.9 Immediate Arithmetical/Logical Instructions
	11.6.10 Binary-Coded Decimal and Extended Instructions
	11.6.11 Single Operand Instructions
	11.6.12 Shift/Rotate Instructions
	11.6.13 Bit Manipulation Instructions
	11.6.14 Bit Field Manipulation Instructions
	11.6.15 Conditional Branch Instructions
	11.6.16 Control Instructions
	11.6.17 Exception-Related Instructions and Operations
	11.6.18 Save and Restore Operations

	11.7 Address Translation Tree Search Timing
	11.7.1 MMU Effective Address Calculation
	11.7.2 MMU Instruction Timing

	11.8 Interrupt Latency
	11.9 Bus Arbitration Latency

	Sec. 12 - Applications Information
	12.1 Adapting the MC68030 to MC68020 Designs
	12.1.1 Signal Routing
	12.1.2 Hardware Differences
	12.1.3 Software Differences

	12.2 Floating-Point Units
	12.3 Byte Select Logic for the MC68030
	12.4 Memory Interface
	12.4.1 Access Time Calculations
	12.4.2 Burst Mode Cycles

	12.5 Static RAM Memory Banks
	12.5.1 A Two-Clock Synchronous Memory Bank Using SRAMS
	12.5.2 A 2-1-1-1 Burst Mode Memory Bank Using SRAMS
	12.5.3 A 3-1-1-1 Burst Mode Memory Bank Using SRAMS

	12.6 External Caches
	12.6.1 Cache Implementation
	12.6.2 Instruction-Only External Cache Implementations

	12.7 Debugging Aids
	12.7.1 Status and Refill
	12.7.2 Real-Time Instruction Trace

	12.8 Power and Ground Considerations

	Sec. 13 - Electrical Characteristics
	13.1 Maximum Ratings
	13.2 Thermal Characteristics - PGA Package

	Sec. 14- Ordering Information and Mechanical Data
	14.1 Standard MC68030 Ordering Information
	14.2 Pin Assignments - Pin Grid Array
	14.3 Pin Assignments - Ceramic Surface Mount
	14.4 Package Dimensions

	Appx. A- M68000 Family Summary
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

	Figures Missing from Section 9

