

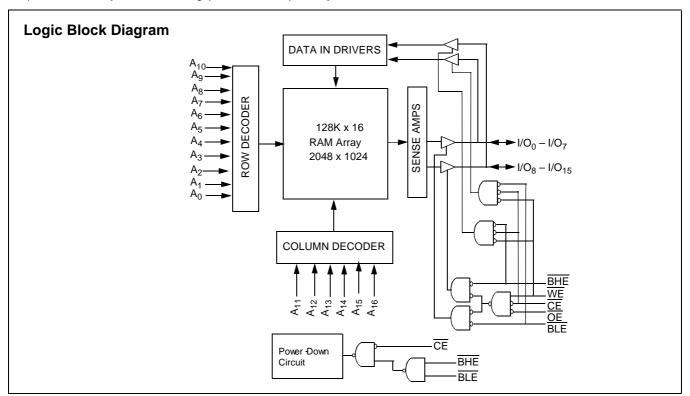
WEIDA

128K x 16 Static RAM

Features

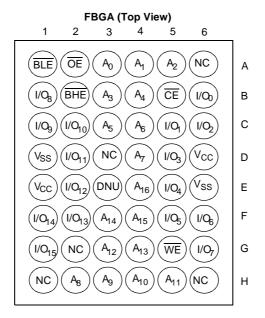
- Low Voltage range:
 - 2.7V-3.3V
- · Ultra-low active power
 - Typical active current: 1.5 mA @ f = 1MHz
 - Typical active current: 7 mA @ f = f_{max}
- · Low standby power
- Easy memory expansion with $\overline{\text{CE}}$ and $\overline{\text{OE}}$ features
- Automatic power-down when deselected
- CMOS for optimum speed/power

Functional Description


The WCMA2016U4X is a high-performance CMOS static RAMs organized as 128K words by 16 bits. These devices feature advanced circuit design to provide ultra-low active current. This device is ideal for portable applications such as cellular telephones. The devices also have an automatic power-down feature that significantly reduces power consumption by 80% when addresses are not toggling. The device can also be put into standby mode reducing power consumption by

more than 99% when deselected ($\overline{\text{CE}}$ HIGH or both $\overline{\text{BLE}}$ and $\overline{\text{BHE}}$ are HIGH). The input/output pins (I/O₀ through I/O₁₅) are placed in a high-impedance state when: deselected ($\overline{\text{CE}}$ HIGH), outputs are disabled ($\overline{\text{OE}}$ HIGH), both Byte High Enable and Byte Low Enable are disabled ($\overline{\text{BHE}}$, $\overline{\text{BLE}}$ HIGH), or during a write operation ($\overline{\text{CE}}$ LOW, and $\overline{\text{WE}}$ LOW).

Writing to the device is accomplished by taking Chip Enable $\overline{(CE)}$ and Write Enable (WE) inputs LOW. If Byte Low Enable (BLE) is LOW, then data from I/O pins (I/O $_0$ through I/O $_7$), is written into the location specified on the address pins (A $_0$ through A $_{16}$). If Byte High Enable (BHE) is LOW, then data from I/O pins (I/O $_8$ through I/O $_{15}$) is written into the location specified on the address pins (A $_0$ through A $_{16}$).


Reading from the device is accomplished by taking Chip Enable ($\overline{\text{CE}}$) and Output Enable ($\overline{\text{OE}}$) LOW while forcing the Write Enable ($\overline{\text{WE}}$) HIGH. If Byte Low Enable ($\overline{\text{BLE}}$) is LOW, then data from the memory location specified by the address pins will appear on I/O $_0$ to I/O $_7$. If Byte High Enable ($\overline{\text{BHE}}$) is LOW, then data from memory will appear on I/O $_8$ to I/O $_{15}$. See the truth table at the back of this data sheet for a complete description of read and write modes.

The WCMA2016U4X is available in a 48-ball FBGA package.

Pin Configuration^[1, 2]

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.) Storage Temperature-65°C to +150°C Ambient Temperature with Power Applied.......55°C to +125°C Supply Voltage to Ground Potential...–0.5V to V_{ccmax} + 0.5V

DC Voltage Applied to Outputs

in High Z State^[3].....–0.5V to V_{CC} + 0.5V DC Input Voltage^[3]-0.5V to V_{CC} + 0.5V

Product Portfolio

Output Current into Outputs (LOW)	20 mA
Static Discharge Voltage(per MIL-STD-883, Method 3015)	>2001V
Latch-Up Current	. >200 mA

Operating Range

Device	Range	Ambient Temperature	v _{cc}
WCMA2016U4X	Industrial	–40°C to +85°C	2.7V to 3.3V

						Po	wer Dis	sipation	(Industr	ial)
V _{CC} Range		V _{CC} Range		V _{CC} Range		Speed Operating, I _{CC}			Sta	andby (L.)
Floduct			Speeu	f = 1 MHz		f = f _{max}		Standby (I _{SB2})		
	V _{CC(min.)}	V _{CC(typ.)} ^[4]	V _{CC(max.)}		Typ. ^[4]	Max.	Typ. ^[4]	Max.	Typ. ^[4]	Max.
WCMA2016U4X	2.7V	3.0V	3.3V	70 ns	1 mA	2 mA	7 mA	15 mA	1 μΑ	15 μΑ

Notes:

- NC pins are not connected to the die.
 E3 (DNU) can be left as NC or Vss to ensure proper application.
 V_{IL(min.)} = -2.0V for pulse durations less than 20 ns.
 Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at V_{CC} = V_{CC(typ.)}, T_A = 25°C.

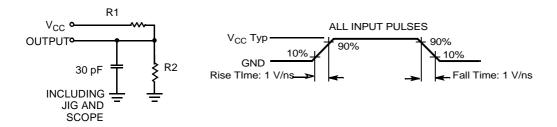
Electrical Characteristics Over the Operating Range

					/CMA2016U	4X	
Param- eter	Description	Test Cond	ditions	Min.	Typ. ^[4]	Max.	Unit
V _{OH}	Output HIGH Voltage	$I_{OH} = -1.0 \text{ mA}$	$V_{CC} = 2.7V$	2.4			V
V _{OL}	Output LOW Voltage	I _{OL} = 2.1mA	$V_{CC} = 2.7V$			0.4	V
V _{IH}	Input HIGH Voltage			2.2		V _{CC} + 0.5V	V
V _{IL}	Input LOW Voltage			-0.3		0.8	V
I _{IX}	Input Leakage Cur- rent	$GND \leq V_I \leq V_{CC}$		-1		+1	μΑ
I _{OZ}	Output Leakage Cur- rent	$GND \le V_O \le V_{CC}$, Ou	tput Disabled	-1		+1	μΑ
	V _{CC} Operating Supply	$f = f_{MAX} = 1/t_{RC}$	$V_{CC} = 3.6V$		7	15	
I _{CC}	Current	f = 1 MHz	I _{OUT} = 0 mA CMOS Levels		1	2	mA
I _{SB1}	Automatic CE Power-Down Cur- rent— CMOS Inputs	$\overline{CE} \ge V_{CC} - 0.3V$ $V_{IN} \ge V_{CC} - 0.3V \text{ or } V_{CC}$ $f = f_{max}$			100	A	
I _{SB2}	Automatic CE Power-Down Cur- rent— CMOS Inputs	$\overline{CE} \ge V_{CC} - 0.2V$ $V_{IN} \ge V_{CC} - 0.2V$ or $V_{CC} = 0.2V$	/ _{IN} ≤ 0.2V,		1	15	μΑ

Capacitance^[5]

Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$T_A = 25^{\circ}C, f = 1 \text{ MHz},$	6	pF
C _{OUT}	Output Capacitance	$V_{CC} = V_{CC(typ.)}$	8	pF

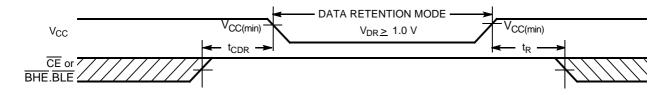
Thermal Resistance


Description	Test Conditions	Symbol	BGA	Units
Thermal Resistance (Junction to Ambient) ^[5]	Still Air, soldered on a 4.25 x 1.125 inch, 4-layer printed circuit board	Θ_{JA}	55	°C/W
Thermal Resistance (Junction to Case) ^[5]		$\Theta_{\sf JC}$	16	°C/W

Note:

^{5.} Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveforms


THÉVENIN EQUIVALENT Equivalent to:

Parameters	3.0V	Unit
R1	1.105	KOhms
R2	1.550	KOhms
R _{TH}	0.645	KOhms
V _{TH}	1.75V	Volts

Data Retention Characteristics (Over the Operating Range)

Parameter	Description	Conditions	Min.	Typ. ^[4]	Max.	Unit
V_{DR}	V _{CC} for Data Retention		1.0		3.6	V
I _{CCDR}	Data Retention Current	$\begin{split} &\frac{V_{CC}}{CE} = 1.0V\\ &\frac{V_{CC}}{CE} \geq V_{CC} - 0.2V,\\ &V_{IN} \geq V_{CC} - 0.2V \text{ or } V_{IN} \leq 0.2V \end{split}$		0.5	7.5	μΑ
t _{CDR} ^[5]	Chip Deselect to Data Retention Time		0			ns
t _R ^[6]	Operation Recovery Time		70			ns

Data Retention Waveform^[7]

Note:

- 6. Full Device AC operation requires linear V_{CC} ramp from V_{DR} to V_{CC(min.)} > 100 μs or stable at V_{CC(min.)} > 100 μs.
 7. BHE.BLE is the AND of both BHE and BLE. Chip can be deselected by either disabling the chip enable signals or by disabling both BHE and BLE.

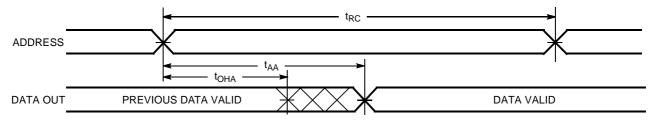
Switching Characteristics Over the Operating Range^[8]

		70	ns		
Parameter	Description	Min Max		Unit	
READ CYCLE				·	
t _{RC}	Read Cycle Time	70		ns	
t _{AA}	Address to Data Valid		70	ns	
t _{OHA}	Data Hold from Address Change	10		ns	
t _{ACE}	CE LOW to Data Valid		70	ns	
t _{DOE}	OE LOW to Data Valid		35	ns	
t _{LZOE}	OE LOW to Low Z ^[9]	5		ns	
t _{HZOE}	OE HIGH to High Z ^[9, 11]		25	ns	
t _{LZCE}	CE LOW to Low Z ^[9]	10		ns	
t _{HZCE}	CE HIGH to High Z ^[9, 11]		25	ns	
t _{PU}	CE LOW to Power-Up	0		ns	
t _{PD}	CE HIGH to Power-Down		70	ns	
t _{DBE}	BHE / BLE LOW to Data Valid		70	ns	
t _{LZBE} ^[10]	BHE / BLE LOW to Low Z ^[9]	5		ns	
t _{HZBE}	BHE / BLE HIGH to High Z ^[9, 11]		25	ns	
WRITE CYCLE ^[12]				•	
t _{WC}	Write Cycle Time	70		ns	
t _{SCE}	CE LOW to Write End	60		ns	
t _{AW}	Address Set-Up to Write End	60		ns	
t _{HA}	Address Hold from Write End	0		ns	
t _{SA}	Address Set-Up to Write Start	0		ns	
t _{PWE}	WE Pulse Width	50		ns	
t_{BW}	BHE / BLE Pulse Width	60		ns	
t _{SD}	Data Set-Up to Write End	30		ns	
t _{HD}	Data Hold from Write End	0		ns	
t _{HZWE}	WE LOW to High Z ^[9, 11]		25	ns	
t _{LZWE}	WE HIGH to Low Z ^[9]	10		ns	

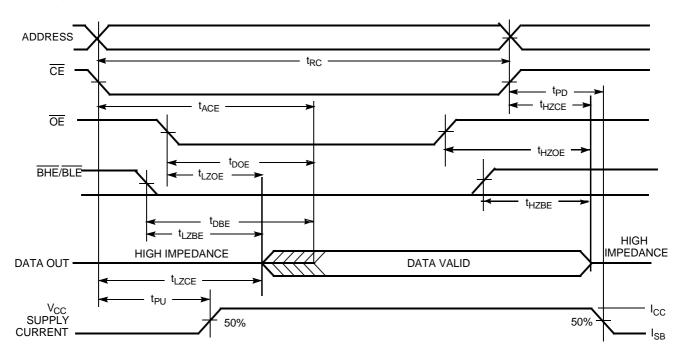
Notes:

Test conditions assume signal transition time of 5 ns or less, timing reference levels of $V_{CC(typ.)}/2$, input pulse levels of 0 to $V_{CC(typ.)}$, and

output loading of the specified I_{OL}/I_{OH} and 30 pF load capacitance.


At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE}, t_{HZBE} is less than t_{LZCE}, t_{HZOE} is less than t_{LZCE}, and t_{HZWE} is less

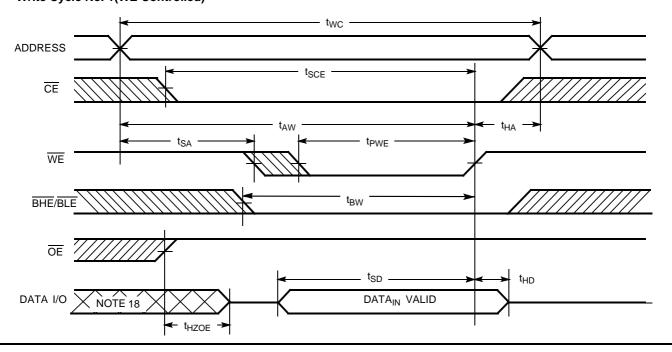
At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE}, t_{HZBE} is less than t_{LZBE}, t_{HZOE} is less than t_{LZOE}, and t_{HZWE} is less than t_{LZCE}, and t_{HZWE} is less than t_{LZCE}, that t_{LZCE} for any given device.
 If both byte enables are toggled together this value is 10ns
 t_{HZOE}, t_{HZDE}, t_{HZDE}, and t_{HZWE} transitions are measured when the <u>outputs</u> enter a <u>high</u> impedance state.
 The internal write time of the memory is defined by the overlap of WE, CE = V_{IL}, BHE and/or BLE = V_{IL}. All signals must be ACTIVE to initiate a write and any of these signals can terminate a write by going INACTIVE. The data input set-up and hold timing should be referenced to the edge of the signal that terminates the write..



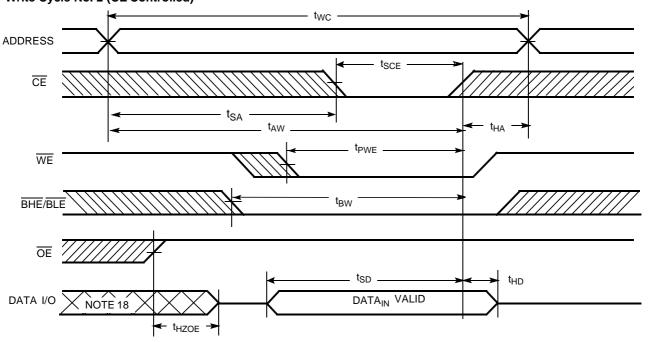
Switching Waveforms

Read Cycle No. 1 (Address Transistion Controlled) $^{[13,\ 14]}$

Read Cycle No. 2 (OE Controlled) [14, 15]



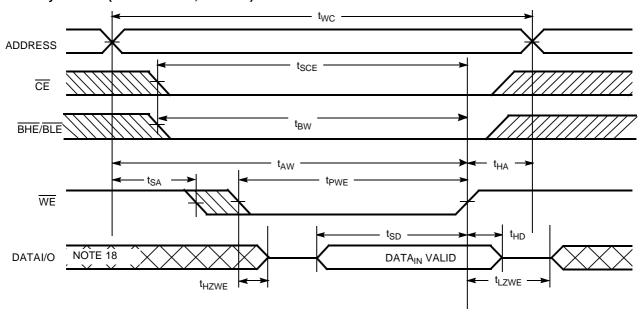
- Device is continuously selected. OE, CE = V_{IL}, BHE, BLE = V_{IL}.
 WE is HIGH for read cycle.
 Address valid prior to or coincident with CE, BHE, BLE transition LOW.



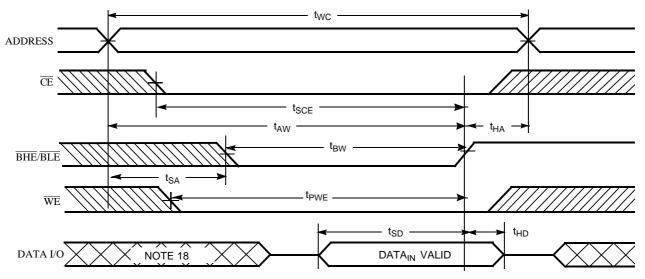
Switching Waveforms (continued)

Write Cycle No. 1(WE Controlled) [12, 16, 17]

Write Cycle No. 2 (CE Controlled) [12, 16, 17]


Notes:

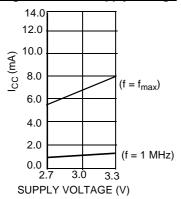
- 16. Data I/O is high-impedance if OE = V_{IH}.
 17. If CE goes HIGH simultaneously with WE HIGH, the output remains in a high-impedance state.
 18. During this period, the I/Os are in output state and input signals should not be applied.

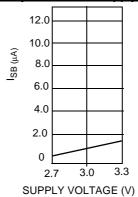


Switching Waveforms (continued)

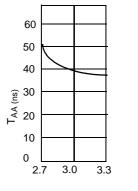
Write Cycle No. 3 (WE Controlled, $\overline{\text{OE}}$ LOW) $^{[17]}$

Write Cycle No. 4 (BHE/BLE Controlled, OE LOW)[17]




Typical DC and AC Parameters

(Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at $V_{CC} = V_{CC(typ.)}$, $T_A = 25^{\circ}C$)


Operating Current vs. Supply Voltage

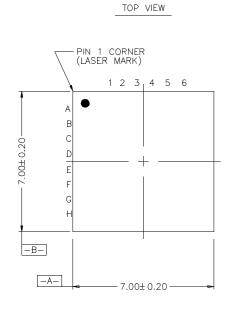
Standby Current vs. Supply Voltage

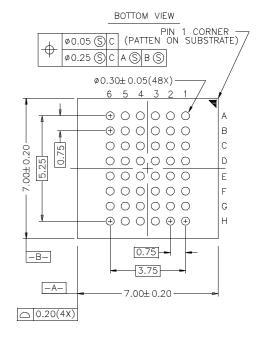
Access Time vs. Supply Voltage

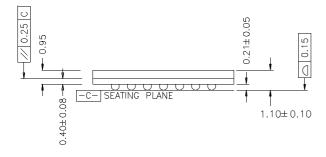
SUPPLY VOLTAGE (V)

Truth Table

CE	WE	OE	BHE	BLE	Inputs/Outputs	Mode	Power
Н	Х	Х	Х	Х	High Z	Deselect/Power-Down	Standby (I _{SB})
Χ	Х	Х	Н	Н	High Z	Deselect/Power-Down	Standby (I _{SB})
L	Н	L	L	L	Data Out (I/O _O -I/O ₁₅)	Read	Active (I _{CC})
L	Н	L	Н	L	Data Out (I/O _O -I/O ₇); I/O ₈ -I/O ₁₅ in High Z	Read	Active (I _{CC})
L	Н	L	L	Н	Data Out (I/O ₈ –I/O ₁₅); I/O ₀ –I/O ₇ in High Z	Read	Active (I _{CC})
L	Н	Н	L	L	High Z	Output Disabled	Active (I _{CC})
L	Н	Н	Н	L	High Z	Output Disabled	Active (I _{CC})
L	Н	Н	L	Н	High Z	Output Disabled	Active (I _{CC})
L	L	Х	L	L	Data In (I/O _O -I/O ₁₅)	Write	Active (I _{CC})
L	L	Х	Н	L	Data In (I/O _O -I/O ₇); I/O ₈ -I/O ₁₅ in High Z	Write	Active (I _{CC})
L	L	Х	L	Н	Data In (I/O ₈ –I/O ₁₅); I/O ₀ –I/O ₇ in High Z	Write	Active (I _{CC})




Ordering Information


Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
70	WCMA2016U4X-FF70	F	48-Ball Fine Pitch BGA	Industrial

Package Diagrams

48-Ball (7.0 mm x 7.0 mm x 1.2 mm) Fine Pitch BGA, F

Document Title: WCMA2016U4X, 128K x 16 STATIC RAM Document Number: 38-05212							
REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change			
**	112910	1/17/02 MGN		New Datasheet			