Power MOSFET 45 Amps, 25 Volts ### **N-Channel DPAK** #### **Features** - Planar HD3e Process for Fast Switching Performance - Low R_{DS(on)} to Minimize Conduction Loss - Low C_{iss} to Minimize Driver Loss - Low Gate Charge - Optimized for High Side Switching Requirements in High–Efficiency DC–DC Converters - Pb-Free Packages are Available ### **MAXIMUM RATINGS** ($T_J = 25^{\circ}C$ unless otherwise specified) | Parameter | Symbol | Value | Unit | |---|--|-----------------|-------------| | Drain-to-Source Voltage | V_{DSS} | 25 | Vdc | | Gate-to-Source Voltage - Continuous | V _{GS} | ±20 | Vdc | | Thermal Resistance – Junction–to–Case Total Power Dissipation @ T _C = 25°C Drain Current | $R_{ heta JC} P_D$ | 3.0
50 | °C/W
W | | - Continuous @ T_C = 25°C, Chip
- Continuous @ T_A = 25°C, Limited by Wires
- Single Pulse (tp \leq 10 μ s) | I _D
I _D
I _D | 45
32
100 | A
A
A | | Thermal Resistance – Junction–to–Ambient (Note 1) | $R_{\theta JA}$ | 71.4 | °C/W | | Total Power Dissipation @ T _A = 25°C Drain Current – Continuous @ T _A = 25°C | P _D
I _D | 2.1
9.2 | W
A | | Thermal Resistance – Junction–to–Ambient (Note 2) | $R_{\theta JA}$ | 100 | °C/W | | Total Power Dissipation @ T _A = 25°C Drain Current – Continuous @ T _A = 25°C | P _D
I _D | 1.5
7.8 | W
A | | Operating and Storage Temperature Range | T _J , T _{stg} | –55 to
175 | °C | | Maximum Lead Temperature for Soldering Purposes, 1/8" from case for 10 seconds | TL | 260 | °C | Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected. - 1. When surface mounted to an FR4 board using 0.5 sq. in pad size. - When surface mounted to an FR4 board using minimum recommended pad size. ### ON Semiconductor® http://onsemi.com # 45 AMPERES, 25 VOLTS $R_{DS(on)} = 12.6 \text{ m}\Omega \text{ (Typ)}$ N-CHANNEL CASE 369AA DPAK (Surface Mount) STYLE 2 3 CASE 369D DPAK (Straight Lead) STYLE 2 ## MARKING DIAGRAM & PIN ASSIGNMENTS 40N03= Device Code Y = Year WW = Work Week #### ORDERING INFORMATION See detailed ordering and shipping information in the package dimensions section on page 6 of this data sheet. ### **ELECTRICAL CHARACTERISTICS** ($T_J = 25^{\circ}C$ unless otherwise specified) | Characteristics | | | Min | Тур | Max | Unit | |--|--|---------------------|---------|--------------|------------|-----------------| | OFF CHARACTERISTICS | | | | | | | | Drain-to-Source Breakdown Voltage (Note 3)
(V _{GS} = 0 Vdc, I _D = 250 μAdc)
Temperature Coefficient (Positive) | | | 25
- | 28
- | -
- | Vdc
mV/°C | | Zero Gate Voltage Drain Current $ (V_{DS} = 20 \text{ Vdc}, V_{GS} = 0 \text{ Vdc}) $ $ (V_{DS} = 20 \text{ Vdc}, V_{GS} = 0 \text{ Vdc}, T_J = 150^{\circ}\text{C}) $ | | | -
- | -
- | 1.0
10 | μAdc | | Gate–Body Leakage Current
(V _{GS} = ±20 Vdc, V _{DS} = 0 Vdc) | | | ı | - | ±100 | nAdc | | ON CHARACTERISTICS (Note 3) | | | | | | | | Gate Threshold Voltage (Note 3) $(V_{DS} = V_{GS}, I_D = 250 \ \mu Adc)$ Threshold Temperature Coefficient (Negative) | | | 1.0 | 1.7 | 2.0 | Vdc
mV/°C | | Static Drain-to-Source On-Resistance (Note 3)
$(V_{GS} = 4.5 \text{ Vdc}, I_D = 10 \text{ Adc})$
$(V_{GS} = 10 \text{ Vdc}, I_D = 10 \text{ Adc})$ | | | -
- | 18.6
12.6 | 23
16.5 | mΩ | | Forward Transconductance (Note 3)
(V _{DS} = 10 Vdc, I _D = 10 Adc) | | | ı | 20 | - | Mhos | | DYNAMIC CHARACTERISTICS | | | | | | | | Input Capacitance | | C _{iss} | - | 584 | - | pF | | Output Capacitance | $(V_{DS} = 20 \text{ Vdc}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz})$ | C _{oss} | - | 254 | - | | | Transfer Capacitance | | C _{rss} | _ | 99 | - | | | SWITCHING CHARACTERISTICS | (Note 4) | | | | | | | Turn-On Delay Time | | t _{d(on)} | - | 4.5 | - | ns | | Rise Time | (V _{GS} = 10 Vdc, V _{DD} = 10 Vdc, | t _r | - | 19.5 | - | | | Turn-Off Delay Time | $I_D = 10 \text{ Adc}, R_G = 3 \Omega$ | t _{d(off)} | - | 16.7 | - | | | Fall Time | | t _f | - | 3.5 | - | | | Gate Charge | (V _{GS} = 4.5 Vdc, I _D = 10 Adc,
V _{DS} = 10 Vdc) (Note 3) | Q_{T} | - | 5.78 | - | nC | | | | Q ₁ | - | 2.1 | - | | | | , , , | Q_2 | _ | 2.5 | _ | | | SOURCE-DRAIN DIODE CHARAC | TERISTICS | | | | | | | Forward On-Voltage | $(I_S = 10 \text{ Adc}, V_{GS} = 0 \text{ Vdc}) \text{ (Note 3)}$
$(I_S = 10 \text{ Adc}, V_{GS} = 0 \text{ Vdc}, T_J = 125^{\circ}\text{C})$ | V _{SD} | -
- | 0.85
0.71 | 1.2
- | V _{dc} | | Reverse Recovery Time | | t _{rr} | - | 20.4 | _ | ns | | | (I _S = 10 Adc, V _{GS} = 0 Vdc, | ta | - | 8.25 | - | 1 | | | $dI_{S}/dt = 100 \text{ A/}\mu\text{s}) \text{ (Note 3)}$ | t _b | - | 12.1 | - | 1 | | Reverse Recovery Stored Charge | d Charge | | - | 0.007 | - | μC | Pulse Test: Pulse Width ≤ 300 μs, Duty Cycle ≤ 2%. Switching characteristics are independent of operating junction temperatures. 20 Figure 1. On-Region Characteristics Figure 2. Transfer Characteristics Figure 3. On–Resistance versus Drain Current and Temperature Figure 4. On-Resistance versus Drain Current and Temperature Figure 5. On–Resistance Variation with Temperature Figure 6. Drain-to-Source Leakage Current versus Voltage Figure 7. Capacitance Variation Figure 8. Gate-to-Source and Drain-to-Source Voltage versus Total Charge Figure 9. Resistive Switching Time Variation versus Gate Resistance Figure 10. Diode Forward Voltage versus Current Figure 11. Maximum Rated Forward Biased Safe Operating Area Figure 12. Thermal Response ### **ORDERING INFORMATION** | Device | Package | Shipping [†] | |--------------|-------------------------------|-----------------------| | NTD40N03R | DPAK | 75 Units/Rail | | NTD40N03RG | DPAK (Pb-Free) | 75 Units/Rail | | NTD40N03R-1 | DPAK (Straight Lead) | 75 Units/Rail | | NTD40N03R-1G | DPAK (Straight Lead, Pb-Free) | 75 Units/Rail | | NTD40N03RT4 | DPAK | 2500 Tape & Reel | | NTD40N03RT4G | DPAK (Pb-Free) | 2500 Tape & Reel | [†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. ### **PACKAGE DIMENSIONS** ### **DPAK (SINGLE GAUGE)** CASE 369AA-01 ISSUE O - NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. | | INCHES | | MILLIMETERS | | | |-----|-----------|-------|-------------|------|--| | DIM | MIN | MAX | MIN | MAX | | | Α | 0.235 | 0.245 | 5.97 | 6.22 | | | В | 0.250 | 0.265 | 6.35 | 6.73 | | | С | 0.086 | 0.094 | 2.19 | 2.38 | | | D | 0.025 | 0.035 | 0.63 | 0.88 | | | Е | 0.018 | 0.024 | 0.46 | 0.61 | | | F | 0.033 | 0.045 | 0.83 | 1.14 | | | J | 0.018 | 0.023 | 0.46 | 0.58 | | | L | 0.090 BSC | | 2.29 BSC | | | | R | 0.180 | 0.215 | 4.57 | 5.45 | | | S | 0.025 | 0.040 | 0.63 | 1.01 | | | J | 0.020 | | 0.51 | | | | ٧ | 0.035 | 0.050 | 0.89 | 1.27 | | | Z | 0.155 | | 3.93 | | | STYLE 2: PIN 1. GATE 2. DRAIN 3. SOURCE 4. DRAIN ### **SOLDERING FOOTPRINT*** ^{*}For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. #### PACKAGE DIMENSIONS ### **DPAK (SINGLE GAUGE)** CASE 369D-01 ISSUE B #### NOTES: - DIMENSIONING AND TOLERANCING PER ANSI V14 FM 1082 - ANSI Y14.5M, 1982. CONTROLLING DIMENSION: INCH. | | INCHES | | MILLIMETERS | | |-----|-----------|-------|-------------|------| | DIM | MIN | MAX | MIN | MAX | | Α | 0.235 | 0.245 | 5.97 | 6.35 | | В | 0.250 | 0.265 | 6.35 | 6.73 | | С | 0.086 | 0.094 | 2.19 | 2.38 | | D | 0.027 | 0.035 | 0.69 | 0.88 | | Е | 0.018 | 0.023 | 0.46 | 0.58 | | F | 0.037 | 0.045 | 0.94 | 1.14 | | G | 0.090 BSC | | 2.29 BSC | | | Н | 0.034 | 0.040 | 0.87 | 1.01 | | J | 0.018 | 0.023 | 0.46 | 0.58 | | K | 0.350 | 0.380 | 8.89 | 9.65 | | R | 0.180 | 0.215 | 4.45 | 5.45 | | S | 0.025 | 0.040 | 0.63 | 1.01 | | ٧ | 0.035 | 0.050 | 0.89 | 1.27 | | Z | 0.155 | | 3.93 | | STYLE 2: PIN 1. GATE - 2. DRAIN - 3. SOURCE - 4. DRAIN ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. ### **PUBLICATION ORDERING INFORMATION** #### LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Japan: ON Semiconductor, Japan Customer Focus Center 2–9–1 Kamimeguro, Meguro–ku, Tokyo, Japan 153–0051 Phone: 81–3–5773–3850 ON Semiconductor Website: http://onsemi.com Order Literature: http://www.onsemi.com/litorder For additional information, please contact your local Sales Representative.