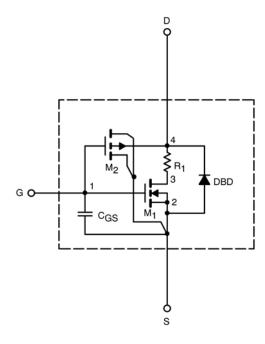


SPICE Device Model TN0201K Vishay Siliconix

N-Channel 20-V (D-S) MOSFET

CHARACTERISTICS

- N-Channel Vertical DMOS
- Macro Model (Subcircuit Model)
- Level 3 MOS


- · Apply for both Linear and Switching Application
- Accurate over the –55 to 125°C Temperature Range
- Model the Gate Charge, Transient, and Diode Reverse Recovery Characteristics

DESCRIPTION

The attached spice model describes the typical electrical characteristics of the n-channel vertical DMOS. The subcircuit model is extracted and optimized over the -55 to 125°C temperature ranges under the pulsed 0 to 10V gate drive. The saturated output impedance is best fit at the gate bias near the threshold voltage.

A novel gate-to-drain feedback capacitance network is used to model the gate charge characteristics while avoiding convergence difficulties of the switched $C_{\rm gd}$ model. All model parameter values are optimized to provide a best fit to the measured electrical data and are not intended as an exact physical interpretation of the device.

SUBCIRCUIT MODEL SCHEMATIC

This document is intended as a SPICE modeling guideline and does not constitute a commercial product data sheet. Designers should refer to the appropriate data sheet of the same number for guaranteed specification limits.

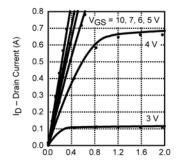
Document Number: 72951 www.vishay.com 14-Jun-04 1

SPICE Device Model TN0201K

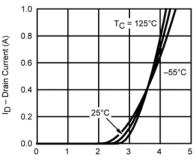
Vishay Siliconix

SPECIFICATIONS (T _J = 25°C UNLESS OTHERWISE NOTED)					
Parameter	Symbol	Test Conditions	Simulated Data	Measured Data	Unit
Static					
Gate Threshold Voltage	$V_{GS(th)}$	V_{DS} = V_{GS} , I_D = 250 μ A	2.2	2	V
On-State Drain Current ^a	I _{D(on)}	V _{DS} = 10 V, V _{GS} = 10 V	8.9		Α
Drain-Source On-State Resistance ^a	_	V_{GS} = 10 V, I_{D} = 0.30 A	0.47	0.47	Ω
	r _{DS(on)}	V_{GS} = 4.5 V, I_D = 0.10 A	0.81	0.80	
Forward Transconductance ^a	9 _{fs}	V _{DS} = 10 V, I _D = 0.30 A	569	550	mS
Diode Forward Voltage ^a	V_{SD}	$I_S = 0.30 \text{ A}, V_{GS} = 0 \text{ V}$	0.77	0.85	V
Dynamic ^b					
Total Gate Charge	Q_g	V_{DS} = 16 V, V_{GS} = 10 V, I_{D} = 0.30 A	776	1000	рС
Gate-Source Charge	Q _{gs}		205	205	
Gate-Drain Charge	Q_{gd}		200	200	
Turn-On Delay Time	t _{d(on)}	V_{DD} = 15 V, R_L = 50 Ω $I_D \cong 0.30 \text{ A, } V_{GEN}$ = 10 V, R_G = 6 Ω	4	4.5	ns
Rise Time	t _r		10	8	
Turn-Off Delay Time	$t_{d(off)}$		8	9	
Fall Time	t _f		36	6.3	

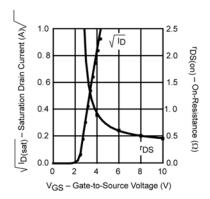
Notes

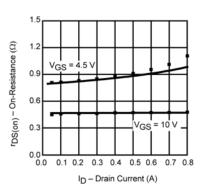

a. Pulse test; pulse width \leq 300 μ s, duty cycle \leq 2%. b. Guaranteed by design, not subject to production testing.

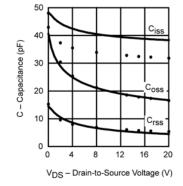
www.vishay.com Document Number: 72951

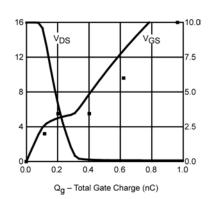


SPICE Device Model TN0201K Vishay Siliconix


COMPARISON OF MODEL WITH MEASURED DATA (TJ=25°C UNLESS OTHERWISE NOTED)




V_{DS} – Drain-to-Source Voltage (V)



V_{GS} – Gate-to-Source Voltage (V)

Note: Dots and squares represent measured data.