SPICE Device Model TN0201K Vishay Siliconix ### N-Channel 20-V (D-S) MOSFET #### **CHARACTERISTICS** - N-Channel Vertical DMOS - Macro Model (Subcircuit Model) - Level 3 MOS - · Apply for both Linear and Switching Application - Accurate over the –55 to 125°C Temperature Range - Model the Gate Charge, Transient, and Diode Reverse Recovery Characteristics ### **DESCRIPTION** The attached spice model describes the typical electrical characteristics of the n-channel vertical DMOS. The subcircuit model is extracted and optimized over the -55 to 125°C temperature ranges under the pulsed 0 to 10V gate drive. The saturated output impedance is best fit at the gate bias near the threshold voltage. A novel gate-to-drain feedback capacitance network is used to model the gate charge characteristics while avoiding convergence difficulties of the switched $C_{\rm gd}$ model. All model parameter values are optimized to provide a best fit to the measured electrical data and are not intended as an exact physical interpretation of the device. ### SUBCIRCUIT MODEL SCHEMATIC This document is intended as a SPICE modeling guideline and does not constitute a commercial product data sheet. Designers should refer to the appropriate data sheet of the same number for guaranteed specification limits. Document Number: 72951 www.vishay.com 14-Jun-04 1 ## **SPICE Device Model TN0201K** ### Vishay Siliconix | SPECIFICATIONS (T _J = 25°C UNLESS OTHERWISE NOTED) | | | | | | |---|---------------------|--|-------------------|------------------|------| | Parameter | Symbol | Test Conditions | Simulated
Data | Measured
Data | Unit | | Static | | | | | | | Gate Threshold Voltage | $V_{GS(th)}$ | V_{DS} = V_{GS} , I_D = 250 μ A | 2.2 | 2 | V | | On-State Drain Current ^a | I _{D(on)} | V _{DS} = 10 V, V _{GS} = 10 V | 8.9 | | Α | | Drain-Source On-State Resistance ^a | _ | V_{GS} = 10 V, I_{D} = 0.30 A | 0.47 | 0.47 | Ω | | | r _{DS(on)} | V_{GS} = 4.5 V, I_D = 0.10 A | 0.81 | 0.80 | | | Forward Transconductance ^a | 9 _{fs} | V _{DS} = 10 V, I _D = 0.30 A | 569 | 550 | mS | | Diode Forward Voltage ^a | V_{SD} | $I_S = 0.30 \text{ A}, V_{GS} = 0 \text{ V}$ | 0.77 | 0.85 | V | | Dynamic ^b | | | | | | | Total Gate Charge | Q_g | V_{DS} = 16 V, V_{GS} = 10 V, I_{D} = 0.30 A | 776 | 1000 | рС | | Gate-Source Charge | Q _{gs} | | 205 | 205 | | | Gate-Drain Charge | Q_{gd} | | 200 | 200 | | | Turn-On Delay Time | t _{d(on)} | V_{DD} = 15 V, R_L = 50 Ω $I_D \cong 0.30 \text{ A, } V_{GEN}$ = 10 V, R_G = 6 Ω | 4 | 4.5 | ns | | Rise Time | t _r | | 10 | 8 | | | Turn-Off Delay Time | $t_{d(off)}$ | | 8 | 9 | | | Fall Time | t _f | | 36 | 6.3 | | #### Notes a. Pulse test; pulse width \leq 300 μ s, duty cycle \leq 2%. b. Guaranteed by design, not subject to production testing. www.vishay.com Document Number: 72951 # SPICE Device Model TN0201K Vishay Siliconix ### COMPARISON OF MODEL WITH MEASURED DATA (TJ=25°C UNLESS OTHERWISE NOTED) V_{DS} – Drain-to-Source Voltage (V) V_{GS} – Gate-to-Source Voltage (V) Note: Dots and squares represent measured data.