

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Supply Voltage, V_{CC}
7.0 V

Logical "1" Input Voltage 7.0 V
Logical "0" Input Voltage

$$
-1.5 \mathrm{~V}
$$

Storage Temperature Range
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Power Dissipation
Cavity Package
1150 mW
Molded Package 1300 mW
Lead Temperature (soldering, 10 sec .) $300^{\circ} \mathrm{C}$

Operating Conditions

V_{CC} Supply Voltage	4.5
$\mathrm{~T}_{\mathrm{A}}$ Ambient Temperature	0

Max	Units
5.5	V
+70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics $\mathrm{v}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%, 0 \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$. (Notes 2 and 3.)

Symbol	Parameter	Conditions	Min	Typ	Max	Units
$\mathrm{V}_{\text {IN(1) }}$	Logical "1" Input Voltage		2.0			V
$\mathrm{V}_{\text {IN }(0)}$	Logical "0" Input Voltage				0.8	V
$1 \mathrm{IN}(1)$	Logical "1" Input Current	$\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$		0.1	20	$\mu \mathrm{A}$
		$\mathrm{V}_{\text {IN }}=7.0 \mathrm{~V}$			100	$\mu \mathrm{A}$
$1 \mathrm{IN}(0)$	Logical "0" Input Current	$0 \leq \mathrm{V}_{\mathrm{IN}} \leq 0.4 \mathrm{~V}$		-50	-200	$\mu \mathrm{A}$
$\mathrm{V}_{\text {CLAMP }}$	Input Clamp Voltage	$\mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$		-1	-1.2	V
V_{OH}	Logical "1" Output Voltage	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}-1.15 \\ & \mathrm{~V}_{\mathrm{CC}}-1.5 \end{aligned}$	$\begin{aligned} & 4.3 \\ & 3.9 \end{aligned}$		V
V_{OL}	Logical "0" Output Voltage	$\begin{aligned} & \mathrm{lOL}=10 \mu \mathrm{~A} \\ & \mathrm{IOL}=12 \mathrm{~mA} \end{aligned}$		$\begin{aligned} & 0.2 \\ & 0.3 \end{aligned}$	$\begin{aligned} & 0.4 \\ & 0.5 \end{aligned}$	V
$\mathrm{I}_{1 \mathrm{D}}$	Logical "1" Drive Current	$\mathrm{V}_{\text {OUT }}=1.5 \mathrm{~V}$	-75	-250		mA
$I_{O D}$	Logical "0" Drive Current	$\mathrm{V}_{\text {OUT }}=1.5 \mathrm{~V}$	+ 100	+150		mA
$\mathrm{Hi}-\mathrm{Z}$	TRI-STATE Output Current	$0.4 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq 2.7 \mathrm{~V}$	-100		+100	$\mu \mathrm{A}$
I_{CC}	Supply Current DP84240	All Outputs Open All Outputs High All Outputs Low All Outputs Hi-Z		$\begin{aligned} & 16 \\ & 74 \\ & 80 \\ & \hline \end{aligned}$	$\begin{gathered} 50 \\ 125 \\ 125 \\ \hline \end{gathered}$	mA
	DP84244	All Outputs High All Outputs Low All Outputs Hi-Z		$\begin{gathered} 40 \\ 100 \\ 115 \end{gathered}$	$\begin{gathered} 75 \\ 130 \\ 150 \end{gathered}$	

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: All currents into device pins shown as positive; all currents out of device pins shown as negative; all voltages referenced to ground unless otherwise noted. All values shown as max. or min. are on an absolute value basis.
Note 3: Typical characteristics are taken at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 4: The output-to-output skew is primarily a function of the number of outputs switching and the capacitive loading on those outputs. See Figures 5 and 6 for the switching time variations.

Switching Characteristics $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%, 0 \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$, all outputs loaded with specified load capacitance and all eight outputs switching simultaneously. (Note 3.)

Symbol	Parameter	Conditions		Min	Typ	Max	Units
$t_{\text {PLH }}$	Propagation Delay from LOW-to-HIGH Output	Figures 1 \& 3	$\begin{aligned} & \mathrm{CL}=250 \mathrm{pF} \\ & \mathrm{C}_{\mathrm{L}}=500 \mathrm{pF} \end{aligned}$	$\begin{gathered} 9 \\ 10 \end{gathered}$	$\begin{aligned} & 16 \\ & 20 \\ & \hline \end{aligned}$	$\begin{aligned} & 27 \\ & 33 \end{aligned}$	ns
${ }_{\text {tPHL }}$	Propagation Delay from HIGH-to-LOW Output		$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=250 \mathrm{pF} \\ & \mathrm{C}_{\mathrm{L}}=500 \mathrm{pF} \end{aligned}$	$\begin{gathered} 9 \\ 12 \end{gathered}$	$\begin{aligned} & 16 \\ & 20 \\ & \hline \end{aligned}$	$\begin{aligned} & 25 \\ & 31 \\ & \hline \end{aligned}$	ns
$t_{\text {PLZ }}$	Output Disable Time from LOW	Figures 2 \& 4, $\mathrm{S}=1, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$			11	24	ns
tPHZ	Output Disable Time from HIGH	Figures 2 \& 4, $\mathrm{S}=2, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$			12	24	ns
$\mathrm{t}_{\text {PZL }}$	Output Enable Time to LOW	Figures 2 \& 4, S $=1, \mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}$			30	45	ns
tpZH	Output Enable Time to HIGH	Figures 2 \& 4, S = 2, $\mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}$			23	35	ns
tSKEW	Output-to-Output Skew (Note 4)	Figures 1 \& 3, $\mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}$			3		ns

Capacitance $T_{A}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$. (Note 3.)

Parameter	Conditions	Typ	Units
C_{IN}	All Other Inputs Tied Low	6	pF
$\mathrm{C}_{\text {OUT }}$	Output in TRI-STATE Mode	20	pF

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: All currents into device pins shown as positive; all currents out of device pins shown as negative; all voltages referenced to ground unless otherwise noted. All values shown as max. or min. are on an absolute value basis.
Note 3: Typical characteristics are taken at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 4: The output-to-output skew is primarily a function of the number of outputs switching and the capacitive loading on those outputs. See Figures 5 and 6 for the switching time variations.

Switching Test Circuits

TL/F/5219-3
*C ${ }^{\text {L }}$ INCLUDES PROBE AND JIG CAPACITANCES

TL/F/5219-4

Typical Switching Characteristics

Typical Switching Characteristics (Continued)

TL/F/5219-9
FIGURE 7. Typical Power Dissipation for DP84240 at $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$ (All 8 drivers switching simultaneously)

TL/F/5219-10
FIGURE 8. Typical Power Dissipation for DP84244 at $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$ (All 8 drivers switching simultaneously)

Typical Application

TL/F/5219-11

Physical Dimensions inches (millimeters)

20-Lead Dual-In-Line Package (J)
Order Number DP84240J/DP84244J
NS Package Number J20A

20-Lead Dual-In-Line Package (N)
Order Number DP84240N/DP84244N

LIFE SUPPORT POLICY

NS Package Number N20A

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018	National Semiconductor Europe Fax: (+49) 0-180-530 8586 Email: cnjwge@tevm2.nsc.com Deutsch Tel: (+49) 0-180-530 8585 English Tel: (+49) 0-180-532 7832 Français Tel: $(+49)$ 0-180-532 9358 Italiano Tel: $(+49)$ 0-180-534 1680	National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960	National Semiconductor Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408

