ELM14801AA Dual P-Channel Enhancement Mode Power MOS FET # **General Description** ELM14801AA uses advanced trench technology to provide excellent RdS(ON), low gate charge and operation with gate voltages as low as 2.5V. This device is suitable for use as a load switch or in PWM applications. It may be used in a common drain arrangement to form a bidirectional blocking switch. #### **Features** $$\begin{split} &V_{DS}\left(V\right) = \text{-}30V \\ &I_{D} = \text{-}5A \\ &R_{DS(ON)} < 49 m\Omega \ \, \left(V_{GS} = \text{-}10V\right) \\ &R_{DS(ON)} < 64 m\Omega \ \, \left(V_{GS} = \text{-}4.5V\right) \\ &R_{DS(ON)} < 120 m\Omega \ \, \left(V_{GS} = \text{-}2.5V\right) \end{split}$$ | Absolute Maximum Ratings T _A =25°C unless otherwise noted | | | | | | | | |--|----------------------|-----------------------------------|------------|-------|--|--|--| | Parameter | | Symbol | Maximum | Units | | | | | Drain-Source Voltage | | V _{DS} | -30 | V | | | | | Gate-Source Voltage | | V _{GS} | ±12 | V | | | | | Continuous Drain | T _A =25°C | | -5 | | | | | | Current ^A | T _A =70°C | I _D | -4.2 | Α | | | | | Pulsed Drain Current B | | I _{DM} | -30 | | | | | | | T _A =25°C | D. | 2 | W | | | | | Power Dissipation ^A | T _A =70°C | P _D | 1.44 | VV | | | | | Junction and Storage Temperature Range | | T _J , T _{STG} | -55 to 150 | °C | | | | | Thermal Characteristics | | | | | | | | | |---------------------------------------|--------------|------------------|-----|-------|------|--|--|--| | Parameter | Symbol | Тур | Max | Units | | | | | | Maximum Junction-to-Ambient A | t ≤ 10s | R _{⊕JA} | 48 | 62.5 | °C/W | | | | | Maximum Junction-to-Ambient A | Steady-State | Γ∖θJA | 74 | 110 | °C/W | | | | | Maximum Junction-to-Lead ^c | Steady-State | $R_{\theta JL}$ | 35 | 40 | °C/W | | | | # Electrical Characteristics (T_J=25°C unless otherwise noted) | Symbol | Parameter | Conditions | Min | Тур | Max | Units | | | | | |---------------------|---------------------------------------|---|-----------------------|-------|------|-------|-------|--|--|--| | STATIC PARAMETERS | | | | | | | | | | | | BV _{DSS} | Drain-Source Breakdown Voltage | I _D =-250μA, V _{GS} =0V | | -30 | | | V | | | | | I _{DSS} | Zero Gate Voltage Drain Current | V_{DS} =-24V, V_{GS} =0V | | | | -1 | μА | | | | | | | | T _J =55°C | | | -5 | , | | | | | I _{GSS} | Gate-Body leakage current | V _{DS} =0V, V _{GS} =±12V | | | | ±100 | nA | | | | | $V_{GS(th)}$ | Gate Threshold Voltage | V _{DS} =V _{GS} I _D =-250μA | | -0.7 | -1 | -1.3 | V | | | | | I _{D(ON)} | On state drain current | V_{GS} =-4.5V, V_{DS} =-5V | | -25 | | | Α | | | | | R _{DS(ON)} | | V _{GS} =-10V, I _D =-5A | | | 42.5 | 49 | mΩ | | | | | | Static Drain-Source On-Resistance | | T _J =125°C | | | 74 | 11122 | | | | | | Static Diani-Source On-Nesistance | V_{GS} =-4.5V, I_{D} =-4A | | | 54 | 64 | mΩ | | | | | | | V _{GS} =-2.5V, I _D =-1A | | | 80 | 120 | mΩ | | | | | 9 _{FS} | Forward Transconductance | V_{DS} =-5V, I_{D} =-5A | 7 | 11 | | S | | | | | | V _{SD} | Diode Forward Voltage | I _S =-1A,V _{GS} =0V | | -0.75 | -1 | V | | | | | | Is | Maximum Body-Diode Continuous Current | | | | | -3 | Α | | | | | DYNAMIC | PARAMETERS | | | | | | | | | | | C _{iss} | Input Capacitance | V _{GS} =0V, V _{DS} =-15V, f=1MHz | | | 952 | | pF | | | | | Coss | Output Capacitance | | | | 103 | | pF | | | | | C _{rss} | Reverse Transfer Capacitance | | | | 77 | | pF | | | | | R _a | Gate resistance | V _{GS} =0V, V _{DS} =0V, f=1MHz | | | 5.9 | | Ω | | | | | SWITCHII | NG PARAMETERS | | | | | | | | | | | Qg | Total Gate Charge | V _{GS} =-4.5V, V _{DS} =-15V, I _D =-5A | | | 9.5 | | nC | | | | | Q _{gs} | Gate Source Charge | | | | 2 | | nC | | | | | Q_{gd} | Gate Drain Charge | | | | 3.1 | | nC | | | | | t _{D(on)} | Turn-On DelayTime | | | | 12 | | ns | | | | | t _r | Turn-On Rise Time | V_{GS} =-10V, V_{DS} =-15V, R_L =3 Ω , R_{GEN} =6 Ω | | | 4 | | ns | | | | | t _{D(off)} | Turn-Off DelayTime | | | | 37 | | ns | | | | | t _f | Turn-Off Fall Time | | | | 12 | | ns | | | | | t _{rr} | Body Diode Reverse Recovery Time | I _F =-5A, dI/dt=100A/μs | | | 21 | | ns | | | | | Qrr | Body Diode Reverse Recovery Charge | l _F =-5A, dl/dt=100A/μs | | | 13 | | nC | | | | A: The value of $R_{\theta JA}$ is measured with the device mounted on 1in^2 FR-4 board with 2oz. Copper, in a still air environment with T_A =25°C. The value in any a given application depends on the user's specific board design. The current rating is based on the t≤ 10s thermal resistance rating. B: Repetitive rating, pulse width limited by junction temperature. C. The R_{BJA} is the sum of the thermal impedence from junction to lead R_{BJL} and lead to ambient. D. The static characteristics in Figures 1 to 6,12,14 are obtained using $80\mu s$ pulses, duty cycle 0.5% max. E. These tests are performed with the device mounted on 1 in 2 FR-4 board with 2oz. Copper, in a still air environment with T_A =25°C. The SOA curve provides a single pulse rating. ### TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS ### TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS Figure 9: Maximum Forward Biased Safe Operating Area (Note E) Figure 11: Normalized Maximum Transient Thermal Impedance