SPICE Device Model Si7446DP Vishay Siliconix ## N-Channel 30-V (D-S), Fast Switching MOSFET #### **CHARACTERISTICS** - N-Channel Vertical DMOS - Macro Model (Subcircuit Model) - Level 3 MOS - · Apply for both Linear and Switching Application - Accurate over the –55 to 125°C Temperature Range - Model the Gate Charge, Transient, and Diode Reverse Recovery Characteristics #### **DESCRIPTION** The attached spice model describes the typical electrical characteristics of the n-channel vertical DMOS. The subcircuit model is extracted and optimized over the -55 to 125°C temperature ranges under the pulsed 0 to 5V gate drive. The saturated output impedance is best fit at the gate bias near the threshold voltage. A novel gate-to-drain feedback capacitance network is used to model the gate charge characteristics while avoiding convergence difficulties of the switched $C_{\rm gd}$ model. All model parameter values are optimized to provide a best fit to the measured electrical data and are not intended as an exact physical interpretation of the device. #### SUBCIRCUIT MODEL SCHEMATIC This document is intended as a SPICE modeling guideline and does not constitute a commercial product data sheet. Designers should refer to the appropriate data sheet of the same number for guaranteed specification limits. Document Number: 71720 www.vishay.com 24-May-04 171720 171720 171720 171720 271720 171720 271 ## **SPICE Device Model Si7446DP** ## Vishay Siliconix | SPECIFICATIONS (T _J = 25°C UNLESS OTHERWISE NOTED) | | | | | |---|---------------------|---|---------|------| | Parameter | Symbol | Test Conditions | Typical | Unit | | Static | | | | | | Gate Threshold Voltage | $V_{GS(th)}$ | $V_{DS} = V_{GS}, I_{D} = 250 \mu A$ | 1.89 | V | | On-State Drain Current ^a | I _{D(on)} | $V_{DS} \ge 5 \text{ V}, V_{GS}$ = 10 V | 759 | Α | | Drain-Source On-State Resistance ^a | r _{DS(on)} | $V_{GS} = 10 \text{ V}, I_D = 19 \text{ A}$ | 0.0061 | Ω | | | | $V_{GS} = 4.5 \text{ V}, I_D = 17 \text{ A}$ | 0.0086 | 2.2 | | Forward Transconductance ^a | g _{fs} | $V_{DS} = 15 \text{ V}, I_{D} = 19 \text{ A}$ | 55 | S | | Diode Forward Voltage ^a | V_{SD} | I_{S} = 4.3 A, V_{GS} = 0 V | 0.83 | V | | Dynamic ^b | | | | | | Total Gate Charge ^b | Q_g | $V_{DS} = 15 \text{ V}, V_{GS} = 5 \text{ V}, I_D = 19 \text{ A}$ | 36 | | | Gate-Source Charge ^b | Q _{gs} | | 14 | nC | | Gate-Drain Charge ^b | Q_{gd} | | 12 | | | Turn-On Delay Time ^b | t _{d(on)} | $V_{DD} = 15 \text{ V}, \text{ R}_L = 15 \Omega$ $I_D \cong 1\text{A}, \text{ V}_{GEN} = 10 \text{ V}, \text{ R}_G = 6 \Omega$ $I_F = 2.3 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s}$ | 18 | ns | | Rise Time ^b | t _r | | 37 | | | Turn-Off Delay Time ^b | t _{d(off)} | | 39 | | | Fall Time ^b | t _f | | 108 | | | Source-Drain Reverse Recovery Time | t _{rr} | | 49 | | www.vishay.com Document Number: 71720 a. Pulse test; pulse width \leq 300 μ s, duty cycle \leq 2%. b. Guaranteed by design, not subject to production testing. # SPICE Device Model Si7446DP Vishay Siliconix ### COMPARISON OF MODEL WITH MEASURED DATA (TJ=25°C UNLESS OTHERWISE NOTED) Note: Dots and squares represent measured data. Document Number: 71720 www.vishay.com 24-May-04 3