74AC11648 OCTAL BUS TRANSCEIVER AND REGISTER WITH 3-STATE OUTPUTS

DW OR NT PACKAGE

(TOP VIEW)

SCAS114 - MARCH 1990 - REVISED APRIL 1993

- Independent Registers for A and B Buses
- Multiplexed Real-Time and Stored Data
- Inverting Data Paths
- Flow-Through Architecture Optimizes PCB Layout
- Center-Pin V_{CC} and GND Configurations Minimize High-Speed Switching Noise
- EPIC ™ (Enhanced-Performance Implanted CMOS) 1-μm Process
- 500-mA Typical Latch-Up Immunity at 125°C
- Package Options Include Plastic Small-Outline Packages and Standard Plastic 300-mil DIPs

OE 28 CLKAB A1 2 27 SAB 26**∏** B1 A2 | 3 A3 🛮 4 25 B2 24 N B3 A4 🛮 5 23 B4 GND 6 GND 7 22 V_{CC} 21 V_{CC} GND [] 8 GND 9 20 B5 19 B6 A5 10 18**∏** B7 A6 II 11 A7 1 12 17 N B8 A8 🛮 13 16 CLKBA 15 SBA DIR Π 14

description

The 74AC11648 consists of bus transceiver circuits, D-type flip-flops, and control circuitry arranged for multiplexed transmission of data directly from the input bus or from the internal

registers. Data on the A or B bus is clocked into the registers on the low-to-high transition of the appropriate clock (CLKAB or CLKBA) input. Figure 1 illustrates the four fundamental bus-management functions that can be performed with the 74AC11648.

Output-enable (\overline{OE}) and direction-control (DIR) inputs are provided to control the transceiver functions. In the transceiver mode, data present at the high-impedance port may be stored in either register or in both.

The select-control (SAB and SBA) inputs can multiplex stored and real-time (transparent mode) data. The direction control (DIR) determines which bus will receive data when \overline{OE} is low. In the isolation mode (\overline{OE} high), A data may be stored in one register and/or B data may be stored in the other register.

When an output function is disabled, the input function is still enabled and may be used to store and transmit data. Only one of the two buses, A or B, may be driven at a time.

The 74AC11648 is characterized for operation from -40°C to 85°C.

EPIC is a trademark of Texas Instruments Incorporated.

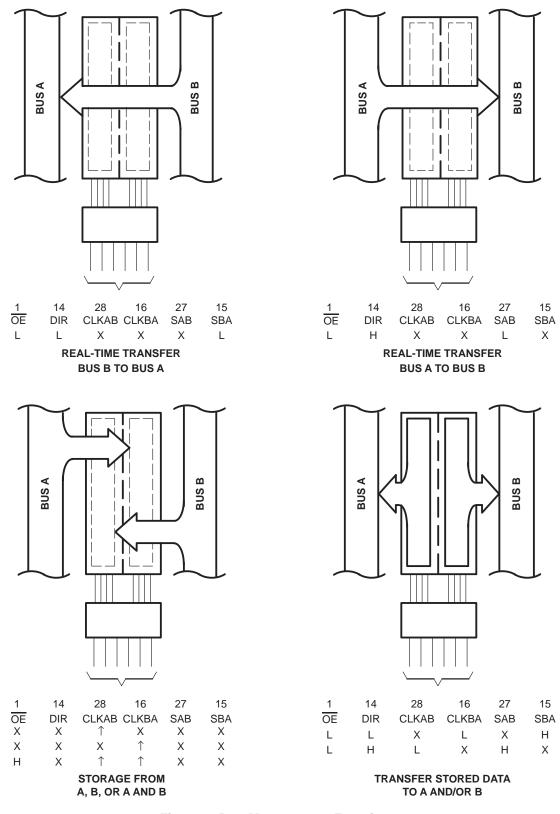
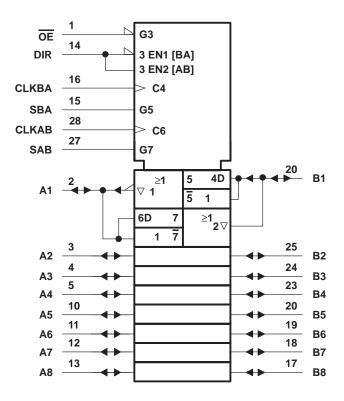


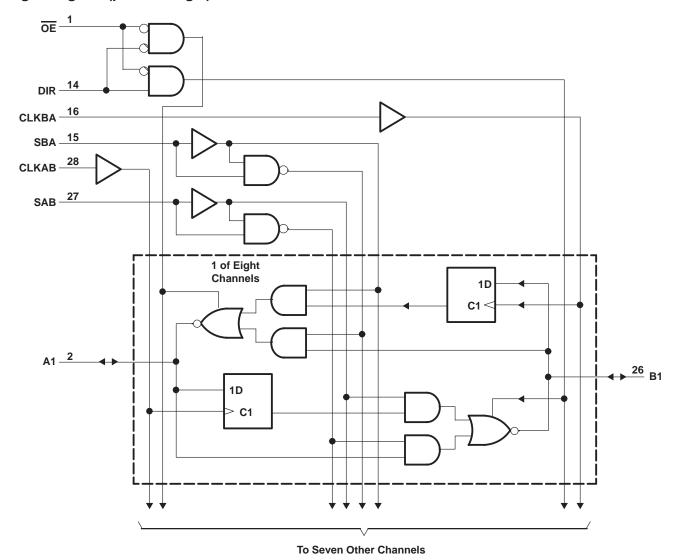
Figure 1. Bus-Management Functions


SCAS114 - MARCH 1990 - REVISED APRIL 1993

FUNCTION TABLE

		INPUTS				DAT	A I/O	ODED ATION OF FUNCTION
ŌĒ	DIR	CLKAB	CLKBA	SAB	SBA	A1 THRU A8	B1 THRU B8	OPERATION OR FUNCTION
Х	Х	1	Х	Х	Χ	Input	Unspecified [†]	Store A, B unspecified [†]
X	X	Χ	\uparrow	X	Χ	Unspecified [†]	Input	Store B, A unspecified [†]
Н	Х	1	↑	Х	Х	Input	Input	Store A and B data
Н	Χ	L	L	Χ	Χ	Input disabled	Input disabled	Isolation, hold storage
L	L	Х	Х	Х	L	Output	Input	Real-time B data to A bus
L	L	Χ	L	Χ	Н	Output	Input	Stored \overline{B} data to A bus
L	Н	Х	Х	L	Х	Input	Output	Real-time A data to B bus
L	Н	L	Χ	Н	X	Input	Output	Stored \overline{A} data to B bus

[†]The data output functions may be enabled or disabled by various signals at the $\overline{\text{OE}}$ and DIR inputs. Data input functions are always enabled; i.e., data at the bus pins will be stored on every low-to-high transition of the clock inputs.


logic symbol‡

[‡] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

SCAS114 - MARCH 1990 - REVISED APRIL 1993

logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage range, V _{CC}	-0.5 V to 7 V
Input voltage range, V _I (see Note 1)	
Output voltage range, V _O (see Note 1)	
Input clamp current, I_{IK} ($V_I < 0$ or $V_I > V_{CC}$)	±20 mA
Output clamp current, I _{OK} (V _O < 0 or V _O > V _{CC})	±50 mA
Continuous output current, $I_O(V_O = 0 \text{ to } V_{CC})$	±50 mA
Continuous current through V _{CC} or GND	±200 mA
Storage temperature range	65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: The input and output voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

recommended operating conditions

			MIN	NOM	MAX	UNIT	
Vcc	Supply voltage		3	5	5.5	V	
		V _{CC} = 3 V	2.1				
VIH	High-level input voltage	$V_{CC} = 4.5 V$	3.15			V	
		$V_{CC} = 5.5 \text{ V}$	3.85				
		V _{CC} = 3 V			0.9		
VIL	Low-level input voltage	V _{CC} = 4.5 V			1.35	V	
		V _{CC} = 5.5 V		1.65			
VI	Input voltage		0		VCC	V	
٧o	Output voltage		0		Vcc	V	
		V _{CC} = 3 V			-4		
lOH	High-level output current	V _{CC} = 4.5 V			-24	4 mA	
		V _{CC} = 5.5 V			-24		
		V _{CC} = 3 V			12		
I _{OL}	Low-level output current	V _{CC} = 4.5 V			24	mA	
		V _{CC} = 5.5 V			24		
Δt/Δν	Input transition rise or fall rate		0		10	ns/V	
TA	Operating free-air temperature		-40		85	°C	

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

DA	DAMETER	TEST CONDITIONS	V	T,	T _A = 25°C			MAY	UNIT	
PA	RAMETER	TEST CONDITIONS	VCC	MIN	TYP	MAX	MIN	MAX	UNII	
			3 V	2.9			2.9			
		I _{OH} = -50 μA	4.5 V	4.4			4.4			
			5.5 V	5.4			5.4			
$VOH \qquad \begin{array}{c} I_{OH} = -50 \ \mu A \\ \\ I_{OH} = -4 \ mA \\ \\ I_{OH} = -24 \ mA \\ \\ I_{OH} = -75 \ mA^{\dagger} \\ \\ I_{OL} = 50 \ \mu A \\ \\ I_{OL} = 12 \ mA \\ \\ I_{OL} = 24 \ mA \\ \\ I_{OL} = 75 \ mA^{\dagger} \\ \\ I_$	I _{OH} = – 4 mA	3 V	2.58			2.48		V		
I VOH			4.5 V	3.94			3.8			
	I _{OH} = – 24 mA	5.5 V	4.94			4.8				
		I _{OH} = -75 mA [†]	5.5 V				3.85			
Vol			3 V			0.1		0.1		
		I _{OL} = 50 μA	4.5 V			0.1		0.1		
			5.5 V			0.1		0.1		
		I _{OL} = 12 mA	3 V			0.36		0.44	V	
		1- 04 mA	4.5 V			0.36		0.44		
		IOL = 24 MA	5.5 V			0.36		0.44	1	
		I _{OL} = 75 mA [†]	5.5 V					1.65		
II	Control inputs	V _I = V _{CC} or GND	5.5 V			±0.1		±1	μΑ	
loz‡	A or B ports	$V_O = V_{CC}$ or GND	5.5 V			±0.5		±5	μΑ	
ICC		$V_I = V_{CC}$ or GND, $I_O = 0$	5.5 V			8		80	μΑ	
Ci	Control inputs	V _I = V _{CC} or GND	5 V		4.5				pF	
C _{io}	A or B ports	$V_O = V_{CC}$ or GND	5 V		12				pF	

[†] Not more than one output should be tested at a time, and the duration of the test should not exceed 10 ms.

[‡] For I/O ports, the parameter IOz includes the input leakage current.

74AC11648 OCTAL BUS TRANSCEIVER AND REGISTER WITH 3-STATE OUTPUTS

SCAS114 - MARCH 1990 - REVISED APRIL 1993

timing requirements over recommended operating free-air temperature range, V_{CC} = 3.3 V \pm 0.3 V (unless otherwise noted) (see Figure 2)

		T _A = 2	25°C	MIN	MAX	UNIT
		MIN	MAX	IVIIIV		ONIT
fclock	Clock frequency	0	40	0	40	MHz
t _W	Pulse duration, CLK high or low	12.5		12.5		ns
t _{su}	Setup time, A or B before CLKAB↑ or CLKBA↑	6.5		6.5		ns
t _h	Hold time, A or B after CLKAB↑ or CLKBA↑	0		0		ns

timing requirements over recommended operating free-air temperature range, V_{CC} = 5 V \pm 0.5 V (unless otherwise noted) (see Figure 2)

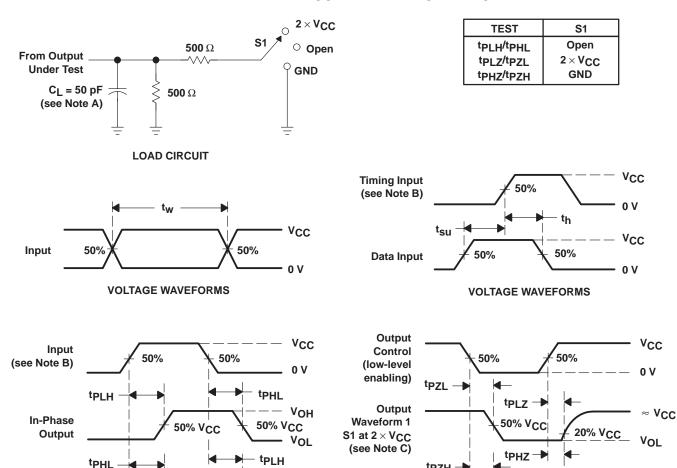
		T _A = 2	25°C	MIN	MAX	UNIT
		MIN	MAX	IVIIIV		UNIT
fclock	Clock frequency	0	90	0	90	MHz
t _W	Pulse duration, CLK high or low	5.6		5.6		ns
t _{su}	Setup time, A or B before CLKAB↑ or CLKBA↑	4.5		4.5		ns
t _h	Hold time, A or B after CLKAB↑ or CLKBA↑	1		1		ns

switching characteristics over recommended operating free-air temperature range, V_{CC} = 3.3 V \pm 0.3 V (unless otherwise noted) (see Figure 2)

PARAMETER	FROM	то	T,	T _A = 25°C			MAX	UNIT
PARAMETER	(INPUT)	(OUTPUT)	MIN	TYP	MAX	MIN	IVIAA	UNIT
f _{max}			40			40		MHz
^t PLH	A or B	B or A	3	8.7	12.6	3	14.3	ns
^t PHL	A or B	BOIA	3.8	9.3	14.4	3.8	15.9	115
^t PZH	ŌĒ	A or B	5	11.1	17.2	5	19.4	ns
^t PZL] OE	AUID	5.2	12.8	20.5	5.2	23	23
^t PHZ	ŌĒ	A or B	4.1	7.2	9.9	4.1	10.6	ns
^t PLZ] OE	AUID	3.7	6.5	9.1	3.7	9.7	
^t PLH	CLKBA or CLKAB	or CLKAB A or B	4.3	10.1	15.6	4.3	17.6	ns
^t PHL	CLNDA OI CLNAD	AUID	5.2	11.5	17.6	5.2	19.4	115
^t PLH	SBA or SAB†	A or B	3.7	9.1	14.1	3.7	15.8	ns
^t PHL	(A or B high)	AUID	4.5	10.3	15.9	4.5	17.4	115
^t PLH	SBA or SAB†	A or B	3.2	8.6	13.6	3.2	15.3	20
^t PHL	(A or B low)	AUID	4.6	10.3	15.6	4.6	17.1	17.1 ns
^t PZH	DIR	A or B	4.9	11.6	18.2	4.9	20.6	
^t PZL	אוט	AUID	5.2	14.2	21.6	5.2	24.3	ns
t _{PHZ}	DIR	A or B	3.8	7.1	10.1	3.8	10.9	ns

[†] These parameters are measured with the internal output state of the storage register opposite to that of the bus input.

74AC11648 OCTAL BUS TRANSCEIVER AND REGISTER WITH 3-STATE OUTPUTS SCAS114 - MARCH 1990 - REVISED APRIL 1993


switching characteristics over recommended operating free-air temperature range, V_{CC} = 5 V \pm 0.5 V (unless otherwise noted) (see Figure 2)

PARAMETER	FROM	то	T,	չ = 25°C	;	MIN	MAX	UNIT
FARAMETER	(INPUT)	(OUTPUT)	MIN	TYP	MAX	IVIIIV	IVIAA	ONIT
fmax			90			90		MHz
t _{PLH}	A or B	B or A	2.6	5.6	8.3	2.6	9.5	ns
t _{PHL}		BUIA	3.2	6.4	9.4	3.2	10.6	115
^t PZH	ŌĒ	A or B	4.2	7.8	11.3	4.2	12.8	ns
t _{PZL}	OE	AOID	4.1	8.1	12	4.1	13.6	115
t _{PHZ}	ŌĒ	A or B	3.8	6.3	8.6	3.8	9.2	ns
tPLZ	OE	AUID	3.5	5.7	7.8	3.5	8.4	115
t _{PLH}	CLKBA or CLKAB	A or B	3.6	6.9	10	3.6	11.4	ns
t _{PHL}		AUID	4.3	8	11.4	4.3	12.8	110
t _{PLH}	SBA or SAB†	A OF B	3.1	6.2	9.2	3.1	10.4	ns
t _{PHL}	(A or B high)		3.8	7.6	10.4	3.8	11.6	115
t _{PLH}	SBA or SAB†	A or B	2.8	6.1	8.9	2.8	10.1	ns
t _{PHL}	(A or B low)	AUID	3.8	7.3	10.4	3.8	11.6	110
^t PZH	DIR	A or B	4	8	11.9	4	13.4	no
tPZL	אוט	AUIB	4.1	8.4	12.7	4.1	14.4	ns
^t PHZ	DIR	A or P	3.5	6.1	8.5	3.5	9.1	ns
tPLZ	אוע	A or B	3.4	5.9	7.8	3.4	8.4	115

operating characteristics, V_{CC} = 5 V, T_A = 25°C

PARAMETER			TEST CON	TYP	UNIT	
C _{pd}	Dower dissination conscitance per transceiver	Outputs enabled	C 50 pF	f = 1 MHz	66	pF
	Power dissipation capacitance per transceiver	Outputs disabled	$C_L = 50 \text{ pF},$	I = I IVIMZ	17	рг

PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_I includes probe and jig capacitance.

50% V_CC

VOLTAGE WAVEFORMS

Out-of-Phase

Output

B. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_Q = 50 \Omega$, $t_f = 3 \text{ ns}$, $t_f = 3 \text{ ns}$.

tPZH →

۷он

0 V

80% V_{CC}

50% V_CC

VOLTAGE WAVEFORMS

Output

Waveform 2

(see Note C)

S1 at GND

- C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- D. The outputs are measured one at a time with one input transition per measurement.

VOH

VOL

50% V_CC

Figure 2. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1998, Texas Instruments Incorporated