

Product Features

- DC 5000MHz
- +17 dBm P1dB at 900MHz
- +31 dBm OIP3 at 900MHz
- 20.5 dB Gain at 900MHz
- Single Voltage Supply
- SOT-86 or SOT-89 SMT Package
- Internally matched to 50 Ω

Product Description

The AG403 is a general-purpose buffer amplifier that offers high dynamic range in a low-cost surface-mount package. At 900 MHz, the AG403 typically provides 20.5 dB of gain, +31 dBm Output IP3, and +17 dBm P1dB. The device combines dependable performance with consistent quality to maintain MTBF values exceeding 100 years at mounting temperatures of +85°C and is housed in a SOT-86 and SOT-89 industry standard SMT packages.

The AG403 consists of Darlington pair amplifiers using the high reliability InGaP/GaAs HBT technology process technology and only requires DC-blocking capacitors, a bias resistor, and an inductive RF choke for operation.

The broadband MMIC amplifier can be directly applied to various current and next generation wireless technologies such as GPRS, GSM, CDMA, W-CDMA, and UMTS. In addition, the AG403 will work for other various applications within the DC to 5 GHz frequency range such as CATV and fixed wireless.

Functional Diagram

Specifications

Parameters ¹	Units	Min	Тур	Max
Frequency Range	MHz		DC-5000	
S21 - Gain	dB		20.5	
S11 - Input Return Loss	dB		-15	
S22 - Output Return Loss	dB		-15	
Output P1dB	dBm		+17	
Output IP3	dBm		+31	
Noise Figure	dB		3.7	
Device Voltage	V		5.0	
Device Current	mA		60	

Test conditions unless otherwise noted

- 1. T = 25°C, Supply Voltage = +6 V, R_{bias} = 16 Ω , Frequency = 900MHz, 50 Ω System.
- 2. 30IP measured with two tones at an output power of 0 dBm/tone separated by 10MHz. The suppression on the largest IM3 product is used to calculate the 30IP using a 2:1 rule.

Typical Parameters

Parameter ¹	Units	Тур	ical
Frequency	MHz	900	1900
S21	dB	20.5	19
S11	dB	-20	-20
S22	dB	-18	-15
Output P1dB	dBm	+17	+16
Output IP3	dBm	+31	+29
Noise Figure	dB	3.7	3.8
Supply Voltage	V	6	6
Device Current	mA	60	60

1. Data represents typical performance in an application board with

Absolute Maximum Ratings

Parameters	Rating
Operating Case Temperature	-40 to +85 °C
Storage Temperature	-40 to +125 °C

Operation of this device above any of there parameters may cause permanent damage

Application Circuit Vs = +6 V $I_S = 60 \text{ mA}$ СЗ Bypass Capacito RF Choke RF OUT RF IN AG403 C1 C2 Blocking Blocking

Ordering Information

Part No.	Description
AG403-86	InGaP HBT Gain Block SOT-86 Style Package (Available in Tape & Reel)
AG403-89	InGaP HBT Gain Block SOT-89 Style Package (Available in Tape & Reel)
AG403-86PCB AG403-89PCB	Fully Assembled Application Board Fully Assembled Application Board

This document contains information on a new product.

T = 25°C, V_s = +6 V, and R_{bias} = 16 Ω in a 50 Ω system.

AG403-86 Package Information

Outline Drawing

Land Pattern

Mounting Configuration Notes

NOTES:

- THERMAL/GROUND VIAS ARE CRITICAL FOR THE PROPER PERFORMANCE OF THIS PART. VIAS SHOULD USE A .013" DIAMETER DRILL AND HAVE A FINAL, PLATED THRU DIAMETER OF .010".
- 2. ADD AS MUCH COPPER AS POSSIBLE TO INNER AND OUTER LAYERS NEAR THE PART TO ENSURE OPTIMAL THERMAL PERFORMANCE.
- MOUNTING SCREWS ARE RECOMMENDED NEAR THE PART TO FASTEN THE BOARD TO A HEATSINK. ENSURE THAT THE THERMAL/GROUND VIAS CONTACT THE HEATSINK.
- DO NOT PUT SOLDER MASK ON THE BACK SIDE OF THE PC BOARD IN THE REGIONS WHERE THE BOARD CONTACTS THE HEATSINK.
- 5. RF TRACE WIDTH DEPENDS UPON THE PC BOARD MATERIAL AND CONSTRUCTION.
- 6. USE 1 OZ. COPPER MINIMUM.
- 7. DIMENSIONS ARE IN MILLIMETERS / (INCHES).

AG403-89 Package Information

Outline Drawing

mm inch

Land Pattern

Mounting Configuration

- Notes: 1. Ground vias are critical for thermal and RF grounding considerations.
 2. Two 2-56 screws with washers should be used for thermal grounding to the main chassis.
 3. Ground plane on the backside should extend past the holes for the 2-56 screws as a minimum.
 4. No soldernask should be applied to the backside where heat sink area contacts the main chassis.
 5. Holes for the 2-56 screws should be plated through.
 6. Kapput dispate for the 2-56 screws and the state of the state of

 - 6. Keepout diameter for the 2-56 screw is to allow good thermal

 - contact for the screw and washer.
 7. Trace width depends on PC board.
 8. A minimum of 1 oz. / 1 oz. copper should be used.

INPUT GROUND DUTPUT (BIAS) GROUND

> This document contains information on a new product. Specifications and information are subject to change without notice