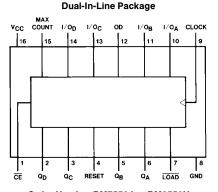
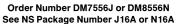


DM7556/DM8556 TRI-STATE® Programmable Binary Counters

General Description


These circuits are synchronous, edge-sensitive, fully-programmable 4-bit counters. The counters feature both conventional totem-pole and TRI-STATE outputs; such that when the outputs are in the high impedance mode, they can be used to enter data from the bus lines. In addition, the clear input operates completely independent of all other inputs. During the programming operation, data is loaded into the flip-flops on the positive-going edge of the clock pulse. To facilitate cascading of these counters, the MAX COUNT output can be tied directly into the count enable input of the next counter.


Features

- Typical clock frequency 35 MHz
- TRI-STATE outputs
- Fully independent clear
- Synchronous loading
- Cascading circuitry provided internally

TL/F/6588-1

Connection Diagram

Function Table

Control Inputs				I/O Ports				Active Outputs				
LOAD	CE	CLK	OD	Reset	1/0 _A	I/O _B	I/O _C	I/O _D	QA	QB	Q _C	QD
н	х	х	L	н	L	L	L	L	L	L	L	L
н	X	X	н	н	z	Z	Z	Z	L	L	L	L
н	X	L	L	L	Q _{A0}	Q_{B0}	Q_{C0}	Q _{D0}	Q _{A0}	Q_{B0}	Q _{C0}	Q _{D0}
н	X	L	н	L	z	Z	Z	Z	Q _{A0}	Q_{B0}	Q _{C0}	Q _{D0}
L	н	↑	L	L	a	b	с	d	Α	В	С	D
н	L	↑	L	L	COUNT COUNT							
н	L	↑	н	L	Z Z Z Z COUNT							
The I/O pir when LOA H = High	D input	is High a	and OD	hen they ar is Low.	e TRI-ST/	ATED, an	d the LOA	ND input is	s Low. Th	ney are o	utputs ar	nd activ
L = Low L	evel (S	Steady St	ate)									
X = Don't	Care ir	ncluding	transitio	ns								
a, b, c, d =	The I	evel of th	ne stead	dy state inp	ut at inpu	ts A, B, C	, D respe	ctively				
Q _{A0} , Q _{B0} ,	Q _{C0} , Q	$p_{D0} = Th$	e level	of Q _A , Q _B ,	Q _C , Q _D r	espective	ly, before	the indic	ated ste	ady state	input co	ondition

were established.

TRI-STATE® is a registered trademark of the National Semiconductor Corporation.

©1995 National Semiconductor Corporation TL/F/6588

RRD-B30M105/Printed in U. S. A.

DM7556/DM8556 TRI-STATE Programmable Binary Counters

August 1989

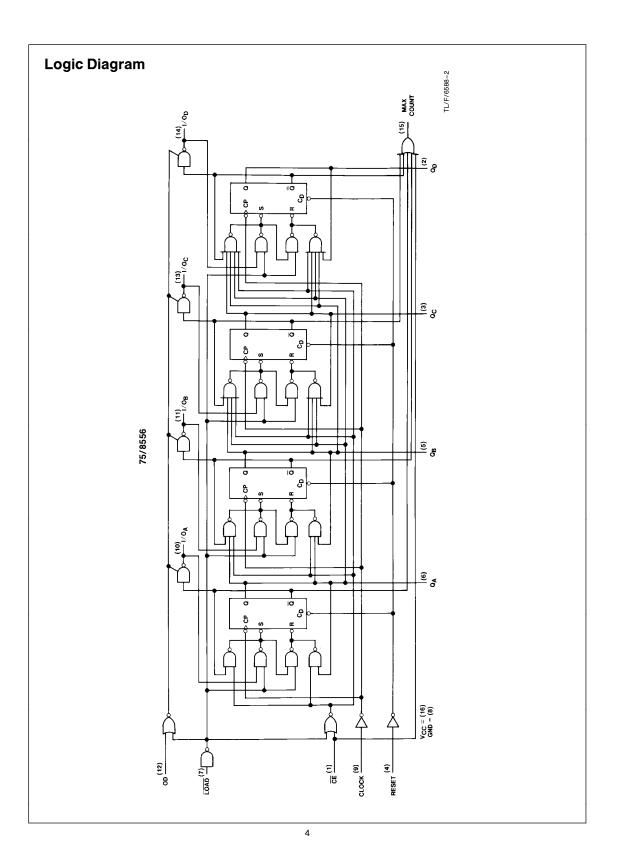
Absolute Maximum Ratings (Note) If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

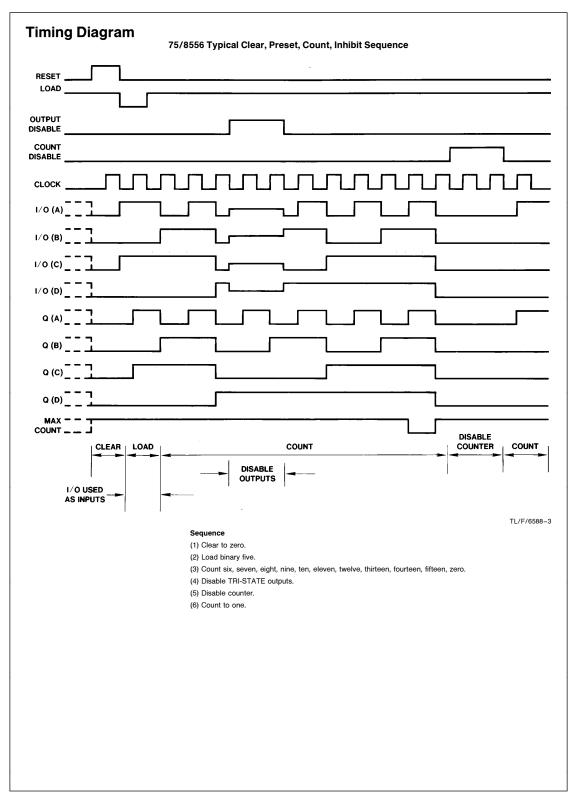
Supply Voltage	7V
Input Voltage	5.5V
Operating Free Air Temperature Range	
DM75	-55°C to +125°C
DM85	$0^{\circ}C$ to $+70^{\circ}C$
Storage Temperature Range	-65° C to $+150^{\circ}$ C

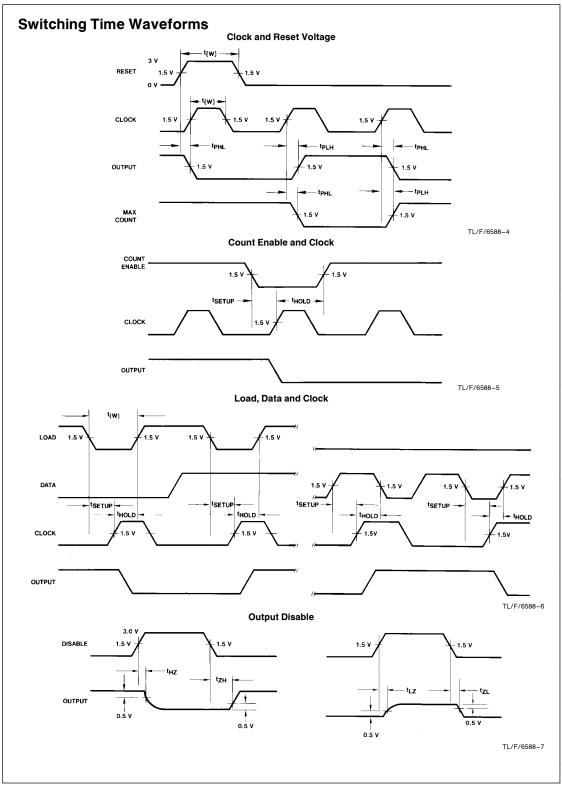
Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaran-teed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

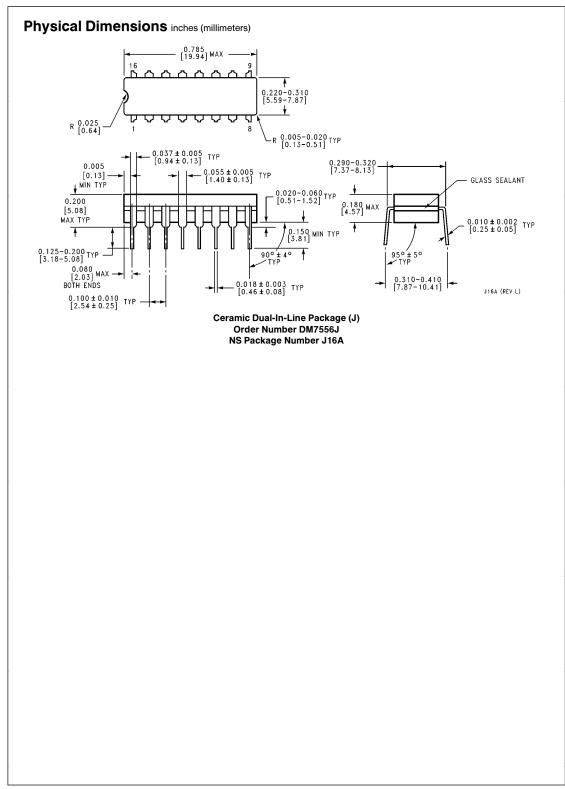
Recommended Operating Conditions

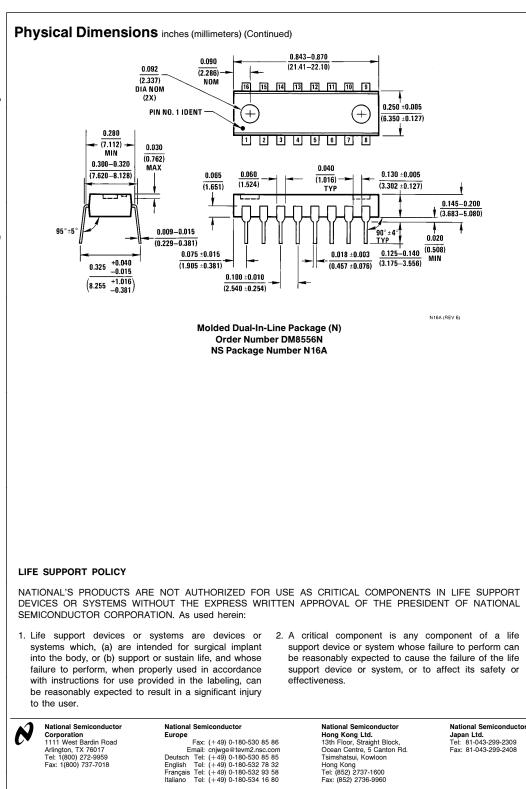
Symbol	Param		DM7556			DM8556			
Symbol	Falain	Min	Nom	Max	Min	Nom	Max	Units	
V _{CC}	Supply Voltage		4.5	5	5.5	4.75	5	5.25	V
V _{IH}	High Level Input Voltag	je	2			2			V
V _{IL}	Low Level Input Voltage				0.8			0.8	V
I _{OH}	High Level Output Current				-2			-5.2	mA
I _{OL}	Low Level Output Curr	ent			16			16	mA
f _{CLK}	Clock Frequency (Note	e 1)	0		25	0		25	MHz
	Pulse Width (Note 1)	Clock	25			25			ns
		Clear	20			20			
		Load	30			30			
t <u>ce</u>	Count Enable	Setup	30			30			- ns
	Time (Note 1)	Hold	- 10			-10			
tSETUP(1)	Setup Time High	Data	25			25			ns
	Logic Level (Note 1)	Load	30			30			
t _{HOLD(1)}	Hold Time High	Data	5			5			ns
	Logic Level (Note 1)	Load	-10			-10			
t _{SETUP(0)}	Setup Time Low	Data	30			30			- ns
	Logic Level (Note 1)	Load	25			25			
t _{HOLD(0)}	Hold Time Low	Data	5			5			ns
	Logic Level (Note 1)	Load	- 10			-10			113
T _A	Free Air Operating Ter	nperature	-55		125	0		70	°C


Note 1: $T_{A}\,=\,25^{\circ}C$ and $V_{CC}\,=\,5V.$


Symbol	Parameter	Condi	tions	Min	Typ (Note 1)	Max	Units
VI	Input Clamp Voltage	$V_{CC} = Min, I_1 =$	= -12 mA			-1.5	V
V _{OH}	High Level Output Voltage	$V_{CC} = Min, I_{OH} = Max$ $V_{IL} = Max, V_{IH} = Min$		2.4			v
V _{OL}	Low Level Output Voltage	$V_{CC} = Min, I_{OL} = Max$ $V_{IH} = Min, V_{IL} = Max$				0.4	V
lı	Input Current @ Max Input Voltage	$V_{CC} = Max, V_I = 5.5V$				1	mA
IIH	High Level Input Current	$V_{CC} = Max, V_I = 2.4V$				40	μΑ
۱ _{IL}	Low Level Input Current	$V_{CC} = Max, V_I = 0.4V$				-1.6	mA
I _{OZH}	Off-State Output Current with High Level Output Voltage Applied	$\label{eq:V_CC} \begin{split} V_{CC} &= Max, V_O = 2.4V \\ V_{IH} &= Min, V_{IL} = Max \end{split}$				40	μΑ
I _{OZL}	Off-State Output Current with Low Level Output Voltage Applied	$V_{CC} = Max, V_{CC}$ $V_{IH} = Min, V_{IL}$	0			-40	μΑ
los	Short Circuit	V _{CC} = Max	DM75	-25		-70	mA
	Output Current	(Note 2)	DM85	-25		-70	
Icc	Supply Current	V _{CC} = Max			75	100	mA


Note 1: All typicals are at V_{CC} = 5V, T_A = 25°C. Note 2: Not more than one output should be shorted at a time.


Switching Characteristics at $V_{CC} = 5V$ and $T_A = 25^{\circ}C$ (See Section 1 for Test Waveforms and Output Load)


Symbol		From (Input) To (Output)					
	Parameter		C _L =	5 pF	C _L =	Units	
			Min	Max	Min	Max	
f _{MAX}	Maximum Clock Frequency				25		MHz
t _{PLH}	Propagation Delay Time Low to High Level Output	Clock to Output				22	ns
t _{PHL}	Propagation Delay Time High to Low Level Output	Clock to Output				44	ns
t _{PLH}	Propagation Delay Time Low to High Level Output	Clock to MAX-CNT				33	ns
t _{PHL}	Propagation Delay Time High to Low Level Output	Clock to MAX-CNT				33	ns
t _{PHL}	Propagation Delay Time High to Low Level Output	Reset to Output				44	ns
t _{PZH}	Output Enable Time to High Level Output	Output Disable to Q				20	ns
t _{PZL}	Output Enable Time to Low Level Output	Output Disable to Q				20	ns
t _{PHZ}	Output Disable Time from High Level Output	Output Disable to Q		12			ns
t _{PLZ}	Output Disable Time from Low Level Output	Output Disable to Q		20			ns

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications