- Member of the Texas Instruments Widebus+[™] Family
- Operates From 1.65 V to 3.6 V
- Inputs Accept Voltages to 5.5 V
- Max t_{pd} of 4.1 ns at 3.3 V
- Typical V_{OLP} (Output Ground Bounce) <0.8 V at V_{CC} = 3.3 V, $T_A = 25^{\circ}C$

description/ordering information

 Typical V_{OHV} (Output V_{OH} Undershoot) >2 V at V_{CC} = 3.3 V, T_A = 25°C

- I_{off} Supports Partial-Power-Down Mode Operation
- Supports Mixed-Mode Signal Operation on All Ports (5-V Input/Output Voltage With 3.3-V V_{CC})

This 32-bit buffer/driver is designed for 1.65-V to 3.6-V V_{CC} operation.

The SN74LVC32244 is designed specifically to improve the performance and density of 3-state memory address drivers, clock drivers, and bus-oriented receivers and transmitters.

The device can be used as eight 4-bit buffers, four 8-bit buffers, two 16-bit buffers, or one 32-bit buffer. It provides true outputs and symmetrical active-low output-enable (OE) inputs.

Inputs can be driven from either 3.3-V or 5-V devices. This feature allows the use of these devices as translators in a mixed 3.3-V/5-V system environment.

This device is fully specified for partial-power-down applications using I_{off}. The I_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

To ensure the high-impedance state during power up or power down, $\overline{\text{OE}}$ should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

ТА	PACKAGE [†]		ORDERABLE PART NUMBER	TOP-SIDE MARKING	
–40°C to 85°C	LFBGA – GKE	Tana and real	SN74LVC32244GKER	NC244	
-40 C 10 85°C	LFBGA – ZKE (Pb-free)	Tape and reel	SN74LVC32244ZKER	NC244	

ORDERING INFORMATION

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

Widebus+ is a trademark of Texas Instruments.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

Copyright © 2003, Texas Instruments Incorporated

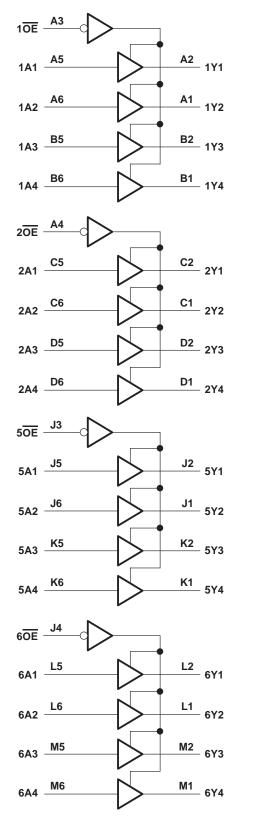
SN74LVC32244 **32-BIT BUFFER/DRIVER** WITH 3-STATE OUTPUTS

SCES342C - OCTOBER 2000 - REVISED AUGUST 2003

GKE OR ZKE PACKAGE (TOP VIEW)

1 2 3 4 5 6 000000 Α 000000 В С 000000 000000 D 000000 Е 000000 F 000000 G 000000 н 000000 J 000000 κ 000000 L 000000 Μ Ν 000000 000000 Ρ 000000 R 000000 т

terminal assignments


	1	2	3	4	5	6
Α	1Y2	1Y1	1 <mark>0E</mark>	2 <mark>0E</mark>	1A1	1A2
в	1Y4	1Y3	GND	GND	1A3	1A4
С	2Y2	2Y1	VCC	VCC	2A1	2A2
D	2Y4	2Y3	GND	GND	2A3	2A4
Е	3Y2	3Y1	GND	GND	3A1	3A2
F	3Y4	3Y3	V _{CC}	VCC	3A3	3A4
G	4Y2	4Y1	GND	GND	4A1	4A2
н	4Y3	4Y4	40E	3OE	4A4	4A3
J	5Y2	5Y1	50E	6OE	5A1	5A2
κ	5Y4	5Y3	GND	GND	5A3	5A4
L	6Y2	6Y1	VCC	VCC	6A1	6A2
М	6Y4	6Y3	GND	GND	6A3	6A4
Ν	7Y2	7Y1	GND	GND	7A1	7A2
Р	7Y4	7Y3	V _{CC}	V _{CC}	7A3	7A4
R	8Y2	8Y1	GND	GND	8A1	8A2
т	8Y3	8Y4	8OE	7 <mark>0</mark> E	8A4	8A3

FUNCTION TABLE (each 4-bit buffer)

INP	UTS	OUTPUT
OE	Α	Y
L	Н	Н
L	L	L
н	Х	Z

logic diagram (positive logic)

SN74LVC32244 **32-BIT BUFFER/DRIVER** WITH 3-STATE OUTPUTS SCES342C - OCTOBER 2000 - REVISED AUGUST 2003

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V _{CC} Input voltage range, V _I (see Note 1) Voltage range applied to any output in the high-impedance or power-off state, V _O	
(see Note 1)	–0.5 V to 6.5 V
Voltage range applied to any output in the high or low state, V_{O}	
(see Notes 1 and 2)	–0.5 V to V _{CC} + 0.5 V
Input clamp current, I _{IK} (V _I < 0)	–50 mA
Output clamp current, I _{OK} (V _O < 0)	–50 mA
Continuous output current, IO	±50 mA
Continuous current through each V _{CC} or GND	±100 mA
Package thermal impedance, θ _{JA} (see Note 3): GKE/ZKE	40°C/W
Storage temperature range, T _{stg}	–65°C to 150°C

† Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.

2. The value of V_{CC} is provided in the recommended operating conditions table.

3. The package thermal impedance is calculated in accordance with JESD 51-7.

recommended operating conditions (see Note 4)

			MIN	MAX	UNIT	
V	Cumphanette en	Operating	1.65	3.6	V	
VCC	Supply voltage	Data retention only	1.5		V	
		V _{CC} = 1.65 V to 1.95 V	$0.65 \times V_{CC}$			
VIH	High-level input voltage	$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$	1.7		V	
		$V_{CC} = 2.7 V \text{ to } 3.6 V$	2			
		V _{CC} = 1.65 V to 1.95 V		$0.35 \times V_{CC}$		
V _{IL} Low-level input v	_ow-level input voltage	V _{CC} = 2.3 V to 2.7 V		0.7	V	
		V _{CC} = 2.7 V to 3.6 V		0.8		
VI	Input voltage	·	0	5.5	V	
		High or low state	0	VCC		
VO	Output voltage	3-state	0	5.5	V	
		V _{CC} = 1.65 V		-4		
		V _{CC} = 2.3 V		-8		
ЮН	High-level output current	V _{CC} = 2.7 V		-12	mA	
		V _{CC} = 3 V		-24		
		V _{CC} = 1.65 V		4		
		V _{CC} = 2.3 V	1	8		
IOL	Low-level output current	V _{CC} = 2.7 V		12	mA	
		V _{CC} = 3 V		24	1	
$\Delta t/\Delta v$	Input transition rise or fall rate	·		10	ns/V	
TA	Operating free-air temperature		-40	85	°C	
	All unused instate of the device must be held at)		-			

NOTE 4: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

SN74LVC32244 **32-BIT BUFFER/DRIVER** WITH 3-STATE OUTPUTS SCES342C - OCTOBER 2000 - REVISED AUGUST 2003

PARAMETER	TEST CONDITIONS	V _{CC}	MIN TYP [†] MAX	UNIT	
	I _{OH} = -100 μA	1.65 V to 3.6 V	V _{CC} -0.2		
	$I_{OH} = -4 \text{ mA}$	1.65 V	1.2		
N/	$I_{OH} = -8 \text{ mA}$	2.3 V	1.7	v	
V _{OH}	1 40 m	2.7 V	2.2	V	
	I _{OH} = -12 mA	3 V	2.4		
	$I_{OH} = -24 \text{ mA}$	3 V	2.2		
	I _{OL} = 100 μA	1.65 V to 3.6 V	0.2		
	I _{OL} = 4 mA	1.65 V	0.45	0.45	
VOL	I _{OL} = 8 mA	2.3 V	0.7	V	
	I _{OL} = 12 mA	2.7 V	0.4		
	I _{OL} = 24 mA	3 V	0.55		
Ц	V _I = 0 to 5.5 V	3.6 V	±5	μΑ	
loff	$V_{I} \text{ or } V_{O} = 5.5 \text{ V}$	0	±10	μΑ	
I _{OZ}	$V_{O} = 0$ to 5.5 V	3.6 V	±10	μΑ	
	$V_{I} = V_{CC} \text{ or } GND$	0.01/	40		
ICC	$3.6 V \le V_{I} \le 5.5 V^{\ddagger}$ $I_{O} = 0$	3.6 V	40	μΑ	
ΔICC	One input at V _{CC} – 0.6 V, Other inputs at V _{CC} or GND	2.7 V to 3.6 V	500	μΑ	
Ci	$V_{I} = V_{CC} \text{ or } GND$	3.3 V	5.5	pF	
Co	$V_{O} = V_{CC} \text{ or } GND$	3.3 V	6	pF	

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

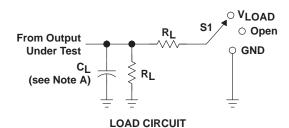
[†] All typical values are at $V_{CC} = 3.3 \text{ V}$, $T_A = 25^{\circ}\text{C}$. [‡] This applies in the disabled state only.

switching characteristics over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1)

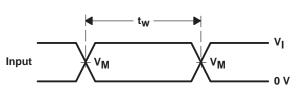
PARAMETER	FROM	TO	V _{CC} = ± 0.1	1.8 V 5 V	۲ <mark>۰۵</mark> × ۲۰۰۵ × ۲۰۵۵ × ۲۰۵۵ × ۲۰۵۵ × ۲۰۵۵ × ۲۰۵۰۵ × ۲۰۰۵ × ۲۰۰۵ × ۲۰۰۵ × ۲۰۰۵ ×		VCC =	2.7 V	= V _{CC} ± 0.3	3.3 V 3 V	UNIT
	(INPUT)	(OUTPUT)	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
^t pd	А	Y	§	§	§	§		4.7	1.1	4.1	ns
t _{en}	OE	Y	§	§	§	§		5.8	1	4.6	ns
^t dis	OE	Y	§	§	§	§		6.2	1.8	5.8	ns
^t sk(o)										1	ns

§ This information was not available at the time of publication.

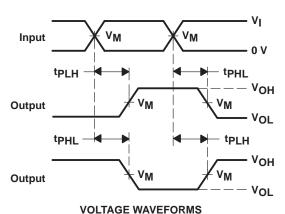
operating characteristics, $T_A = 25^{\circ}C$

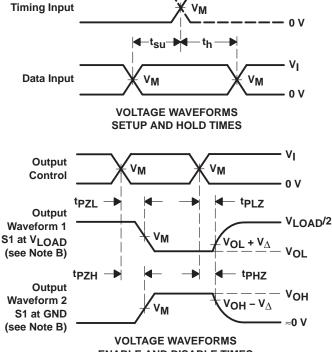

	PARAMETER	TEST	V _{CC} = 1.8 V	V _{CC} = 2.5 V	V _{CC} = 3.3 V	UNIT	
FARAMETER			CONDITIONS	TYP	TYP	TYP	UNIT
	Power dissipation capacitance	Outputs enabled	(10 MIL	§	§	34	
Cpd	per buffer/driver	Outputs disabled	f = 10 MHz	§	§	4	pF

§ This information was not available at the time of publication.


SN74LVC32244 32-BIT BUFFER/DRIVER WITH 3-STATE OUTPUTS SCES342C - OCTOBER 2000 - REVISED AUGUST 2003

PARAMETER MEASUREMENT INFORMATION



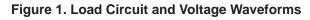

TEST	S1
tPLH/tPHL	Open
tPLZ/tPZL	VLOAD
^t PHZ ^{/t} PZH	GND

	INPUTS			N	•		
Vcc	٧I	t _r /t _f	VM	VLOAD	CL	RL	v_Δ
$1.8~V\pm0.15~V$	Vcc	≤2 ns	V _{CC} /2	2 × V _{CC}	30 pF	1 k Ω	0.15 V
$\textbf{2.5 V} \pm \textbf{0.2 V}$	Vcc	≤2 ns	V _{CC} /2	2 × V _{CC}	30 pF	500 Ω	0.15 V
2.7 V	2.7 V	≤2.5 ns	1.5 V	6 V	50 pF	500 Ω	0.3 V
3.3 V \pm 0.3 V	2.7 V	≤2.5 ns	1.5 V	6 V	50 pF	500 Ω	0.3 V

VOLTAGE WAVEFORMS PULSE DURATION

٧ı

VOLTAGE WAVEFORMS ENABLE AND DISABLE TIMES LOW- AND HIGH-LEVEL ENABLING


NOTES: A. Cl includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω .
- D. The outputs are measured one at a time with one transition per measurement.
- E. tPLZ and tPHZ are the same as tdis.

PROPAGATION DELAY TIMES

INVERTING AND NONINVERTING OUTPUTS

- F. tpzL and tpzH are the same as ten.
- G. t_{PLH} and t_{PHL} are the same as t_{pd} .
- H. All parameters and waveforms are not applicable to all devices.

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
SN74LVC32244GKER	ACTIVE	LFBGA	GKE	96	1000	None	SNPB	Level-3-220C-168 HR
SN74LVC32244ZKER	ACTIVE	LFBGA	ZKE	96	1000	Green (RoHS & no Sb/Br)	SNAGCU	Level-3-250C-168 HR

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

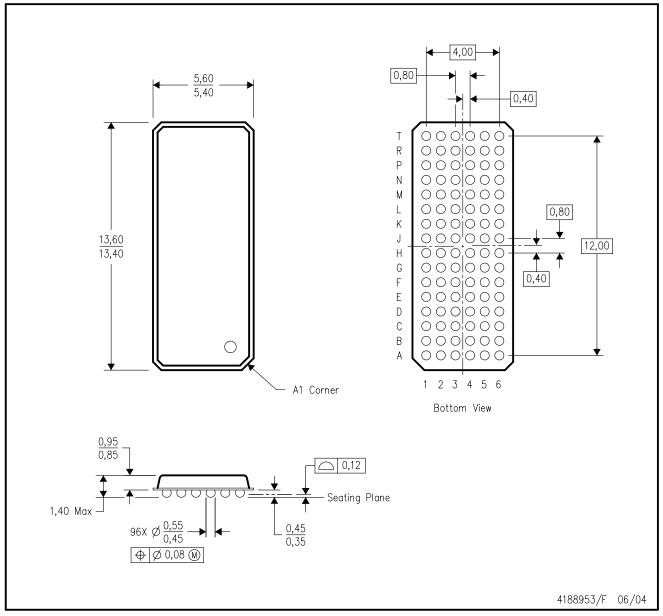
OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - May not be currently available - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

None: Not yet available Lead (Pb-Free).

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Green (RoHS & no Sb/Br): TI defines "Green" to mean "Pb-Free" and in addition, uses package materials that do not contain halogens, including bromine (Br) or antimony (Sb) above 0.1% of total product weight.

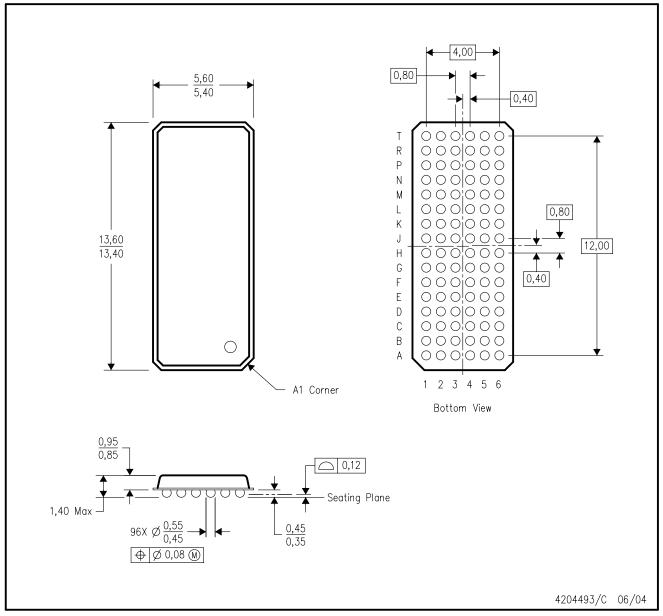

⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDECindustry standard classifications, and peak solder temperature.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

GKE (R-PBGA-N96)

PLASTIC BALL GRID ARRAY



- NOTES: A. All linear dimensions are in millimeters.
 - B. This drawing is subject to change without notice.
 - C. Falls within JEDEC MO-205 variation CC.
 - D. This package is tin-lead (SnPb). Refer to the 96 ZKE package (drawing 4204493) for lead-free.

ZKE (R-PBGA-N96)

PLASTIC BALL GRID ARRAY

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Falls within JEDEC MO-205 variation CC.

D. This package is lead-free. Refer to the 96 GKE package (drawing 4188953) for tin-lead (SnPb).

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address:

Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright © 2005, Texas Instruments Incorporated