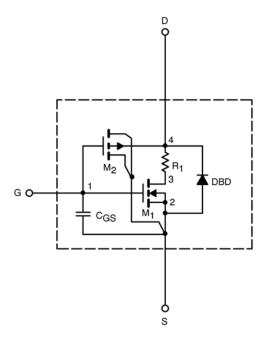


SPICE Device Model Si6925ADQ Vishay Siliconix

Dual N-Channel 2.5-V (G-S) MOSFET

CHARACTERISTICS

- N-Channel Vertical DMOS
- Macro Model (Subcircuit Model)
- Level 3 MOS


- · Apply for both Linear and Switching Application
- Accurate over the -55 to 125°C Temperature Range
- Model the Gate Charge, Transient, and Diode Reverse Recovery Characteristics

DESCRIPTION

The attached spice model describes the typical electrical characteristics of the n-channel vertical DMOS. The subcircuit model is extracted and optimized over the -55 to 125°C temperature ranges under the pulsed 0 to 5V gate drive. The saturated output impedance is best fit at the gate bias near the threshold voltage.

A novel gate-to-drain feedback capacitance network is used to model the gate charge characteristics while avoiding convergence difficulties of the switched $C_{\rm gd}$ model. All model parameter values are optimized to provide a best fit to the measured electrical data and are not intended as an exact physical interpretation of the device.

SUBCIRCUIT MODEL SCHEMATIC

This document is intended as a SPICE modeling guideline and does not constitute a commercial product data sheet. Designers should refer to the appropriate data sheet of the same number for guaranteed specification limits.

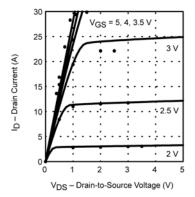
Document Number: 72663 www.vishay.com 23-May-04 1

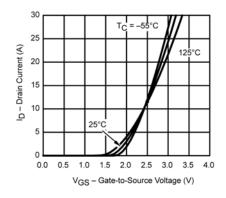
SPICE Device Model Si6925ADQ

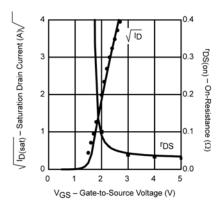
Vishay Siliconix

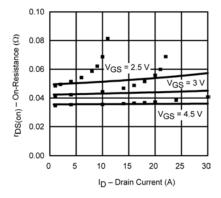
SPECIFICATIONS (T _J = 25°C UNLESS OTHERWISE NOTED)					
Parameter	Symbol	Test Conditions	Simulated Data	Measured Data	Unit
Static					
Gate Threshold Voltage	$V_{GS(th)}$	V_{DS} = V_{GS} , I_D = 250 μA	1.1		V
On-State Drain Current ^a	I _{D(on)}	$V_{DS} = 5 \text{ V}, V_{GS} = 4.5 \text{ V}$	80		Α
Drain-Source On-State Resistance ^a		V_{GS} = 4.5 V, I_{D} = 3.9 A	0.036	0.035	Ω
	r _{DS(on)}	$V_{GS} = 3 \text{ V}, I_D = 3.5 \text{ A}$	0.043	0.042	
		$V_{GS} = 2.5 \text{ V}, I_D = 3 \text{ A}$	0.052	0.050	
Forward Transconductance ^a	g _{fs}	$V_{DS} = 10 \text{ V}, I_{D} = 3.9 \text{ A}$	15	14	S
Forward Voltage ^a	V_{SD}	$I_{S} = 1 A, V_{GS} = 0 V$	0.78	0.75	V
Dynamic ^b					
Total Gate Charge	Q_g	V_{DS} = 6 V, V_{GS} = 4.5 V, I_{D} = 3.9 A	4	4	nC
Gate-Source Charge	Q_{gs}		0.90	0.90	
Gate-Drain Charge	Q_{gd}		1	1	
Turn-On Delay Time	t _{d(on)}	$V_{DD} = 6 \text{ V}, \text{ R}_{L} = 6 \Omega$ $I_{D} \cong \text{ 1 A, } V_{GEN} = 4.5 \text{ V}, \text{ R}_{G} = 6 \Omega$	52	40	ns
Rise Time	t _r		28	50	
Turn-Off Delay Time	$t_{\text{d(off)}}$		25	20	
Fall Time	t_f		8	10	

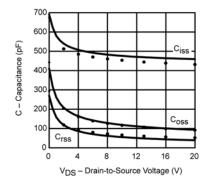
Notes

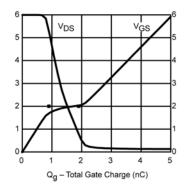

www.vishay.com Document Number: 72663


Pulse test; pulse width \leq 300 μ s, duty cycle \leq 2%. Guaranteed by design, not subject to production testing.




SPICE Device Model Si6925ADQ Vishay Siliconix


COMPARISON OF MODEL WITH MEASURED DATA (TJ=25°C UNLESS OTHERWISE NOTED)



Note: Dots and squares represent measured data.

 Document Number: 72663
 www.vishay.com

 23-May-04
 3