

This product is obsolete.

This information is available for your convenience only.

For more information on Zarlink's obsolete products and replacement product lists, please visit

http://products.zarlink.com/obsolete_products/

SP1658BC

VOLTAGE-CONTROLLED MULTIVIBRATOR

(CONFORMS TO MIL-STD-883C CLASS B)

The SP1658 is a voltage-controlled multivibrator which provides appropriate level shifting to produce an output compatible with ECL III and ECL 10,000 logic levels. Frequency control is accomplished through the use of voltage-variable current sources which control the slew rate of a single external capacitor.

The bias filter may be used to help eliminate ripple on the output voltage levels at high frequencies and the input filter may be used to decouple noise from the analog input signal.

The SP1658 is useful in frequency modulation, phaselocked loops, frequency synthesiser and clock signal generation applications for instrumenation, communication and computer systems.

FEATURES

- MIL-M-38510 Change Notification Observed
- Full Quality Conformance Inspection
- Operating temeprature range: -30°C to +85°C
- Supply Voltages -5.2V, 0V
- Oscillator Frequency Range 0.1 100MHz
- Voltage Controlled

CHANGE NOTIFICATION

The change notification requirements of MIL-M-38510 will be implemented on this device type. Known customers will be notified of any changes since last buy when ordering further parts if significant changes have been made.

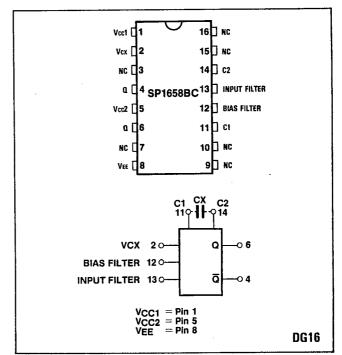


Fig.1 Pin connections (top view) and block diagram

ORDERING INFORMATION

SP1658BC DG (Commercial - ceramic package)

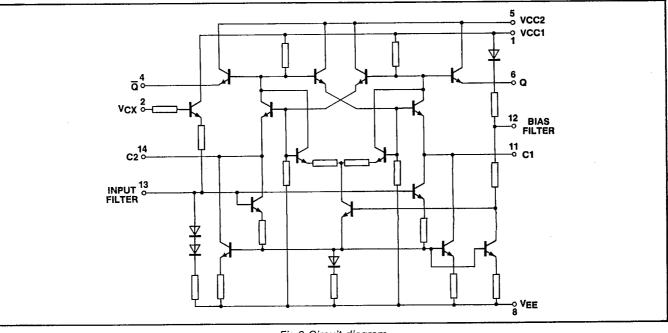


Fig.2 Circuit diagram

Rev.	A	
Date	1 Feb 87	

SP1658BC

T-50-15

ELECTRICAL CHARACTERISTICS

Test conditions (unless otherwise stated): $V_{CC1} = V_{CC2} = 0V; V_{EE} = -5.2V \pm 0.01V$

-	Symbol	Value		Curls amount	Natas	Method/Conditions/Temp.
Parameter		Min.	Max.	Sub group	Notes	
Supply current	lee		32mA	1,2,3	1	
Control input current	Icx		350µA		1	V cx = 0V
		-0.5µA			1	$V_{CX} = -2V$
Logic high output voltage	Vон	-0.960V	-0.810V	1	1	$T_{amb} = +25 °C$
		-0.890V	-0.700V	2	1	$T_{amb} = +85 ^{\circ}C$
		-1.045V	-0.875V	3	1	$T_{amb} = -30 ^{\circ}C$
Logic low output voltage	Vol	-1.850V	-1.620V	1	1	$T_{amb} = +25^{\circ}C$
		-1.830V	-1.575V	2	1	$T_{amb} = +80$ °C
		-1.890V	-1.650V	3	1	$T_{amb} = -30 ^{\circ}C$
Oscillator frequency	fosc	78MHz	120MHz	4	2	$Cx = 10pFT_{amb} = +25°C$
••••·····						Vcx = Vcc
				5,6	2	$Cx = 10 pF T_{amb} = -30 °C to +85 °C$
						Vcx = Vcc
Timing ratio test	TR	3.1	-	4,5,6	2,3	$Cx = 10pFT_{amb} = -30$ °C to $+85$ °C
Function test		-	-	7,8	4	

TSE D

NOTES

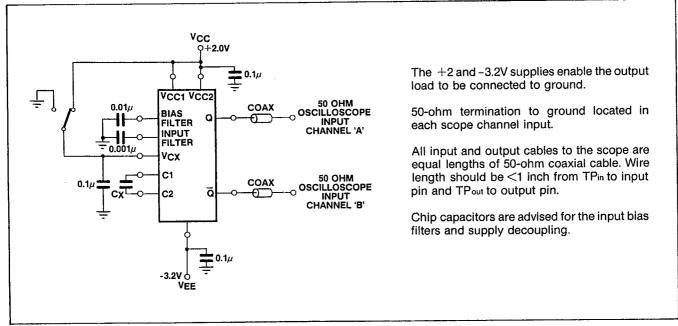
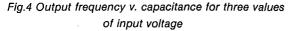
1. The static tests are carried out with a Germanium diode connected between pins 11 and 14; anode to 11 gives Q high, cathode to 11 gives Q low.

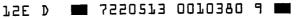
2. The test configuration for dynamic testing is shown in Fig.3.

3. The Tuning Ratio is defined as (output frequency at Vcx = Vcc)/(output frequency at Vcx = Vcc - 2V).

4. The Function Test is performed in conjunction with the Oscillator Frequency tests (sub group 4,5 or 6).

5. Sub groups 9.10,11 are not required.


Fig.3 Dynamic test circuit

ABSOLUTE MAXIMUM RATINGS

Power supply Output source current Vcx input Storage temperature range | Vcc - Vcc| 8V <15mA −2.5V to 0V w.r.t. Vcc −55°C to +150°C Operating junction temperature Thermal characteristics DG16 <175 °C $\theta_{JA} = 120$ °C/W $\theta_{JC} = 40$ °C/W PLESSEY SEMICONDUCTORS SP1658BC

 $1000 \\ 100 \\ 100 \\ 100 \\ 100 \\ VCx1 = 0V1 \\ VCx2 = -1.0V \\ VCx3 = -2.0V \\ VCx3 = -2.0V \\ Cx (pF) \\ Cx (pF)$

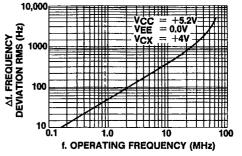


Fig.5 RMS noise deviation v. operating frequency

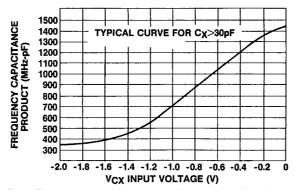
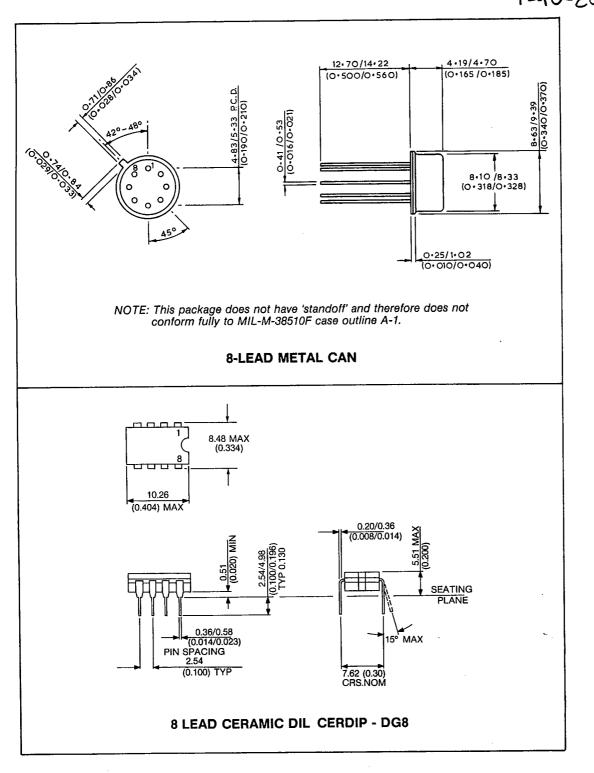
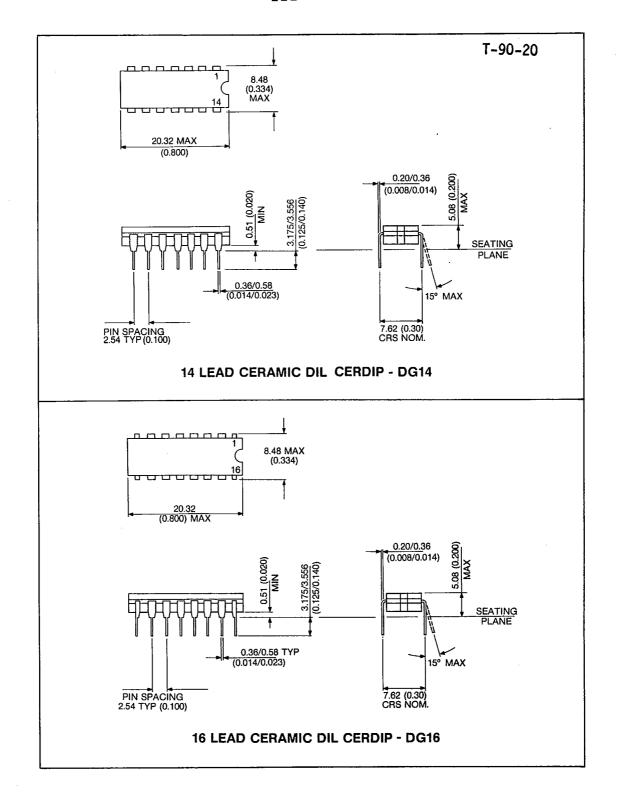
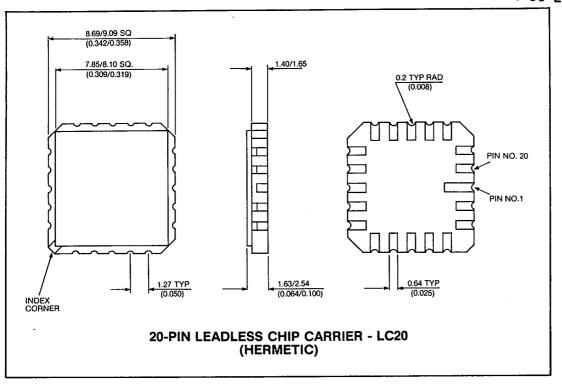




Fig.6 Frequency-capacitance product v. control voltage Vcx

186



187

PLESSEY SEMICONDUCTORS

12E D 🔳 7220513 0010420 6 🖿

T-90-20

.