feATURES

- Low Noise Voltage: $0.95 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ (100kHz)
- Gain Bandwidth Product:

LT6200/LT6201	165 MHz	$A_{V}=1$
LT6200-5	800 MHz	$A_{V} \geq 5$
LT6200-10	1.6 GHz	$A_{V} \geq 10$

- Low Distortion: - 80 dB at $1 \mathrm{MHz}, \mathrm{R}_{\mathrm{L}}=100 \Omega$
- Dual LT6201 in Tiny DFN Package
- Input Common Mode Range Includes Both Rails
- Output Swings Rail-to-Rail
- Low Offset Voltage: 1 mV Max
- Wide Supply Range: 2.5 V to 12.6 V
- Output Current: 60 mA Min
- SOT-23 and SO-8 Packages
- Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
- Power Shutdown, Thermal Shutdown

APPLICATIONS

- Transimpedance Amplifiers
- Low Noise Signal Processing
- Active Filters
- Rail-to-Rail Buffer Amplifiers
- Driving A/D Converters

DESCRIPTIOn

The LT ${ }^{\circledR} 6200 /$ /L6201 are single and dual ultralow noise, rail-to-rail input and output unity gain stable op amps that feature $0.95 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ noise voltage. These amplifiers combine very low noise with a 165 MHz gain bandwidth, $50 \mathrm{~V} / \mathrm{us}$ slew rate and are optimized for low voltage signal conditioning systems. A shutdown pin reduces supply current during standby conditions and thermal shutdown protects the part from overload conditions.

The LT6200-5/LT6200-10 are single amplifiers optimized for higher gain applications resulting in higher gain bandwidth and slew rate. The LT6200 family maintains its performance for supplies from 2.5 V to 12.6 V and are specified at $3 \mathrm{~V}, 5 \mathrm{~V}$ and $\pm 5 \mathrm{~V}$.
For compact layouts the LT6200/LT6200-5/LT6200-10are available in the 6 -lead ThinSOT ${ }^{\text {TM }}$ and the 8 -pin SO package. The dual LT6201 is available in an 8 -pin SO package with standard pinouts as well as a tiny, dual fine pitch leadless package (DFN). These amplifiers can be used as plug-in replacements for many high speed op amps to improve input/output range and noise performance.

[^0]
TYPICAL APPLICATION

Single Supply, 1.5nV $/ \sqrt{\mathrm{Hz}}$, Photodiode Amplifier

Distortion vs Frequency

LT6200/LT6200-5
 LT6200-10/LT6201

ABSOLUTE MAXIMUUM RATINGS (Note 1)

Total Supply Voltage (V^{+}to V^{-}) \qquad 12.6 V

Total Supply Voltage (V^{+}to V^{-}) (LT6201DD) 7 V Input Current (Note 2) \qquad $\pm 40 \mathrm{~mA}$
Output Short-Circuit Duration (Note 3) \qquad Indefinite
Pin Current While Exceeding Supplies
(Note 12) \qquad Operating Temperature Range (Note 4) $\ldots-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

Specified Temperature Range (Note 5) $\ldots . .40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ Junction Temperature .. $150^{\circ} \mathrm{C}$ Junction Temperature (DD Package) $125^{\circ} \mathrm{C}$ Storage Temperature Range \qquad $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Storage Temperature Range (DD Package) $-65^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ Lead Temperature (Soldering, 10 sec) $300^{\circ} \mathrm{C}$

PACKAGE/ORDER INFORMATION

6-LEAD PLASTIC SOT-23 $T_{\mathrm{Jmax}}=150^{\circ} \mathrm{C}, \theta_{\mathrm{JA}}=160^{\circ} \mathrm{C} / \mathrm{W}$ (Note 10)	ORDER PART NUMBER		ORDER PART NUMBER
	LT6200CS6 LT6200IS6 LT6200CS6-5 LT6200IS6-5 LT6200CS6-10 LT6200IS6-10		LT6200CS8 LT6200IS8 LT6200CS8-5 LT62001S8-5 LT6200CS8-10 LT6200IS8-10
	S6 PART MARKING*		S8 PART MARKING
	LTJZ LTACB LTACC		6200 62001 62005 620015 620010 200110
8-LEAD ($3 \mathrm{~mm} \times 3 \mathrm{~mm}$) PLASTIC DFN $T_{\text {Jmax }}=125^{\circ} \mathrm{C}, \theta_{\mathrm{JA}}=160^{\circ} \mathrm{C} / \mathrm{W}$ (NOTE 3) UNDERSIDE METAL CONNECTED TO V^{-}	ORDER PART NUMBER		ORDER PART NUMBER
	LT6201CDD		$\begin{aligned} & \text { LT6201CS8 } \\ & \text { LT6201IS8 } \end{aligned}$
	DD PART MARKING*		S8 PART MARKING
	LADG		$\begin{aligned} & 6201 \\ & 62011 \end{aligned}$

*The temperature grade is identified by a label on the shipping container. Consult LTC Marketing for parts specified with wider operating temperature ranges.

ELECTRICAL CHARACTERISTICS $\quad T_{A}=25^{\circ} \mathrm{C}, \mathrm{v}_{S}=5 \mathrm{~V}, 0 \mathrm{VV} ; \mathrm{V}_{\mathrm{S}}=3 \mathrm{~V}, 0 \mathrm{VV} ; \mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{\text {OUT }}=$ hali supply,
$V_{\text {SHDN }}=$ OPEN, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage	$V_{S}=5 \mathrm{~V}, \mathrm{~V}_{\text {CM }}=$ Half Supply $V_{S}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=$ Half Supply		$\begin{aligned} & \hline 0.1 \\ & 0.9 \end{aligned}$	$\begin{gathered} 1 \\ 2.5 \end{gathered}$	mV mV
		$\begin{aligned} & V_{S}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}^{+} \text {to } \mathrm{V}^{-} \\ & V_{\mathrm{S}}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}^{+} \text {to } \mathrm{V}^{-} \end{aligned}$		$\begin{aligned} & 0.6 \\ & 1.8 \end{aligned}$	$\begin{aligned} & 2 \\ & 4 \end{aligned}$	mV mV
	Input Offset Voltage Match (Channel-to-Channel) (Note 11)	$\begin{aligned} & V_{\mathrm{CM}}=\text { Half Supply } \\ & \mathrm{V}_{\mathrm{CM}}=\mathrm{V}^{-} \text {to } \mathrm{V}^{+} \end{aligned}$		$\begin{aligned} & 0.2 \\ & 0.5 \end{aligned}$	$\begin{array}{r} 1.1 \\ 2.2 \\ \hline \end{array}$	mV mV
I_{B}	Input Bias Current	$\begin{aligned} & V_{\mathrm{CM}}=\text { Half Supply } \\ & V_{\mathrm{CM}}=\mathrm{V}^{+} \\ & \mathrm{V}_{\mathrm{CM}}=\mathrm{V}^{-} \end{aligned}$	$\begin{aligned} & -40 \\ & -50 \end{aligned}$	$\begin{gathered} -10 \\ 8 \\ -23 \end{gathered}$	18	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$
$\Delta \mathrm{I}_{\mathrm{B}}$	I_{B} Shift	$\mathrm{V}_{\text {CM }}=\mathrm{V}^{-}$to V^{+}		31	68	$\mu \mathrm{A}$
	I_{B} Match (Channel-to-Channel) (Note 11)	$\mathrm{V}_{\text {CM }}=\mathrm{V}^{-}$to V^{+}		0.3	5	$\mu \mathrm{A}$
los	Input Offset Current	$\begin{aligned} & V_{C M}=\text { Half Supply } \\ & V_{C M}=V^{+} \\ & V_{C M}=V^{-} \end{aligned}$		$\begin{gathered} \hline 0.1 \\ 0.02 \\ 0.4 \end{gathered}$	$\begin{aligned} & 4 \\ & 4 \\ & 5 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$
	Input Noise Voltage	0.1 Hz to 10Hz		600		$n V_{\text {P-P }}$
e_{n}	Input Noise Voltage Density	$\begin{aligned} & f=100 \mathrm{kHz}, V_{S}=5 \mathrm{~V} \\ & f=10 \mathrm{kHz}, V_{S}=5 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 1.1 \\ & 1.5 \end{aligned}$	2.4	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$ $\mathrm{nV} / \sqrt{\mathrm{Hz}}$
I_{n}	Input Noise Current Density, Balanced Source Unbalanced Source	$\begin{aligned} & f=10 \mathrm{kHz}, V_{S}=5 \mathrm{~V} \\ & f=10 \mathrm{kHz}, V_{S}=5 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \hline 2.2 \\ & 3.5 \\ & \hline \end{aligned}$		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$ $\mathrm{pA} / \sqrt{\mathrm{Hz}}$
	Input Resistance	Common Mode Differential Mode		$\begin{gathered} \hline 0.57 \\ 2.1 \end{gathered}$		$M \Omega$ $\mathrm{k} \Omega$
$\mathrm{C}_{\text {IN }}$	Input Capacitance	Common Mode Differential Mode		$\begin{aligned} & 3.1 \\ & 4.2 \end{aligned}$		pF pF
AVOL	Large-Signal Gain	$\begin{aligned} & V_{S}=5 \mathrm{~V}, V_{0}=0.5 \mathrm{~V} \text { to } 4.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \text { to } \mathrm{V}_{\mathrm{S}} / 2 \\ & V_{S}=5 \mathrm{~V}, \mathrm{~V}_{0}=1 \mathrm{~V} \text { to } 4 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \Omega \text { to } \mathrm{V}_{S} / 2 \\ & V_{S}=3 \mathrm{~V}, V_{0}=0.5 \mathrm{~V} \text { to } 2.5 \mathrm{~V}, R_{L}=1 \mathrm{k} \text { to } \mathrm{V}_{S} / 2 \end{aligned}$	$\begin{aligned} & 70 \\ & 11 \\ & 17 \end{aligned}$	$\begin{gathered} 120 \\ 18 \\ 70 \end{gathered}$		V / mV V / mV V / mV
CMRR	Common Mode Rejection Ratio	$\begin{aligned} & V_{S}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}^{-} \text {to } \mathrm{V}^{+} \\ & V_{S}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{~V} \text { to } 3.5 \mathrm{~V} \\ & V_{\mathrm{S}}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}^{-} \text {to } \mathrm{V}^{+} \end{aligned}$	$\begin{aligned} & 65 \\ & 85 \\ & 60 \\ & \hline \end{aligned}$	$\begin{gathered} 90 \\ 112 \\ 85 \\ \hline \end{gathered}$		dB dB dB
	CMRR Match (Channel-to-Channel) (Note 11)	$\mathrm{V}_{S}=5 \mathrm{~V}, \mathrm{~V}_{\text {CM }}=1.5 \mathrm{~V}$ to 3.5 V	80	105		dB
PSRR	Power Supply Rejection Ratio	$\mathrm{V}_{S}=2.5 \mathrm{~V}$ to 10V, LT6201DD $\mathrm{V}_{\mathrm{S}}=2.5 \mathrm{~V}$ to 7V	60	68		dB
	PSRR Match (Channel-to-Channel) (Note 11)	$\mathrm{V}_{\mathrm{S}}=2.5 \mathrm{~V}$ to 10V, LT6201DD $\mathrm{V}_{\mathrm{S}}=2.5 \mathrm{~V}$ to 7 V	65	100		dB
	Minimum Supply Voltage (Note 6)		2.5			V
$\mathrm{V}_{\text {OL }}$	Output Voltage Swing LOW (Note 7)	$\begin{aligned} & \text { No Load } \\ & I_{\text {SINK }}=5 \mathrm{~mA} \\ & V_{S}=5 \mathrm{~V}, I_{\text {SINK }}=20 \mathrm{~mA} \\ & V_{S}=3 \mathrm{~V}, I_{\text {SINK }}=20 \mathrm{~mA} \end{aligned}$		$\begin{gathered} 9 \\ 50 \\ 150 \\ 160 \end{gathered}$	$\begin{gathered} 50 \\ 100 \\ 290 \\ 300 \end{gathered}$	$m V$ $m V$ $m V$ $m V$
V_{OH}	Output Voltage Swing HIGH (Note 7)	$\begin{aligned} & \hline \text { No Load } \\ & I_{\text {SOURCE }}=5 \mathrm{~mA} \\ & V_{S}=5 \mathrm{~V}, I_{\text {SOURCE }}=20 \mathrm{~mA} \\ & V_{S}=3 \mathrm{~V}, I_{\text {SOURCE }}=20 \mathrm{~mA} \\ & \hline \end{aligned}$		$\begin{gathered} 55 \\ 95 \\ 220 \\ 240 \\ \hline \end{gathered}$	$\begin{aligned} & 110 \\ & 190 \\ & 400 \\ & 450 \end{aligned}$	$m V$ $m V$ $m V$ $m V$
ISC	Short-Circuit Current	$\begin{aligned} & V_{S}=5 \mathrm{~V} \\ & V_{S}=3 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \pm 60 \\ & \pm 50 \end{aligned}$	$\begin{aligned} & \pm 90 \\ & \pm 80 \end{aligned}$		mA mA
Is	Supply Current per Amplifier Disabled Supply Current per Amplifier	$\begin{aligned} & \hline V_{S}=5 \mathrm{~V} \\ & V_{S}=3 \mathrm{~V} \\ & V_{\overline{S H D N}}=0.3 \mathrm{~V} \\ & \hline \end{aligned}$		$\begin{gathered} 16.5 \\ 15 \\ 1.3 \\ \hline \end{gathered}$	$\begin{aligned} & 20 \\ & 18 \\ & 1.8 \\ & \hline \end{aligned}$	mA mA mA
ISHDN	$\overline{\text { SHDN }}$ Pin Current	$V \overline{\text { SHDN }}=0.3 \mathrm{~V}$		200	280	$\mu \mathrm{A}$
V_{L}	$\mathrm{V}_{\overline{\text { SHDN }}}$ Pin Input Voltage LOW				0.3	V
V_{H}	$\mathrm{V}_{\text {SHDN }}$ Pin Input Voltage HIGH		$\mathrm{V}^{+}-0.5$			V

3

LT6200/LT6200-5
 LT6200-10/LT6201

$V_{\overline{S H D N}}=$ OPEN, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
	Shutdown Output Leakage Current	$\mathrm{V} \overline{\text { SHDN }}=0.3 \mathrm{~V}$		0.1	75	$\mu \mathrm{A}$
t_{ON}	Turn-On Time	$V_{\text {SHDN }}=0.3 \mathrm{~V}$ to 4.5V, $\mathrm{R}_{\mathrm{L}}=100 \Omega, \mathrm{~V}_{S}=5 \mathrm{~V}$		130		ns
$\mathrm{t}_{\text {OFF }}$	Turn-Off Time	$V_{\text {SHDN }}=4.5 \mathrm{~V}$ to 0.3V, $\mathrm{R}_{\mathrm{L}}=100 \Omega, \mathrm{~V}_{S}=5 \mathrm{~V}$		180		ns
GBW	Gain Bandwidth Product	$\begin{aligned} & \text { Frequency }=1 \mathrm{MHz}, \mathrm{~V}_{\mathrm{S}}=5 \mathrm{~V} \\ & \text { LT6200-5 } \\ & \text { LT6200-10 } \end{aligned}$		$\begin{aligned} & 145 \\ & 750 \\ & 1450 \end{aligned}$		MHz MHz MHz
SR	Slew Rate	$\mathrm{V}_{S}=5 \mathrm{~V}, \mathrm{~A}_{\mathrm{V}}=-1, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k}, \mathrm{V}_{0}=4 \mathrm{~V}$	31	44		V/ $/ \mathrm{s}$
		$\begin{aligned} & V_{S}=5 \mathrm{~V}, \mathrm{~A}_{\mathrm{V}}=-10, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k}, \mathrm{~V}_{0}=4 \mathrm{~V} \\ & \text { LT6200-5 } \\ & \text { LT6200-10 } \end{aligned}$		$\begin{aligned} & 210 \\ & 340 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{V} / \mu \mathrm{S} \\ & \mathrm{~V} / \mu \mathrm{S} \end{aligned}$
FPBW	Full Power Bandwidth (Note 9)	$\mathrm{V}_{S}=5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=3 \mathrm{~V}_{\text {P-P }}(L T 6200)$	3.28	4.66		MHz
t_{s}	Settling Time (LT6200, LT6201)	$0.1 \%, V_{S}=5 \mathrm{~V}, \mathrm{~V}_{\text {STEP }}=2 \mathrm{~V}, \mathrm{~A}_{\mathrm{V}}=-1, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k}$		165		ns

The \bullet denotes the specifications which apply over $0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<70^{\circ} \mathrm{C}$ temperature range. $\mathrm{V}_{S}=5 \mathrm{~V}, 0 \mathrm{~V} ; \mathrm{V}_{\mathrm{S}}=3 \mathrm{~V}, 0 \mathrm{~V}$; $V_{\text {CM }}=V_{\text {OUT }}=$ half supply, $V_{\text {SHDN }}=0$ PEN, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
$\mathrm{V}_{0 S}$	Input Offset Voltage	$\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=$ Half Supply $V_{S}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=$ Half Supply			$\begin{aligned} & 0.2 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 1.2 \\ & 2.7 \end{aligned}$	mV mV
		$\begin{aligned} & V_{S}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}^{+} \text {to } \mathrm{V}^{-} \\ & V_{S}=3 \mathrm{~V}, \mathrm{~V}_{C M}=\mathrm{V}^{+} \text {to } \mathrm{V}^{-} \end{aligned}$	\bullet		$\begin{aligned} & 0.3 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 3 \\ & 4 \end{aligned}$	mV mV
	Input Offset Voltage Match (Channel-to-Channel) (Note 11)	$\begin{aligned} & V_{\text {CM }}=\text { Half Supply } \\ & V_{C M}=V^{-} \text {to } V^{+} \end{aligned}$	\bullet		$\begin{aligned} & 0.2 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 1.8 \\ & 2.8 \end{aligned}$	mV mV
$\mathrm{V}_{\text {OS }}$ TC	Input Offset Voltage Drift (Note 8)	$V_{\text {CM }}=$ Half Supply	\bullet		2.5	8	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Bias Current	$\begin{aligned} & V_{C M}=\text { Half Supply } \\ & V_{C M}=V^{+} \\ & V_{C M}=V^{-} \end{aligned}$	$\stackrel{\bullet}{\bullet}$	-40 -50	$\begin{gathered} \hline-10 \\ 8 \\ -23 \end{gathered}$	18	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$
	I_{B} Match (Channel-to-Channel) (Note 11)	$\mathrm{V}_{\text {CM }}=\mathrm{V}^{-}$to V^{+}	\bullet		0.5	6	$\mu \mathrm{A}$
$\Delta{ }^{\text {b }}$	I_{B} Shift	$\mathrm{V}_{\text {CM }}=\mathrm{V}^{-}$to V^{+}	\bullet		31	68	$\mu \mathrm{A}$
Ios	Input Offset Current	$\begin{aligned} & V_{C M}=\text { Half Supply } \\ & V_{C M}=V^{+} \\ & V_{C M}=V^{-} \end{aligned}$	$\stackrel{\bullet}{\bullet}$		$\begin{gathered} 0.1 \\ 0.02 \\ 0.4 \end{gathered}$	$\begin{aligned} & 4 \\ & 4 \\ & 5 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$
$A_{\text {VOL }}$	Large-Signal Gain	$\begin{aligned} & V_{S}=5 \mathrm{~V}, \mathrm{~V}_{0}=0.5 \mathrm{~V} \text { to } 4.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \text { to } \mathrm{V}_{\mathrm{S}} / 2 \\ & \mathrm{~V}_{\mathrm{S}}=5 \mathrm{~V}, \mathrm{~V}_{0}=1.5 \mathrm{~V} \text { to } 3.5 \mathrm{~V}, R_{\mathrm{L}}=100 \Omega \text { to } \mathrm{V}_{\mathrm{S}} / 2 \\ & \mathrm{~V}_{\mathrm{S}}=3 \mathrm{~V}, \mathrm{~V}_{0}=0.5 \mathrm{~V} \text { to } 2.5 \mathrm{~V}, R_{\mathrm{L}}=1 \mathrm{k} \text { to } \mathrm{V}_{\mathrm{S}} / 2 \end{aligned}$	$\stackrel{\bullet}{\bullet}$	46 7.5 13	$\begin{aligned} & 80 \\ & 13 \\ & 22 \\ & \hline \end{aligned}$		V / mV V / mV V/mV
CMRR	Common Mode Rejection Ratio	$\begin{aligned} & V_{S}=5 \mathrm{~V}, \mathrm{~V}_{C M}=\mathrm{V}^{-} \text {to } \mathrm{V}^{+} \\ & V_{S}=5 \mathrm{~V}, V_{C M}=1.5 \mathrm{~V} \text { to } 3.5 \mathrm{~V} \\ & V_{S}=3 \mathrm{~V}, \mathrm{~V}_{C M}=\mathrm{V}^{-} \text {to } \mathrm{V}^{+} \end{aligned}$	$\stackrel{\bullet}{\bullet}$	64 80 60	$\begin{gathered} \hline 88 \\ 105 \\ 83 \end{gathered}$		dB dB dB
	CMRR Match (Channel-to-Channel) (Note 11)	$\mathrm{V}_{S}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{~V}$ to 3.5 V	\bullet	80	105		dB
PSRR	Power Supply Rejection Ratio	$V_{S}=3 \mathrm{~V}$ to 10V, LT6201DD $\mathrm{V}_{S}=3 \mathrm{~V}$ to 7V	\bullet	60	65		dB
	PSRR Match (Channel-to-Channel) (Note 11)	$V_{S}=3 \mathrm{~V}$ to 10V, LT6201DD $\mathrm{V}_{S}=3 \mathrm{~V}$ to 7 V	\bullet	60	100		dB
	Minimum Supply Voltage (Note 6)		\bullet	3			V
$\mathrm{V}_{\text {OL }}$	Output Voltage Swing LOW (Note 7)	$\begin{aligned} & \text { No Load } \\ & I_{\text {SINK }}=5 \mathrm{~mA} \\ & V_{S}=5 \mathrm{~V}, I_{\text {SINK }}=20 \mathrm{~mA} \\ & V_{S}=3 \mathrm{~V}, I_{\text {SINK }}=20 \mathrm{~mA} \end{aligned}$	$\stackrel{\bullet}{\bullet}$		$\begin{gathered} 12 \\ 55 \\ 170 \\ 170 \\ \hline \end{gathered}$	$\begin{gathered} \hline 60 \\ 110 \\ 310 \\ 310 \\ \hline \end{gathered}$	mV mV mV mV
V_{OH}	Output Voltage Swing HIGH (Note 7)	$\begin{aligned} & \text { No Load } \\ & I_{\text {SOURCE }}=5 \mathrm{~mA} \\ & V_{S}=5 \mathrm{~V}, I_{\text {SOURCE }}=20 \mathrm{~mA} \\ & V_{S}=3 \mathrm{~V}, I_{\text {SOURCE }}=20 \mathrm{~mA} \end{aligned}$	$\stackrel{\bullet}{\bullet}$		$\begin{gathered} 65 \\ 115 \\ 260 \\ 270 \end{gathered}$	$\begin{aligned} & 120 \\ & 210 \\ & 440 \\ & 490 \end{aligned}$	mV mV mV mV
							62001fa

ELECTRICAL CHARACTERISTICS The \bullet denotes the specifications which apply over $0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<70^{\circ} \mathrm{C}$

temperature range. $\mathrm{V}_{S}=5 \mathrm{~V}, 0 \mathrm{~V} ; \mathrm{V}_{S}=3 \mathrm{~V}, 0 \mathrm{~V} ; \mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{\text {OUT }}=$ half supply, $\mathrm{V}_{\text {SHDN }}=0$ PEN, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
$I_{\text {SC }}$	Short-Circuit Current	$\begin{aligned} & V_{S}=5 \mathrm{~V} \\ & V_{S}=3 \mathrm{~V} \end{aligned}$	\bullet	$\begin{aligned} & \pm 60 \\ & \pm 45 \end{aligned}$	$\begin{aligned} & \pm 90 \\ & \pm 75 \end{aligned}$		mA mA
I_{S}	Supply Current per Amplifier Disabled Supply Current per Amplifier	$\begin{aligned} & V_{S}=5 \mathrm{~V} \\ & V_{S}=3 \mathrm{~V} \\ & V_{S H D N}=0.3 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{aligned} & \bullet \bullet \\ & \bullet \\ & \hline \end{aligned}$		$\begin{gathered} 20 \\ 19 \\ 1.35 \\ \hline \end{gathered}$	$\begin{aligned} & 23 \\ & 22 \\ & 1.8 \\ & \hline \end{aligned}$	mA mA mA
$\overline{\text { SHDN }}$	$\overline{\text { SHDN }}$ Pin Current	$\mathrm{V}^{\text {SHDN }}=0.3 \mathrm{~V}$	\bullet		215	295	$\mu \mathrm{A}$
$\mathrm{V}_{\text {L }}$	V ${ }_{\text {SHDN }}$ Pin Input Voltage LOW		\bullet			0.3	V
V_{H}	V $\overline{\text { SHDN }}$ Pin Input Voltage HIGH		\bullet	$\mathrm{V}^{+}-0.5$			V
	Shutdown Output Leakage Current	$\mathrm{V}_{\text {SHDN }}=0.3 \mathrm{~V}$	\bullet		0.1	75	$\mu \mathrm{A}$
ton	Turn-On Time	$\mathrm{V}_{\text {SHDN }}=0.3 \mathrm{~V}$ to 4.5V, $\mathrm{R}_{\mathrm{L}}=100 \Omega, \mathrm{~V}_{S}=5 \mathrm{~V}$	\bullet		130		ns
$\mathrm{t}_{\text {OFF }}$	Turn-Off Time	$V_{\text {SHDN }}=4.5 \mathrm{~V}$ to 0.3V, $\mathrm{R}_{\mathrm{L}}=100 \Omega, \mathrm{~V}_{S}=5 \mathrm{~V}$	\bullet		180		ns
SR	Slew Rate	$\mathrm{V}_{S}=5 \mathrm{~V}, A_{V}=-1, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k}, \mathrm{V}_{0}=4 \mathrm{~V}$	\bullet	29	42		$\mathrm{V} / \mathrm{\mu s}$
		$\begin{aligned} & A_{V}=-10, R_{L}=1 k, V_{0}=4 V \\ & \text { LT6200-5 } \\ & \text { LT6200-10 } \end{aligned}$	\bullet		$\begin{aligned} & 190 \\ & 310 \end{aligned}$		V/ $/ \mathrm{s}$ $\mathrm{V} / \mathrm{\mu s}$
FPBW	Full Power Bandwidth (Note 9)	$\mathrm{V}_{S}=5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=3 \mathrm{~V}_{\text {P-P }}(L T 6200)$	\bullet	3.07	4.45		MHz

The \bullet denotes the specifications which apply over $-40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<85^{\circ} \mathrm{C}$ temperature range. Excludes the LT6201 in the DD package (Note 3). $\mathrm{V}_{S}=5 \mathrm{~V}, 0 \mathrm{~V} ; \mathrm{V}_{S}=3 \mathrm{~V}, 0 \mathrm{~V} ; \mathrm{V}_{C M}=\mathrm{V}_{\text {OUT }}=$ half supply, $\mathrm{V}_{\text {SHDN }}=0$ PEN, unless otherwise noted. (Note 5)

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
$\mathrm{V}_{0 S}$	Input Offset Voltage	$\begin{aligned} & V_{S}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\text { Half Supply } \\ & V_{S}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\text { Half Supply } \end{aligned}$	\bullet		$\begin{aligned} & \hline 0.2 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 2.8 \end{aligned}$	mV mV
		$\begin{aligned} & V_{S}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}^{+} \text {to } \mathrm{V}^{-} \\ & \mathrm{V}_{\mathrm{S}}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}^{+} \text {to } \mathrm{V}^{-} \end{aligned}$	\bullet		$\begin{aligned} & \hline 0.3 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 4.3 \end{aligned}$	mV mV
	Input Offset Voltage Match (Channel-to-Channel) (Note 11)	$\begin{aligned} & V_{C M}=\text { Half Supply } \\ & V_{C M}=V^{-} \text {to } V^{+} \end{aligned}$	\bullet		$\begin{aligned} & 0.2 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 2 \\ & 3 \end{aligned}$	mV mV
$\mathrm{V}_{\text {OS }}$ TC	Input Offset Voltage Drift (Note 8)	$\mathrm{V}_{\text {CM }}=$ Half Supply	\bullet		2.5	8.0	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Bias Current	$\begin{aligned} V_{C M} & =\text { Half Supply } \\ V_{C M} & =V^{+} \\ V_{C M} & =V^{-} \end{aligned}$	$\stackrel{\bullet}{\bullet}$	$\begin{aligned} & -40 \\ & -50 \end{aligned}$	$\begin{gathered} -10 \\ 8 \\ -23 \end{gathered}$	18	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$
$\Delta{ }^{\text {B }}$	I_{B} Shift	$\mathrm{V}_{\text {CM }}=\mathrm{V}^{-}$to V^{+}	\bullet		31	68	$\mu \mathrm{A}$
	I_{B} Match (Channel-to-Channel) (Note 11)	$\mathrm{V}_{\text {CM }}=\mathrm{V}^{-}$to V^{+}	\bullet		1	9	$\mu \mathrm{A}$
IOS	Input Offset Current	$\begin{aligned} & V_{C M}=\text { Half Supply } \\ & V_{C M}=V^{+} \\ & V_{C M}=V^{-} \end{aligned}$	$\stackrel{\bullet}{\bullet}$		$\begin{gathered} \hline 0.1 \\ 0.02 \\ 0.4 \\ \hline \end{gathered}$	$\begin{aligned} & 4 \\ & 4 \\ & 5 \\ & \hline \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$
Avol	Large-Signal Gain	$\begin{aligned} & V_{S}=5 \mathrm{~V}, \mathrm{~V}_{0}=0.5 \mathrm{~V} \text { to } 4.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \text { to } \mathrm{V}_{\mathrm{S}} / 2 \\ & \mathrm{~V}_{\mathrm{S}}=5 \mathrm{~V}, \mathrm{~V}_{0}=1.5 \mathrm{~V} \text { to } 3.5 \mathrm{~V}, R_{\mathrm{L}}=100 \Omega \text { to } \mathrm{V}_{\mathrm{S}} / 2 \\ & \mathrm{~V}_{\mathrm{S}}=3 \mathrm{~V}, \mathrm{~V}_{0}=0.5 \mathrm{~V} \text { to } 2.5 \mathrm{~V}, R_{\mathrm{L}}=1 \mathrm{k} \text { to } \mathrm{V}_{\mathrm{S}} / 2 \end{aligned}$	$\stackrel{\bullet}{\bullet}$	40 7.5 11	$\begin{aligned} & 70 \\ & 13 \\ & 20 \end{aligned}$		V / mV V / mV V / mV
CMRR	Common Mode Rejection Ratio	$\begin{aligned} & V_{S}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}^{-} \text {to } \mathrm{V}^{+} \\ & V_{S}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{~V} \text { to } 3.5 \mathrm{~V} \\ & \mathrm{~V}_{S}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}^{-} \text {to } \mathrm{V}^{+} \end{aligned}$	$\stackrel{\bullet}{\bullet}$	60 80 60	$\begin{gathered} 80 \\ 100 \\ 80 \\ \hline \end{gathered}$		dB dB dB
	CMRR Match (Channel-to-Channel) (Note 11)	$\mathrm{V}_{S}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{~V}$ to 3.5 V	\bullet	75	105		dB
PSRR	Power Supply Rejection Ratio	$\mathrm{V}_{S}=3 \mathrm{~V}$ to 10 V	\bullet	60	68		dB
	PSRR Match (Channel-to-Channel) (Note 11)	$\mathrm{V}_{S}=3 \mathrm{~V}$ to 10V	\bullet	60	100		dB
	Minimum Supply Voltage (Note 6)		\bullet	3			V
$\overline{\mathrm{V}} \mathrm{L}$	Output Voltage Swing LOW (Note 7)	$\begin{aligned} & \text { No Load } \\ & I_{\text {SINK }}=5 \mathrm{~mA} \\ & V_{S}=5 \mathrm{~V}, I_{\text {SINK }}=20 \mathrm{~mA} \\ & V_{S}=3 \mathrm{~V}, I_{\text {SINK }}=20 \mathrm{~mA} \end{aligned}$	$\stackrel{\bullet}{\bullet}$		$\begin{gathered} \hline 18 \\ 60 \\ 170 \\ 175 \end{gathered}$	$\begin{gathered} \hline 70 \\ 120 \\ 310 \\ 315 \\ \hline \end{gathered}$	mV mV mV mV
							62001fa

LT6200/LT6200-5
 LT6200-10/LT620 1

ELECTRICAL CHRRACTERISTICS The \bullet denotes the specifications which apply over $-40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<85^{\circ} \mathrm{C}$
temperature range. Excludes the LT6201 in the DD package (Note 3). $\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, \mathrm{OV} ; \mathrm{V}_{\mathrm{S}}=3 \mathrm{~V}, 0 \mathrm{~V} ; \mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{\text {OUT }}=$ half supply,
$V_{\overline{\text { SHDN }}}=$ OPEN, unless otherwise noted. (Note 5)

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
V_{OH}	Output Voltage Swing HIGH (Note 7)	$\begin{aligned} & \hline \text { No Load } \\ & I_{\text {SOURCE }}=5 \mathrm{~mA} \\ & V_{S}=5 \mathrm{~V}, I_{\text {SOURCE }}=20 \mathrm{~mA} \\ & V_{S}=3 \mathrm{~V}, I_{\text {SOURCE }}=20 \mathrm{~mA} \end{aligned}$			$\begin{gathered} 65 \\ 115 \\ 270 \\ 280 \\ \hline \end{gathered}$	$\begin{aligned} & 120 \\ & 210 \\ & 450 \\ & 500 \end{aligned}$	mV mV mV mV
ISC	Short-Circuit Current	$\begin{aligned} & V_{S}=5 \mathrm{~V} \\ & V_{S}=3 \mathrm{~V} \end{aligned}$	\bullet	$\begin{aligned} & \pm 50 \\ & \pm 30 \end{aligned}$	$\begin{aligned} & \pm 80 \\ & \pm 60 \end{aligned}$		mA mA
I_{S}	Supply Current per Amplifier Disabled Supply Current per Amplifier	$\begin{aligned} & \hline V_{S}=5 \mathrm{~V} \\ & V_{S}=3 \mathrm{~V} \\ & V_{\overline{S H D N}}=0.3 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline \bullet \\ \bullet \\ \hline \end{array}$		$\begin{aligned} & 22 \\ & 20 \\ & 1.4 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 25.3 \\ 23 \\ 1.9 \\ \hline \end{gathered}$	mA mA mA
ISTDN	$\overline{\text { SHDN }}$ Pin Current	$V \overline{\text { SHDN }}=0.3 \mathrm{~V}$	\bullet		220	300	$\mu \mathrm{A}$
$\mathrm{V}_{\text {L }}$	V $\overline{\text { SHDN }}$ Pin Input Voltage LOW		\bullet			0.3	V
V_{H}	$\mathrm{V}_{\text {SHDN }}$ Pin Input Voltage HIGH		\bullet	$\mathrm{V}^{+}-0.5$			V
	Shutdown Output Leakage Current	$\mathrm{V}^{\text {SHDN }}=0.3 \mathrm{~V}$	\bullet		0.1	75	$\mu \mathrm{A}$
ton	Turn-On Time	$V_{\text {SHDN }}=0.3 \mathrm{~V}$ to 4.5V, $\mathrm{R}_{\mathrm{L}}=100 \Omega, \mathrm{~V}_{S}=5 \mathrm{~V}$	\bullet		130		ns
$\mathrm{t}_{\text {OFF }}$	Turn-Off Time	$V_{\text {SHDN }}=4.5 \mathrm{~V}$ to 0.3V, $\mathrm{R}_{\mathrm{L}}=100 \Omega, \mathrm{~V}_{S}=5 \mathrm{~V}$	\bullet		180		ns
SR	Slew Rate	$\mathrm{V}_{S}=5 \mathrm{~V}, \mathrm{~A}_{\mathrm{V}}=-1, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k}, \mathrm{V}_{0}=4 \mathrm{~V}$	\bullet	23	33		V/ $/ \mathrm{s}$
		$\begin{aligned} & A_{V}=-10, R_{L}=1 \mathrm{k}, V_{0}=4 \mathrm{~V} \\ & \text { LT6200-5 } \\ & \text { LT6200-10 } \end{aligned}$	\bullet		$\begin{aligned} & 160 \\ & 260 \end{aligned}$		$\begin{aligned} & \mathrm{V} / \mu \mathrm{S} \\ & \mathrm{~V} / \mu \mathrm{S} \end{aligned}$
FPBW	Full Power Bandwidth (Note 9)	$\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=3 \mathrm{~V}_{\text {P-P }}(L T 6200)$	\bullet	2.44	3.5		MHz

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}, \mathrm{~V}_{\text {SHDN }}=0$ PEN, unless otherwise noted. Excludes the LT6201 in the DD package (Note 3).

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage	$\begin{aligned} & V_{C M}=\text { Half Supply } \\ & V_{C M}=V^{+} \\ & V_{C M}=V^{-} \end{aligned}$		$\begin{aligned} & 1.4 \\ & 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & \hline 4 \\ & 6 \\ & 6 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$ mV
	Input Offset Voltage Match (Channel-to-Channel) (Note 11)	$\begin{aligned} & V_{C M}=0 \mathrm{~V} \\ & V_{C M}=V^{-} \text {to } V^{+} \end{aligned}$		$\begin{aligned} & 0.2 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 1.6 \\ & 3.2 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
I_{B}	Input Bias Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CM}}=\text { Half Supply } \\ & \mathrm{V}_{\mathrm{CM}}=\mathrm{V}^{+} \\ & \mathrm{V}_{\mathrm{CM}}=\mathrm{V}^{-} \end{aligned}$	$\begin{aligned} & -40 \\ & -50 \end{aligned}$	$\begin{gathered} -10 \\ 8 \\ -23 \\ \hline \end{gathered}$	18	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$
$\Delta{ }^{\text {B }}$	I_{B} Shift	$\mathrm{V}_{\text {CM }}=\mathrm{V}^{-}$to V^{+}		31	68	$\mu \mathrm{A}$
	I_{B} Match (Channel-to-Channel) (Note 11)	$\mathrm{V}_{\text {CM }}=\mathrm{V}^{-}$to V^{+}		0.2	6	$\mu \mathrm{A}$
los	Input Offset Current	$\begin{aligned} & V_{\text {CM }}=\text { Half Supply } \\ & V_{C M}=V^{+} \\ & V_{C M}=V^{-} \end{aligned}$		$\begin{gathered} 1.3 \\ 1 \\ 3 \end{gathered}$	$\begin{gathered} \hline 7 \\ 7 \\ 12 \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$
	Input Noise Voltage	0.1 Hz to 10Hz		600		$\mathrm{n} \mathrm{P}_{\mathrm{P}-\mathrm{P}}$
e_{n}	Input Noise Voltage Density	$\begin{aligned} & f=100 \mathrm{kHz} \\ & f=10 \mathrm{kHz} \end{aligned}$		$\begin{gathered} 0.95 \\ 1.4 \end{gathered}$	2.3	$\begin{aligned} & \mathrm{nV} / \sqrt{\mathrm{Hz}} \\ & \mathrm{nV} / \sqrt{\mathrm{Hz}} \end{aligned}$
i_{n}	Input Noise Current Density, Balanced Source Unbalanced Source	$\begin{aligned} & f=10 \mathrm{kHz} \\ & f=10 \mathrm{kHz} \end{aligned}$		$\begin{aligned} & 2.2 \\ & 3.5 \end{aligned}$		$\begin{aligned} & \mathrm{pA} / \sqrt{\mathrm{Hz}} \\ & \mathrm{pA} / \sqrt{\mathrm{Hz}} \end{aligned}$
	Input Resistance	Common Mode Differential Mode		$\begin{gathered} \hline 0.57 \\ 2.1 \end{gathered}$		$\begin{gathered} \mathrm{M} \Omega \\ \mathrm{k} \Omega \end{gathered}$
$\mathrm{C}_{\text {IN }}$	Input Capacitance	Common Mode Differential Mode		$\begin{aligned} & 3.1 \\ & 4.2 \end{aligned}$		pF pF
Avol	Large-Signal Gain	$\begin{aligned} & V_{0}= \pm 4.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \\ & \mathrm{~V}_{0}= \pm 2 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \end{aligned}$	$\begin{aligned} & 115 \\ & 15 \end{aligned}$	$\begin{gathered} 200 \\ 26 \end{gathered}$		$\begin{aligned} & \mathrm{V} / \mathrm{mV} \\ & \mathrm{~V} / \mathrm{mV} \end{aligned}$

ELECTRICAL CHARACTERISTICS $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}, \mathrm{~V}_{\overline{\text { SHDN }}}=0$ PEN, unless otherwise

noted. Excludes the LT6201 in the DD package (Note 3).

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
CMRR	Common Mode Rejection Ratio	$\begin{aligned} & V_{C M}=V^{-} \text {to } V^{+} \\ & V_{C M}=-2 V \text { to } 2 V \end{aligned}$	$\begin{aligned} & 68 \\ & 75 \end{aligned}$	$\begin{gathered} 96 \\ 100 \end{gathered}$		dB dB
	CMRR Match (Channel-to-Channel) (Note 11)	$\mathrm{V}_{\text {CM }}=-2 \mathrm{~V}$ to 2V	80	105		dB
PSRR	Power Supply Rejection Ratio	$\mathrm{V}_{\mathrm{S}}= \pm 1.25 \mathrm{~V}$ to $\pm 5 \mathrm{~V}$	60	68		dB
	PSRR Match (Channel-to-Channel) (Note 6)	$\mathrm{V}_{\mathrm{S}}= \pm 1.25 \mathrm{~V}$ to $\pm 5 \mathrm{~V}$	65	100		dB
$\overline{\mathrm{V}} \mathrm{L}$	Output Voltage Swing LOW (Note 7)	No Load $\begin{aligned} & I_{\text {SINK }}=5 \mathrm{~mA} \\ & I_{\text {SINK }}=20 \mathrm{~mA} \end{aligned}$		$\begin{gathered} 12 \\ 55 \\ 150 \end{gathered}$	$\begin{gathered} \hline 50 \\ 110 \\ 290 \end{gathered}$	mV mV mV
$\overline{\mathrm{V} \mathrm{OH}}$	Output Voltage Swing HIGH (Note 7)	$\begin{array}{\|l} \hline \text { No Load } \\ I_{\text {SOURCE }}=5 \mathrm{~mA} \\ I_{\text {SOURCE }}=20 \mathrm{~mA} \\ \hline \end{array}$		$\begin{gathered} 70 \\ 110 \\ 225 \\ \hline \end{gathered}$	$\begin{aligned} & 130 \\ & 210 \\ & 420 \\ & \hline \end{aligned}$	mV mV mV
ISC	Short-Circuit Current		± 60	± 90		mA
I_{S}	Supply Current per Amplifier Disabled Supply Current per Amplifier	$\mathrm{V}_{\text {SHDN }}=0.3 \mathrm{~V}$		$\begin{aligned} & 20 \\ & 1.6 \end{aligned}$	$\begin{aligned} & 23 \\ & 2.1 \end{aligned}$	mA mA
$\overline{\text { ISDN }}$	$\overline{\text { SHDN }}$ Pin Current	$\mathrm{V}_{\text {SHDN }}=0.3 \mathrm{~V}$		200	280	$\mu \mathrm{A}$
V	$\mathrm{V}_{\text {SHDN }}$ Pin Input Voltage LOW				0.3	V
V_{H}	V $\overline{\text { SHDN }}$ Pin Input Voltage HIGH		$\mathrm{V}^{+}-0.5$			V
	Shutdown Output Leakage Current	$\mathrm{V}_{\text {SHDN }}=0.3 \mathrm{~V}$		0.1	75	$\mu \mathrm{A}$
ton	Turn-On Time	$\mathrm{V}_{\overline{\text { SHDN }}}=0.3 \mathrm{~V}$ to 4.5V, $\mathrm{R}_{\mathrm{L}}=100 \Omega, \mathrm{~V}_{\mathrm{S}}=5 \mathrm{~V}$		130		ns
toff	Turn-Off Time	$\mathrm{V}_{\overline{\text { SHDN }}}=4.5 \mathrm{~V}$ to 0.3V, $\mathrm{R}_{\mathrm{L}}=100 \Omega, \mathrm{~V}_{\mathrm{S}}=5 \mathrm{~V}$		180		ns
GBW	Gain Bandwidth Product	$\begin{aligned} & \text { Frequency = 1MHz } \\ & \text { LT6200-5 } \\ & \text { LT6200-10 } \end{aligned}$	$\begin{gathered} 110 \\ 530 \\ 1060 \end{gathered}$	$\begin{gathered} 165 \\ 800 \\ 1600 \end{gathered}$		
SR	Slew Rate	$A_{V}=-1, R_{L}=1 \mathrm{k}, \mathrm{V}_{0}=4 \mathrm{~V}$	35	50		$\mathrm{V} / \mathrm{\mu S}$
		$\begin{aligned} & A_{V}=-10, R_{L}=1 \mathrm{k}, V_{0}=4 \mathrm{~V} \\ & \text { LT6200-5 } \\ & \text { LT6200-10 } \end{aligned}$	$\begin{aligned} & 175 \\ & 315 \end{aligned}$	$\begin{aligned} & 250 \\ & 450 \end{aligned}$		$\mathrm{V} / \mathrm{\mu s}$ $\mathrm{V} / \mu \mathrm{s}$
FPBW	Full Power Bandwidth (Note 9)	$\mathrm{V}_{\text {OUT }}=3 \mathrm{~V}_{\text {P-P }}(L T 6200-10)$	33	47		MHz
ts	Settling Time (LT6200, LT6201)	$0.1 \%, V_{\text {STEP }}=2 \mathrm{~V}, \mathrm{~A}_{V}=-1, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k}$		140		ns

LT6200/LT6200-5
 LT6200-10/LT6201

ELECTRICAL CHARACTERISTICS The • denotes the specifications which apply over $0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<70^{\circ} \mathrm{C}$
temperature range. Excludes the LT6201 in the DD package (Note 3). $\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}, \mathrm{~V}_{\overline{\text { SHDN }}}=$ OPEN, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage	$\begin{aligned} & V_{C M}=\text { Half Supply } \\ & V_{C M}=V^{+} \\ & V_{C M}=V^{-} \end{aligned}$	$\bullet \bullet$		$\begin{aligned} & 1.9 \\ & 3.5 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 7.5 \\ & 7.5 \end{aligned}$	mV mV mV
	Input Offset Voltage Match (Channel-to-Channel) (Note 11)	$\begin{aligned} & V_{\mathrm{CM}}=0 \mathrm{~V} \\ & V_{\mathrm{CM}}=\mathrm{V}^{-} \text {to } \mathrm{V}^{+} \end{aligned}$	\bullet		$\begin{aligned} & 0.2 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 1.8 \\ & 3.4 \end{aligned}$	mV
$\mathrm{V}_{\text {OS }}$ TC	Input Offset Voltage Drift (Note 8)	$\mathrm{V}_{\text {CM }}=$ Half Supply	\bullet		8.2	24	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Bias Current	$\begin{aligned} & V_{\mathrm{CM}}=\text { Half Supply } \\ & V_{\mathrm{CM}}=\mathrm{V}^{+} \\ & V_{\mathrm{CM}}=\mathrm{V}^{-} \end{aligned}$	$\stackrel{\bullet}{\bullet}$	$\begin{aligned} & -40 \\ & -50 \\ & \hline \end{aligned}$	$\begin{gathered} \hline-10 \\ 8 \\ -23 \end{gathered}$	18	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$
$\Delta \mathrm{I}_{\mathrm{B}}$	I_{B} Shift	$\mathrm{V}_{\text {CM }}=\mathrm{V}^{-}$to V^{+}	\bullet		31	68	$\mu \mathrm{A}$
	I_{B} Match (Channel-to-Channel) (Note 11)	$\mathrm{V}_{\text {CM }}=\mathrm{V}^{-}$to V^{+}	\bullet		1	9	$\mu \mathrm{A}$
los	Input Offset Current	$\begin{aligned} & V_{\mathrm{CM}}=\text { Half Supply } \\ & V_{\mathrm{CM}}=\mathrm{V}^{+} \\ & V_{\mathrm{CM}}=\mathrm{V}^{-} \end{aligned}$	$\stackrel{\bullet}{\bullet}$		$\begin{aligned} & 1.3 \\ & 1.0 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 15 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$
AVOL	Large-Signal Gain	$\begin{aligned} & \mathrm{V}_{0}= \pm 4.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \\ & \mathrm{~V}_{0}= \pm 2 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \end{aligned}$		$\begin{aligned} & 46 \\ & 7.5 \end{aligned}$	$\begin{gathered} 80 \\ 13.5 \end{gathered}$		V / mV V/mV
CMRR	Common Mode Rejection Ratio	$\begin{aligned} & \mathrm{V}_{\mathrm{CM}}=\mathrm{V}^{-} \text {to } \mathrm{V}^{+} \\ & \mathrm{V}_{\mathrm{CM}}=-2 \mathrm{~V} \text { to } 2 \mathrm{~V} \\ & \hline \end{aligned}$		$\begin{aligned} & \hline 65 \\ & 75 \end{aligned}$	$\begin{gathered} 90 \\ 100 \end{gathered}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
	CMRR Match (Channel-to-Channel) (Note 11)	$\mathrm{V}_{\text {CM }}=-2 \mathrm{~V}$ to 2 2 V	\bullet	75	105		dB
PSRR	Power Supply Rejection Ratio	$\mathrm{V}_{S}= \pm 1.5 \mathrm{~V}$ to $\pm 5 \mathrm{~V}$	\bullet	60	65		dB
	PSRR Match (Channel-to-Channel) (Note 6)	$\mathrm{V}_{S}= \pm 1.5 \mathrm{~V}$ to $\pm 5 \mathrm{~V}$	\bullet	60	100		dB
V_{OL}	Output Voltage Swing LOW (Note 7)	$\begin{array}{\|l\|} \hline \text { No Load } \\ I_{\text {SINK }}=5 \mathrm{~mA} \\ I_{\text {SINK }}=20 \mathrm{~mA} \\ \hline \end{array}$	$\stackrel{\bullet}{\bullet}$		$\begin{gathered} \hline 16 \\ 60 \\ 170 \\ \hline \end{gathered}$	$\begin{gathered} \hline 70 \\ 120 \\ 310 \\ \hline \end{gathered}$	mV mV mV
V_{OH}	Output Voltage Swing HIGH (Note 7)	$\begin{aligned} & \text { No Load } \\ & I_{\text {SOURCE }}=5 \mathrm{~mA} \\ & I_{\text {SOURCE }}=20 \mathrm{~mA} \end{aligned}$	\bullet		$\begin{gathered} \hline 85 \\ 125 \\ 265 \end{gathered}$	$\begin{aligned} & 150 \\ & 230 \\ & 480 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$ mV
ISC	Short-Circuit Current		\bullet	± 60	± 90		mA
Is	Supply Current per Amplifier Disabled Supply Current per Amplifier	$\mathrm{V} \overline{\text { SHDN }}=0.3 \mathrm{~V}$	\bullet		$\begin{aligned} & \hline 25 \\ & 1.6 \end{aligned}$	$\begin{aligned} & \hline 29 \\ & 2.1 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
ISHDN	$\overline{\text { SHDN }}$ Pin Current	V SHDN $=0.3 \mathrm{~V}$	\bullet		215	295	$\mu \mathrm{A}$
$\mathrm{V}_{\text {L }}$	V $\overline{\text { SHDN }}$ Pin Input Voltage LOW		\bullet			0.3	V
V_{H}	$\mathrm{V}_{\text {SHDN }}$ Pin Input Voltage HIGH		\bullet	$\mathrm{V}^{+}-0.5$			V
	Shutdown Output Leakage Current	$\mathrm{V}_{\text {SHDN }}=0.3 \mathrm{~V}$	\bullet		0.1	75	$\mu \mathrm{A}$
t_{ON}	Turn-On Time	$\mathrm{V}_{\overline{\text { SHDN }}}=0.3 \mathrm{~V}$ to 4.5V, $\mathrm{R}_{\mathrm{L}}=100 \Omega, \mathrm{~V}_{\mathrm{S}}=5 \mathrm{~V}$	\bullet		130		ns
toff	Turn-Off Time	$\mathrm{V}_{\overline{\text { SHDN }}}=4.5 \mathrm{~V}$ to 0.3V, $\mathrm{R}_{\mathrm{L}}=100 \Omega, \mathrm{~V}_{\mathrm{S}}=5 \mathrm{~V}$	\bullet		180		ns
SR	Slew Rate	$A_{V}=-1, R_{L}=1 \mathrm{k}, \mathrm{V}_{0}=4 \mathrm{~V}$	\bullet	31	44		V/ $/ \mathrm{s}$
		$\begin{aligned} & A_{V}=-10, R_{L}=1 \mathrm{k}, V_{0}=4 \mathrm{~V} \\ & \mathrm{LT} 6200-5 \\ & \text { LT6200-10 } \end{aligned}$	\bullet	$\begin{aligned} & 150 \\ & 290 \end{aligned}$	$\begin{aligned} & 215 \\ & 410 \end{aligned}$		V/ $\mu \mathrm{s}$ V/ $\mu \mathrm{s}$
FPBW	Full Power Bandwidth (Note 9)	$\mathrm{V}_{\text {OUT }}=3 \mathrm{~V}_{\text {P-P }}($ LT6200-10)	\bullet	30	43		MHz

ELECTRICAL CHARACTERISTICS The denotes the specifications which apply over $-40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<85^{\circ} \mathrm{C}$ temperature range. Excludes the LT6201 in the DD package (Note 3). $\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\text {OUT }}=\mathbf{O V}, \mathrm{V}_{\text {SHDN }}=0 \mathrm{PEN}$, unless otherwise noted. (Note 5)

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage	$\begin{aligned} & V_{C M}=\text { Half Supply } \\ & V_{C M}=V^{+} \\ & V_{C M}=V^{-} \end{aligned}$	$\begin{aligned} & \bullet \\ & \bullet \\ & \bullet \end{aligned}$		$\begin{aligned} & \hline 1.9 \\ & 3.5 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 7.5 \\ & 7.5 \end{aligned}$	mV mV mV
	Input Offset Voltage Match (Channel-to-Channel) (Note 11)	$\begin{aligned} & V_{\mathrm{CM}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}^{-} \text {to } \mathrm{V}^{+} \end{aligned}$	\bullet		$\begin{aligned} & 0.2 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 3.6 \end{aligned}$	mV mV
$\mathrm{V}_{\text {OS }}$ TC	Input Offset Voltage Drift (Note 8)	$\mathrm{V}_{\text {CM }}=$ Half Supply	\bullet		8.2	24	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Bias Current	$\begin{aligned} & V_{\mathrm{CM}}=\text { Half Supply } \\ & V_{\mathrm{CM}}=\mathrm{V}^{+} \\ & V_{\mathrm{CM}}=\mathrm{V}^{-} \end{aligned}$	$\begin{aligned} & \bullet \\ & \bullet \\ & \bullet \\ & \hline \end{aligned}$	$\begin{aligned} & -40 \\ & -50 \end{aligned}$	$\begin{gathered} \hline-10 \\ 8 \\ -23 \end{gathered}$	18	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$
$\Delta \mathrm{I}_{\mathrm{B}}$	I_{B} Shift	$\mathrm{V}_{\mathrm{CM}}=\mathrm{V}^{-}$to V^{+}	\bullet		31	68	$\mu \mathrm{A}$
	$\mathrm{I}_{\text {B }}$ Match (Channel-to-Channel) (Note 11)		\bullet		4	12	$\mu \mathrm{A}$
Ios	Input Offset Current	$\begin{aligned} & V_{C M}=\text { Half Supply } \\ & V_{C M}=V^{+} \\ & V_{C M}=V^{-} \end{aligned}$	$\begin{aligned} & \bullet \\ & \bullet \\ & \bullet \end{aligned}$		$\begin{aligned} & 1.3 \\ & 1.0 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 15 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$
AVOL	Large-Signal Gain	$\begin{aligned} & V_{0}= \pm 4.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \\ & \mathrm{~V}_{0}= \pm 2 \mathrm{~V} \mathrm{R}_{\mathrm{L}}=100 \end{aligned}$	\bullet	$\begin{aligned} & 46 \\ & 7.5 \end{aligned}$	$\begin{gathered} 80 \\ 13.5 \end{gathered}$		V / mV V / mV
CMRR	Common Mode Rejection Ratio	$\begin{aligned} & V_{C M}=V^{-} \text {to } \mathrm{V}^{+} \\ & V_{C M}=-2 \mathrm{~V} \text { to } 2 \mathrm{~V} \end{aligned}$	\bullet	$\begin{aligned} & \hline 65 \\ & 75 \end{aligned}$	$\begin{gathered} 90 \\ 100 \end{gathered}$		dB dB
	CMRR Match (Channel-to-Channel) (Note 11)	$\mathrm{V}_{\text {CM }}=-2 \mathrm{~V}$ to 2V	\bullet	75	105		dB
PSRR	Power Supply Rejection Ratio	$\mathrm{V}_{S}= \pm 1.5 \mathrm{~V}$ to $\pm 5 \mathrm{~V}$	\bullet	60	65		dB
	PSRR Match (Channel-to-Channel) (Note 6)	$\mathrm{V}_{S}= \pm 1.5 \mathrm{~V}$ to $\pm 5 \mathrm{~V}$	\bullet	60	100		dB
$\overline{\mathrm{V}} \mathrm{L}$	Output Voltage Swing LOW (Note 7)	$\begin{array}{\|l\|} \hline \text { No Load } \\ I_{\text {SINK }}=5 \mathrm{~mA} \\ I_{\text {SINK }}=20 \mathrm{~mA} \\ \hline \end{array}$	$\bullet \cdot$		$\begin{gathered} \hline 16 \\ 60 \\ 170 \\ \hline \end{gathered}$	$\begin{gathered} \hline 75 \\ 125 \\ 310 \\ \hline \end{gathered}$	mV mV mV
V_{OH}	Output Voltage Swing HIGH (Note 7)	$\begin{array}{\|l} \hline \text { No Load } \\ I_{\text {SOURCE }}=5 \mathrm{~mA} \\ I_{\text {SOURCE }}=20 \mathrm{~mA} \end{array}$	$\begin{aligned} & \bullet \\ & \bullet \\ & \bullet \end{aligned}$		$\begin{gathered} 85 \\ 125 \\ 265 \end{gathered}$	$\begin{aligned} & 150 \\ & 230 \\ & 480 \end{aligned}$	mV mV mV
ISC	Short-Circuit Current		\bullet	± 60	± 90		mA
I_{S}	Supply Current Disabled Supply Current	$V \overline{\text { SHDN }}=0.3 \mathrm{~V}$	\bullet		$\begin{aligned} & \hline 25 \\ & 1.6 \end{aligned}$	$\begin{aligned} & \hline 29 \\ & 2.1 \end{aligned}$	mA mA
$\overline{\text { SHDN }}$	$\overline{\text { SHDN }}$ Pin Current	$\mathrm{V}_{\text {SHDN }}=0.3 \mathrm{~V}$	\bullet		215	295	$\mu \mathrm{A}$
V_{L}	V $\overline{\text { SHDN }}$ Pin Input Voltage LOW		\bullet			0.3	V
$\mathrm{V}^{\text {H }}$	V $\overline{\text { SHDN }}$ Pin Input Voltage HIGH		\bullet	$\mathrm{V}^{+}-0.5$			V
	Shutdown Output Leakage Current	$V \overline{\text { SHDN }}=0.3 \mathrm{~V}$	\bullet		0.1	75	$\mu \mathrm{A}$
t_{ON}	Turn-On Time	$V_{\overline{S H D N}}=0.3 \mathrm{~V}$ to 4.5V, $\mathrm{R}_{\mathrm{L}}=100 \Omega, \mathrm{~V}_{\mathrm{S}}=5 \mathrm{~V}$	\bullet		130		ns
$\mathrm{t}_{\text {OFF }}$	Turn-Off Time	$V_{\text {SHDN }}=4.5 \mathrm{~V}$ to 0.3V, $\mathrm{R}_{\mathrm{L}}=100 \Omega, \mathrm{~V}_{S}=5 \mathrm{~V}$	\bullet		180		ns
SR	Slew Rate	$A_{V}=-1, R_{L}=1 \mathrm{k}, \mathrm{V}_{0}=4 \mathrm{~V}$	\bullet	31	44		V/ $/ \mathrm{s}$
		$\begin{aligned} & A_{V}=-10, R_{L}=1 \mathrm{k}, V_{0}=4 \mathrm{~V} \\ & \mathrm{LT} 6200-5 \\ & \text { LT6200-10 } \end{aligned}$	\bullet	$\begin{aligned} & 125 \\ & 260 \end{aligned}$	$\begin{aligned} & 180 \\ & 370 \end{aligned}$		$\begin{aligned} & \mathrm{V} / \mu \mathrm{s} \\ & \mathrm{~V} / \mu \mathrm{S} \end{aligned}$
FPBW	Full Power Bandwidth (Note 9)	$\mathrm{V}_{\text {OUT }}=3 \mathrm{~V}_{\text {P-P }}($ LT6200-10)	\bullet	27	39		MHz

Note 1: Absolute maximum ratings are those values beyond which the life of the device may be impaired.
Note 2: Inputs are protected by back-to-back diodes. If the differential input voltage exceeds 0.7 V , the input current must be limited to less than 40 mA .
Note 3: A heat sink may be required to keep the junction temperature below the absolute maximum rating when the output is shorted
indefinitely. The LT6201 in the DD package is limited by power dissipation to $\mathrm{V}_{S} \leq 5 \mathrm{~V}$, 0 V over the commercial temperature range only.
Note 4: The LT6200C/LT6200I and LT6201C/LT6201I are guaranteed functional over the temperature range of $-40^{\circ} \mathrm{C}$ and $85^{\circ} \mathrm{C}$ (LT6201DD excluded).

ELECTRICAL CHARACTERISTICS

Note 5: The LT6200C/LT6201C are guaranteed to meet specified performance from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$. The LT6200C/LT6201C are designed, characterized and expected to meet specified performance from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$, but are not tested or QA sampled at these temperatures. The LT6200I is guaranteed to meet specified performance from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$. Note 6: Minimum supply voltage is guaranteed by power supply rejection ratio test.
Note 7: Output voltage swings are measured between the output and power supply rails.
Note 8: This parameter is not 100% tested.
Note 9: Full-power bandwidth is calculated from the slew rate: FPBW $=S R / 2 \pi V_{P}$

Note 10: Thermal resistance varies depending upon the amount of PC board metal attached to the V^{-}pin of the device. θ_{JA} is specified for a certain amount of $20 z$ copper metal trace connecting to the V^{-}pin as described in the thermal resistance tables in the Application Information section.
Note 11: Matching parameters on the LT6201 are the difference between the two amplifiers. CMRR and PSRR match are defined as follows: CMRR and PSRR are measured in $\mu \mathrm{V} / \mathrm{V}$ on the identical amplifiers. The difference is calculated in $\mu \mathrm{V} / \mathrm{V}$. The result is converted to dB .
Note 12: There are reverse biased ESD diodes on all inputs and outputs as shown in Figure 1. If these pins are forced beyond either supply, unlimited current will flow through these diodes. If the current is transient in nature and limited to less than 30 mA , no damage to the device will occur.

TYPICAL PGRFORMAOCE CHARACTERISTICS

TYPICAL PERFORMANCE CHARACTERISTICS

6200 G07

Minimum Supply Voltage

6200 G10

Output Saturation Voltage vs Load Current (Output Low)

6200 G08
Output Short-Circuit Current vs Power Supply Voltage

6200 G 11

Output Saturation Voltage vs Load Current (Output High)

6200 G09

Open-Loop Gain

6200 G 12

TYPICAL PERFORmANCE CHARACTERISTICS

TYPICAL PERFORMANCE CHARACTERISTICS LT6200, LT6201

6200 G26

Output Impedance vs Frequency

Common Mode Rejection Ratio vs Frequency

LT6200/LT6200-5
 LT6200-10/LT6201

TYPICAL PERFORMARCG CHARACTERISTICS LT6200, LT6201

Distortion vs Frequency, $A_{V}=1$

Overshoot vs Capacitive Load

Maximum Undistorted Output Signal vs Frequency

Distortion vs Frequency, $A_{V}=2$

TYPICAL PERFORMANCE CHARACTERISTICS Lt6200, LT6201

Distortion vs Frequency, $A_{V}=2$

6200 G38

Output Overdrive Recovery

Channel Separation vs Frequency

6200 G77

5V Small-Signal Response

LT6200/LT6200-5
 LT6200-10/LT6201

TYPICAL PERFORMARCE CHARACTERISTICS LT6200-5

Gain Bandwidth and Phase Margin vs Temperature

6200 G45

Slew Rate vs Temperature

Overshoot vs Capacitive Load

Power Supply Rejection Ratio vs Frequency

Output Impedance vs Frequency

Open-Loop Gain vs Frequency

Gain Bandwidth and Phase Margin vs Supply Voltage

6200652

Gain Bandwidth vs Resistor Load

TYPICAL PGRFORMANC CHARACTGRISTICS LT6200-5

2nd and 3rd Harmonic Distortion vs Frequency

2nd and 3rd Harmonic Distortion
vs Frequency

6200 G57

Maximum Undistorted Output Signal vs Frequency

Output-Overdrive Recovery

$V_{S}=5 \mathrm{~V}, 0 \mathrm{~V}$
$A_{V}=5$
$C_{L}=10.8 p F$ SCOPE PROBE

LT6200/LT6200-5
 LT6200-10/LT6201

TYPICAL PERFORMARICE CHRRACTERISTICS LTG200-10

Gain Bandwidth and Phase Margin vs Supply Voltage

6200 G68

Gain Bandwidth vs Resistor Load

TYPICAL PERFORMARCE CHARACTERISTICS LT6200-10

2nd and 3rd Harmonic Distortion vs Frequency

6200 G74

Maximum Undistorted Output Signal vs Frequency

6200 G72

2nd and 3rd Harmonic Distortion vs Frequency

LT6200/LT6200-5
 LT6200-10/LT6201

APPLICATIONS InfORMATION

Amplifier Characteristics

Figure 1 shows a simplified schematic of the LT6200 family, which has two input differential amplifiers in parallel that are biased on simultaneously when the common mode voltage is at least 1.5 V from either rail. This topology allows the input stage to swing from the positive supply voltage to the negative supply voltage. As the common mode voltage swings beyond $\mathrm{V}_{\mathrm{CC}}-1.5 \mathrm{~V}$, current source I_{1} saturates and current in Q1/Q4 is zero. Feedback is maintained through the Q2/Q3 differential amplifier, but with an input g_{m} reduction of $1 / 2$. A similar effect occurs with I_{2} when the common mode voltage swings within 1.5 V of the negative rail. The effect of the g_{m} reduction is a shift in the $\mathrm{V}_{0 S}$ as I_{1} or I_{2} saturate.

Input bias current normally flows out of the + and -inputs. The magnitude of this current increases when the input common mode voltage is within 1.5 V of the negative rail, and only Q1/Q4 are active. The polarity of this current reverses when the input common mode voltage is within 1.5 V of the positive rail and only $\mathrm{Q} 2 / \mathrm{Q} 3$ are active.

The second stage is a folded cascode and current mirror that converts the input stage differential signals to a single ended output. Capacitor C1 reduces the unity cross frequency and improves the frequency stability without degrading the gain bandwidth of the amplifier. The differential drive generator supplies current to the output transistors that swing from rail-to-rail.

The LT6200-5/LT6200-10 are decompensated op amps for higher gain applications. These amplifiers maintain identical DC specifications with the LT6200, but have a reduced Miller compensation capacitor C_{M}. This results in a significantly higher slew rate and gain bandwidth product.

Input Protection

There are back-to-back diodes, D1 and D2, across the + and - inputs of these amplifiers to limit the differential input voltage to $\pm 0.7 \mathrm{~V}$. The inputs of the LT6200 family do not have internal resistors in series with the input transistors. This technique is often used to protect the input devices from overvoltage that causes excessive currents to flow. The addition of these resistors would significantly degrade the low noise voltage of these amplifiers. For instance, a 100Ω resistor in series with each input would generate $1.8 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ of noise, and the total amplifier noise voltage would rise from $0.95 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ to $2.03 \mathrm{nV} / \sqrt{\mathrm{Hz}}$. Once the input differential voltage exceeds $\pm 0.7 \mathrm{~V}$, steady-state current conducted though the protection diodes should be limited to $\pm 40 \mathrm{~mA}$. This implies 25Ω of protection resistance per volt of continuous overdrive beyond $\pm 0.7 \mathrm{~V}$. The input diodes are rugged enough to handle transient currents due to amplifier slew rate overdrive or momentary clipping without these resistors.
Figure 2 shows the input and output waveforms of the LT6200 driven into clipping while connected in a gain of

Figure 1. Simplified Schematic

LT6200/LT6200-5
 LT6200-10/LT6201

APPLICATIONS INFORMATION

$A_{V}=1$. In this photo, the input signal generator is clipping at $\pm 35 \mathrm{~mA}$, and the output transistors supply this generator current through the protection diodes.

Figure 2. $\mathrm{V}_{\mathrm{S}}= \pm 2.5 \mathrm{~V}, \mathrm{~A}_{V}=1$ with Large Overdrive

ESD

The LT6200 has reverse-biased ESD protection diodes on all inputs and outputs as shown in Figure 1. If these pins are forced beyond either supply, unlimited current will flow through these diodes. If the current is transient and limited to 30 mA or less, no damage to the device will occur.

Noise

The noise voltage of the LT6200 is equivalent to that of a 56Ω resistor, and for the lowest possible noise it is desirable to keep the source and feedback resistance at or below this value, i.e., $R_{S}+R_{G} / R_{F B} \leq 56 \Omega$. With $R_{S}+R_{G} / / R_{F B}=56 \Omega$ the total noise of the amplifier is: $e_{\mathrm{n}}=\sqrt{(0.95 \mathrm{nV})^{2}+(0.95 \mathrm{nV})^{2}}=1.35 \mathrm{nV}$. Below this resistance value, the amplifier dominates the noise, but in the resistance region between 56Ω and approximately $6 \mathrm{k} \Omega$, the noise is dominated by the resistor thermal noise. As the total resistance is further increased, beyond 6 k , the noise current multiplied by the total resistance eventually dominates the noise.

For a complete discussion of amplifier noise, see the LT1028 data sheet.

Power Dissipation

The LT6200 combines high speed with large output current in a small package, so there is a need to ensure that the die's junction temperature does not exceed $150^{\circ} \mathrm{C}$. The LT6200 is housed in a 6 -lead TSOT-23 package. The package has the V - supply pin fused to the lead frame to enhance the thermal conductance when connecting to a ground plane or a large metal trace. Metal trace and plated through-holes can be used to spread the heat generated by the device to the backside of the PC board. For example, on a 3/32" FR-4 board with $20 z$ copper, a total of 270 square millimeters connects to Pin 2 of the LT6200 in anTSOT-23 package will bring the thermal resistance, θ_{JA}, to about $135^{\circ} \mathrm{C} / \mathrm{W}$. Without extra metal trace beside the power line connecting to the V^{-}pin to provide a heatsink, the thermal resistance will be around $200^{\circ} \mathrm{C} / \mathrm{W}$. More information on thermal resistance with various metal areas connecting to the V^{-}pin is provided in Table 1.

Table 1. LT6200 6-Lead TSOT-23 Package

COPPER AREA TOPSIDE $\left(\mathrm{mm}^{2}\right)$	BOARD AREA $\left(\mathrm{mm}^{2}\right)$	THERMAL RESISTANCE $($ JUNCTION-TO-AMBIENT)
270	2500	$135^{\circ} \mathrm{C} / \mathrm{W}$
100	2500	$145^{\circ} \mathrm{C} / \mathrm{W}$
20	2500	$160^{\circ} \mathrm{C} / \mathrm{W}$
0	2500	$200^{\circ} \mathrm{C} / \mathrm{W}$

Device is mounted on topside.
Junction temperature T_{J} is calculated from the ambient temperature T_{A} and power dissipation P_{D} as follows:

$$
T_{J}=T_{A}+\left(P_{D} \bullet \theta_{J A}\right)
$$

The power dissipation in the IC is the function of the supply voltage, output voltage and the load resistance. For a given supply voltage, the worst-case power dissipation $\mathrm{P}_{\mathrm{D}(\mathrm{MAX})}$ occurs at the maximum quiescent supply current and at the output voltage which is half of either supply voltage (or the maximum swing if it is less than $1 / 2$ the supply voltage). $P_{D(M A X)}$ is given by:

$$
P_{D(\operatorname{MAX})}=\left(V_{S} \bullet I_{S(M A X)}\right)+\left(V_{S} / 2\right)^{2} / R_{L}
$$

Example: An LT6200 in TSOT-23 mounted on a $2500 \mathrm{~mm}^{2}$ area of PC board without any extra heat spreading plane connected to its V^{-}pin has a thermal resistance of

LT6200/LT6200-5
 LT6200-10/LT6201

APPLICATIONS InfORMATION

$200^{\circ} \mathrm{C} / \mathrm{W}, \theta_{\mathrm{JA}}$. Operating on $\pm 5 \mathrm{~V}$ supplies driving 50Ω loads, the worst-case power dissipation is given by:

$$
\begin{aligned}
\mathrm{P}_{\mathrm{D}(\mathrm{MAX})} & =(10 \cdot 23 \mathrm{~mA})+(2.5)^{2} / 50 \\
& =0.23+0.125=0.355 \mathrm{~W}
\end{aligned}
$$

The maximum ambient temperature that the part is allowed to operate is:

$$
\begin{aligned}
T_{A} & =T_{J}-\left(P_{D(M A X)} \cdot 200^{\circ} \mathrm{C} / \mathrm{W}\right) \\
& =150^{\circ} \mathrm{C}-\left(0.355 \mathrm{~W} \cdot 200^{\circ} \mathrm{C} / \mathrm{W}\right)=79^{\circ} \mathrm{C}
\end{aligned}
$$

To operate the device at higher ambient temperature, connect more metal area to the V^{-}pin to reduce the thermal resistance of the package as indicated in Table 1.

DD Package Heat Sinking

The underside of the DD package has exposed metal $\left(4 \mathrm{~mm}^{2}\right)$ from the lead frame where the die is attached. This provides for the direct transfer of heat from the die junction to printed circuit board metal to help control the maximum operating junction temperature. The dual-inline pin arrangement allows for extended metal beyond the ends of the package on the topside (component side) of a

PCB. Table 2 summarizes the thermal resistance from the die junction-to-ambient that can be obtained using various amounts of topside metal (20z copper) area. On mulitlayer boards, further reductions can be obtained using additional metal on inner PCB layers connected through vias beneath the package.
Table 2. LT6200 8-Lead DD Package

COPPER AREA TOPSIDE $\left(\mathrm{mm}^{2}\right)$	THERMAL RESISTANCE (JUNCTION-TO-AMBIENT)
4	$160^{\circ} \mathrm{C} / \mathrm{W}$
16	$135^{\circ} \mathrm{C} / \mathrm{W}$
32	$110^{\circ} \mathrm{C} / \mathrm{W}$
64	$95^{\circ} \mathrm{C} / \mathrm{W}$
130	$70^{\circ} \mathrm{C} / \mathrm{W}$

The LT6200 amplifier family has thermal shutdown to protect the part from excessive junction temperature. The amplifier will shut down to approximately 1.2 mA supply current per amplifier if the maximum temperature is exceeded. The LT6200 will remain off until the junction temperature reduces to about $135^{\circ} \mathrm{C}$, at which point the amplifier will return to normal operation.

PACKAGE DESCRIPTION

DD Package
8-Lead Plastic DFN ($3 \mathrm{~mm} \times 3 \mathrm{~mm}$)
(Reference LTC DWG \# 05-08-1698)

PACKAGG DESCRIPTION

S6 Package
6-Lead Plastic TSOT-23
(Reference LTC DWG \# 05-08-1636)

S8 Package
8-Lead Plastic Small Outline (Narrow . 150 Inch)
(Reference LTC DWG \# 05-08-1610)

RECOMMENDED SOLDER PAD LAYOUT

TYPICAL APPLICATION

Rail-to-Rail High Speed Low Noise Instrumentation Amplifier

Instrumentation Amplifier Frequency Response

RELATED PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LT1028	Single, Ultra Low Noise 50MHz Op Amp	$1.1 \mathrm{nV} / \sqrt{\mathrm{Hz}}$
LT1677	Single, Low Noise Rail-to-Rail Amplifier	3 V Operation, $2.5 \mathrm{~mA}, 4.5 \mathrm{nV} / \sqrt{\mathrm{Hz}}, 60 \mu \mathrm{~V}$ Max $\mathrm{V}_{0 S}$
LT1722/LT1723/LT1724	Single/Dual/Quad Low Noise Precision Op Amp	$70 \mathrm{~V} / \mu \mathrm{s}$ Slew Rate, $400 \mu \mathrm{VVMax} \mathrm{V}_{0 \mathrm{~S}}, 3.8 \mathrm{nV} / \sqrt{\mathrm{Hz}, 3.7 \mathrm{~mA}}$
LT1806/LT1807	Single/Dual, Low Noise 325MHz Rail-to-Rail Amplifier	2.5 V Operation, $550 \mu \mathrm{~V}$ Max $\mathrm{V}_{0 S}, 3.5 \mathrm{nV} / \sqrt{\mathrm{Hz}}$
LT6203	Dual, Low Noise, Low Current Rail-to-Rail Amplifier	$1.9 \mathrm{nV} / \sqrt{\mathrm{Hz}, 3 \mathrm{~mA} \mathrm{Max}, 100 \mathrm{MHz} \text { Gain Bandwidth }}$

[^0]: G7, LTC and LT are registered trademarks of Linear Technology Corporation. ThinSOT is a trademark of Linear Technology Corporation.

