PHK13N03LT
TrenchMOS™ logic level FET
Rev. 01 - 23 June 2003
Product data

1. Product profile

1.1 Description

N -channel enhancement mode field-effect transistor in a plastic package using TrenchMOS ${ }^{\text {TM }}$ technology.

Product availability:
PHK13N03LT in SOT96-1 (SO8).

1.2 Features

\square Low gate charge	\square Surface mount package
\square Low on-state resistance	\square Fast switching.

1.3 Applications

- Portable appliances
- Lithium-ion battery chargers
Notebook computers
DC-to-DC converters.
1.4 Quick reference data
- $\mathrm{V}_{\mathrm{DS}} \leq 30 \mathrm{~V}$
$\mathrm{I}_{\mathrm{D}} \leq 13.8 \mathrm{~A}$
- $\mathrm{P}_{\text {tot }} \leq 6.25 \mathrm{~W}$
- $R_{\text {DSon }} \leq 20 \mathrm{~m} \Omega$

2. Pinning information

Table 1: Pinning - SOT96-1 (SO8), simplified outline and symbol

3. Limiting values

Table 2: Limiting values
In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions	Min	Max	Unit
$V_{\text {DS }}$	drain-source voltage (DC)	$25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{j}} \leq 150^{\circ} \mathrm{C}$	-	30	V
$V_{\text {DGR }}$	drain-gate voltage (DC)	$25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{j}} \leq 150^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{GS}}=20 \mathrm{k} \Omega$	-	30	V
$V_{G S}$	gate-source voltage (DC)		-	± 20	V
I_{D}	drain current (DC)	$\mathrm{T}_{\mathrm{sp}}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}$; Figure 2 and 3	-	13.8	A
		$\mathrm{T}_{\mathrm{sp}}=100{ }^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}$; Figure 2	-	8.7	A
I_{DM}	peak drain current	$\mathrm{T}_{\text {sp }}=25^{\circ} \mathrm{C}$; pulsed; $\mathrm{t}_{\mathrm{p}} \leq 10 \mu \mathrm{~s}$; Figure 3	-	55	A
$\mathrm{P}_{\text {tot }}$	total power dissipation	$\mathrm{T}_{\text {sp }}=25^{\circ} \mathrm{C}$; Figure 1	-	6.25	W
$\mathrm{T}_{\text {stg }}$	storage temperature		-55	+150	${ }^{\circ} \mathrm{C}$
T_{j}	junction temperature		-55	+150	${ }^{\circ} \mathrm{C}$
Source-drain diode					
Is	source (diode forward) current (DC)	$\mathrm{T}_{\text {sp }}=25^{\circ} \mathrm{C}$	-	5.7	A
$I_{\text {SM }}$	peak source (diode forward) current	$\mathrm{T}_{\text {sp }}=25^{\circ} \mathrm{C}$; pulsed; $\mathrm{t}_{\mathrm{p}} \leq 10 \mu \mathrm{~s}$	-	55	A

Fig 1. Normalized total power dissipation as a function of solder point temperature.

$\mathrm{V}_{\mathrm{GS}} \geq 5 \mathrm{~V}$

$$
I_{\text {der }}=\frac{I_{D}}{I_{D\left(25^{\circ} \mathrm{C}\right)}} \times 100 \%
$$

Fig 2. Normalized continuous drain current as a function of solder point temperature.

$\mathrm{T}_{\text {sp }}=25^{\circ} \mathrm{C}$; I_{DM} is single pulse
Fig 3. Safe operating area; continuous and peak drain currents as a function of drain-source voltage.

4. Thermal characteristics

Table 3: Thermal characteristics

| Symbol | Parameter | Conditions | Min | Typ | Max |
| :--- | :--- | :--- | :--- | :--- | :--- | Unit

4.1 Transient thermal impedance

Fig 4. Transient thermal impedance from junction to solder point as a function of pulse duration.

5. Characteristics

Table 4: Characteristics
$T_{j}=25^{\circ} \mathrm{C}$ unless otherwise specified.

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
Static characteristics						
$\mathrm{V}_{\text {(BR)DSS }}$ drain-source breakdown voltage		$\mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$				
		$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$	30	-	-	V
		$\mathrm{T}_{\mathrm{j}}=-55^{\circ} \mathrm{C}$	27	-	-	V
$\mathrm{V}_{\mathrm{GS} \text { (th) }}$	gate-source threshold voltage	$\mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}}$; Figure 9				V
		$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$	1	1.5	2	V
		$\mathrm{T}_{\mathrm{j}}=150^{\circ} \mathrm{C}$	0.5	-	-	V
		$\mathrm{T}_{\mathrm{j}}=-55^{\circ} \mathrm{C}$	-	-	2.2	V
$\mathrm{I}_{\text {DSS }}$	drain-source leakage current	$\mathrm{V}_{\mathrm{DS}}=24 \mathrm{~V} ; \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$				
		$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$	-	-	1	$\mu \mathrm{A}$
		$\mathrm{T}_{\mathrm{j}}=100^{\circ} \mathrm{C}$	-	-	5	$\mu \mathrm{A}$
IGSS	gate-source leakage current	$\mathrm{V}_{\mathrm{GS}}= \pm 20 \mathrm{~V} ; \mathrm{V}_{\mathrm{DS}}=0 \mathrm{~V}$	-	-	100	$n A$
$\mathrm{R}_{\text {DSon }}$	drain-source on-state resistance	$V_{G S}=10 \mathrm{~V} ; \mathrm{I}_{\mathrm{D}}=8 \mathrm{~A}$; Figure 7 and 8				
		$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$	-	17	20	$\mathrm{m} \Omega$
		$\mathrm{T}_{\mathrm{j}}=150{ }^{\circ} \mathrm{C}$	-	-	33	$\mathrm{m} \Omega$
		$\mathrm{V}_{\mathrm{GS}}=4.5 \mathrm{~V}$; $\mathrm{I}_{\mathrm{D}}=7 \mathrm{~A}$; Figure 7	-	21	26	$\mathrm{m} \Omega$
Dynamic characteristics						
$\mathrm{Q}_{\mathrm{g} \text { (tot) }}$	total gate charge	$\mathrm{I}_{\mathrm{D}}=8 \mathrm{~A} ; \mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V} ; \mathrm{V}_{\mathrm{GS}}=5 \mathrm{~V}$; Figure 13	-	10.7	-	nC
Q_{gs}	gate-source charge		-	2.7	-	nC
$Q_{\text {gd }}$	gate-drain (Miller) charge		-	3.9	-	nC
$\mathrm{C}_{\text {iss }}$	input capacitance	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V} ; \mathrm{f}=1 \mathrm{MHz}$; Figure 11	-	752	-	pF
$\mathrm{C}_{\text {oss }}$	output capacitance		-	200	-	pF
Crss	reverse transfer capacitance		-	130	-	pF
$\mathrm{t}_{\mathrm{d}(\mathrm{on})}$	turn-on delay time	$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V} ; \mathrm{I}_{\mathrm{D}}=1.5 \mathrm{~A} ; \mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V} ; \mathrm{R}_{\mathrm{G}}=6 \Omega$	-	6	-	ns
t_{r}	rise time		-	7	-	ns
$\mathrm{t}_{\mathrm{d} \text { (off) }}$	turn-off delay time		-	23	-	ns
t_{f}	fall time		-	11	-	ns
Source-drain diode						
$\mathrm{V}_{\text {SD }}$	source-drain (diode forward) voltage	$\mathrm{I}_{\mathrm{S}}=7 \mathrm{~A} ; \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$; Figure 12	-	0.86	1.1	V
t_{rr}	reverse recovery time	$\mathrm{I}_{\mathrm{S}}=7 \mathrm{~A} ; \mathrm{dl}_{\mathrm{S}} / \mathrm{dt}=-100 \mathrm{~A} / \mu \mathrm{s} ; \mathrm{V}_{\mathrm{R}}=30 \mathrm{~V}$;	-	25	-	ns
Q_{r}	recovered charge	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$	-	5	-	nC

Fig 5. Output characteristics: drain current as a function of drain-source voltage; typical values.

$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$

Fig 7. Drain-source on-state resistance as a function of drain current; typical values.

$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ and $150^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DS}}>\mathrm{I}_{\mathrm{D}} \times \mathrm{R}_{\text {DSon }}$
Fig 6. Transfer characteristics: drain current as a function of gate-source voltage; typical values.

$$
a=\frac{R_{D S o n}}{R_{D \operatorname{Son}\left(25^{\circ} \mathrm{C}\right)}}
$$

Fig 8. Normalized drain-source on-state resistance factor as a function of junction temperature.

$\mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA} ; \mathrm{V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}}$
Fig 9. Gate-source threshold voltage as a function of junction temperature.

$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DS}}=5 \mathrm{~V}$
Fig 10. Sub-threshold drain current as a function of gate-source voltage.

$V_{G S}=0 \mathrm{~V} ; \mathrm{f}=1 \mathrm{MHz}$
Fig 11. Input, output and reverse transfer capacitances as a function of drain-source voltage; typical values.

Fig 12. Source (diode forward) current as a function of source-drain (diode forward) voltage; typical values.

$\mathrm{I}_{\mathrm{D}}=8 \mathrm{~A} ; \mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$
Fig 13. Gate-source voltage as a function of gate charge; typical values.

6. Package outline

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	$\begin{gathered} \mathrm{A} \\ \max . \end{gathered}$	A_{1}	A_{2}	A_{3}	b_{p}	c	$D^{(1)}$	$E^{(2)}$	e	H_{E}	L	L_{p}	Q	v	w	y	$\mathrm{Z}^{(1)}$	θ
mm	1.75	$\begin{aligned} & 0.25 \\ & 0.10 \end{aligned}$	$\begin{aligned} & 1.45 \\ & 1.25 \end{aligned}$	0.25	$\begin{aligned} & 0.49 \\ & 0.36 \end{aligned}$	$\begin{aligned} & 0.25 \\ & 0.19 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 4.8 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 3.8 \end{aligned}$	1.27	$\begin{aligned} & 6.2 \\ & 5.8 \end{aligned}$	1.05	$\begin{aligned} & 1.0 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 0.7 \\ & 0.6 \end{aligned}$	0.25	0.25	0.1	$\begin{aligned} & 0.7 \\ & 0.3 \end{aligned}$	$\begin{aligned} & 8^{\circ} \\ & 0^{\circ} \end{aligned}$
inches	0.069	$\begin{aligned} & \hline 0.010 \\ & 0.004 \end{aligned}$	$\begin{aligned} & \hline 0.057 \\ & 0.049 \end{aligned}$	0.01	$\begin{aligned} & 0.019 \\ & 0.014 \end{aligned}$	$\begin{array}{\|l\|} \hline 0.0100 \\ 0.0075 \end{array}$	$\begin{aligned} & 0.20 \\ & 0.19 \end{aligned}$	$\begin{aligned} & \hline 0.16 \\ & 0.15 \end{aligned}$	0.05	$\begin{aligned} & 0.244 \\ & 0.228 \end{aligned}$	0.041	$\begin{aligned} & \hline 0.039 \\ & 0.016 \end{aligned}$	$\begin{aligned} & 0.028 \\ & 0.024 \end{aligned}$	0.01	0.01	0.004	$\begin{aligned} & 0.028 \\ & 0.012 \end{aligned}$	

Notes

1. Plastic or metal protrusions of 0.15 mm (0.006 inch) maximum per side are not included.
2. Plastic or metal protrusions of $0.25 \mathrm{~mm}(0.01 \mathrm{inch})$ maximum per side are not included.

OUTLINE VERSION	REFERENCES				EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	JEITA			
SOT96-1	$076 E 03$	MS-012			$-03-02-18$	

Fig 14. SOT96-1 (SO8).

7. Revision history

Table 5: Revision history

Rev	Date	CPCN	Description
01	20030623	-	Product data (9397 750 11611)

8. Data sheet status

Level	Data sheet status ${ }^{[1]]}$	Product status ${ }^{[2][3]}$	Definition
I	Objective data	Development	This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice.
II	Preliminary data	Qualification	This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product.
III	Product data	Production	This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN).

[1] Please consult the most recently issued data sheet before initiating or completing a design.
[2] The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.
[3] For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.

9. Definitions

Short-form specification - The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition - Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information - Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

10. Disclaimers

Life support - These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors
customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.
Right to make changes - Philips Semiconductors reserves the right to make changes in the products - including circuits, standard cells, and/or software - described or contained herein in order to improve design and/or performance. When the product is in full production (status 'Production'), relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN). Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no licence or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

11. Trademarks

TrenchMOS — is a trademark of Koninklijke Philips Electronics N.V.

Contact information

Contents

1 Product profile 1
1.1 Description 11.2
1.3 Applications 1Features11.4
Quick reference data 1
2 Pinning information 1
3 Limiting values 2
4 Thermal characteristics 4
4.1 Transient thermal impedance 4
5 Characteristics 5
6 Package outline 9
7 Revision history. 10
8 Data sheet status 11
9 Definitions 11
10 Disclaimers. 11
11 Trademarks 11

