June 1989

54LS114
Dual JK Negative Edge-Triggered
Flip-Flop with Common Clocks and Clears

General Description

The 'LS114 features individual J, K and set inputs and common clock and common clear inputs. When the clock goes HIGH the inputs are enabled and data will be accepted. The logic level of the J and K inputs may be allowed to change

Connection Diagram

Dual-In-Line Package

Order Number 54LS114DMQB, 54LS114FMQB or 54LS114LMQB See NS Package Number E20A, J14A or W14B
when the Clock Pulse is HIGH and the bistable will perform according to the truth table as long as the minimum setup times are observed. Input data is transferred to the outputs on the negative-going edge of the clock pulse.

Logic Symbol

$\mathrm{V}_{\mathrm{CC}}=\operatorname{Pin} 14$
$\mathrm{GND}=\mathrm{Pin} 7$

Pin Names	Description
$\mathrm{J} 1, \mathrm{~J} 2, \mathrm{~K} 1, \mathrm{~K} 2$	Data Inputs
$\overline{\mathrm{CP}}$	Clock Pulse Input (Active Falling Edge)
$\overline{\mathrm{C}} \mathrm{D}$	Direct Clear Input (Active LOW)
$\overline{\mathrm{S}} \mathrm{D} 1, \overline{\mathrm{~S}} 2 \mathrm{2}$	Direct Set Inputs (Active LOW)
$\mathrm{Q} 1, \mathrm{Q} 2, \overline{\mathrm{Q}} 1, \overline{\mathrm{Q}} 2$	Outputs

Absolute Maximum Ratings (Note)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Supply Voltage 7 V
Input Voltage 7V

Operating Free Air Temperature Range
54LS
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range $\quad-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	54LS114			Units
		Min	Nom	Max	
V_{CC}	Supply Voltage	4.5	5	5.5	V
$\mathrm{V}_{\text {IH }}$	High Level Input Voltage	2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage			0.7	V
IOH	High Level Output Current			-0.4	mA
lOL	Low Level Output Current			4	mA
T_{A}	Free Air Operating Temperature	-55		125	${ }^{\circ} \mathrm{C}$
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Setup Time Jn or Kn to $\overline{\mathrm{CP}}$	$\begin{aligned} & 20 \\ & 20 \\ & \hline \end{aligned}$			ns
$\begin{aligned} & \mathrm{t}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Hold Time Jn or Kn to $\overline{\mathrm{CP}}$	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$			ns
$\begin{aligned} & \mathrm{t}_{\mathrm{w}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{w}}(\mathrm{~L}) \end{aligned}$	$\overline{\mathrm{CP}}$ Pulse Width	$\begin{aligned} & 20 \\ & 15 \\ & \hline \end{aligned}$			ns
t_{w}	$\overline{\mathrm{C}} \mathrm{D}$ or $\overline{\text { S }}$ Dn Pulse Width	15			ns

Electrical Characteristics Over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions	Min	Typ (Note 1)	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{I}}=-18 \mathrm{~mA}$			-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\mathrm{Max}, \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max} \end{aligned}$	2.5			V
$\mathrm{V}_{\text {OL }}$	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=\mathrm{Max}, \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min} \end{aligned}$			0.4	V
					0.5	
1	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=10 \mathrm{~V}$; Jn, Kn Inputs SD1, SD2 Inputs CD Input CP Input			$\begin{aligned} & 0.1 \\ & 0.3 \\ & 0.6 \\ & 0.8 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$
$\mathrm{IIH}^{\text {H }}$	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=2.7 \mathrm{~V}$; Jn, Kn Inputs SD1, SD2 Inputs CD Input CP Input			$\begin{gathered} 20 \\ 60 \\ 120 \\ 160 \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$

Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Electrical Characteristics (Continued) Over recommended operating free air temperature range (unless otherwise noted)										
Symbol					Min	Typ (Note 1)	Max	Units		
IIL		Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{I}}$ SD1, SD2 Input CD Input CP Input	Inputs			$\begin{gathered} -0.4 \\ -0.8 \\ -1.6 \\ -1.44 \end{gathered}$	mA mA mA mA		
los			$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$ (Note 2)		-20		-100	mA		
ICC			$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}$				8.0	mA		
Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one sec Switching Characteristics $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)										
Symbol		Parameter		$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$			Units			
		Min		Max						
$\mathrm{f}_{\text {max }}$				Maximum Count Frequency		30				
$\begin{aligned} & \text { tpL} \\ & \text { tpH } \end{aligned}$		Propagation Delay $\overline{\mathrm{CP}}$ to Q or $\overline{\mathrm{Q}}$				$\begin{aligned} & 16 \\ & 24 \\ & \hline \end{aligned}$				
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$		Propagation Delay $\overline{\mathrm{CD}}$ or $\overline{\mathrm{SD}} \mathrm{n}$ to Q or $\overline{\mathrm{Q}}$				$\begin{aligned} & 16 \\ & 24 \end{aligned}$				

Truth Table

Inputs		Output
$@ t_{\mathbf{n}}$		$@ t_{\mathbf{n}+\mathbf{1}}$
J	K	Q
L	L	Qn
L	H	L
H	L	H
H	H	$\overline{\mathrm{Q}} \mathrm{n}$

Asynchronous Inputs:
LOW input to $\bar{S} D$ sets Q to HIGH level
LOW input to $\bar{C} D$ sets Q to LOW level
Clear and Set are independent of clock
Simultaneous LOW on $\bar{C} D$ and $\bar{S} \bar{D}$
makes both Q and \bar{Q} HIGH
H $=$ HIGH Voltage Level
L = LOW Voltage Level
$t_{n}=$ Bit time before clock pulse.
$t_{n+1}=$ Bit time after clock pulse.

54LS114 Dual JK Negative Edge-Triggered Flip-Flop

Physical Dimensions inches (millimeters) (Continued)

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018	National Semiconductor Europe Fax: (+49) 0-180-530 8586 Email: cnjwge @tevm2.nsc.com Deutsch Tel: (+49) 0-180-530 8585 English Tel: $(+49)$ 0-180-532 7832 Français Tel: $(+49)$ 0-180-532 9358 Italiano Tel: $(+49)$ 0-180-534 1680	National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960	National Semiconductor Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408

