UM82C450 # Asynchronous Communication Element (ACE) #### PRELIMINARY #### **Features** - Adds or deletes standard asynchronous communication bits (start, stop, and parity) to or from a serial data stream - Full double buffering eliminates the need for precise synchronization - Independently controlled transmit, receive, line status, and data set interrupts - Programmable baud rate generator allows division of any input clock by 1 to (2¹⁶-1) and generates the internal 16x clock - Independent receiver clock input - Modem control functions (CTS, RTS, DSR, DTR, RI, and carrier detect) - Single +5 volt power supply # **General Description** The UM82C450 is a programmable Asynchronous Communication Element (ACE) chip fabricated using the Si-Gate CMOS process. The UM82C450 is an improved version of the UM82C50, It performs serial-to-parallel conversion on data characters received from a peripheral device or a modem, and parallel-to-serial conversion on data characters received from the CPU. The CPU can read - Fully programmable serial-interface characteristics - 5-, 6-, 7-, or 8-bit characters - Even, odd, or no-parity bit generation and detection - 1,11/2, or 2-stop bit generation - Baud rate generation (DC to 56K baud) - False start bit detection - Complete status reporting capabilities - Easily interfaces to most popular microprocessors. - Line break generation and detection - Internal diagnostic capabilities - Loopback controls for communications link fault isolation - Break, parity, overrun, framing error simulation - Fully prioritized interrupt system controls the complete status of the ACE at any time during functional operation. The UM82C450 also includes a programmable baud rate generator that is capable of dividing the timing reference clock input by divisors of 1 to (2^{16} – 1) and producing a 16x clock for driving the internal transmitter logic. # Pin Configuration I/O And eripherals T-75-37-05 UM82C450 1,132 # **Absolute Maximum Ratings*** | Temperature Under Bias0°C to | +70°C | |-----------------------------------|-------| | Storage Temperature | 150°C | | All input or Output Voltages with | | | Respect to V _{SS} | +7.0V | | Power Dissipation , | | #### *Comments Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only. Functional operation of this device at these or any other conditions above those indicated in the operational sections of this specification is not implied and exposure to absolute maximum rating conditions for extended periods may affect device reliability. # **DC Electrical Characteristics** $T_A = 0$ °C to +70°C, $V_{CC} = +5V \pm 5\%$, $V_{SS} = 0V$, unless otherwise specified. | Symbol | Parameter | Conditions | Min, | Max. | Unit | |----------------------|---|--|------|-----------------|-----------------| | V _{ILX} | Clock Input Low Voltage | | -0.5 | 0.8 | V | | V _{IHX} | Clock Input High Voltage | | 2.0 | V _{cc} | V | | VIL | Input Low Voltage | | 0.5 | 0.8 | V | | VIH | Input High Voltage | | 2.0 | V _{cc} | V s | | V _{OL} | Output Low Voltage | I _{OL} = 1.6 mA on all* | | 0.4 | V | | V _{он} | Output High Voltage | I _{OL} = -1.0 mA* | 2.4 | | ٧ | | I _{CC} (AV) | Avg Power Supply Current (V _{CC}) | V _{CC} = 5.25V, T _A = 25°C
No Loads on output
SIN, DSR, RLSD,
CTS, RI = 2.0V
All other inputs = 0.8V | | 10 | mA _. | | l _{IL} | Input Leakage | V _{CC} = 5.25V, V _{SS} = 0V | | ± 10 | μΑ | | 1 _{CL} | Clock Leakage | All other pins floating.
V _{IN} = 0V, 5,25V | | ± 10 | μΑ | | loz | TRI-STATE Leakage | V _{CC} = 5.25V, V _{SS} = 0V
V _{OUT} = 0V, 5.25V
1) Chip deselected
2) WRITE Mode, chip
selected | | ± 20 | μΑ | | VILMR | MR Schmitt V _{IL} | | | 8,0 | ٧ | | VIHMR | MR Schmitt V _{IH} | | 2.0 | | ٧ | * Does not apply to XTAL2 # Capacitance $T_A = 25^{\circ}C$, $V_{CC} = V_{SS} = 0V$ | Symbol | Parameter | Conditions | Min. | Тур. | Max. | Unit | |--------------------|--------------------------|-----------------------------|------|------|------|------| | C _{XTAL2} | Clock Input Capacitance | | | 15 | 20 | рF | | C _{XTAL1} | Clock Output Capacitance | f _C = 1 MHz | | 20 | 30 | pF | | CIN | Input Capacitance | Unmeasured pins | | 6 | 10 | ρF | | COUT | Output Capacitance | returned to V _{SS} | | 10 | 20 | pF | UM82C450 # **AC Characteristics** $T_A = 0$ °C to 70°C, $V_{CC} = +5V \pm 5\%$ | Symbol | Parameter | Conditions | Min | Max. | Unit | |--------------------|---|--|----------|----------------|-------------| | t _{AW} | Address Strobe Width | | 60 | | ns | | t _{AS} | Address Setup Time | | 60 | | ns | | t _{AH} | Address Hold Time | | 0 | | ns | | tcs | Chip Select Setup Time | | 60 | <u> </u> | ns | | t _{CH} | Chip Select Hold Time | | 0 | | ns | | MOT | DISTR/DISTR Strobe Width , | | 125 | | ns | | t _{RC} | Read Cycle Delay | | 175 | † | ns | | RC . | Read Cycle = t _{AR} * + t _{DIW} + t _{RC} | | 360 | | ns | | t _{DD} | DISTR/DISTR to Driver Disable Delay | @ 100 pF loading*** | - | 60 | ns | | daa | Delay from DISTR/DISTR to Data | @ 100 pF loading | | 125 | ns | | t _{HZ} | DISTR/DISTR to Floating Data Delay | @ 100 pF loading*** | ō | 100 | ns | | woa ^t | DOSTR/DOSTR Strobe Width | | 100 | + | ns | | twc | Write Cycle Delay | | 200 | | ns | | WC | Write Cycle = tAW + tDOW + tWC | | 360 | | ns | | t _{DS} | Data Setup Time | | 40 | - | | | t _{DH} | Data Hold Time | | 40 | | ns | | t _{CSC} * | Chip Select Output Delay from Select | @ 100 pF loading | 10 | 100 | ns | | t _{RA} * | Address Hold Time from DISTR/DISTR | iscang . | 20 | 100 | ns | | ‡RCS* | Chip Select Hold Time from DISTR/DISTR | | 20 | | ns | | t _{AR} * | DISTR/DISTR Delay from Address | | 60 | ļ | ns | | t _{CSR} * | DISTR/DISTR Delay from Chip Select | | 50 | | ns | | t _{WA} * | Address Hold Time from DOSTR/DOSTR | | 20 | <u> </u> | ns | | twcs* | Chip Select Hold Time from DOSTR/DOSTR | | | ļ | . ns | | t _{AW} * | DOSTR/DOSTR Delay from Address | | 20 | | ns | | t _{CSW} * | DOSTR/DOSTR Delay from Select | | 60
50 | | ns | | t _{MRW} | Master Reset Pulse Width | | | | ns | | t _{XH} | Duration of Clock High Pulse | Future of Clark 100 A Miles | 5 | | ns | | t _{XL} | Duration of Clock Low Pulse | External Clock (3.1 MHz Max.) | 140 | | μs | | | | External Clock (3.1 MHx Max.) | 140 | | ns | | Baud Gene | erator | | | | | | N | Baud Divisor | | 1 1 | 216-1 | | | t _{BLD} | Baud Output Negative Edge Delay | 100 pF Load | | 125 | | | t _{BHD} | Baud Output Positive Edge Delay | 100 pF Load | | 125 | ns | | t _{LW} | Baud Output Down Time | | 405 | 125 | ns | | t _{HW} | Baud Output Up Time | $f_x = 2 \text{ MHz}, \div 2,100 \text{ pF Load}$
$f_x = 3 \text{ MHz}, \div 3,100 \text{ pF Load}$ | 425 | | ns | | Receiver | , as approximately | 1x - 3 MHz, - 3, 100 pr Load | 330 | | ns | | | Dalou from DCLK + G | | | | | | t _{SCD} | Delay from RCLK to Sample Time | | | 2 | μs | | t _{SINT} | Delay from Stop to Set Interrupt | | 1 | 1 | RCLK** | | tRINT | Delay from DISTR/DISTR
(RD RBR/RDLSR) to Reset Interrupt | 100 pF Load | | 1 | μs | ^{*}Applicable only when \overline{ADS} is tied low. ** RCLK is equal to t_{XH} and t_{XL} . *** Charge and discharge time is determined by V_{OL} , V_{OH} and the external loading. | Symbol | Parameter | Conditions | Min. | Max. | Unit | |------------------|---|-------------|------|------|----------------| | Transmitte | er . | | | | | | t _{HR} | Delay from DOSTR/DOSTR (WR THR) to Reset Interrupt | 100 pF Load | | 175 | ns | | ^t IRS | Delay from Initial INTR Reset to
Transmit Start | | 8 | 24 | RCLK
Cycles | | t _{SI} | Delay from Initial Write to Interrupt | | 16 | 32 | RCLK
Cycles | | t _{ST1} | Delay from Stop to Interrupt (THRE) | | . 8 | 8 | RCLK
Cycles | | t _{IR} | Delay from DISTR/DISTR (RD IIR) to Reset Interrupt (THRE) | 100 Pf Load | | 250 | ns | | Modem Co | ontrol | | | | | | t _{MDO} | Delay from DOSTR/DOSTR (WR MCR) to Output | 100 pF Load | | 200 | ns | | t _{SIM} | Delay to Set Interrupt from MODEM Input | 100 pF Load | | - | | | ^t RIM | Delay to Reset Interrupt from DISTR/
DISTR (RD MSR) | 100 pF Load | | 250 | ns | # **Timing Waveforms** # EXTERNAL CLOCK INPUT (3.1 MHz MAX.) # AC TEST POINTS # I/O And Peripherals # **BAUDOUT TIMING** 5-75 # MUMC # **Timing Waveforms (Continued)** WRITE CYCLE * Applicable Only When ADS is Tied Low. # READ CYCLE ^{*} Applicable Only When ADS is Tied Low. UM82C450 # **Timing Waveforms (Continued)** RECEIVER TIMING # TRANSMITTER TIMING # MODEM CONTROL TIMING I/O And Peripherals UM82C450 ### Pin Description #### **Input Signals** Chip Select (CS0, CS1, $\overline{\text{CS2}}$), Pins 12–14: When CS0 and CS1 are high and $\overline{\text{CS2}}$ is low, the chip is selected. Chip selection is complete when the decoded chip select signal is latched with an active (low) Address Strobe $\overline{\text{(ADS)}}$ input. This enables communication between the ACE and the CPU. Data Input Strobe (DISTR, DISTR), Pins 22 and 21: When DISTR is high or DISTR is low while the chip is selected, it allows the CPU to read status information or data from a selected register of the ACE. Only an active DISTR or DISTR input is required to transfer data from the ACE during a read operation. Therefore, tie either the DISTR input permanently low or the DISTR input permanently high, if not used. Data Output Strobe (DOSTR, DOSTR), Pins 19 and 18: When DOSTR is high or DOSTR is low while the chip is selected, it allows the CPU to write data or control words into a selected register of the ACE. Only an active DOSTR or DOSTR input is required to transfer data to the ACE during a write operation. Therefore, tie either the DOSTR input permanently low or the DOSTR input permanently high, if not used. Address Strobe (\overline{ADS}) , Pin25: When low, provides latching for the Register Select (A_0,A_1,A_2) and Chip Select $(CS0,CS1,\overline{CS2})$ signals. An active \overline{ADS} input is required when the Register Select (A_0,A_1,A_2) signals are not stable for the duration of a read or write operation. If not required, tie the \overline{ADS} input permanently low. Register Select (A_2, A_1, A_0) , Pins 26–28: These three inputs are used during a read or write operation to select an ACE register to read from or write to as indicated in Table A. The DLAB must be set high by the system software to access the Baud Generator Divisor Latches. Master Reset (MR), Pin 35: This input is buffered with a TTL-compatible Schmitt Trigger with 0,5V typical hysteresis. When high, it clears all the registers (except the Receiver Buffer, Transmitter Holding, and Divisor Latches), and the control logic of the ACE. Also, the state of various output signals (SOUT, INTRPT, OUT 1, OUT 2, RTS, DTR) are affected by an active MR input. (Refer to Table 1.) Receiver Clock (RCLK), Pin 9: This input is the 16x baud rate clock for the receiver section of the chip. Serial Input (SIN), Pin 10: Serial data input from the communications link (peripheral device, MODEM, or data set). Clear to Send (CTS), Pin 36: The CTS signal is a MODEM control function input whose conditions can be tested by the CPU by reading bit 4 (CTS) of the MODEM Status Register. Bit 0 (DCTS) of the MODEM Status Register indicates whether the CTS input has changed state since the previous reading of the MODEM Status Register, CTS has no effect on the Transmitter. Whenever the CTS bit of the MODEM Status Register changes state, an interrupt is generated if the MODEM Status Interrupt is enabled. | DLAB | A_2 | Ai | Ao | Register | |--------|-------|-----|----|---| | 0 | 0 | 0 | 0 | Receiver Buffer (read), Transmitter
Holding Register (write) | | 0 | 0 | 0 | 1 | Interrupt Enable | | Х | 0 | 1 | 0 | Interrupt Identification (read only) | | X
X | 0 | 1 | 1 | Line Control | | X | 1 | 0 | 0 | MODEM Control | | × | 1 | 0 | 1 | Line Status | | Х | 1 | 1 | 0 | MODEM Status | | X | 1 | - 1 | 1 | Scratch | | 1 | 0 | 0 | 0 | Divisor Latch (least significant byte) | | 1 | 0 | 0 | 1 | Divisor Latch (most significant byte) | Table A. Register Address Data Set Ready (DSR), Pin 37: When low, this indicates that the MODEM or data set is ready to establish the communications link and transfer data with the ACE. The DSR signal is a MODEM-control function input whose condition can be tested by the CPU by reading bit 5 (DSR) of the MODEM Status Register. Bit 1 (DDSR) of the MODEM Status Register indicates whether the DSR input has changed state since the previous reading of the MODEM Status Register. Whenever the DSR bit of the MODEM Status Register changes state, an interrupt is generated if the MODEM Status Interrupt is enabled. Data Carrier Detect (DCD), Pin 38: When low, indicates that the data carrier has been detected by the MODEM or data set. The DCD signal is a MODEM-control function input whose condition can be tested by the CPU by reading bit 7 (DCD) of the MODEM Status Register. Bit 3 (DDCD) of the MODEM Status Register indicates whether the DCD input has changed state since the previous reading of the MODEM Status Register. DCD has no effect on the receiver. Whenever the DCD bit of the MODEM Status Register changes state, an interrupt is generated if the MODEM Status Interrupt is enabled. Ring Indicator (RII), Pin 39: When low, indicates that a telephone ringing signal has been received by the MODEM or data set. The RI signal is a MODEM-control function input whose condition can be tested by the CPU by reading bit 6 (RI) of the MODEM Status Register. Bit 2 (TERI) of the MODEM Status Register indicates whether the RI input has changed from a low to a high state since the previous reading of the MODEM Status Register. Whenever the RI bit of the MODEM Status Register changes from a high to a low state, an interrupt is generated if the MODEM Status Register is enabled. V_{CC}, Pin 40: +5V supply. VSS, Pin 20: Ground (0V) reference, #### **Output Signals** Data Terminal Ready (DTR), Pin 33: When low, informs the MODEM or data set that the ACE is ready to communicate. The DTR output signal can be set to an active low by programming bit 0 (DTR) of the MODEM Control Register to a high level. The DTR signal is set high upon a Master Reset operation. The DTR signal is forced to its inactive state (high) during loop mode operation. Request to Send (RTS), Pin 32: When low, informs the MODEM or data set that the ACE is ready to transmit data. The RTS output signal can be set to an active low by programming bit 1 (RTS) of the MODEM Control Register. The RTS signal is set high upon a Master Reset operation. The RTS signal is forced to its inactive state (high) during loop mode operation. Output 1 (OUT 1), Pin 34: User-designated output that can be set to an active low by programming bit 2 (OUT 1) of the MODEM Control Register to a high level. The OUT 1 signal is set high upon a Master Reset Operation. The OUT 1 signal is forced to its inactive state (high) during loop mode operation. Output 2 (OUT 2), Pin 31: User-designated output that can be set to an active low by programming bit 3 (OUT 2) of the MODEM Control Register to a high level. The OUT 2 signal is set high upon a Master Reset Operation. The OUT 2 signal is forced to its inactive state (high) during loop mode operation. Chip Select Out (CSOUT), Pin 24: When high, indicates that the chip has been selected by active, CSO, CS1, and CS2 inputs. No data transfer can be initiated until the CSOUT signal is a logic 1. CSOUT goes low when chip is deselected. Driver Disable (DDIS), Pin 23: Goes low whenever the CPU is reading data from the ACE. A high-level DDIS output can be used to disable an external transceiver (if used between the CPU and ACE on the $D_7 - D_0$ Data Bus) at all times, except when the CPU is reading data. Baud Out (BAUDOUT), Pin 15: 16 x clock signal for the transmitter section of the ACE. The clock rate is equal to the main reference oscillator frequency divided by the specified divisor in the Baud Generator Divisor Latches. The BAUDOUT may also be used for the receiver section by tying this output to the RCLK input of the chip. Interrupt (INTRPT), Pin 30: Goes high whenever any one of the following interrupt types has an active high condition and is enabled via the IER: Receiver Error Flag; Received Data Available; Transmitter Holding Register Empty; and MODEM Status. The INTRPT signal is reset low upon the appropriate interrupt service or a Master Reset operation. Serial Output (SOUT), Pin 11: Composite serial data output to the communications link (peripheral, MODEM or data set). The SOUT signal is set to the Marking (logic 1) state upon a Master Reset operation. #### Input/Output Signals Input/Output Signals for the data bus and External clock. Data $\{D_7-D_0\}$ Bus, Pins 1-8: This bus comprises eight TRI-STATE input/output lines. The bus provides bidirectional communications between the ACE and the CPU. Data, control words, and status information are transferred via the D_7-D_0 Data Bus, External Clock Input/Output (XTAL 1, XTAL 2), Pins 16 and 17: These two pins connect the main timing reference (crystal or signal clock) to the ACE. #### Programmable Registers The system programmer may access or control any of the ACE registers summarized in Table 2 via the CPU. These registers are used to control ACE operations and to transmit and receive data. # Line Control Register The system programmer specifies the format of the asynchronous data communications exchange via the Line Control Register, In addition to controlling the format, the programmer may retrieve the contents of the Line Control Register for inspection. This feature simplifies system programming and eliminates the need for separate storage in system memory of the line characteristics. The contents of the Line Control Register are indicated in Table 2 and are described below. Bits 0 and 1: These two bits specify the number of bits in each transmitted or received serial character. The encoding of bits 0 and 1 is as follows: | Bit 1 | Bit 0 | Word Length | |-------|-------|-------------| | 0 | 0 | 5 Bits | | 0 | 1 | 6 Bits | | 1 | 0 | 7 Bits | | 1 | 1 | 8 Bits | Bit 2: This bit specifies the number of Stop bits in each transmitted character. If bit 2 is a logic 0, one Stop bit is generated in the transmitted data. If bit 2 is a logic 1 when a 5-bit word length is selected via bits 0 and 1, one and a half Stop bits are generated. If bit 2 is a logic 1 when either a 6-, 7-, or 8-bit word length is selected, two Stop bits are generated. The Receiver checks the first Stop-bit only, regardless of the number of Stop bits selected. Bit 3: This bit is the Parity Enable bit. When bit 3 is a logic 1, a Parity bit is generated (transmit data) or checked (receive data) between the last data word bit and Stop bit of the serial data. (The Parity bit is used to produce an even or odd number of 1s when the data word bits and the Parity bit are summed.) Bit 4: This bit is the Even Parity Select bit. When bit 3 is a logic 1 and bit 4 is a logic 0, an odd number of logic 1s is transmitted or checked in the data word bits and Parity bit. When bit 3 is a logic 1 and bit 4 is a logic 1, an even number of logic 1s is transmitted or checked. Bit 5: This bit is the Stick Parity bit. When bits 3, 4 and 5 are logic 1 the Parity bit is transmitted and checked by the receiver as a logic 0. If bits 3 and 5 are 1 and bit 4 is a logic 0 then the Parity bit is transmitted as a 0, Bit 6: This bit is the Break Control bit. When it is set to a logic 1, the serial output (SOUT) is forced to the Spacing (logic 0) state. The break is disabled by setting bit 6 to a logic 0. The Break Control bit acts only on SOUT and has no effect on the transmitter logic. Note: This feature enables the CPU to alert a terminal in a computer communications system. If the following sequence is followed, no erroneous or extraneous characters will be transmitted because of the break. - 1. Load an all 0s, pad character, in response to THRE. - 2. Set break after the next THRE, - Wait for the transmitter to be Idle, (TEMT = 1), and clear break when normal transmission has to be restored. During the break, the Transmitter can be used as a character timer to accurately establish the break-duration. Bit 7: This bit is the Divisor Latch Access Bit (DLAB). It must be set high (logic 1) to access the Divisor Latches of the Baud Generator during a Read or Write operation. It must be set low (logic 0) to access the Receiver Buffer, the Transmitter Holding Register, or the Interrupt Enable Register. Table 1. Reset Functions | Register/Signal | Reset Control | Reset State | |-----------------------------------|-----------------------|---| | Interrupt Enable Register | Master Reset | All Bits Low
(0 - 3 forced and 4 - 7 permanent) | | Interrupt Identification Register | Master Reset . | Bit 0 is High, Bits 1 and 2 Low
Bits 3 - 7 are permanently Low | | Line Control Register | Master Reset | All Bits Low | | MODEM Control Register | Master Reset | All Bits Low, | | Line Status Register | Master Reset | All Bits Low,
Except Bits 5 & 6 are High | | MODEM Status Register | Master Reset | Bits 0 - 3 Low
Bits 4 - 7 — Input Signal | | SOUT | Master Reset | High | | INTRPT (RCVR Errs) | Read LSR/MR | Low | | INTRPT (RCVR Data Ready) | Read RBR/MR | Low | | INTRPT (THRE) | Read IIR/Write THR/MR | Low | | INTRPT (Modern Status Changes) | Read MSR/MR | Low | | OUT 2 | Master Reset | High | | RTS | Master Reset | High | | DTR | Master Reset | High | | OUT 1 | Master Reset | High | UM82C450 Table 2. Summary of Accessible Registers | | | | | | Reg | jister Addr | e\$\$ | | | | | |---------|---|---|---|--|--|------------------------------------|--|---|--------------------------|--------------------------|--------------------------| | | 0 DLAB=0 | 0 DLAB=0 | 1 DLAB=1 | 2 | 3 | 4 | 5 | 6 | 7 | 0 DLAB=1 | 1 DLAB=1 | | Bit No. | Receiver
Buffer
Register
Read
Only) | Transmitter
Holding
Register
(Write
Only) | Interrupt
Enable
Register | Interrupt
Ident.
Register
Read
Only) | Line
Control
Register | MODEM
Control
Register | Line
Status
Register | MODEM
Status
Register | Scratch
Reg-
ister | Divisor
Latch
(LS) | Divisor
Latch
(MS) | | | RBR | THR | IER | IIR | LCR | MCR | LSR | MSR | SCR | DLL | DLM | | 0 | Data Bit 0* | Data Bit 0 | Enable
Received
Data
Available
Interrupt
(ERBFI) | "O" if
Interrupt
Pending | Word
Length
Select
Bit 0
(WLS0) | Data
Terminal
Ready
(DTR) | Data
Ready
(DR) | Delta
Clear
to Send
(DCTS) | Bit O | Bit 0 | Bit 8 | | | Data Bit 1 | Data Bit 1 | Enable Transmitter Holding Register Empty Interrupt (ETBEI) | Interrupt
ID
Bit (0) | (WL
Word
Length
Select
Bit 1
(WLS1) | Request
to Send
(RTS) | Overrun
Error
(OR) | Delta
Data
Set
Ready
(DDSR) | Bit 1 | Bit 1 | Bit 9 | | 2 | Data Bit 2 | Data Bit 2 | Enable
Receiver
Line
Status
Interrupt
(ELSI) | Interrupt
ID
Bit (1) | Number
of Stop
Bits
(STB) | Out 1 | Parity
Error
(PE) | Trailing
Edge
Ring
Indicator
(TERI) | Bit 2 | Bit 2 | Bit 10 | | 3 | Data Bit 3 | Data Bit 3 | Enable
MODEM
Status
Interrupt
(EDSSI) | 0 | Parity
Enable
(PEN) | Out 2 | Framing
Error
(FE) | Delta
Data
Carrier
Detect
(DDCD) | Bit 3 | Bit 3 | Bit 11 | | 4 | Data Bit 4 | Data Bit 4 | 0 | 0 | Even
Parity
Select
(EPS) | Loop | Break
Interrupt
(BI) | Clear to
Send
(CTS) | Bit 4 | Bit 4 | Bit 12 | | 5 | Data Bit 5 | Data Bit 6 | 0 | 0 | Stick
Parity | 0 | Transmitter
Holding
Register
(THRE) | Data
Set
Ready
(DSR) | Bit 5 | Bit 5 | Bit 13 | | 6 | Data Bit 6 | Data Bit 6 | 0 | 0 | Set
Break | 0 | Transmitter
Empty
(TEMT) | Ring
Indicator
(RI) | Bit 6 | Bit 6 | Bit 14 | | 7 | Data Bit 7 | Data Bit 7 | 0 | 0 | Divisor
Latch
Access
Bit
(DLAB) | 0 | 0 | Data
Carrier
Detect
(DCD) | Bit 7 | Bit 7 | Bit 15 | ^{*} Bit 0 is the least significant bit. It is the first bit serially transmitted or received. # Programmeble Baud Generator The ACE contains a programmable Baud Generator that is capable of taking any clock input (DC to 3.1 MHz) and dividing it by any divisor from 1 to 2^{16} —1). The output frequency of the Baud Generator is 16×16 the Baud [divisor # = (frequency input) ÷ (baud rate × 16)]. Two 8-bit latches store the divisor in a 16-bit binary format. These Divisor Latches must be loaded during initialization in order to ensure desired operation of the Baud Generator. Upon loading either of the Divisor Latches, a 16-bit Baud counter is immediately loaded. This prevents long counts on initial load. Tables 3 and 4 illustrate the use of the Baud Generator with crystal frequencies of 1.8432 MHz and 3.072 MHz respectively. For baud rates of 38400 and below, the error obtained is minimal. The accuracy of the desired baud rate is dependent on the crystal frequency chosen. The maximum operating frequency of the Baud Generator is 3.1 MHz. However, when using divisors of 3 and below, the maximum frequency is equal to the divisor in MHz. For example, if the divisor is 1, then the maximum frequency is 1 MHz. In no case should the data rate be greater than 56K Baud, ### Line Status Register This 8-bit register provides status information to the CPU concerning the data transfer. The contents of the Line Status Register are indicated in Table 2 and are described below. Bit 0: This bit is the receiver Data Ready (DR) indicator. Bit 0 is set to a logic 1 whenever a complete incoming character has been received and transferred into the Receiver Buffer Register, Bit 0 is reset to a logic 0 by reading the data in the Receiver Buffer Register. Bit 1: This bit is the Overrun Error (OE) indicator. Bit 1 indicates that data in the Receiver Buffer Register was not read by the CPU before the next character was transferred into the Receiver Buffer Register, thereby destroying the previous character. The OE indicator is reset whenever the CPU reads the contents of the Line Status Register. Bit 2: This bit is the Parity Error (PE) indicator. Bit 2 indicates that the received data character does not have the correct even or odd parity, as selected by the even-parity-select bit. The PE bit is set to a logic 1 upon detection of a parity error and is reset to a logic 0 whenever the CPU reads the contents of the Line Status Register. Bit 3: This bit is the Framing Error (FE) indicator. Bit 3 indicates that the received character did not have a valid Stop bit. Bit 3 is set to a logic 1 whenever the Stop bit following the last data bit or parity bit is detected as a zero bit (Spacing level). The FE indicator is reset whenever the CPU reads the contents of the Line Status indicator. Table 3. Baud Rates Using 1.8432 MHz Crystal | Desired
Baud Rate | Divisor Used
to Generate
16 x Clock | Percent Error
Difference Between
Desired and Actual | |----------------------|---|---| | 50 | 2304 | - | | 75 | 1536 | - | | 110 | 1047 | 0.026 | | 134.5 | 857 | 0.058 | | 150 | 768 | _ | | 300 | 384 | _ | | 600 | 192 | _ | | 1200 | 96 | - | | 1800 | 64 | · | | 2000 | 58 | 0.69 | | 2400 | 48 | _ | | 3600 | 32 | – | | 4800 | 24 | _ | | 7200 | 16 | <u> </u> | | 9600 | 12 | _ | | 19200 | 6 | | | 38400 | 3 | - | | 56000 | 2 | 2,86 | ## **Typical Oscillator Application** Typical Crystal Oscillator Network | Crystal | Rp | Ř _{×2} | Cı | C ₂ | |---------|------|-----------------|------------|----------------| | 3,1 MHz | 1 ΜΩ | 1.5K | 10 - 30 pF | 40 - 60 pF | | 1.8 MHz | 1 ΜΩ | 1.5K | 10 - 30 pF | 40 - 60 pF | UM82C450 Table 4. Baud Rates Using 3.072 MHz Crystal | Desired
Baud Rate | Divisor Used
to Generate
16 x Clock | Pencent Error
Difference Between
Desired and Actual | |---|--|---| | 50
75
110
134.5
150
300
600
1200
1800
2000
2400
3600
4800
7200
9600 | 3840
2560
1745
1428
1280
640
320
160
107
96
80
53
40
27
20 | 0.026
0.034
 | | 38400 | ់ទ័ | - | Bit 4: This bit is the Break Interrupt (BI) indicator. Bit 4 is set to a logic 1 whenever the received data input is held in the Spacing (logic 0) state for longer than a full word transmission time (that is, the total time of Start bit + data bits + Parity + Stop bits). The BI indicator is reset whenever the CPU reads the contents of the Line Status indicator. Bits 1 through 4 are the error conditions that produce a Receiver Line Status interrupt whenever any of the corresponding conditions are detected. Bit 5: This bit is the Transmitter Holding Register Empty (THRE) indicator. Bit 5 indicates that the ACE is ready to accept a new character for transmission. In addition, this bit causes the ACE to issue an interrupt to the CPU when the Transmit Holding Register Empty Interrupt enable is set high. The THRE bit is set to a logic 1 when a character is transferred from the Transmitter Holding Register Into the Transmitter Shift Register. The bit is reset to logic 0 concurrent with the loading of the Transmitter Holding Register by the CPU. Bit 6: This bit is the Transmitter Empty (TEMT) indicator, Bit 6 is set to a logic 1 whenever the Transmitter Holding Register (THR) and the Transmitter Shift Register (TSR) are both empty. It is reset to a logic 0 whenever either the THR or TSR contains a data character. Table 5. Interrupt Control Functions | Interrupt Identification
Register | | | Interrupt Set and Reset Functions | | | | |--------------------------------------|-------|-------|-----------------------------------|--|---|--| | Bit 2 | Bit 1 | Bit 0 | Priority
Level | Interrupt
Type | interrupt
Source | Interrupt
Reset Control | | 0 | 0 | 1 | - | None | None | . – | | 1 | 1 | 0 | · Highest | Receiver
Line Status | Overrun Error
or
Parity Error
or
Framing Error
or
Break Interrupt | Reading the
Line Status Register | | 1 | 0 | 0 | Second | Received
Data Available | Receiver
Data Available | Reading the
Receiver Buffer Register | | 0 | 1 | 0 | Third | Transmitter
Holding Register
Empty | Transmitter
Holding Register
Empty | Reading the IIR Register (if source of interrupt) or Writing into the Transmitter Holding Register | | 0 | 0 | 0 · | Fourth | MODEM
Status | Clear to Send or Data Set Ready or Ring Indicator or Data Carrier Detect | Reading the
MODEM Status
Register | ナークラー37-05 UM82C450 Bit 7: This bit is permanently set to logic 0. The Line Status Register is intended for read operations only. Writing to this register is not recommended as this operation is used for factory testing. #### Interrupt Identification Register The ACE has an on-chip interrupt capability that allows for flexibility in interfacing popular microprocessors presently available. In order to provide minimum software overhead during data character transfers, the ACE prioritizes interrupts into four levels. The four levels of interrupt conditions are as follows: Receiver Line Status (priority 1); Received Data Ready (priority 2); Transmitter Holding Register Empty (priority 3); and Modem Status (priority Information indicating that a prioritized interrupt is pending and the type of that interrupt are stored in the Interrupt Identification Register (IIR). When addressed during chip-select time, the IIR freezes the highest priority interrupt pending and no other interrupts are acknowledged until the particular interrupt is serviced by the CPU. The contents of the IIR are indicated in Table 2 and are described below. Bit 0: This bit can be used in either a hardwired prioritized or polled environment to indicate whether an interrupt is pending. When bit 0 is a logic 0, an interrupt is pending and the IIR contents may be used as a pointer to the appropriate interrupt service routine. When bit 0 is a logic 1. no interrupt is pending and polling (if used) continues. Bits 1 and 2: These two bits of the IIR are used to identify the highest priority interrupt pending as indicated in Table 5. Bits 3 through 7: These five bits of the IIR are always logic 0. # Interrupt Enable Register This 8-bit register enables the four types of interrupts of the ACE to separately activate the chip interrupt (INTRPT) output signal. It is possible to totally disable the interrupt system by resetting bits 0 through 3 of the Interrupt Enable Register. Similarly, by setting the appropriate bits of this register to a logic 1, selected interrupts can be enabled. Disabling the interrupt system inhibits the Interrupt Identification Register and the active (high) INTRPT output from the chip. All other system functions operate in their normal manner, including the setting of the Line Status and MODEM Status Registers. The contents of the Interrupt Enable Register are indicated in Table 2 and are described below. Bit 0: This bit enables the Received Data Available Interrupt when set to logic 1. Bit 1: This bit enables the Transmitter Holding Register Empty Interrupt when set to logic 1. Bits 2: This bit enables the Receiver Line Status Interrupt when set to logic 1. Bit 3: This bit enables the MODEM Status Interrupt when set to logic 1. Bits 4 through 7: These four bits are always logic 0. #### **MODEM Control Register** This 8-bit register controls the interface with the MODEM or data set (or a peripheral device emulating a MODEM). The contents of the MODEM Control Register are indicated in Table 2 and are described below. Bit 0: This bit controls the Data Terminal Ready (DTR) output. When bit 0 is set to logic 1, the DTR output is forced to a logic 0. When bit 0 is reset to a logic 0, the DTR output is forced to a logic 1. The DTR output of the ACE may be applied to an EIA inverting line drive (such as the DS1488) to obtain the proper polarity input at the succeeding MODEM or data set. Bit 1: This bit controls the Request to Send RTS output. Bit 1 affects the RTS output in a manner identical to that described above for bit 0. Bit 2: This bit controls the Output 1 (OUT 1) signal, which is an auxiliary user-designated output. Bit 2 affects the OUT 1 output in a manner identical to that described above for bit 0. Bit 3: This bit controls the Output 2 (OUT 2) signal, which is an auxiliary user-designated output. Bit 3 affects the OUT 2 output in a manner identical to that described above for bit 0. Bit 4: This bit provides a local loopback feature for diagnotic testing of the ACE. When bit 4 is set to logic 1, the following occur: the transmitter Serial Output (SOUT) is set to the Marking (logic 1) state; the receiver Serial Input (SIN) is disconnected; the output of the Transmitter Shift Register is "looped back" into the Receiver Shift Register input; the four MODEM Control inputs (CTS, DSR, DCD, and R1) are disconnected; and the four MODEM Control outputs (DTR, RTS, OUT 1, and OUT 2) are internally connected to the four MODEM Control inputs, and the MODEM Control output pins are forced to their inactive state (high). In the diagnostic mode, data that is transmitted is immediately received. This feature allows the processor to verify the transmit-and received-data paths of the ACE. In the diagnostic mode, the receiver and transmitter interrupts are fully operational. The MODEM Control Interrupts are also operational, but the interrupts' sources are now the lower four bits of the MODEM Control Register instead of the four MODEM Control inputs. The interrupts are still controlled by the Interrupt Enable Register. Bit 5 through 7: These bits are permanently set to logic 0. #### **MODEM Status Register** This 8-bit register provides the current state of the control lines from the MODEM (or peripheral device) to the CPU. In addition to this current-state information, four bits of the MODEM Status Register provide change information. These bits are set to a logic 1 whenever a control input from the MODEM changes state. They are reset to logic 0 whenever the CPU reads the MODEM Status Register. #### Accessible Registers The contents of the MODEM Status Register are indicated in Table 2 and are described below. Bit 0: This bit is the Delta Clear to Send (DCTS) indicator. Bit 0 indicates that the $\overline{\text{CTS}}$ input to the chip has changed state since the last time it was read by the CPU. Bit 1: This bit is the Delta Data Set Ready (DDSR) indicator. Bit 1 indicates that the $\overline{\rm DSR}$ input to the Chip has changed state since the last time it was read by the CPU. Bit 2: This bit is the Trailing Edge of Ring Indicator (TERI) detector. Bit 2 indicates that the $\overline{\rm RI}$ input to the chip has changed from a low to a high state. Bit 3: This bit is the Delta Data Carrier Detect (DDCD) indicator. Bit 3 indicates that the DCD input to the chip has changed state. Whenever bits 0, 1, 2, or 3 are set to logic 1, a MODEM Status Interrupt is generated. Bit 4: This bit is the complement of the Clear to Send (CTS) input. If bit 4 (loop) of the MCR is set to a 1, this bit is equivalent to RTS in the MCR. Bit 5: This bit is the complement of the Data Set Ready (DSR) input. If bit 4 of the MCR is set to a 1, this bit is equivalent to DTR in the MCR. Bit 6: This bit is the complement of the Ring Indicator $(\overline{R1})$ input. If bit 4 of the MCR is set to a 1, this bit is equivalent to OUT 1 in the MCR. Bit 7: This bit is the complement of the Data Carrier Detect (\overline{DCD}) input. If bit 4 of the MCR is set to a 1, this bit is equivalent to OUT 2 of the MCR. #### Scratchpad Register This 8-bit Read/Write Register does not control the ACE in any way. It is intended as a scratchpad register to be used by the programmer to hold data temporarily. # Typical Application I/O And Peripherals