feATURES

- 14 Levels of Programmable Gain
- 125dB CMRR Independent of Gain
- Gain Accuracy 0.1\% (Typ)
- Maximum Offset Voltage of $10 \mu \mathrm{~V}$
- Maximum Offset Voltage Drift: 50nV/ ${ }^{\circ} \mathrm{C}$
- Rail-to-Rail Input and Output
- Parallel or Serial (SPI) Interface for Gain Setting
- Supply Operation: 2.7 V to $\pm 5.5 \mathrm{~V}$
- Typical Noise: $2.5 \mu \mathrm{~V}_{\mathrm{p}-\mathrm{P}}(0.01 \mathrm{~Hz}$ to 10 Hz$)$
- 16-Lead SSOP and 12-Lead DFN Packages

APPLICATIONS

- Thermocouple Amplifiers
- Electronic Scales
- Medical Instrumentation
- Strain Gauge Amplifier
- High Resolution Data Acquisition

DESCRIPTIOn

The LTC ${ }^{\circledR} 6915$ is a precision programmable gain instrumentation amplifier. The gain can be programmed to 0,1 , $2,4,8,16,32,64,128,256,512,1024,2048$, or 4096 through a parallel or serial interface. The CMRR is typically 125 dB with a dual 5 V supply with any programmed gain. The offset is below $10 \mu \mathrm{~V}$ with a temperature drift of less than $50 \mathrm{nV} /{ }^{\circ} \mathrm{C}$.

The LTC6915 uses charge balanced sampled data techniques to convert a differential input voltage into a single ended signal that is in turn amplified by a zero-drift operational amplifier.
The differential inputs operate from rail-to-rail and the single-ended output swings from rail-to-rail. The LTC6915 can be used in single power supply applications as low as 2.7 V , or with dual $\pm 5 \mathrm{~V}$ supplies. The LTC6915 is available in a 16-lead SSOP package and a 12-lead DFN surface mount package.

TYPICAL APPLICATION

Differential Bridge Amplifier with Gain Programmed through the Serial Interface

ABSOLUTG MAXIMUUM RATINGS (Note 1)

LTC6915। \qquad $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LTC6915H $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Junction Temperature
(GN Package) $150^{\circ} \mathrm{C}$
(DFN Package).. $125^{\circ} \mathrm{C}$
Storage Temperature
(GN Package)
$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
(DFN Package). $-65^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Lead Temperature (Soldering 10 sec)................... $300^{\circ} \mathrm{C}$

PACKAGE/ORDER INFORMATION

TOP VIEW	ORDER PART NUMBER		ORDER PART NUMBER
	LTC6915CDE LTC6915IDE		LTC6915CGN LTC6915IGN LTC6915HGN
	DFN PART MARKING		GN PART MARKING
DE12 PACKAGE 12-LEAD ($4 \mathrm{~mm} \times 3 \mathrm{~mm}$) PLASTIC DFN UNDERSIDE METAL CONNECTED TO V^{-} $T_{J M A X}=125^{\circ} \mathrm{C}, \theta_{\mathrm{JA}}=160^{\circ} \mathrm{C} / \mathrm{W}$	$\begin{aligned} & 6915 \\ & 69151 \end{aligned}$	16-LEAD NARROW PLASTIC SSOP $T_{\mathrm{JMAX}}=150^{\circ} \mathrm{C}, \theta_{\mathrm{JA}}=135^{\circ} \mathrm{C} / \mathrm{W}$	$\begin{aligned} & \hline 6915 \\ & 6915 \mathrm{I} \\ & 6915 \mathrm{H} \end{aligned}$

Consult LTC Marketing for parts specified with wider operating temperature ranges.

ELECTRICAL CHARACTERISTICS
The • denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
$\mathrm{V}^{+}=3 \mathrm{~V}, \mathrm{~V}^{-}=\mathbf{O V}, \mathrm{V}_{\text {REF }}=\mathbf{2 0 0 ~ m V}$							
	Gain Error (Note 2)	$A_{V}=1\left(R_{L}=10 k\right)$	\bullet	-0.075	0	0.075	\%
	Gain Error (Note 2)	$A_{V}=2$ to 32 ($\left.\mathrm{R}_{\mathrm{L}}=10 \mathrm{k}\right)$	\bullet	-0.5	0	0.5	\%
	Gain Error (Note 2)	$A_{V}=64$ to 1024 ($\left.\mathrm{R}_{\mathrm{L}}=10 \mathrm{k}\right)$	\bullet	-0.6	-0.1	0.6	\%
	Gain Error (Note 2)	$A_{V}=2048,4096$ ($\left.\mathrm{R}_{\mathrm{L}}=10 \mathrm{k}\right)$	\bullet	-1	-0.2	1.0	\%
	Gain Nonlinearity	$A_{V}=1$	\bullet		3	15	ppm
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage (Note 3)	$V_{C M}=200 \mathrm{mV}$			-3	± 10	$\mu \mathrm{V}$
	Average Input Offset Drift (Note 3)	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=85^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C} \end{aligned}$	\bullet			$\begin{gathered} \pm 50 \\ \pm 100 \end{gathered}$	$\begin{aligned} & \mathrm{nV} /{ }^{\circ} \mathrm{C} \\ & \mathrm{nV} /{ }^{\circ} \mathrm{C} \end{aligned}$
I_{B}	Average Input Bias Current (Note 4)	$V_{C M}=1.2 \mathrm{~V}$	\bullet		5	10	nA
$\mathrm{l}_{0 S}$	Average Input Offset Current (Note 4)	$V_{C M}=1.2 \mathrm{~V}$	\bullet		1.5	3	nA

eLECTRICAL CHARACTERISTICS
 The \bullet denotes the specifications which apply over the full operating

temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
$\mathrm{V}^{+}=3 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\text {REF }}=\mathbf{2 0 0 ~ m V}$							
CMRR	Common Mode Rejection Ratio	$\begin{aligned} & A_{V}=1024, V_{C M}=0 \mathrm{~V} \text { to } 3 \mathrm{~V}, \mathrm{LTC} 6915 \mathrm{C} \\ & A_{V}=1024, V_{C M}=0.1 \mathrm{~V} \text { to } 2.9 \mathrm{~V}, \text { LTC6915I } \\ & A_{V}=1024, V_{C M}=0 \mathrm{~V} \text { to } 3 \mathrm{~V}, \text { LTC6915I } \\ & A_{V}=1024, V_{C M}=0.1 \mathrm{~V} \text { to } 2.9 \mathrm{~V}, \text { LTC6915H } \\ & A_{V}=1024, V_{C M}=0 \mathrm{~V} \text { to } 2.97 \mathrm{~V}, \text { LTC } 6915 \mathrm{H} \end{aligned}$	$\stackrel{\bullet}{\bullet}$	$\begin{gathered} 100 \\ 100 \\ 95 \\ 100 \\ 85 \end{gathered}$	$\begin{aligned} & 119 \\ & 119 \\ & 119 \end{aligned}$		dB $d B$ $d B$ $d B$ $d B$
PSRR	Power Supply Rejection Ratio (Note 5)	$\mathrm{V}_{S}=2.7 \mathrm{~V}$ to 6 V	\bullet	110	116		dB
	Output Voltage Swing High (Referenced to V^{-})	Sourcing $200 \mu \mathrm{~A}$ Sourcing 2mA	\bullet	$\begin{aligned} & 2.95 \\ & 2.75 \end{aligned}$	$\begin{aligned} & 2.98 \\ & 2.87 \end{aligned}$		V
	Output Voltage Swing Low (Referenced to V^{-})	Sinking 200 $\mu \mathrm{A}$ Sinking 2mA	\bullet		$\begin{gathered} 18 \\ 130 \end{gathered}$	$\begin{gathered} 50 \\ 300 \end{gathered}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
	Supply Current, Parallel Mode	No Load at OUT, $\mathrm{V}_{\text {CM }}=200 \mathrm{mV}$	\bullet		0.88	1.3	mA
	Supply Current, Serial Mode (Note 6)	No Load at OUT, Capacitive Load at $\mathrm{D}_{\text {OUt }}\left(\mathrm{C}_{\mathrm{L}}\right)=15 \mathrm{pF}$, Continuous CLK Frequency $=4 \mathrm{MHz}, \overline{\mathrm{CS}}=\mathrm{LOW}$, Gain Control Code $=0001$	\bullet		1.1	1.65	mA
	Supply Current Shutdown	$V_{\text {SHDN }}=2.7 \mathrm{~V}$ (Hardware Shutdown) $V_{\text {SHDN }}=1 \mathrm{~V}$, Gain Control Code $=0000$ (Software Shutdown)	\bullet		$\begin{gathered} 1 \\ 125 \end{gathered}$	$\begin{gathered} 4 \\ 180 \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
	SHDN Input High		\bullet	2.7			V
	SHDN Input Low		\bullet			1	V
	SHDN and HOLD_THRU Input Current (Note 2)		\bullet			5	$\mu \mathrm{A}$
	Internal Op Amp Gain Bandwidth				200		kHz
	Slew Rate				0.2		$\mathrm{V} / \mathrm{\mu s}$
	Internal Sampling Frequency			-0.5	3		kHz

$\mathrm{V}^{+}=\mathbf{5 V}, \mathrm{V}^{-}=\mathbf{0 V}, \mathrm{V}_{\text {REF }}=\mathbf{2 0 0} \mathrm{mV}$

	Gain Error (Note 2)	$A_{V}=1\left(\mathrm{R}_{\mathrm{L}}=10 \mathrm{k}\right)$	\bullet	-0.075	0	0.075	\%
	Gain Error (Note 2)	$A_{V}=2$ to 32 ($\mathrm{R}_{\mathrm{L}}=10 \mathrm{k}$)	\bullet	-0.5	0	0.5	\%
	Gain Error (Note 2)	$A_{V}=64$ to 1024 ($\left.\mathrm{R}_{\mathrm{L}}=10 \mathrm{k}\right)$	\bullet	-0.6	-0.1	0.6	\%
	Gain Error (Note 2)	$A_{V}=2048,4096\left(R_{L}=10 \mathrm{k}\right)$	\bullet	-1	-0.2	1	\%
	Gain Nonlinearity	$A_{V}=1$	\bullet		3	15	ppm
$\mathrm{V}_{0 S}$	Input Offset Voltage (Note 3)	$V_{C M}=200 \mathrm{mV}$			-3	± 10	$\mu \mathrm{V}$
	Average Input Offset Drift (Note 3)	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=85^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C} \end{aligned}$	\bullet			$\begin{aligned} & \pm 50 \\ & \pm 100 \end{aligned}$	$\begin{aligned} & \mathrm{nV} /{ }^{\circ} \mathrm{C} \\ & \mathrm{nV} /{ }^{\circ} \mathrm{C} \end{aligned}$
	Average Input Bias Current (Note 4)	$\mathrm{V}_{\text {CM }}=1.2 \mathrm{~V}$	\bullet		5	10	nA
los	Average Input Offset Current (Note 4)	$V_{C M}=1.2 \mathrm{~V}$	\bullet		1.5	3	nA
CMRR	Common Mode Rejection Ratio	$\begin{aligned} & A_{V}=1024, V_{C M}=0 V \text { to } 5 \mathrm{~V}, \mathrm{LTC} 6915 \mathrm{C} \\ & A_{V}=1024, V_{C M}=0.1 \mathrm{~V} \text { to } 4.9 \mathrm{~V}, \text { LTC6915I } \\ & A_{V}=1024, V_{C M}=0 \mathrm{~V} \text { to } 5 \mathrm{~V}, \text { LTC6915I } \\ & A_{V}=1024, V_{C M}=0.1 \mathrm{~V} \text { to } 4.9 \mathrm{~V}, \text { LTC6915H } \\ & A_{V}=1024, V_{C M}=0 \mathrm{~V} \text { to } 4.97 \mathrm{~V}, \text { LTC6915H } \end{aligned}$	$\stackrel{\bullet}{\bullet}$	$\begin{gathered} 105 \\ 105 \\ 95 \\ 100 \\ 85 \end{gathered}$	$\begin{aligned} & 125 \\ & 125 \\ & 125 \end{aligned}$		dB dB dB dB dB
PSRR	Power Supply Rejection Ratio (Note 5)	$\mathrm{V}_{S}=2.7 \mathrm{~V}$ to 6V	\bullet	110	116		dB
	Output Voltage Swing High	Sourcing $200 \mu \mathrm{~A}$ Sourcing 2mA	\bullet	$\begin{aligned} & 4.95 \\ & 4.80 \end{aligned}$	$\begin{aligned} & 4.99 \\ & 4.93 \end{aligned}$		V
	Output Voltage Swing Low	Sinking 200 $\mu \mathrm{A}$ Sinking 2mA			$\begin{aligned} & 17 \\ & 120 \end{aligned}$	$\begin{gathered} 50 \\ 300 \end{gathered}$	mV mV

LTC6915

ELECTRICAL CHAßACTERISTICS
 The \bullet denotes the specifications which apply over the full operating

temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
$\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\text {REF }}=200 \mathrm{mV}$							
	Supply Current, Parallel Mode	No Load at OUT, $\mathrm{V}_{\text {CM }}=200 \mathrm{mV}$	\bullet		0.95	1.48	mA
	Supply Current, Serial Mode (Note 6)	No Load at OUT, Capacitive Load at $\mathrm{D}_{\text {OUt }}\left(\mathrm{C}_{\mathrm{L}}\right)=15 \mathrm{pF}$, Continuous CLK Frequency $=4 \mathrm{MHz}, \overline{\mathrm{CS}}=\mathrm{LOW}$, Gain Control Code $=0001$	\bullet		1.4	2	mA
	Supply Current, Shutdown	$V_{\text {SHDN }}=4.5 \mathrm{~V}$ (Hardware Shutdown) $V_{\text {SHDN }}=1 \mathrm{~V}$, Gain Control Code $=0000$ (Software Shutdown)	\bullet		$\begin{gathered} \hline 2 \\ 135 \end{gathered}$	$\begin{aligned} & 10 \\ & 200 \end{aligned}$	$\begin{aligned} & \overline{\mu \mathrm{A}} \\ & \mu \mathrm{~A} \end{aligned}$
	SHDN Input High		\bullet	4.5			V
	SHDN Input Low		\bullet			1	V
	SHDN and HOLD_THRU Input Current (Note 2)		\bullet			5	$\mu \mathrm{A}$
	Internal Op Amp Gain Bandwidth				200		kHz
	Slew Rate				0.2		V/us
	Internal Sampling Frequency				3		kHz
$\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=-5 \mathrm{~V}, \mathrm{~V}_{\text {REF }}=0 \mathrm{~V}$							
	Gain Error (Note 2)	$A_{V}=1\left(\mathrm{R}_{\mathrm{L}}=10 \mathrm{k}\right)$	\bullet	-0.075	0	0.075	\%
	Gain Error (Note 2)	$A_{V}=2$ to 32 ($\mathrm{R}_{\mathrm{L}}=10 \mathrm{k}$)	\bullet	-0.5	0	0.5	\%
	Gain Error (Note 2)	$A_{V}=64$ to $1024\left(R_{L}=10 \mathrm{k}\right)$	\bullet	-0.6	-0.1	0.6	\%
	Gain Error (Note 2)	$A_{V}=2048,4096$ ($\left.\mathrm{R}_{\mathrm{L}}=10 \mathrm{k}\right)$	\bullet	-1	-0.2	1	\%
	Gain Nonlinearity	$A_{V}=1$	\bullet		3	15	ppm
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage (Note 3)	$\mathrm{V}_{\text {CM }}=0 \mathrm{mV}$			5	± 20	nV
	Average Input Offset Drift (Note 3)	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=85^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C} \end{aligned}$				$\begin{aligned} & \pm 50 \\ & \pm 100 \end{aligned}$	$\begin{aligned} & \mathrm{nV} /{ }^{\circ} \mathrm{C} \\ & \mathrm{nV} /{ }^{\circ} \mathrm{C} \end{aligned}$
Ios	Average Input Bias Current (Note 4)	$V_{C M}=1 \mathrm{~V}$	\bullet		4	10	nA
	Average Input Offset Current (Note 4)	$V_{C M}=1 \mathrm{~V}$	\bullet		1.5	3	nA
CMRR	Common Mode Rejection Ratio	$\begin{aligned} & A_{V}=1024, V_{C M}=-5 \mathrm{~V} \text { to } 5 \mathrm{~V}, \mathrm{LTC6915C} \\ & A_{V}=1024, V_{C M}=-4.9 \mathrm{~V} \text { to } 4.9 \mathrm{~V}, \text { LTC6915I } \\ & A_{V}=1024, V_{C M}=-5 \mathrm{~V} \text { to } 5 \mathrm{~V}, \text { LTC6915I } \\ & A_{V}=1024, V_{C M}=-4.9 \mathrm{~V} \text { to } 4.9 \mathrm{~V}, \text { LTC6915H } \\ & A_{V}=1024, V_{C M}=-5 \mathrm{~V} \text { to } 4.97 \mathrm{~V}, \text { LTC6915H } \end{aligned}$	$\stackrel{\bullet}{\bullet}$	$\begin{gathered} 105 \\ 105 \\ 100 \\ 100 \\ 90 \end{gathered}$	$\begin{aligned} & 123 \\ & 123 \\ & 123 \end{aligned}$		dB dB dB dB $d B$
PSRR	Power Supply Rejection Ratio (Note 5)	$V_{S}=2.7 \mathrm{~V}$ to 11V	\bullet	110	116		dB
	Output Voltage Swing High	Sourcing $200 \mu \mathrm{~A}$ Sourcing 2mA		$\begin{aligned} & 4.97 \\ & 4.90 \end{aligned}$	$\begin{aligned} & 4.99 \\ & 4.96 \end{aligned}$		V
	Output Voltage Swing Low	Sinking 200 $\mu \mathrm{A}$ Sinking 2mA	\bullet		$\begin{aligned} & \hline-4.98 \\ & -4.90 \end{aligned}$	$\begin{aligned} & \hline-4.92 \\ & -4.70 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
	Supply Current, Parallel Mode	No Load, $\mathrm{V}_{\text {CM }}=200 \mathrm{mV}$	\bullet		1.1	1.6	mA
	Supply Current, Serial Mode (Note 6)	No Load at OUT, Capacitive Load at $D_{\text {OUt }}\left(C_{L}\right)=15 p F$, Continuous CLK Frequency $=4 \mathrm{MHz}, \overline{\mathrm{CS}}=\mathrm{LOW}$, Gain Control Code $=0001$	\bullet		1.73	2.48	mA
	Supply Current, Shutdown	$V_{\text {SHDN }}=4 V$ (Hardware Shutdown) $V_{\text {SHDN }}=1 \mathrm{~V}$, Gain Control Code $=0000$ (Software Shutdown)	\bullet		160	$\begin{gathered} 25 \\ 240 \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
	SHDN Input High		\bullet	4			V
	SHDN Input Low		\bullet			1	V

ELECRRCAL CHARACTERISTICS The \bullet denotes the specifications which apply over the full operating

temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

| SYMBOL | PARAMETER | CONDITIONS | MIN | TYP | MAX |
| :--- | :--- | :--- | :---: | :---: | :---: | UNITS

Digital I/O, All Digital I/O Voltage Referenced to DGND

$V_{\text {IH }}$	Digital Input High Voltage		\bullet	2.0	V
$\mathrm{~V}_{\mathrm{IL}}$	Digital Input Low Voltage		\bullet	0.8	V
$\mathrm{~V}_{\text {OH }}$	Digital Output High Voltage	Sourcing $500 \mu \mathrm{~A}$	\bullet	$\mathrm{~V}^{+}-0.3$	V
$\mathrm{~V}_{\text {OL }}$	Digital Output Low Voltage	Sinking $500 \mu \mathrm{~A}$	\bullet		0.3
	Digital Input Leakage	$\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=-5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V}$ to 5 V	\bullet	V	

Timing, $\mathrm{V}^{+}=2.7 \mathrm{~V}$ to $4.5 \mathrm{~V}, \mathrm{~V}^{-}=\mathrm{OV}$ (Note 7)

t_{1}	$\mathrm{D}_{\text {IN }}$ Valid to CLK Setup		\bullet	60		ns
t_{2}	DIN Valid to CLK Hold		\bullet	0		ns
t_{3}	CLK Low		\bullet	100		ns
t_{4}	CLK High		\bullet	100		ns
t_{5}	$\overline{\text { CS/LD Pulse Width }}$		\bullet	60		ns
t_{6}	LSB CLK to $\overline{C S} / L D$		\bullet	60		ns
t_{7}	$\overline{\mathrm{CS}} / \mathrm{LD}$ Low to CLK		\bullet	30		ns
t_{8}	Dout Output Delay	$C_{L}=15 \mathrm{pF}$	\bullet		125	ns
tg	CLK Low to $\overline{\text { CS/LD Low }}$		\bullet	0		ns

Timing, $\mathrm{V}^{+}=4.5 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}$ (Note 7)

t_{1}	$\mathrm{D}_{\text {IN }}$ Valid to CLK Setup		\bullet	30		ns
t_{2}	DIN Valid to CLK Hold		\bullet	0		ns
t_{3}	CLK Low		\bullet	50		ns
t_{4}	CLK High		\bullet	50		ns
t_{5}	$\overline{\text { CS/LD Pulse Width }}$		\bullet	40		ns
t_{6}	LSB CLK to $\overline{C S} / L D$		\bullet	40		ns
${ }_{7}$	$\overline{\mathrm{CS}} / \mathrm{LD}$ Low to CLK		\bullet	20		ns
t_{8}	Dout Output Delay	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	\bullet		85	ns
tg_{9}	CLK Low to $\overline{\mathrm{CS}} / \mathrm{LD}$ Low		\bullet	0		ns

Timing, Dual $\pm 4.5 \mathrm{~V}$ to $\pm 5.5 \mathrm{~V}$ Supplies (Note 7)

t_{1}	$\mathrm{D}_{\text {IN }}$ Valid to CLK Setup		\bullet	30		ns
t_{2}	DIN Valid to CLK Hold		\bullet	0		ns
t_{3}	CLK High		\bullet	50		ns
t_{4}	CLK Low		\bullet	50		ns
t_{5}	$\overline{\text { CS/LD Pulse Width }}$		\bullet	40		ns
t_{6}	LSB CLK to $\overline{C S} / L D$		\bullet	40		ns
t_{7}	$\overline{\text { CS/LD Low to CLK }}$		\bullet	20		ns
t_{8}	Dout Output Delay	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	\bullet		85	ns
t9	CLK Low to $\overline{C S} / L D$ Low		\bullet	0		ns

ELECTRICAL CHARACTERISTICS

Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired.
Note 2: These parameters are tested at $\pm 5 \mathrm{~V}$ supply; at 3 V and 5 V supplies they are guaranteed by design.
Note 3: These parameters are guaranteed by design. Thermocouple effects preclude measurement of these voltage levels in high speed automatic test systems. $\mathrm{V}_{0 \text { S }}$ is measured to a limit set by test equipment capability.
Note 4: If the total source resistance is less than 10k, no DC errors result from the input bias current or mismatch of the input bias currents or the mismatch of the resistances connected to $I N^{-}$and $I N^{+}$.

Note 5: The PSRR measurement accuracy depends on the proximity of the power supply bypass capacitor to the device under test. Because of this, the PSRR is 100% tested to relaxed limits at final test. However, their values are guaranteed by design to meet the data sheet limits.
Note 6: Supply current is dependent on the clock frequency. A higher clock frequency results in higher supply current.
Note 7: Guaranteed by design, not subject to test.

TYPICAL PERFORMAOCE CHARACTERISTICS

6915 G01

Input Offset Voltage vs Input Common Mode

6915 G02

Input Offset Voltage vs Input

 Common Mode

6915 G03
Input Offset Voltage vs Input Common Mode

6915606

TYPICAL PGRFORmANCE CHARACTERISTICS

6915 G07

Error Due to Input Rs Mismatch vs

 Input Common Mode

6915 G10

6915G13

Error Due to Input Rs vs Input Common Mode

$6915 G 08$
Error Due to Input R Mismatch vs Input Common Mode

695611

Error Due to Input Rs vs Input Common Mode

6915 G09
Error Due to Input Rs Mismatch vs Input Common Mode

6915 G12

TYPICAL PGRFORmANCE CHARACTERISTICS

Gain Nonlinearity at Gain $=1$
(Gain Nonlinearity Decreases for Gain >1)

6915 G19
Input Voltage Noise Density
vs Frequency

Input Referred Noise in 10Hz Bandwidth

Output Voltage Swing vs
Output Current
Output Voltage Swing vs
Output Current

CMRR vs Frequency

Input Referred Noise in 10 Hz Bandwidth

6915 G20

Low Gain Settling Time vs Settling Accuracy

TYPICAL PGRFORMANCE CHARACTGRISTICS

PIN FUNCTIONS (DeNG/ Packages)

IN $^{-}$(Pin 1/Pin 2): Inverting Analog Input.
SHDN (Pin 1 GN Package Only): Shutdown Pin. The IC is shut down when SHDN is tied to V^{+}. An internal current source pulls this pin to V^{-}when floating.
IN+ (Pin 2/Pin 3): Noninverting Analog Input.
\mathbf{V}^{-}(Pin 3/Pin 4): Negative Supply.
$\overline{\mathrm{CS}}$ (DO) (Pin 4/Pin 6): TTL Level Input. When in serial control mode, this pin is the chip select input (active low); in parallel control mode, this pin is the LSB of the parallel gain control code.
D_{IN} (D1) (Pin 5/Pin 7): TTL Level Input. When in serial control mode, this pin is the serial input data; in parallel mode, this pin is the second LSB of the parallel gain control code.
HOLD_THRU (Pin 5 GN Package Only): TTL Level Input for Parallel Control Mode. When HOLD_THRU is high, the parallel data is latched in an internal D-latch.
CLK(D2) (Pin 6/Pin 8): TTL Level Input. When in serial control mode, this pin is the clock of the serial interface; in parallel mode, this pin is the third LSB of the parallel gain control code.
$D_{\text {OUT }}$ (D3) (Pin 7/Pin 9): TTL Level Input. When in serial control mode, this pin is the output of the serial data; in parallel mode, this pin is the MSB of the 4-bit parallel gain
control code. In parallel mode operation, if the data in to $\mathrm{D}_{\text {OUT }}$ (Pin 9) is from a voltage source greater than V^{+}(Pin 12), then connect a resistor between the voltage source and $D_{\text {OUT }}$ to limit the current into Pin 9 to 5 mA or less.
DGND (Pin 8/Pin 10): Digital Ground.
PARALLEL_SERIAL (Pin 9/Pin 11): Interface Selection Input. When tied to V^{+}, the interface is in parallel mode, i.e., the PGA gain is defined by the parallel codes (D3 ~ D0), i.e., $\overline{\mathrm{CS}}(\mathrm{D} 0), \operatorname{DATA}(\mathrm{D} 1), \mathrm{CLK}(\mathrm{D} 2)$, and $\mathrm{D}_{\text {OUT }}(\mathrm{D} 3)$. When PARALLEL_SERIAL pin is tied to V^{-}, the PGA gain is set by the serial interface.
REF (Pin 10/Pin 13): Voltage Reference for PGA output. OUT (Pin 11/Pin 15): Amplifier Output. The typical current sourcing/sinking of the OUT pin is 1 mA . For minimum gain error, the load resistance should be 1 k or greater (refer to the Output Voltage Swing vs Output Current and Gain Error vs Load Resistance in the Typical Performance Characteristics section).
V+ (Pin 12/Pin 16): Positive Supply.
SENSE (Pin 14 GN Package Only): Sense Pin. When the PGA drives a low resistance load and the interconnect resistance between the OUT pin and the load is not negligible, tying the SENSE pin as close as possible to the load can improve the gain accuracy.

BLOCK DIAGRAMS

TIMING DIAGRAM

OPGRATION

Theory of Operation (Refer to Block Diagrams)

The LTC6915 uses an internal capacitor (C_{S}) to sample a differential input signal riding on a DC common mode voltage (the sampling rate is 3 kHz and the input switch-on resistance is 1 k to 2 k , depending on the power supply voltage). This capacitor's charge is transferred to a second internal hold capacitor (C_{H}) translating the common mode voltage of the input differential signal to that of REF pin. The resulting signal is amplified by a zero-drift op amp in the noninverting configuration. Gain control within the amplifier occurs by switching resistors from a matched resistor array. The LTC6915 has 14 levels of gain, controlled by the parallel or serial interface. A feedback capacitor C_{F} helps to reduce the switching noise. Due to the input sampling, an LTC6915 may produce aliasing errors for input signals greater than 1.5 kHz (one half the 3 kHz sampling frequency). However, if the input signal is bandlimited to less than 1.5 kHz then an LTC6915 is useful as instrumentation or as a differential to single-ended AC amplifier with programmable gain.

Parallel Interface

As shown in Figure 1, connecting PARALLEL_SERIAL to V^{+}allows the gain control code to be set through the parallel lines (D3, D2, D1, D0). When HOLD_THRU is low
(referenced to DGND) or floating, the parallel gain control bits (D3 ~ DO) directly control the PGA gain. When HOLD_THRU is high, the parallel gain control bits are read into and held by a 4 -bit latch. Any change at D3 ~ D0 will not affect the PGA gain when HOLD_THRU is high. Note that the DFN12 package does not have the HOLD_THRU pin. Instead, it is tied to DGND internally. The $\mathrm{D}_{\text {out }}(\mathrm{D} 3)$ pin is bidirectional (output in serial mode, input in parallel mode). In parallel mode, the voltage at $D_{\text {Out }}(\mathrm{D} 3)$ cannot exceed V^{+}; otherwise, large currents can be injected to V^{+} through the parasitic diode (see Figure 2). Connecting a 10 resistor at the $\mathrm{D}_{\text {OuT }}(\mathrm{D} 3$) pin if parallelmode is selected (see Figure 1) is recommended for current limiting.

Serial Interface

Connecting PARALLEL_SERIAL to V^{-}allows the gain control code to be set through the serial interface. When CS is low, the serial data on D_{I} is shifted into an 8-bit shiftregister on the rising edge of the clock, with the MSB transferred first (see Figure 3). Serial data on $\mathrm{D}_{\text {Out }}$ is shifted out on the clock's falling edge. A high $\overline{\mathrm{CS}}$ will load the 4 LSBs of the shift-register into a 4-bit D-latch, which are the gain control bits. The clock is disabled internally when $\overline{C S}$ is pulled high. Note: CLK must be low before $\overline{C S}$ is pulled low to avoid an extra internal clock pulse.

LTC6915

OPERATION

$D_{\text {Out }}$ is always active in serial mode (never tri-stated). This simplifies the daisy chaining of the multiple devices. DOUT cannot be "wire-or" to other SPI outputs. In addition, $\mathrm{D}_{\text {OUT }}$ does not return to zero at the end of transmission, i.e. when $\overline{\mathrm{CS}}$ is pulled high.
A LTC6915 may be daisy-chained with other LTC6915s or other devices having serial interfaces by connecting the
$D_{\text {OUT }}$ to the $D_{\text {IN }}$ of the next chip while CLK and $\overline{\mathrm{CS}}$ remain common to all chips in the daisy chain. The serial data is clocked to all the chips then the $\overline{\mathrm{CS}}$ signal is pulled high to update all of them simultaneously. Figure 4 shows an example of two LTC6915s in a daisy chained SPI configuration.
 ON DOUT(D3) PROTECT THE DEVICE WHEN $\mathrm{V}_{\mathrm{D} 3}>\mathrm{V}^{+}$

Figure 1. PGA in the Parallel Control Mode

Figure 2. Bidirectional Nature of $D_{0 U T} / D 3$ Pin

Figure 3. Diagram of Serial Interface (MSB First Out)

OPERATION

Figure 4. 2 PGAs in a Daisy Chain
The amplifier's gain is set as follows:

D3, D2, D1, D0	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	$1101 \sim$ 1111
Gain	0	1	2	4	8	16	32	64	128	256	512	1024	2048	4096

Input Voltage Range

The input common mode voltage range of the LTC6915 is rail-to-rail. However, the following equation limits the size of the differential input voltage:

$$
\mathrm{V}^{-} \leq\left(\mathrm{V}_{\mathrm{IN}^{+}}-\mathrm{V}_{\mathrm{IN}^{-}}\right)+\mathrm{V}_{\mathrm{REF}} \leq \mathrm{V}^{+}-1.3
$$

Where $\mathrm{V}_{\text {IN }}{ }^{+}$and $\mathrm{V}_{\text {IN }}{ }^{-}$are the voltage of the differential input pins, V^{+}and V^{-}are the positive and negative supply voltages respectively and $\mathrm{V}_{\text {REF }}$ is the voltage of REF pin. In addition, $\mathrm{V}_{\text {IN }}{ }^{+}$and $\mathrm{V}_{\text {IN }}{ }^{-}$must not exceed the power supply voltages, i.e.,

$$
\mathrm{V}^{-}<\mathrm{V}_{\mathrm{IN}^{+}}<\mathrm{V}^{+} \text {and } \mathrm{V}^{-}<\mathrm{V}_{\mathrm{IN}}^{-}<\mathrm{V}^{+}
$$

± 5 Volt Operation

When using the LTC6915 with supplies over 5.5 V , care must be taken to limit the maximum difference between any of the input pins $\left(\mathrm{IN}^{+}\right.$or $\left.\mathrm{IN}^{-}\right)$and the REF pin to 5.5 V , i.e.,

$$
\mathrm{IV}_{\mathrm{IN}^{+}}-\mathrm{V}_{\text {REF }} \mathrm{l}<5.5 \text { and } \mathrm{IV}_{\text {IN }}^{-}-\mathrm{V}_{\text {REF }} \mathrm{l}<5.5
$$

If not, the device will be damaged. For example, if rail-torail input operation is desired when the supplies are at $\pm 5 \mathrm{~V}$, the REF pin should be $0, \pm 0.5 \mathrm{~V}$. As a second example, if the V^{+}pin is 10 V , and the V^{-}and REF pins are at 0 , the inputs should not exceed 5.5 V .

13

operation

Settling Time

The sampling rate is 3 kHz and the input sampling period during which C_{S} is charged to the input differential voltage, $\mathrm{V}_{\text {IN }}$, is approximately $150 \mu \mathrm{~s}$. First assume that on each input sampling period, C_{S} is charged fully to V_{IN}. Since C_{S} $=C_{H}(=1000 \mathrm{pF})$, a change in the input will settle to N bits of accuracy at the op amp noninverting input after N clock cycles or $333 \mu \mathrm{~s}(\mathrm{~N})$. The settling time at the OUT pin is also affected by the internal op amp. Since the gain bandwidth of the internal op amp is typically 200 kHz , the settling time is dominated by the switched-capacitor front end for gains below 100 (see the Low Gain Settling Time vs Settling Accuracy and the Settling Time vs Gain graphs in the Typical Performance Characteristics section). In addition, the worst case settling time after a device-enable (active Iow on Pin 1 of a GN package) is equal to the settling due to the gain plus the input settling time $(333 \mu \mathrm{~s} \bullet \mathrm{~N})$. For example, if an LTC6915 is enabled with a logic high on Pin 1 then, the maximum settling time to 10 bits of accuracy (0.1%) and a gain equal to 100 is 8.33 ms $([333 \mu \mathrm{~s} \cdot 1024]+5 \mathrm{~ms})$.

Input Current

Whenever the differential input $V_{\text {IN }}$ changes, C_{H} must be charged up to the new input voltage via C_{s}. This results in an input charging current during each input sampling period. Eventually, C_{H} and C_{S} will reach $\mathrm{V}_{\text {IN }}$ and ideally, the input current would go to zero for DC inputs.
In reality, there are additional parasitic capacitors which disturb the charge on C_{S} every cycle even if $\mathrm{V}_{\mathbf{I N}}$ is a DC voltage. For example, the parasitic bottom plate capacitor on C_{S} must be charged from the voltage on the REF pin to the voltage on the IN^{-}pin every cycle. The resulting input charging current decays exponentially during each input sampling period with a time constant equal to $R_{S} C_{S}$. If the voltage disturbance due to these currents settles before the end of the sampling period, there will be no errors due to source resistance or the source resistance mismatch between IN^{+}and IN^{-}. With R_{S} less than 10k, no DC errors occur due to input current mismatch.
In the Typical Performance Characteristics section of this data sheet, there are curves showing the additional error from non-zero source resistance in the inputs. If there are no large capacitors across the inputs, the amplifier is less sensitive to source resistance and source resistance mismatch. When large capacitors are placed across the
inputs, the input charging currents are placed across the inputs. The input charging currents described above result in larger DC errors, especially with source resistor mismatches.

Power Supply Bypassing

In a dual supply operation, connecta 0.1μ F bypass capacitor from each power supply pin (V^{+}and V^{-}) to an analog round plance surrounding an LTC6915. The bypass capacitor trace to the supply pins must be less than 0.2 inches (an X7R or X5R capacitor type is recommended). In single supply operation, connect the V^{-}pin to the analog ground plane and bypass the V^{+}pin.

Shutdown Modes

The IC has two shutdown modes, hardware shutdown and software shutdown. When SHDN is tied to V^{+}, the IC is in hardware shutdown mode. During this shutdown mode, the gain setting digital interface (serial or parallel) and the main op amp are both disabled, thus the PGA dissipates very small supply current (see the Electrical Characteristic table). When SHDN is floating, an internal current source will pull it down to V^{-}. The digital interface is turned on to read the gain setting codes. The IC is in normal amplification mode as long as the gain control code is other than 0000. If the gain control code is 0000 , the IC operates in software shutdown mode, i.e., the main op amp is turned off so that the PGA dissipates less power. The DFN package does not have hardware shutdown.

Setting the Voltage at the REF Pin

The current coming out of the REF pin may affect the reference voltage at the REF pin ($\mathrm{V}_{\text {REF }}$). If $\mathrm{V}_{\text {REF }}$ is set by a resistive divider then the $V_{\text {REF }}$ voltage is a function of the $V_{\text {OUT }}$ voltage (see Figure 5). In order to minimize the $\mathrm{V}_{\text {REF }}$ variations, the total resistance of R1 plus R2 should be much less than 32 k (5 k or less) or use a voltage reference to set $\mathrm{V}_{\text {REF }}$.

Figure 5

TYPICAL APPLICATION

Multiplexing Two LTC6915's

Send a gain code of 0000 to one IC to set its output to a high impedance state and send a gain code other than 0000 to the second IC to set it for normal amplification. If both devices are ON, the 200Ω resistors protect the outputs. The sense pin connection maintains gain accuracy for loads 1 k or greater.

Figure 6. A 2:1 Multiplexing Two LTC6915's with Daisy Chained Gain Control

PACKAGE DESCRIPTION

DE/UE Package

12-Lead Plastic DFN ($4 \mathrm{~mm} \times 3 \mathrm{~mm}$)
(Reference LTC DWG \# 05-08-1695)

RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS NOTE:

1. DRAWING PROPOSED TO BE A VARIATION OF VERSION (WGED) IN JEDEC PACKAGE OUTLINE M0-229
2. ALL DIMENSIONS ARE IN MILLIMETERS

BOTTOM VIEW-EXPOSED PAD
3. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15 mm ON ANY SIDE 4. EXPOSED PAD SHALL BE SOLDER PLATED

GN Package
16-Lead Plastic SSOP (Narrow . 150 Inch)
(Reference LTC DWG \# 05-08-1641)

NOTE:

1. CONTROLLING DIMENSION: INCHES
2. DIMENSIONS ARE IN $\frac{\text { INCHES }}{\text { (MILLIMETERS) }}$
3. DRAWING NOT TO SCALE
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED 0.006 " $(0.152 \mathrm{~mm})$ PER SIDE
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD FLASH SHALL NOT EXCEED $0.010^{\prime \prime}(0.254 \mathrm{~mm})$ PER SIDE

Information furnished by Linear Technology Corporation is believed to be accurate and reliable.

TYPICAL APPLICATION

Figure 7. Bridge Amplifier with Programmable Gain and Analog to Digital Conversion.
(Standby Current Less than $100 \mu \mathrm{~A}$)

reLATED PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LTC1043	Dual Precision Instrumentation Switched-Capacitor Building Block	Rail-to-Rail Input, 120dB CMRR
LTC1100	Precision Zero-Drift Instrumentation Amplifier	Fixed Gains of 10 or 100, 10 $\mu \mathrm{V}$ Offset, 50pA Input Bias Current
LTC1101	Precision, Micropower, Single Supply Instrumentation Amplifier	Fixed Gain of 10 or $100, \mathrm{I}_{\mathrm{S}}<105 \mu \mathrm{~A}$
LTC1167	Single Resistor Gain Programmable, Precision Instrumentation Amplifier	Single Gains Set Resistor, G=1 to 10,000 Low Noise: $7.5 \mathrm{nV} / \sqrt{\mathrm{Hz}}$
LTC1168	Low Power Single Resistor Gain Programmable, Precision Instrumentation Amplifiers	$\mathrm{I}_{\mathrm{S}}=530 \mu \mathrm{~A}$
LTC1789-1	Single Supply, Rail-to-Rail Output, Micropower Instrumentation Amplifier	$\mathrm{I}_{\mathrm{S}}=80 \mu \mathrm{~A}$ Max
LTC2050	Zero-Drift Operational Amplifier	SOT-23 Package
LTC2051	Dual Zero-Drift Operational Amplifier	MS8 Package
LTC2052	Quad Zero-Drift Operational Amplifier	GN16 Package
LTC2053	Rail-to-Rail Input and Output, Zero-Drift Instrumentation Amplifier with Resistor-Programmable Gain	MS8 Package, $10 \mu \mathrm{~V}$ Max $\mathrm{V}_{0 S}, 50 \mathrm{nV} /{ }^{\circ} \mathrm{C}$ Max Drift
LTC6800	Rail-to-Rail Input and Output, Instrumentation Amplifier with Resistor-Programmable Gain	MS8 Package, $100 \mu \mathrm{~V}$ Max $\mathrm{V}_{\text {OS }}, 250 \mathrm{nV} /{ }^{\circ} \mathrm{C}$ Max Drift

