- 2-V to $5.5-\mathrm{V} \mathrm{V}_{\mathrm{Cc}}$ Operation
- Supports Mixed-Mode Voltage Operation on All Ports
- High On-Off Output-Voltage Ratio
- Low Crosstalk Between Switches
- Individual Switch Controls
- Extremely Low Input Current
- ESD Protection Exceeds JESD 22
- 2000-V Human-Body Model (A114-A)
- 200-V Machine Model (A115-A)
- 1000-V Charged-Device Model (C101)

description/ordering information

This quadruple silicon-gate CMOS analog switch is designed for $2-\mathrm{V}$ to $5.5-\mathrm{V} \mathrm{V}_{\mathrm{CC}}$ operation.

This switch is designed to handle both analog and digital signals. Each switch permits signals with amplitudes up to 5.5 V (peak) to be transmitted in either direction.

Each switch section has its own enable-input control (C). A high-level voltage applied to C turns on the associated switch section.
Applications include signal gating, chopping, modulation or demodulation (modem), and signal multiplexing for analog-to-digital and digital-to-analog conversion systems.

D, DB, DGV, N, NS, OR PW PACKAGE
 (TOP VIEW)

RGY PACKAGE (TOP VIEW)

NC - No internal connection

ORDERING INFORMATION

$\mathrm{T}_{\text {A }}$	PACKAGE \dagger		ORDERABLE PART NUMBER	TOP-SIDE MARKING
$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	PDIP - N	Tube	SN74AHC4066N	SN74AHC4066N
	QFN - RGY	Tape and reel	SN74AHC4066RGYR	HA4066
	SOIC - D	Tube	SN74AHC4066D	AHC4066
		Tape and reel	SN74AHC4066DR	
	SOP - NS	Tube	SN74AHC4066NS	AHC4066
		Tape and reel	SN74AHC4066NSR	
	SSOP - DB	Tube	SN74AHC4066DB	HA4066
		Tape and reel	SN74AHC4066DBR	
	TSSOP - PW	Tube	SN74AHC4066PW	HA4066
		Tape and reel	SN74AHC4066PWR	
	TVSOP - DGV	Tape and reel	SN74AHC4066DGVR	HA4066

\dagger Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

FUNCTION TABLE
(each switch)

INPUT CONTROL (C)	SWITCH
L	OFF
H	ON

logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

$$
\begin{aligned}
& \text { Supply voltage range, } \mathrm{V}_{\mathrm{CC}} \text { (see Note 1) . }-0.5 \mathrm{~V} \text { to } 7 \mathrm{~V} \\
& \text { Input voltage range, } \mathrm{V}_{\mathrm{I}} \text { (see Note 1) . }-0.5 \mathrm{~V} \text { to } 7 \mathrm{~V}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Control-input clamp current, } \mathrm{I}_{\mathrm{IK}}\left(\mathrm{~V}_{\mathrm{I}}<0\right) \text {. } 20 \mathrm{~mA} \\
& \text { I/O diode current, } \mathrm{I}_{\mathrm{IOK}}\left(\mathrm{~V}_{\mathrm{IO}}<0 \text { or } \mathrm{V}_{\mathrm{IO}}>\mathrm{V}_{\mathrm{CC}} \text {) . } \pm 50 \mathrm{~mA}\right. \\
& \text { On-state switch current, } \mathrm{I}_{\top}\left(\mathrm{V}_{\mathrm{IO}}=0 \text { to } \mathrm{V}_{\mathrm{CC}} \text {) . } \pm 25 \mathrm{~mA}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \text { Package thermal impedance, } \theta_{\mathrm{JA}} \text { (see Note 3): D package ... 86 }{ }^{\circ} \mathrm{C} / \mathrm{W} \\
& \dagger \text { Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and } \\
& \text { functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not } \\
& \text { implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. } \\
& \text { NOTES: 1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed. } \\
& \text { 2. This value is limited to } 5.5 \mathrm{~V} \text { maximum. } \\
& \text { 3. The package thermal impedance is calculated in accordance with JESD 51-7. } \\
& \text { 4. The package thermal impedance is calculated in accordance with JESD 51-5. }
\end{aligned}
$$

recommended operating conditions (see Note 5)

		MIN	MAX	UNIT
VCC Supply voltage		$2 \dagger$	5.5	V
$\mathrm{V}_{\text {IH }}$ High-level input voltage, control inputs	$\mathrm{V}_{\mathrm{CC}}=2 \mathrm{~V}$	1.5		V
	$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V	$\mathrm{V}_{\mathrm{CC}} \times 0.7$		
	$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$ to 3.6 V	$\mathrm{V}_{\mathrm{CC}} \times 0.7$		
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V	$\mathrm{V}_{\mathrm{CC}} \times 0.7$		
VIL Low-level input voltage, control inputs	$\mathrm{V}_{\mathrm{CC}}=2 \mathrm{~V}$		0.5	V
	$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V		$\mathrm{V}_{\mathrm{CC}} \times 0.3$	
	$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$ to 3.6 V		$\mathrm{V}_{\mathrm{CC}} \times 0.3$	
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V		$\mathrm{V}_{\mathrm{CC}} \times 0.3$	
$\mathrm{V}_{1} \quad$ Control input voltage		0	5.5	V
Input/output voltage		0	V_{CC}	V
$\Delta t / \Delta v$ Input transition rise or fall rate	$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V		200	ns / V
	$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$ to 3.6 V		100	
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V		20	
$\mathrm{T}_{\mathrm{A}} \quad$ Operating free-air temperature		-40	85	${ }^{\circ} \mathrm{C}$

\dagger With supply voltages at or near 2 V , the analog switch on-state resistance becomes very nonlinear. Only digital signals should be transmitted at these low supply voltages.
NOTE 5: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS	V_{CC}	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			MIN	MAX	UNIT	
		MIN		TYP	MAX					
${ }^{\text {ron }}$	On-state switch resistance		$\begin{aligned} & 1 \mathrm{~T}^{\prime}=-1 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or GND, } \\ & \mathrm{V}_{\mathrm{C}}=\mathrm{V}_{\mathrm{IH}} \\ & \text { (see Figure 1) } \end{aligned}$	2.3 V		38	180		225	Ω
		3 V			29	150		190		
		4.5 V			21	75		100		
$\mathrm{r}_{\text {on(}}(\mathrm{p})$	Peak on-state resistance	$\begin{aligned} & \mathrm{I}_{\mathrm{T}}=-1 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { to } \mathrm{GND}, \\ & \mathrm{~V}_{\mathrm{C}}=\mathrm{V}_{\mathrm{IH}} \end{aligned}$	2.3 V		143	500		600	Ω	
			3 V		57	180		225		
			4.5 V		31	100		125		
$\Delta r_{\text {on }}$	Difference in on-state resistance between switches	$\begin{aligned} & \mathrm{I}_{\mathrm{T}}=-1 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { to GND, } \\ & \mathrm{V}_{\mathrm{C}}=\mathrm{V}_{\mathrm{IH}} \end{aligned}$	2.3 V		6	30		40	Ω	
			3 V		3	20		30		
			4.5 V		2	15		20		
1	Control input current	$\mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V}$ or GND	0 to 5.5 V			± 0.1		± 1	$\mu \mathrm{A}$	
IS(off)	Off-state switch leakage current	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { and } \\ & \mathrm{V}_{\mathrm{O}}=\mathrm{GND}, \text { or } \\ & \mathrm{V}_{\mathrm{I}}=\mathrm{GND} \text { and } \\ & \mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}, \\ & \mathrm{~V}_{\mathrm{C}}=\mathrm{V}_{\mathrm{IL}}, \\ & \text { (see Figure 2) } \end{aligned}$	5.5 V			± 0.1		± 1	$\mu \mathrm{A}$	
IS(on)	On-state switch leakage current	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or GND, } \\ & \mathrm{V}_{\mathrm{C}}=\mathrm{V}_{\mathrm{IH}} \\ & \text { (see Figure 3) } \\ & \hline \end{aligned}$	5.5 V			± 0.1		± 1	$\mu \mathrm{A}$	
ICC	Supply current	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {CC }}$ or GND	5.5 V					20	$\mu \mathrm{A}$	
$\mathrm{Cic}_{\text {ic }}$	Control input capacitance				1.5				pF	
Cio_{0}	Switch input/output capacitance				5.5				pF	
C_{F}	Feed-through capacitance				0.5				pF	

switching characteristics over recommended operating free-air temperature range, $\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V} \pm 0.2 \mathrm{~V}$ (unless otherwise noted)

PARAMETER		$\begin{aligned} & \text { FROM } \\ & \text { (INPUT) } \end{aligned}$	TO (OUTPUT)	TEST CONDITIONS	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			MIN	MAX	UNIT	
		MIN			TYP	MAX					
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation delay time		A or B	B or A	$\begin{aligned} & C_{\mathrm{L}}=15 \mathrm{pF}, \\ & \text { (see Figure 4) } \end{aligned}$		1.2	10		16	ns
tpZH tPZL	Switch turn-on time	C	A or B	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \\ & \text { (see Figure 5) } \end{aligned}$		3.3	15		20	ns	
$\begin{aligned} & \text { tPLZ } \\ & \text { tPHZ } \end{aligned}$	Switch turn-off time	C	A or B	$\begin{aligned} & C_{\mathrm{L}}=15 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \\ & \text { (see Figure 5) } \\ & \hline \end{aligned}$		6	15		23	ns	
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \\ & \hline \end{aligned}$	Propagation delay time	A or B	B or A	$\begin{aligned} & C_{L}=50 \mathrm{pF}, \\ & \text { (see Figure 4) } \end{aligned}$		2.6	12		18	ns	
$\begin{aligned} & \text { tpZH } \\ & \text { tpZL } \end{aligned}$	Switch turn-on time	C	A or B	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \\ & \text { (see Figure 5) } \end{aligned}$		4.2	25		32	ns	
$\begin{aligned} & \text { tPLZ } \\ & \text { tPHZ } \end{aligned}$	Switch turn-off time	C	A or B	$\begin{aligned} & C_{L}=50 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \\ & \text { (see Figure 5) } \end{aligned}$		9.6	25		32	ns	

switching characteristics over recommended operating free-air temperature range, $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$ (unless otherwise noted)

PARAMETER		$\begin{aligned} & \text { FROM } \\ & \text { (INPUT) } \end{aligned}$	TO (OUTPUT)	TEST CONDITIONS	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			MIN	MAX	UNIT	
		MIN			TYP	MAX					
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation delay time		A or B	B or A	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \\ & \text { (see Figure 4) } \end{aligned}$		0.8	6		10	ns
$\begin{aligned} & \text { tpZH } \\ & \text { tpZL } \end{aligned}$	Switch turn-on time	C	A or B	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \\ & \text { (see Figure 5) } \\ & \hline \end{aligned}$		2.3	11		15	ns	
$\begin{aligned} & \text { tpLZ } \\ & \text { tpHZ } \end{aligned}$	Switch turn-off time	C	A or B	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \\ & \text { (see Figure 5) } \\ & \hline \end{aligned}$		4.5	11		15	ns	
$\begin{aligned} & \text { tpLH } \\ & \text { tPHL } \end{aligned}$	Propagation delay time	A or B	B or A	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ & \text { (see Figure 4) } \end{aligned}$		1.5	9		12	ns	
$\begin{aligned} & \text { tpZH } \\ & \text { tPZL } \end{aligned}$	Switch turn-on time	C	A or B	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \\ & \text { (see Figure 5) } \\ & \hline \end{aligned}$		3	18		22	ns	
$\begin{aligned} & \text { tpLZ } \\ & \text { tPHZ } \end{aligned}$	Switch turn-off time	C	A or B	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \\ & \text { (see Figure 5) } \end{aligned}$		7.2	18		22	ns	

QUADRUPLE BILATERAL ANALOG SWITCH

SCLS511 - JUNE 2003
switching characteristics over recommended operating free-air temperature range, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 0.5 \mathrm{~V}$ (unless otherwise noted)

PARAMETER		FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			MIN	MAX	UNIT	
		MIN			TYP	MAX					
$\begin{aligned} & \text { tpLH } \\ & \text { tPHL } \end{aligned}$	Propagation delay time		A or B	B or A	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \\ & \text { (see Figure 4) } \end{aligned}$		0.3	4		7	ns
$\begin{aligned} & \text { tpZH } \\ & \text { tpZL } \end{aligned}$	Switch turn-on time	C	A or B	$\begin{aligned} & \hline \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \\ & \text { (see Figure 5) } \\ & \hline \end{aligned}$		1.6	7		10	ns	
$\begin{aligned} & \text { tpLZ } \\ & \text { tpHZ } \end{aligned}$	Switch turn-off time	C	A or B	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \\ & \text { (see Figure 5) } \\ & \hline \end{aligned}$		3.2	7		10	ns	
$\begin{aligned} & \text { tpLH } \\ & \text { tpHL } \end{aligned}$	Propagation delay time	A or B	B or A	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ & \text { (see Figure 4) } \\ & \hline \end{aligned}$		0.6	6		8	ns	
$\begin{aligned} & \text { tpZH } \\ & \text { tpZL } \end{aligned}$	Switch turn-on time	C	A or B	$\begin{aligned} & C_{L}=50 \mathrm{pF}, \\ & R_{\mathrm{L}}=1 \mathrm{k} \Omega \\ & \text { (see Figure 5) } \end{aligned}$		2.1	12		16	ns	
$\begin{aligned} & \text { tpLZ } \\ & \text { tphZ } \end{aligned}$	Switch turn-off time	C	A or B	$\begin{aligned} & C_{\mathrm{L}}=50 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \\ & \text { (see Figure 5) } \\ & \hline \end{aligned}$		5.1	12		16	ns	

analog switch characteristics over operating free-air temperature range (unless otherwise noted)

operating characteristics, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

| PARAMETER | TEST CONDITIONS | TYP | UNIT |
| :---: | :---: | :---: | :---: | :---: |
| C_{pd} Power dissipation capacitance | $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \quad \mathrm{f}=10 \mathrm{MHz}$ | 4.5 | pF |

PARAMETER MEASUREMENT INFORMATION

Figure 1. On-State Resistance Test Circuit

Condition 1: $\mathrm{V}_{\mathrm{I}}=0, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}$
Condition 2: $\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{C}}, \mathrm{V}_{\mathrm{O}}=0$
Figure 2. Off-State Switch Leakage-Current Test Circuit

$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ or GND
Figure 3. On-State Leakage-Current Test Circuit

PARAMETER MEASUREMENT INFORMATION

Figure 4. Propagation Delay Time, Signal Input to Signal Output

PARAMETER MEASUREMENT INFORMATION

TEST	S1	S2
tPZL	GND	V_{Cc}
tPZH	$\mathrm{V}_{\text {CC }}$	GND
tpLZ	GND	$\mathrm{V}_{\text {cc }}$
tPHZ	$\mathrm{V}_{\text {cc }}$	GND

(tPZL, tPZH)

(tPLZ, tPHZ)
VOLTAGE WAVEFORMS

Figure 5. Switching Time ($\mathbf{t}_{\text {PZL }}, \mathrm{t}_{\mathrm{PLZ}}, \mathrm{t}_{\mathrm{PZH}}, \mathrm{t}_{\text {PHZ }}$), Control to Signal Output

PARAMETER MEASUREMENT INFORMATION

Figure 6. Frequency Response (Switch On)

Figure 7. Crosstalk Between Any Two Switches

Figure 8. Crosstalk (Control Input - Switch Output)

PARAMETER MEASUREMENT INFORMATION

Figure 9. Feed-Through Attenuation (Switch Off)

Figure 10. Sine-Wave Distortion

PACKAGING INFORMATION

| Orderable Device | Status ${ }^{\text {(1) }}$ | Package
 Type | Package
 Drawing | Pins Package
 Qty | Eco Plan ${ }^{(2)}$ | Lead/Ball Finish | MSL Peak Temp ${ }^{(3)}$ | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SN74AHC4066D | ACTIVE | SOIC | D | 14 | 50 | Pb-Free
 (RoHS) | CU NIPDAU | Level-2-260C-1 YEAR
 Level-1-235C-UNLIM |
| SN74AHC4066DBR | ACTIVE | SSOP | DB | 14 | 2000 | Pb-Free
 (RoHS) | CU NIPDAU | Level-2-260C-1 YEAR
 Level-1-235C-UNLIM |
| SN74AHC4066DGVR | ACTIVE | TVSOP | DGV | 14 | 2000 | Pb-Free
 (RoHS) | CU NIPDAU | Level-1-250C-UNLIM |
| SN74AHC4066DR | ACTIVE | SOIC | D | 14 | 2500 | Pb-Free
 (RoHS) | CU NIPDAU | Level-2-260C-1 YEAR
 Level-1-235C-UNLIM |
| SN74AHC4066N | ACTIVE | PDIP | N | 14 | 25 | Pb-Free
 (RoHS) | CU NIPDAU | Level-NC-NC-NC |
| SN74AHC4066NSR | ACTIVE | SO | NS | 14 | 2000 | Pb-Free
 (RoHS) | CU NIPDAU | Level-2-260C-1 YEAR
 Level-1-235C-UNLIM |
| SN74AHC4066PW | ACTIVE | TSSOP | PW | 14 | 90 | Pb-Free
 (RoHS) | CU NIPDAU | Level-1-250C-UNLIM |
| SN74AHC4066PWR | ACTIVE | TSSOP | PW | 14 | 2000 | Pb-Free
 (RoHS) | CU NIPDAU | Level-1-250C-UNLIM |
| SN74AHC4066RGYR | ACTIVE | QFN | RGY | 14 | 1000 |
 no Sb/Br) | CU NIPDAU | Level-2-260C-1YEAR |

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
${ }^{(2)}$ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS) or Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb -Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb -Free products are suitable for use in specified lead-free processes.
Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$): TI defines "Green" to mean Pb -Free (RoHS compatible), and free of $\mathrm{Bromine}(\mathrm{Br}$) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
${ }^{(3)}$ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall Tl's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

N (R-PDIP-T**)
PLASTIC DUAL-IN-LINE PACKAGE
16 PINS SHOWN

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C) Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).

D The 20 pin end lead shoulder width is a vendor option, either half or full width.

PIM **	$\mathbf{1 4}$	$\mathbf{1 6}$	$\mathbf{2 0}$	$\mathbf{2 4}$	$\mathbf{3 8}$	$\mathbf{4 8}$	$\mathbf{5 6}$
A MAX	3,70	3,70	5,10	5,10	7,90	9,80	11,40
A MIN	3,50	3,50	4,90	4,90	7,70	9,60	11,20

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15 per side.
D. Falls within JEDEC: $24 / 48$ Pins - MO-153

14/16/20/56 Pins - MO-194

D (R-PDSO-G14)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion not to exceed $0.006(0,15)$.
D. Falls within JEDEC MS-012 variation AB.

NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.
B. This drawing is subject to change without notice.
C. QFN (Quad Flatpack No-Lead) package configuration.

D The package thermal pad must be soldered to the board for thermal and mechanical performance
Pin 1 identifiers are located on both top and bottom of the package and within the zone indicated. The Pin 1 identifiers are either a molded, marked, or metal feature.
F. Package complies to JEDEC MO-241 variation BA.

NS (R-PDSO-G**)
14-PINS SHOWN

DIM PINS **	14	16	20	24
A MAX	10,50	10,50	12,90	15,30
A MIN	9,90	9,90	12,30	14,70

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

DIM PINS **	$\mathbf{1 4}$	$\mathbf{1 6}$	$\mathbf{2 0}$	$\mathbf{2 4}$	$\mathbf{2 8}$	$\mathbf{3 0}$	$\mathbf{3 8}$
A MAX	6,50	6,50	7,50	8,50	10,50	10,50	12,90
A MIN	5,90	5,90	6,90	7,90	9,90	9,90	12,30

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.
D. Falls within JEDEC MO-150

PIMS $^{* *}$	$\mathbf{8}$	$\mathbf{1 4}$	$\mathbf{1 6}$	$\mathbf{2 0}$	$\mathbf{2 4}$	$\mathbf{2 8}$
A MAX	3,10	5,10	5,10	6,60	7,90	9,80
A MIN	2,90	4,90	4,90	6,40	7,70	9,60

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion not to exceed 0,15 .
D. Falls within JEDEC MO-153

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to Tl's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with Tl's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI .

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. Tl is not responsible or liable for such altered documentation.

Resale of Tl products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. Tl is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products

Applications

Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video \& Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments
Post Office Box 655303 Dallas, Texas 75265

Copyright © 2005, Texas Instruments Incorporated

