FEATURES

Bandwidth: $\mathbf{3 0 0}$ MHz

Low insertion loss and on resistance: $5 \boldsymbol{\Omega}$ typical
 On resistance flatness: 0.68Ω typical
 Single 3 V/5 V supply operation
 Low quiescent supply current: 1 nA typical
 Fast switching times:

ton, 7 ns
toff, 5 ns
TTL/CMOS compatible

APPLICATIONS

RGB switches

HDTV
DVD-R
Audio/video switches

GENERAL DESCRIPTION

The ADG794 is a monolithic CMOS device comprising four 2:1 multiplexer/demultiplexers with high impedance outputs. The CMOS process provides low power dissipation yet gives high switching speed and low on resistance. The on resistance variation is typically less than 1.2Ω over the input signal range.

The bandwidth of the ADG794 is typically 300 MHz and this, coupled with low distortion (typically 0.68%), makes the part suitable for switching analog audio/video signals.

The ADG794 operates from a single $3.3 \mathrm{~V} / 5 \mathrm{~V}$ supply and is TTL logic compatible. The switches are controlled by the logic inputs IN and $\overline{\mathrm{EN}}$ as shown in Table 4. The $\overline{\mathrm{EN}}$ pin allows the user to disable all switches.

FUNCTIONAL BLOCK DIAGRAM

Figure 1.

These switches conduct equally well in both directions when on. In the off condition, signal levels up to the supplies are blocked. The ADG794 switches exhibit break-before-make switching action.

The ADG794 is available in a 16-pin QSOP package.

PRODUCT HIGHLIGHTS

1. Wide bandwidth: 300 MHz .
2. Ultralow power dissipation.
3. Crosstalk is typically -70 dB at 10 MHz .
4. Off isolation is typically -65 dB at 10 MHz .

Rev. 0
Information furnished by Analog Devices is believed to be accurate and reliable.

ADG794

TABLE OF CONTENTS

Specifications..
Single Supply .. 3
Absolute Maximum Ratings.. 5
ESD Caution... 5
Pin Configuration and Function Descriptions............................ 6
Terminology ... 7

Typical Performance Characteristics ... 8
Typical Application ... 8
Test Circuits.. 9
Outline Dimensions ... 11
Ordering Guide .. 11

REVISION HISTORY

10/04—Revision 0: Initial Version

SPECIFICATIONS

SINGLE SUPPLY

$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%$, GND $=0 \mathrm{~V}$. All specifications $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted.
Table 1.

${ }^{1}$ Temperature range for B Version is $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
${ }^{2}$ Guaranteed by design, not subject to production test.

ADG794

$\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V} \pm 10 \%$, GND $=0 \mathrm{~V}$. All specifications $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted.
Table 2.

Parameter	B Version ${ }^{1}$		Unit	Test Conditions/Comments
	$25^{\circ} \mathrm{C}$	$\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {max }}$		
ANALOG SWITCH				
Analog Signal Range		0 to 1.5	V	$\mathrm{V}_{\mathrm{D}}=0 \mathrm{~V}$ to 1 V ; $\mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA}$; Figure 6
On Resistance (Ron)	7		Ω typ	
	9.5	11	Ω max	
On Resistance Match between Channels (Δ Ros)	0.3		$\Omega \operatorname{typ}$	$\mathrm{V}_{\mathrm{D}}=0 \mathrm{~V}$ to $1 \mathrm{~V} ; \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA}$
		0.9	Ω max	
On Resistance Flatness (Rflation)	2.6		Ω typ	$\mathrm{V}_{\mathrm{D}}=0 \mathrm{~V}$ to $1 \mathrm{~V} ; \mathrm{l}_{\mathrm{s}}=-10 \mathrm{~mA}$
		5	Ω max	
LEAKAGE CURRENTS				
Source Off Leakage, Is (Off)	± 0.001		$n A$ typ	$\mathrm{V}_{\mathrm{S}}=2 \mathrm{~V} / 1 \mathrm{~V}$; $\mathrm{V}_{\mathrm{D}}=1 \mathrm{~V} / 2 \mathrm{~V}$; Figure 7
Drain Off Leakage, lo (Off)	± 0.001		nA typ	$V_{S}=2 \mathrm{~V} / 1 \mathrm{~V} ; \mathrm{V}_{\mathrm{D}}=1 \mathrm{~V} / 2 \mathrm{~V}$; Figure 7
Channel On Leakage, $\mathrm{I}_{\mathrm{D}}, \mathrm{I}_{\mathrm{S}}(\mathrm{On})$	± 0.001		nA typ	$\mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\mathrm{S}}=2 \mathrm{~V} / 1 \mathrm{~V}$; Figure 8
DIGITAL INPUTS				
Input High Voltage, $\mathrm{V}_{\text {INH }}$	0.001	2.0	V min	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {INL }}$ or $\mathrm{V}_{\text {INH }}$
Input Low Voltage, VINL		0.4	\checkmark max	
Input Current				
linl or $\mathrm{l}_{\text {INH }}$			$\mu \mathrm{A}$ typ	
		± 0.1	$\mu \mathrm{A}$ max	
Digital Input Capacitance, $\mathrm{Cl}_{\text {IN }}$		3	pF typ	
DYNAMIC CHARACTERISTICS ${ }^{2}$				
$\text { ton, ton }(\overline{\mathrm{EN}})$	8		ns typ	$\mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=50 \Omega$
		16	ns max	$\mathrm{V}_{\mathrm{s}}=1.5 \mathrm{~V}$; Figure 9
toff , toff ($\overline{\mathrm{EN}}$)	6		ns typ	$\mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=50 \Omega$
Break-Before-Make Time Delay, to		10	ns max	$\mathrm{V}_{\mathrm{s}}=1.5 \mathrm{~V}$; Figure 9
	3	1	ns typ	$\mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} ; \mathrm{RL}_{\mathrm{L}}=50 \Omega$
			ns min	$\mathrm{V}_{\mathrm{s} 1}=\mathrm{V}_{\mathrm{s} 2}=1.5 \mathrm{~V} \text {; Figure } 10$
Off Isolation	-65		dB typ	$\mathrm{f}=10 \mathrm{MHz} ; \mathrm{R}_{\mathrm{L}}=50 \Omega$; Figure 12
Channel-to-Channel Crosstalk	-70		dB typ	$\mathrm{f}=10 \mathrm{MHz} ; \mathrm{R}_{\mathrm{L}}=50 \Omega$; Figure 13
Bandwidth -3 dB	300		MHz typ	$\mathrm{R}_{\mathrm{L}}=50 \Omega$; Figure 11
Distortion	2.6		\% typ	$\mathrm{R}_{\mathrm{L}}=100 \Omega$
Charge Injection	4		pC typ	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}$; $\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}$; Figure 14
C_{s} (Off)	6		pF typ	
C_{D} (Off)	7.5		pF typ	
$\mathrm{C}_{\mathrm{D},} \mathrm{C}_{\mathrm{S}}$ (On)	13.5		pF typ	
POWER REQUIREMENTS IDD	0.001			$\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$; digital inputs $=0 \mathrm{~V}$ or V_{DD}
			$\mu \mathrm{A}$ typ	
		1	$\mu \mathrm{A}$ max	

[^0]${ }^{2}$ Guaranteed by design, not subject to production test.

ABSOLUTE MAXIMUM RATINGS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.

Table 3.

Parameters	Ratings
$V_{D D}$ to GND	-0.3 V to +6 V
Analog, Digital Inputs ${ }^{1}$	-0.3 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$ or
	30 mA , whichever occurs
Continuous Current, S or D	first
Peak Current, S or D	100 mA
	300 mA (pulsed at 1 ms,
Operating Temperature Range	10% duty cycle max)
\quad Industrial (B Version)	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature	$150^{\circ} \mathrm{C}$
QSOP Package, Power Dissipation	566 mW
OJA Thermal Impedance $^{\text {Lead Temperature, Soldering }}$	$149.97^{\circ} \mathrm{C} / \mathrm{W}$
\quad	
Vapor Phase (60 s)	$215^{\circ} \mathrm{C}$
Infrared (15 s)	$220^{\circ} \mathrm{C}$

${ }^{1}$ Overvoltages at IN, S, or D are clamped by internal diodes. Current should be limited to the maximum ratings given.

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Only one absolute maximum rating may be applied at any one time.

Table 4. Truth Table

$\overline{\text { EN }}$	IN	D1	D2	D3	D4	Function
1	X	$\mathrm{Hi}-Z$	$\mathrm{Hi}-Z$	$\mathrm{Hi}-\mathrm{Z}$	$\mathrm{Hi}-\mathrm{Z}$	Disable
0	0	S1A	S2A	S3A	S4A	$\mathrm{IN}=0$
0	1	S1B	S2B	S3B	S4B	$\mathrm{IN}=1$

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance

WARNING!

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Figure 2. Pin Configuration
Table 5. Pin Function Descriptions

Pin Number	Mnemonic	Description
1	IN	Logic Control Input. The logic level at this input controls the operation of the multiplexers (see Table 4).
2	S1A	A-Side Source Terminal of MUX1. Can be an input or output.
3	S1B	B-Side Source Terminal of MUX1. Can be an input or output.
4	D1	Drain Terminal of MUX1. Can be an input or output.
5	S2A	A-Side Source Terminal of MUX2. Can be an input or output.
6	S2B	B-Side Source Terminal of MUX2. Can be an input or output.
7	D2	Drain Terminal of MUX2. Can be an input or output.
8	GND	Ground Reference.
9	D3	Drain Terminal of MUX3. Can be an input or output.
10	S3B	B-Side Source Terminal of MUX3. Can be an input or output.
11	D4	A-Side Source Terminal of MUX3. Can be an input or output.
12	S4B	Drain Terminal of MUX4. Can be an input or output.
13	S4A	A-Side Source Terminal of MUX4. Can be an input or output.
14	EN	MUX Enable Logic Input. Enables or disables the multiplexers (see Table 4).
15	Vositive Power Supply Voltage.	
16		

TERMINOLOGY

$V_{\text {DD }}$
Most positive power supply potential.
IDD
Positive supply current.
GND
Ground (0 V) reference.
S
Source terminal. Can be either an input or an output.

D

Drain terminal. Can be either an input or an output.

IN

Logic control input.
$V_{D}\left(V_{s}\right)$
Analog voltage on terminals D, S.
Ron
Ohmic resistance between D and S .
$\mathrm{R}_{\text {flat (on) }}$
Flatness is defined as the difference between the maximum and minimum value of on resistance as measured.

Δ Ron $^{\prime}$

On resistance match between any two channels.

Is (Off)

Source leakage current with the switch off.

I_{D} (Off)

Drain leakage current with the switch off.
$\mathrm{I}_{\mathrm{D}}, \mathrm{I}_{\mathrm{S}}(\mathrm{On})$
Channel leakage current with the switch on.
Vinl
Maximum input voltage for Logic 0 .
$V_{\text {INH }}$
Minimum input voltage for Logic 1.
$\mathbf{I}_{\text {INL }}\left(\mathbf{I}_{\text {INH }}\right)$
Input current of the digital input.

Cs (Off)

Off switch source capacitance. Measured with reference to ground.
C_{D} (Off)
Off switch drain capacitance. Measured with reference to ground.
$\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{s}}(\mathrm{On})$
On switch capacitance. Measured with reference to ground.
Cin
Digital input capacitance.
ton
Delay time between the 50% and the 90% points of the digital input and switch on condition.
$t_{\text {OfF }}$
Delay time between the 50% and the 90% points of the digital input and switch off condition.
$\mathbf{t}_{\text {ввм }}$
On or off time measured between the 80% points of both switches when switching from one to another.

Charge Injection

A measure of the glitch impulse transferred from the digital input to the analog output during on/off switching.

Off Isolation

A measure of unwanted signal coupling through an off switch.

Crosstalk

A measure of unwanted signal that is coupled through from one channel to another as a result of parasitic capacitance.
-3 dB Bandwidth
The frequency at which the output is attenuated by 3 dB .

On Response

The frequency response of the on switch.

Insertion Loss

The loss due to the on resistance of the switch.
THD + N
The ratio of the harmonic amplitudes plus noise of a signal to the fundamental.

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 3. Off Isolation vs. Frequency

Figure 4. Crosstalk vs. Frequency

TYPICAL APPLICATION

Figure 5. Audio/Video Switch

TEST CIRCUITS

Figure 6. On Resistance

Figure 7. Off Leakage

Figure 8. On Leakage

Figure 9. Switching Times

Figure 10. Break-Before-Make Time Delay

ADG794

OUTLINE DIMENSIONS

igure 15. 16-Lead Shrink Small Outline Package [QSOP]
($R Q-16$)
Dimensions shown in inches and (millimeters)

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option
ADG794BRQZ ${ }^{1}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 -Lead Shrink Small Outline Package (QSOP)	RQ-16
ADG794BRQZ-500RL7 ${ }^{1}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 -Lead Shrink Small Outline Package (QSOP)	RQ-16
ADG794BRQZ-REEL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 -Lead Shrink Small Outline Package (QSOP)	RQ-16
${\text { ADG794BRQZ-REEL7 }{ }^{1}}^{1}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 -Lead Shrink Small Outline Package (QSOP)	RQ-16

[^1]
ADG794

NOTES

[^0]: ${ }^{1}$ Temperature range for B Version is $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

[^1]: ${ }^{1} \mathrm{Z}=\mathrm{Pb}$-free part.

