Data Sheet 72V Input Mini Family DC-DC Converter Module #### **Features** - DC input range: 43 110 V (continuous) - Encapsulated circuitry for shock and vibration resistance - Extended temperature range (-55 to +100°C) - Input surge withstand: 150 V for 100 ms - DC output: 3.3 48 V - Programmable output: 10 to 110% - Regulation: ±0.2% no load to full load - Efficiency: Up to 88% - Maximum operating temp: 100°C, full load - Power density: up to 100 W per cubic inch - Height above board: 0.43 in. (10,9 mm) - Parallelable, with N+M fault tolerance - · Low noise ZCS/ZVS architecture - RoHS Compliant (with F or G pin option) - · Agency approvals pending Shown actual size: 2.28 x 2.2 x 0.5 in 57,9 x 55,9 x 12,7 mm # **Product Overview** These DC-DC converter modules use advanced power processing, control and packaging technologies to provide the performance, flexibility, reliability and cost effectiveness of a mature power component. High frequency ZCS/ZVS switching provides high power density with low noise and high efficiency. ## **Applications** Railway/Transportation system applications including communications systems, information display, lighting, control systems, ticket machines, passenger entertainment, public address systems, door control, industrial power systems and power generation systems. ## **Absolute Maximum Ratings** | Parameter | Rating | Unit | Notes | |-----------------------------|--------------|--------------|---------------------| | +In to -In voltage | -0.5 to +155 | Vdc | | | PC to -In voltage | -0.5 to +7.0 | Vdc | | | PR to –In voltage | -0.5 to +7.0 | Vdc | | | SC to -Out voltage | -0.5 to +1.5 | Vdc | | | -Sense to -Out voltage | 1.0 | Vdc | | | Isolation voltage | | | | | in to out | 3000 | Vrms | Test voltage | | in to base | 1500 | Vrms | Test voltage | | out to base | 500 | Vrms | Test voltage | | Operating Temperature | -55 to +100 | °C | M-Grade | | Storage Temperature | -65 to +125 | °C | M-Grade | | Din coldering temperature | 500 (260) | °F (°C) | <5 sec; wave solder | | Pin soldering temperature — | 750 (390) | °F (°C) | <7 sec; hand solder | | Mounting torque | 5 (0.57) | in-lbs (N-m) | 6 each | | | | | | ## **Part Numbering** For a description of pin options, see page 9. Baseplate options include slotted flanges, threaded and through-hole. See page 10 for dimensions. For other package sizes and power levels, see the Micro (quarter size) and Maxi (full size) datasheets. Vicor Corp. Tel: 800-735-6200, 978-470-2900 Fax: 978-475-6715 72V Mini Family Rev. 1.7 Page 1 of 11 # MODULE FAMILY ELECTRICAL CHARACTERISTICS Electrical characteristics apply over the full operating range of input voltage, output load (resistive) and baseplate temperature, unless otherwise specified. All temperatures refer to the operating temperature at the center of the baseplate. #### **■ MODULE INPUT SPECIFICATIONS** | Parameter | Min | Тур | Max | Unit | Notes | | |-------------------------|------|-------|------|------|------------|--| | Operating input voltage | 43 | 72 | 110 | Vdc | EN50155 | | | Input surge withstand | | | 150 | Vdc | <100 ms | | | Undervoltage turn-on | | 41.7 | 42.6 | Vdc | | | | Undervoltage turn-off | 35.2 | 36.5 | | Vdc | | | | Overvoltage turn-off/on | 111 | 115.5 | 121 | Vdc | | | | Disabled input current | | | 1.5 | mA | PC pin low | | #### **■ MODULE OUTPUT SPECIFICATIONS** | Parameter | Min | Тур | Max | Unit | Notes | |--------------------------------|-----------------------------------|-------------|----------------------------|-------------|---| | Output voltage setpoint | | | ±1 | % Vout nom. | Nominal input; full load; 25°C | | ine regulation | | ±0.02 | ±0.20 | % | Low line to high line; full load | | Temperature regulation | | ±0.002 | ±0.005 | %/°C | Over operating temperature range | | Power sharing accuracy | | ±2 | ±5 | % | 10 to 100% of full load | | Programming range | 10 | | 110 | % | Of nominal output voltage. For trimming below 90% of nominal, a minimum load of 10% of maximum rated power may be required. | | +Out to -Out, +Sense to -Out - | Absolute Maxi | mum Ratings | 0 E to 4 7 | Vdo | Esternally applied | | 3.3 V
5 V | | | -0.5 to 4.7
-0.5 to 7.0 | Vdc
Vdc | Externally applied Externally applied | | 8 V | | | -0.5 to 10.9 | Vdc | Externally applied | | 12 V | | | -0.5 to 16.1 | Vdc | Externally applied | | 15 V | | | -0.5 to 20.0 | Vdc | Externally applied | | 24 V | | | -0.5 to 31.7 | Vdc | Externally applied | | 28 V | | | -0.5 to 36.9 | Vdc | Externally applied | | 36 V | | | -0.5 to 47.1 | Vdc | Externally applied | | 48 V | | | -0.5 to 62.9 | Vdc | Externally applied | **Note:** For important information relative to applications where the converter modules are subject to continuous dynamic loading, contact Vicor applications engineering at 800-927-9474. ## **■ THERMAL RESISTANCE AND CAPACITY** | Parameter | Min | Тур | Max | Unit | |--|-----|------|-----|-------------| | Baseplate to sink; flat, greased surface | | 0.16 | | °C/Watt | | Baseplate to sink; thermal pad (P/N 20265) | | 0.14 | | °C/Watt | | Baseplate to ambient | | 8.0 | | °C/Watt | | Baseplate to ambient; 1000 LFM | | 1.9 | | °C/Watt | | Thermal capacity | | 83 | | Watt-sec/°C | Vicor Corp. Tel: 800-735-6200, 978-470-2900 Fax: 978-475-6715 72V Mini Family Rev. 1.7 Page 2 of 11 # MODULE FAMILY ELECTRICAL CHARACTERISTICS (CONT.) ## **■ MODULE CONTROL SPECIFICATIONS** | Parameter | Min | Тур | Max | Unit | Notes | |---------------------------|------------------|-----------|------|---------|--| | PRIMARY SIDE (PC = Primar | y Control; PR = | Parallel) | | | | | PC bias voltage | 5.50 | 5.75 | 6.00 | Vdc | PC current = 1.0 mA | | current limit | 1.5 | 2.1 | 3.0 | mA | PC voltage = 5.5 V | | PC module disable | 2.3 | 2.6 | 2.9 | Vdc | Must be able to sink ≥4 mA. See Fig. 1 | | PC module enable delay | | 4 | 7 | ms | | | PC module alarm | | | 0.5 | Vavg | UV, OT, module fault. See Figs. 2 and 4 | | PC resistance | 0.9 | 1.0 | 1.1 | ΜΩ | See Fig. 2 | | PR emitter amplitude | 5.7 | 5.9 | 6.1 | Volts | PR load >30 Ω, <30 pF | | PR emitter current | 150 | | | mA | | | PR receiver impedance | 375 | 500 | 625 | Ω | 25°C | | PR receiver threshold | 2.4 | 2.5 | 2.6 | Volts | Minimum pulse width: 20 ns | | PR drive capability | | | 12 | modules | Without PR buffer amplifier | | SECONDARY SIDE (SC = Se | condary Control) |) | | | | | SC bandgap voltage | 1.21 | 1.23 | 1.25 | Vdc | Referenced to –Sense | | SC resistance | 990 | 1000 | 1010 | Ω | | | SC capacitance | | 0.033 | | μF | | | SC module alarm | | 0 | | Vdc | With open trim; referenced to -Sense. See Fig. 6 | ## **■ MODULE GENERAL SPECIFICATIONS** | Parameter | Min | Тур | Max | Unit | Notes | |----------------------------------|---------------|----------------|----------------|-------------------|--| | Remote sense (total drop) | | | 0.5 | Vdc | 0.25 V per leg (senses must be closed) | | Isolation test voltage | | | | | | | in to out | 3000 | | | Vrms | Complies with reinforced insulation requirements | | in to base | 1500 | | | Vrms | Complies with basic insulation requirements | | out to base | 500 | | | Vrms | Complies with operational insulation requirements | | Isolation resistance (in to out) | | 10 | | ΜΩ | | | Weight | 3.5
(99.6) | 3.9
(110.6) | 4.3
(121.6) | ounces
(grams) | | | Temperature limiting | 100 | 115 | | °C | See Figs. 2 and 4 | | Agency approvals | cURu | s, TÜV, CE (pe | nding) | | UL60950-1, EN60950-1, CSA60950-1, IEC60950-1 With appropriate fuse in series with the +Input | ## Note: Specifications are subject to change without notice. Vicor Corp. Tel: 800-735-6200, 978-470-2900 Fax: 978-475-6715 72V Mini Family Rev. 1.7 Page 3 of 11 ## **■ MODULE SPECIFIC OPERATING SPECIFICATIONS** ## 3.3 Vout, 100 W (e.g. V72B3V3C100BL) | Parameter | Min | Тур | Max | Unit | Notes | |-----------------------|------|-------|------|-------|--| | Efficiency | 80 | 82.2 | | % | Nominal input; full load; 25°C | | Ripple and noise | | 185 | 232 | mV | p-p; Nominal input; full load; 20 MHz bandwith | | Output OVP setpoint | 4.14 | 4.3 | 4.46 | Volts | 25°C; recycle input voltage to restart (>100 ms off) | | Dissipation, standby | | 4.4 | 5.4 | Watts | No load | | Load regulation | | ±0.02 | ±0.2 | % | No load to full load; nominal input | | Output Current | 0 | | 30.3 | Amps | | | Current limit | 30.9 | 34.8 | 41 | Amps | Output voltage 95% of nominal | | Short circuit current | 21.2 | 34.8 | 41 | Amps | Output voltage <250 mV | ## 5 Vout, 150 W (e.g. V72B5C150BL) | Parameter | Min | Тур | Max | Unit | Notes | |-----------------------|------|-------|------|-------|--| | Efficiency | 84 | 85 | | % | Nominal input; full load; 25°C | | Ripple and noise | | 120 | 150 | mV | p-p; Nominal input; full load; 20 MHz bandwith | | Output OVP setpoint | 6.03 | 6.25 | 6.47 | Volts | 25°C; recycle input voltage to restart (>100 ms off) | | Dissipation, standby | | 7.9 | 8.6 | Watts | No load | | Load regulation | | ±0.02 | ±0.2 | % | No load to full load; nominal input | | Output Current | 0 | | 30 | Amps | | | Current limit | 30.6 | 34.5 | 40.5 | Amps | Output voltage 95% of nominal | | Short circuit current | 21 | 34.5 | 40.5 | Amps | Output voltage <250 mV | ## 8 Vout, 150 W (e.g. V72B8C150BL) | Parameter | Min | Тур | Max | Unit | Notes | |-----------------------|------|-------|-------|-------|--| | Efficiency | 83.5 | 84.5 | | % | Nominal input; full load; 25°C | | Ripple and noise | | 220 | 275 | mV | p-p; Nominal input; full load; 20 MHz bandwith | | Output OVP setpoint | 9.36 | 9.7 | 10.1 | Volts | 25°C; recycle input voltage to restart (>100 ms off) | | Dissipation, standby | | 5.9 | 6.9 | Watts | No load | | Load regulation | | ±0.02 | ±0.2 | % | No load to full load; nominal input | | Output Current | 0 | | 18.75 | Amps | | | Current limit | 19.1 | 21.6 | 25.4 | Amps | Output voltage 95% of nominal | | Short circuit current | 5 | 21.6 | 25.4 | Amps | Output voltage <250 mV | ## 12 Vout, 250 W (e.g. V72B12C250BL) | Parameter | Min | Тур | Max | Unit | Notes | |-----------------------|------|-------|-------|-------|--| | Efficiency | 85 | 86.5 | | % | Nominal input; full load; 25°C | | Ripple and noise | | 300 | 375 | mV | p-p; Nominal input; full load; 20 MHz bandwith | | Output OVP setpoint | 13.7 | 14.3 | 14.9 | Volts | 25°C; recycle input voltage to restart (>100 ms off) | | Dissipation, standby | | 8.5 | 9.5 | Watts | No load | | Load regulation | | ±0.02 | ±0.2 | % | No load to full load; nominal input | | Output Current | 0 | | 20.83 | Amps | | | Current limit | 21.2 | 23.9 | 28.2 | Amps | Output voltage 95% of nominal | | Short circuit current | 14.5 | 23.9 | 28.1 | Amps | Output voltage <250 mV | ## 15 Vout, 250 W (e.g. V72B15C250BL) | Parameter | Min | Тур | Max | Unit | Notes | |-----------------------|------|-------|-------|-------|--| | Efficiency | 85.1 | 86.3 | | % | Nominal input; full load; 25°C | | Ripple and noise | | 400 | 500 | mV | p-p; Nominal input; full load; 20 MHz bandwith | | Output OVP setpoint | 17.1 | 17.8 | 18.5 | Volts | 25°C; recycle input voltage to restart (>100 ms off) | | Dissipation, standby | | 8.3 | 8.8 | Watts | No load | | Load regulation | | ±0.02 | ±0.2 | % | No load to full load; nominal input | | Output Current | 0 | | 16.67 | Amps | | | Current limit | 17 | 19.2 | 22.6 | Amps | Output voltage 95% of nominal | | Short circuit current | 11.6 | 19.2 | 22.6 | Amps | Output voltage <250 mV | *Vicor Corp.* Tel: 800-735-6200, 978-470-2900 Fax: 978-475-6715 72V Mini Family ## ■ MODULE SPECIFIC OPERATING SPECIFICATIONS (CONT.) ## 24 Vout, 250 W (e.g. V72B24C250BL) | Parameter | Min | Тур | Max | Unit | Notes | |-----------------------|------|-------|-------|-------|--| | Efficiency | 85.5 | 86.8 | | % | Nominal input; full load; 25°C | | Ripple and noise | | 216 | 270 | mV | p-p; Nominal input; full load; 20 MHz bandwith | | Output OVP setpoint | 27.1 | 28.1 | 29.1 | Volts | 25°C; recycle input voltage to restart (>100 ms off) | | Dissipation, standby | | 7.8 | 8.9 | Watts | No load | | Load regulation | | ±0.02 | ±0.2 | % | No load to full load; nominal input | | Output Current | 0 | | 10.42 | Amps | | | Current limit | 10.6 | 12 | 14.1 | Amps | Output voltage 95% of nominal | | Short circuit current | 7.28 | 12 | 14.1 | Amps | Output voltage <250 mV | ## 28 Vout, 250 W (e.g. V72B28C250BL) | Parameter | Min | Тур | Max | Unit | Notes | |-----------------------|------|-------|------|-------|--| | Efficiency | 86.5 | 88 | | % | Nominal input; full load; 25°C | | Ripple and noise | | 270 | 338 | mV | p-p; Nominal input; full load; 20 MHz bandwith | | Output OVP setpoint | 31.5 | 32.7 | 33.9 | Volts | 25°C; recycle input voltage to restart (>100 ms off) | | Dissipation, standby | | 7.7 | 8.2 | Watts | No load | | Load regulation | | ±0.02 | ±0.2 | % | No load to full load; nominal input | | Output Current | 0 | | 8.93 | Amps | | | Current limit | 9.1 | 10.3 | 12.1 | Amps | Output voltage 95% of nominal | | Short circuit current | 6.25 | 10.3 | 12.1 | Amps | Output voltage <250 mV | ## 36 Vout, 250 W (e.g. V72B36C250BL) | Parameter | Min | Тур | Max | Unit | Notes | |-----------------------|------|-------|------|-------|--| | Efficiency | 86.5 | 87.7 | | % | Nominal input; full load; 25°C | | Ripple and noise | | 200 | 250 | mV | p-p; Nominal input; full load; 20 MHz bandwith | | Output OVP setpoint | 40.4 | 41.9 | 43.4 | Volts | 25°C; recycle input voltage to restart (>100 ms off) | | Dissipation, standby | | 10.1 | 11 | Watts | No load | | Load regulation | | ±0.02 | ±0.2 | % | No load to full load; nominal input | | Output Current | 0 | | 6.94 | Amps | | | Current limit | 7.07 | 7.98 | 9.37 | Amps | Output voltage 95% of nominal | | Short circuit current | 4.85 | 7.98 | 9.37 | Amps | Output voltage <250 mV | ## 48 Vout, 250 W (e.g. V72B48C250BL) | Parameter | Min | Тур | Max | Unit | Notes | |-----------------------|------|-------|------|-------|--| | Efficiency | 85.5 | 87.0 | | % | Nominal input; full load; 25°C | | Ripple and noise | | 202 | 253 | mV | p-p; Nominal input; full load; 20 MHz bandwith | | Output OVP setpoint | 53.7 | 55.7 | 57.7 | Volts | 25°C; recycle input voltage to restart (>100 ms off) | | Dissipation, standby | | 8.7 | 10.5 | Watts | No load | | Load regulation | | ±0.02 | ±0.2 | % | No load to full load; nominal input | | Output Current | 0 | | 5.21 | Amps | | | Current limit | 5.31 | 5.99 | 7.04 | Amps | Output voltage 95% of nominal | | Short circuit current | 3.64 | 5.99 | 7.04 | Amps | Output voltage <250 mV | *Vicor Corp.* Tel: 800-735-6200, 978-470-2900 Fax: 978-475-6715 72V Mini Family Rev. 1.7 Page 5 of 11 #### Module Enable/Disable The module may be disabled by pulling PC below 2.3 V with respect to the -Input. This may be done with an open collector transistor, relay, or optocoupler. Multiple converters may be disabled with a single transistor or relay either directly or via "OR'ing" diodes. See Figure 1. #### **Primary Auxiliary Supply** At 5.7 V, PC can source up to 1.5 mA. In the example shown in Figure 3, PC powers a module enabled LED. Figure 1 — Module enable/disable. Figure 3 — LED on-state indicator. *Figure 5* — *Isolated on-state indicator.* #### Module Alarm The module contains "watchdog" circuitry which monitors input voltage, operating temperature and internal operating parameters. In the event that any of these parameters are outside of their allowable operating range, the module will shut down and PC will go low. PC will periodically go high and the module will check to see if the fault (as an example, overtemperature) has cleared. If the fault has not been cleared, PC will go low again and the cycle will restart. The SC pin will go low in the event of a fault and return to its normal state after the fault has been cleared. See Figures 2 and 4. Figure 2 — PC/SC module alarm logic. Figure 4 — PC/SC module alarm timing. *Figure 6* — *Secondary side on-state indicator.* #### **Output Voltage Programming** The output voltage of the converter can be adjusted or programmed via fixed resistors, potentiometers or voltage DACs. See Figures 7 and 8. Figure 7 — Output voltage trim down circuit. #### **Trim Down** - This converter is <u>not</u> a constant power device it has a constant current limit. Hence, available output power is reduced by the same percentage that output voltage is trimmed down. Do not exceed maximum rated output current. - 2. The trim down resistor must be connected to the –Sense pin. Figure 8 — Output voltage trim up circuit. ## Trim Up - The converter is rated for a maximum delivered power. To ensure that maximum rated power is not exceeded, reduce maximum output current by the same percentage increase in output voltage. - 2. The trim up resistor must be connected to the +Sense pin. - 3. Do not trim the converter above maximum trim range (typically +10%) or the output over voltage protection circuitry may be activated. #### Trim resistor values calculated automatically: On-line calculators for trim resistor values are available on the vicor website at: <u>vicorpower.com/tools</u>. Resistor values can be calculated for fixed trim up, fixed trim down and for variable trim up or down. In addition to trimming information, the web site and the Applications Manual also include design tips, applications circuits, EMC suggestions, thermal design guidelines and PDF data sheets for all available Vicor products. Vicor Corp. Tel: 800-735-6200, 978-470-2900 Fax: 978-475-6715 72V Mini Family Rev. 1.7 Page 7 of 11 ## **Parallel Operation** The PR pin supports paralleling for increased power with N+1 (N+M) redundancy and phased array capability. Modules of the same input voltage, output voltage, and power level will current share if all PR pins are suitably interfaced. Compatible interface architectures include the following: *DC* coupled single-wire interface. All PR pins are directly connected to one another. This interface supports current sharing but is not fault tolerant. Negative In pins must be tied to the same electric potential. Up to three converters may be paralleled by this method. See Figure 9. AC coupled single-wire interface. All PR pins are connected to a single communication bus through 0.001 μF (500 V) capacitors. This interface supports current sharing and is fault tolerant except for the communication bus. Up to three converters may be paralleled by this method. See Figure 10. *Transformer coupled interface.* For paralleling four or more converters a transformer coupled interface is required. For details on this configuration please refer to the design guide referenced in the following technical information section. #### **Technical Information** For additional technical information contained in the *Design Guide and Applications Manual for Maxi, Mini, Micro Family DC-DC Converters and Accessory Modules*, click on the link below: http://www.vicorpower.com/mmmguide *Figure 9* — *DC coupled single-wire interface.* *Figure 10* — *AC coupled single-wire interface.* Vicor Corp. Tel: 800-735-6200, 978-470-2900 Fax: 978-475-6715 72V Mini Family Rev. 1.7 Page 8 of 11 # **CONTROL FUNCTIONS - PR PIN (CONT.)** *Figure 11* — *N*+1 module array output connections. *Figure 12* — *OR'ing diodes connections.* #### **■ PIN STYLES*** | Designator | Description | Notes | |------------|--------------------|---| | (None) | Short Tin/Lead | Requires in-board, mounting | | L | Long Tin/Lead | On-board mounting for 0.065" boards | | S | Short ModuMate | SurfMate or in-board socket mounting | | N | Long ModuMate | On-board socket mounting | | F | Short, gold (RoHS) | Select for RoHS compliant in-board solder, socket, or SurfMate mounting | | G | Long, gold (RoHS) | Select for RoHS compliant on-board solder or socket mounting | ^{*} Pin style designator follows the "B" after the output power and precedes the baseplate designator. Ex. V72B12T250BN2 — Long ModuMate Pins Figure 13 — Module outline Figure 14 — PCB mounting specifications #### Warranty Vicor products are guaranteed for two years from date of shipment against defects in material or workmanship when in normal use and service. This warranty does not extend to products subjected to misuse, accident, or improper application or maintenance. Vicor shall not be liable for collateral or consequential damage. This warranty is extended to the original purchaser only. EXCEPT FOR THE FOREGOING EXPRESS WARRANTY, VICOR MAKES NO WARRANTY, EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Vicor will repair or replace defective products in accordance with its own best judgement. For service under this warranty, the buyer must contact Vicor to obtain a Return Material Authorization (RMA) number and shipping instructions. Products returned without prior authorization will be returned to the buyer. The buyer will pay all charges incurred in returning the product to the factory. Vicor will pay all reshipment charges if the product was defective within the terms of this warranty. Information published by Vicor has been carefully checked and is believed to be accurate; however, no responsibility is assumed for inaccuracies. Vicor reserves the right to make changes to any products without further notice to improve reliability, function, or design. Vicor does not assume any liability arising out of the application or use of any product or circuit; neither does it convey any license under its patent rights nor the rights of others. Vicor general policy does not recommend the use of its components in life support applications wherein a failure or malfunction may directly threaten life or injury. Per Vicor Terms and Conditions of Sale, the user of Vicor components in life support applications assumes all risks of such use and indemnifies Vicor against all damages. Vicor's comprehensive line of power solutions includes high density AC-DC and DC-DC modules and accessory components, fully configurable AC-DC and DC-DC power supplies, and complete custom power systems. Information furnished by Vicor is believed to be accurate and reliable. However, no responsibility is assumed by Vicor for its use. Vicor components are not designed to be used in applications, such as life support systems, wherein a failure or malfunction could result in injury or death. All sales are subject to Vicor's Terms and Conditions of Sale, which are available upon request. Specifications are subject to change without notice. #### **Intellectual Property Notice** Vicor and its subsidiaries own Intellectual Property (including issued U.S. and Foreign Patents and pending patent applications) relating to the products described in this data sheet. Interested parties should contact Vicor's Intellectual Property Department. Vicor Corporation 25 Frontage Road Andover, MA, USA 01810 Tel: 800-735-6200 Fax: 978-475-6715 email Customer Service: custserv@vicorpower.com Technical Support: apps@vicorpower.com