12-BIT 4 ANALOG INPUT, 6 MSPS, SIMULTANEOUS SAMPLING ANALOG-TO-DIGITAL CONVERTER

FEATURES

- Simultaneous Sampling of 4 Single-Ended Signals or 2 Differential Signals or Combination of Both
- Signal-to-Noise and Distortion Ratio: 68 dB at $\mathrm{f}_{\mathrm{l}}=2 \mathrm{MHz}$
- Differential Nonlinearity Error: ± 1 LSB
- Integral Nonlinearity Error: ± 1.5 LSB
- Auto-Scan Mode for 2, 3, or 4 Inputs
- 3-V or 5-V Digital Interface Compatible
- Low Power: 216 mW Max at 5 V
- Power Down: 1 mW Max
- 5-V Analog Single Supply Operation
- Internal Voltage References . . . 50 PPM/ ${ }^{\circ} \mathrm{C}$ and $\pm 5 \%$ Accuracy
- Glueless DSP Interface
- Parallel $\mu \mathrm{C} /$ DSP Interface

APPLICATIONS

- Radar Applications
- Communications
- Control Applications
- High-Speed DSP Front-End
- Automotive Applications

DESCRIPTION

The THS1207 is a CMOS, low-power, 12 -bit, 6 MSPS analog-to-digital converter (ADC). The speed, resolution, bandwidth, and single-supply operation are suited for applications in radar, imaging, high-speed acquisition, and communications. A multistage pipelined architecture with output error correction logic provides for no missing codes over the full operating temperature range. Internal control registers are used
to program the ADC into the desired mode. The THS1207 consists of four analog inputs, which are sampled simultaneously. These inputs can be selected individually and configured to single-ended or differential-inputs. Internal reference voltages for the ADC (1.5 V and 3.5 V) are provided. An external reference can also be chosen to suit the dc accuracy and temperature drift requirements of the application.

The THS1207C is characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$, the THS12071 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

ORDERING INFORMATION

$\mathbf{T A}_{\mathbf{A}}$	PACKAGED DEVICE
	TSSOP (DA)
$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	THS1207CDA
$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	THS1207IDA

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

THS1207
SLAS284A - AUGUST 2000 - REVISED DECEMBER 2002

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

ABSOLUTE MAXIMUM RATINGS

over operating free-air temperature range unless otherwise noted ${ }^{(1)}$

			UNITS
	DGND to DV		-0.3 V to 6.5 V
Supply voltage range	BGND to BV		-0.3 V to 6.5 V
	AGND to $A V_{D}$		-0.3 V to 6.5 V
Analog input voltage rand			AGND -0.3 V to $\mathrm{AV}_{\mathrm{DD}}+1.5 \mathrm{~V}$
Reference input voltag			$-0.3 \mathrm{~V}+\mathrm{AGND}$ to $\mathrm{AV}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Digital input voltage ra			-0.3 V to $\mathrm{BV}_{\text {DD }} / \mathrm{DV}$ DD +0.3 V
Operating virtual junctio	emperature rang		$-40^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
		THS1207C	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
eraung free-air	range, $\mathrm{T}_{\text {A }}$	THS1207I	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Storage temperature rand	, $\mathrm{T}_{\text {stg }}$		$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead temperature 1,6	(1/16 inch) from	ase for 10 se	$260^{\circ} \mathrm{C}$

(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS

POWER SUPPLY		MIN	NOM	MAX	UNIT
Supply voltage	AV ${ }_{\text {DD }}$	4.75	5	5.25	V
	DV ${ }_{\text {DD }}$	4.75	5	5.25	
	$B V_{D D}$	3		5.25	

ANALOG AND REFERENCE INPUTS	MIN	NOM	MAX	UNIT
Analog input voltage in single-ended configuration	VREFM		$V_{\text {REFP }}$	V
Common-mode input voltage V_{CM} in differential configuration	1	2.5	4	V
External reference voltage, $\mathrm{V}_{\text {REFP }}$ (optional)		3.5	$\mathrm{AV}_{\text {DD }}$-1.2	V
External reference voltage, $\mathrm{V}_{\text {REFM }}$ (optional)	1.4	1.5		V
Input voltage difference, REFP - REFM		2		V

DIGITAL INPUTS		MIN	NOM	MAX	UNIT
High-level input voltage, V_{IH}	$B V_{\text {DD }}=3.3 \mathrm{~V}$	2			V
	$\mathrm{BV}_{\mathrm{DD}}=5.25 \mathrm{~V}$	2.6			V
Low-level input voltage, $\mathrm{V}_{\text {IL }}$	$B V_{D D}=3.3 \mathrm{~V}$			0.6	V
	$B V_{\text {DD }}=5.25 \mathrm{~V}$			0.6	V
Input CONV_CLK frequency	$\mathrm{DV}_{\mathrm{DD}}=4.75 \mathrm{~V}$ to 5.25 V	0.1		6	MHz
CONV_CLK pulse duration, clock high, t_{w} (CONV_CLKH)	$\mathrm{DV}_{\mathrm{DD}}=4.75 \mathrm{~V}$ to 5.25 V	80	83	5000	ns
CONV_CLK pulse duration, clock low, tw(CONV_CLKL)	$\mathrm{DV}_{\mathrm{DD}}=4.75 \mathrm{~V}$ to 5.25 V	80	83	5000	ns
Operating free-air temperature, T_{A}	THS1207CDA	0		70	${ }^{\circ} \mathrm{C}$
	THS1207IDA	-40		85	

www.ti.com

ELECTRICAL CHARACTERISTICS

over recommended operating conditions, AV DD $=\mathrm{DV}_{\mathrm{DD}}=5 \mathrm{~V}, B \mathrm{~V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{REWF}}=$ internal (unless otherwise noted)

DIGITAL SPECIFICATIONS				
PARAMETER	TEST CONDITIONS	MIN	TYP MAX	UNIT
Digital inputs				
IIH \quad High-level input current	DV ${ }_{\text {DD }}=$ digital inputs	-50	50	$\mu \mathrm{A}$
IIL Low-level input current	Digital input $=0 \mathrm{~V}$	-50	50	$\mu \mathrm{A}$
$\mathrm{C}_{\mathrm{i}} \quad$ Input capacitance			5	pF
Digital outputs				
$\mathrm{V}_{\mathrm{OH}} \quad$ High-level output voltage	$B V_{D D}=3.3 \mathrm{~V}, 5 \mathrm{~V}$	BV ${ }_{\text {DD }}$-0.5		V
V_{OL} Low-level output voltage			0.4	V
IOZ High-impedance-state output current	CS1 = DGND, \quad CS0 = DV ${ }_{\text {DD }}$	-10	10	$\mu \mathrm{A}$
$\mathrm{C}_{\mathrm{O}} \quad$ Output capacitance			5	pF
$\mathrm{C}_{\mathrm{L}} \quad$ Load capacitance at databus D0 - D11			30	pF

ELECTRICAL CHARACTERISTICS

over recommended operating conditions, $\mathrm{AV}_{\mathrm{DD}}=\mathrm{DV} \mathrm{DD}=5 \mathrm{~V}, \mathrm{BV}$ DD $=3.3 \mathrm{~V}, \mathrm{f}_{\mathrm{s}}=6 \mathrm{MSPS}, \mathrm{V}$ REF $=$ internal (unless otherwise noted)

DC SPECIFICATIONS					
PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Resolution		12			Bits
Accuracy					
Integral nonlinearity, INL				± 1.5	LSB
Differential nonlinearity, DNL				± 1	LSB
Offset error	After calibration in single-ended mode		20		LSB
	After calibration in differential mode	-20		20	LSB
Gain error		-20		20	LSB
Analog input					
Input capacitance			15		pF
Input leakage current	$\mathrm{V}_{\text {AIN }}=\mathrm{V}_{\text {REFM }}$ to $\mathrm{V}_{\text {REFP }}$			± 10	$\mu \mathrm{A}$
Internal voltage reference					
Accuracy, VREFP		3.3	3.5	3.7	V
Accuracy, VREFM		1.4	1.5	1.6	V
Temperature coefficient			50		PPM $/{ }^{\circ} \mathrm{C}$
Reference noise			100		$\mu \mathrm{V}$
Accuracy, REFOUT		2.475	2.5	2.525	V
Power supply					
IDDA Analog supply current	$\mathrm{AV}_{\mathrm{DD}}=\mathrm{DV} \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \quad \mathrm{BV} \mathrm{DD}=3.3 \mathrm{~V}$		36	40	mA
IDDD Digital supply current	$\mathrm{AV}_{\mathrm{DD}}=\mathrm{DV} \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{BV}_{\mathrm{DD}}=3.3 \mathrm{~V}$		0.5	3	mA
IDDB Buffer supply current	$\mathrm{AV}_{\mathrm{DD}}=\mathrm{DV} \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{BV}_{\mathrm{DD}}=3.3 \mathrm{~V}$		1.5	4	mA
Power dissipation	$\mathrm{AV}_{\mathrm{DD}}=\mathrm{DV} \mathrm{VD}=5 \mathrm{~V}, \mathrm{BV}_{\mathrm{DD}}=3.3 \mathrm{~V}$		186	216	mW
Power dissipation in power down with conversion clock inactive	$A V_{D D}=\mathrm{DV}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{BV} D \mathrm{D}=3.3 \mathrm{~V}$			0.25	mW

ELECTRICAL CHARACTERISTICS
over recommended operating conditions, $\mathrm{V}_{\mathrm{REF}}=$ internal, $\mathrm{f}_{\mathrm{S}}=6 \mathrm{MSPS}, \mathrm{f}_{\mathrm{l}}=2 \mathrm{MHz}$ at -1 dBFS (unless otherwise noted)

AC SPECIFICATIONS, $\mathrm{AV}_{\text {DD }}=\mathrm{DV}_{\text {DD }}=5 \mathrm{~V}, \mathrm{BV}$ DD $=3.3 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}<30 \mathrm{pF}$					
PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Signal-to-noise ratio + distortion	Differential mode	63	63		dB
	Single-ended mode	62	64		
Signal-to-noise ratio	Differential mode	64	69		dB
	Single-ended mode	64	68		
Total harmonic distortion	Differential mode		-70	-67	dB
	Single-ended mode		-68	-64	
Effective number of bits	Differential mode	10.17	10.5		Bits
	Single-ended mode	10	10.3		
Spurious free dynamic range	Differential mode	67	71		dB
	Single-ended mode	65	69		
Analog Input					
Full-power bandwidth with a source impedance of 150Ω in differential configuration.	Full scale sinewave, -3 dB		96		MHz
Full-power bandwidth with a source impedance of 150Ω in single-ended configuration.			54		
Small-signal bandwidth with a source impedance of 150Ω in differential configuration.	100 mVpp sinewave, -3 dB		96		MHz
Small-signal bandwidth with a source impedance of 150Ω in single-ended configuration.			54		

TIMING REQUIREMENTS
$\mathrm{AV}_{\mathrm{DD}}=\mathrm{DV} \mathrm{DD}_{\mathrm{D}}=5 \mathrm{~V}, \mathrm{BV}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=$ internal, $\mathrm{C}_{\mathrm{L}}<30 \mathrm{pF}$

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
tpipe	Latency			5		$\begin{gathered} \text { CONV } \\ \text { CLK } \end{gathered}$
tsu(CONV_CLKL-READL)	Setup time, CONV_CLK low before CS valid		10			ns
tsu(READH-CONV_CLKL)	Setup time, CS invalid to CONV_CLK low		20			ns
$\mathrm{t}^{\text {d(CONV_CLKL-SYNCL) }}$	Delay time, CONV_CLK low to SYNC low				10	ns
$\mathrm{t}_{\mathrm{d}(\mathrm{CONV}}$ CLKL-SYNCH)	Delay time, CONV_CLK low to SYNC high				10	ns

Terminal Functions

TERMINAL		I/O	DESCRIPTION
NAME	NO.		
AINP	32	1	Analog input, single-ended or positive input of differential channel A
AINM	31	1	Analog input, single-ended or negative input of differential channel A
BINP	30	1	Analog input, single-ended or positive input of differential channel B
BINM	29	1	Analog input, single-ended or negative input of differential channel B
AVDD	23	1	Analog supply voltage
AGND	24	1	Analog ground
BV ${ }_{\text {DD }}$	7	1	Digital supply voltage for buffer
BGND	8	1	Digital ground for buffer
CONV_CLK	15	1	Digital input. This input is the conversion clock input.
$\overline{\mathrm{CSO}}$	22	1	Chip select input (active low)
CS1	21	1	Chip select input (active high)
DGND	17	1	Digital ground. Ground reference for digital circuitry.
DV ${ }_{\text {D }}$	18	1	Digital supply voltage
D0 - D9	$\begin{aligned} & 1-6, \\ & 9-12 \end{aligned}$	I/O/Z	Digital input, output; D0 = LSB
D10/RA0	13	I/O/Z	Digital input, output. The data line D10 is also used as an address line (RA0) for the control register. This is required for writing to the control register 0 and control register 1 . See Table 7.
D11/RA1	14	I/O/Z	Digital input, output (D11 = MSB). The data line D11 is also used as an address line (RA1) for the control register. This is required for writing to control register 0 and control register 1. See Table 7.
REFIN	28	1	Common-modereference input for the analog input channels. It is recommended that this pin be connected to the reference output REFOUT.
REFP	26	1	Reference input, requires a bypass capacitor of $10 \mu \mathrm{~F}$ to AGND in order to bypass the internal reference voltage. An external reference voltage at this input can be applied. This option can be programmed through control register 0. See Table 8.
REFM	25	1	Reference input, requires a bypass capacitor of $10 \mu \mathrm{~F}$ to AGND in order to bypass the internal reference voltage. An external reference voltage at this input can be applied. This option can be programmed through control register 0. See Table 8.
REFOUT	27	0	Analog fixed reference output voltage of 2.5 V . Sink and source capability of $250 \mu \mathrm{~A}$. The reference output requires a capacitor of $10 \mu \mathrm{~F}$ to AGND for filtering and stability.
$\overline{\overline{\mathrm{RD}}}{ }^{(1)}$	19	1	The $\overline{\mathrm{RD}}$ input is used only if the $\overline{\mathrm{WR}}$ input is configured as a write only input. In this case, it is a digital input, active low as a data read select from the processor. See timing section.
SYNC	16	0	Synchronization output. This signal indicates in a multichannel operation that data of channel A is brought to the digital output and can therefore be used for synchronization.
$\overline{\mathrm{WR}}(\mathrm{R} / \overline{\mathrm{W}})^{(1)}$	20	1	This input is programmable. It functions as a read-write input R/W and can also be configured as a write-only input WR, which is active low and used as data write select from the processor. In this case, the $\overline{\mathrm{RD}}$ input is used as a read input from the processor. See timing section.

[^0]FUNCTIONAL BLOCK DIAGRAM

TYPICAL CHARACTERISTICS

Figure 1

Figure 3

SIGNAL-TO-NOISE AND DISTORTION VS
SAMPLING FREQUENCY (SINGLE-ENDED)

Figure 2

SIGNAL-TO-NOISE
vs
SAMPLING FREQUENCY (SINGLE-ENDED)

Figure 4

TYPICAL CHARACTERISTICS

Figure 5

SPURIOUS FREE DYNAMIC RANGE
 vs

SAMPLING FREQUENCY (DIFFERENTIAL)

Figure 7

SIGNAL-TO-NOISE AND DISTORTION
vs
SAMPLING FREQUENCY (DIFFERENTIAL)

Figure 6

SIGNAL-TO-NOISE
SAMPLING FREQUENCY (DIFFERENTIAL)

Figure 8

TYPICAL CHARACTERISTICS

Figure 9

Figure 11

SIGNAL-TO-NOISE AND DISTORTION
INPUT FREQUENCY (SINGLE-ENDED)

Figure 10

SIGNAL-TO-NOISE
vs
INPUT FREQUENCY (SINGLE-ENDED)

Figure 12

TYPICAL CHARACTERISTICS

Figure 13

Figure 15

SIGNAL-TO-NOISE AND DISTORTION
INPUT FREQUENCY (DIFFERENTIAL)

Figure 14

SIGNAL-TO-NOISE
vs
INPUT FREQUENCY (DIFFERENTIAL)

Figure 16

TYPICAL CHARACTERISTICS

Figure 17

Figure 19

EFFECTIVE NUMBER OF BITS
VS
SAMPLING FREQUENCY (DIFFERENTIAL)

Figure 18

EFFECTIVE NUMBER OF BITS INPUT FREQUENCY (DIFFERENTIAL)

Figure 20

TYPICAL CHARACTERISTICS

Figure 21

FAST FOURIER TRANSFORM (4096 POINTS) (SINGLE-ENDED)
vs
FREQUENCY

Figure 22

INSTRUMENTS

TYPICAL CHARACTERISTICS

Figure 23
DIFFERENTIAL NONLINEARITY
vs
ADC CODE

Figure 24

Figure 25

DETAILED DESCRIPTION

Reference Voltage

The THS1207 has a built-in reference, which provides the reference voltages for the ADC. VREFP is set to 3.5 V and VREFM is set to 1.5 V . An external reference can also be used through two reference input pins, REFP and REFM, if the reference source is programmed as external. The voltage levels applied to these pins establish the upper and lower limits of the analog inputs to produce a full-scale and zero-scale reading respectively.

Analog Inputs

The THS1207 consists of 4 analog inputs, which are sampled simultaneously. These inputs can be selected individually and configured as single-ended or differential inputs. The desired analog input channel can be programmed.

Converter

The THS1207 uses a 12-bit pipelined multistaged architecture, which achieves a high sample rate with low power consumption. The THS1207 distributes the conversion over several smaller ADC sub-blocks, refining the conversion with progressively higher accuracy as the device passes the results from stage to stage. This distributed conversion requires a small fraction of the number of comparators used in a traditional flash ADC. A sample-and-hold amplifier (SHA) within each of the stages permits the first stage to operate on a new input sample while the second through the eighth stages operate on the seven preceding samples.

Conversion Clock

An external clock signal with a duty cycle of 50% has to be applied to the clock input (CONV_CLK). A new conversion is started with every falling edge of the applied clock signal. The conversion values are available at the output with a latency of 5 clock cycles.

SYNC

In multichannel mode, the first SYNC signal is delayed by [7+ (\# Channels Sampled)] cycles of the CONV_CLK after a SYNC reset. This is due to the latency of the pipeline architecture of the THS1207.

Sampling Rate

The maximum possible conversion rate per channel is dependent on the selected analog input channels. Table 1 shows the maximum conversion rate in the continuous conversion mode for different combinations.

Table 1. Maximum Conversion Rate

CHANNEL CONFIGURATION	NUMBER OF CHANNELS	MAXIMUM CONVERSION RATE PER CHANNEL
1 single-ended channel	1	6 MSPS
2 single-ended channels	2	3 MSPS
3 single-ended channels	3	2 MSPS
4 single-ended channels	4	1.5 MSPS
1 differential channel	1	6 MSPS
2 differential channels	2	3 MSPS
1 single-ended and 1 differential channel	2	3 MSPS
2 single-ended and 1 differential channels	3	2 MSPS

The maximum conversion rate in the continuous conversion mode per channel, fc , is given by:

$$
\mathrm{fc}=\frac{6 \text { MSPS }}{\# \text { channels }}
$$

Conversion

During conversion the ADC operates with a free running external clock applied to the input CONV_CLK. With every falling edge of the CONV_CLK signal a new converted value is available to the databus with the corresponding read signal. The THS1207 allows up to four analog input to be selected. The inputs can be configured as two differential channels, four single-ended channels or a combination of differential and single-ended.

To provide the system with channel information, the THS1207 utilizes an active low SYNC signal. When operated in a multichannel configuration, the SYNC signal is active low when data from channel one is available to the databus. When operated in single-channel mode (single-ended or differential operation) the SYNC signal is disabled.

Figure 26 shows the timing of the conversion when one analog input channel is selected. The maximum throughput rate is 6 MSPS in this mode. There is a certain timing relationship required for the read signal with respect to the conversion clock. This can be seen in Figure 26 and in the read and SYNC timing table. A more detailed description of the timing is given in the timing section and signal description of the THS1207.

treAD is the logical combination from $\overline{\mathrm{CSO}}, \mathrm{CS} 1$ and $\overline{\mathrm{RD}}$
Figure 26. Conversion Timing in 1-Channel Operation
Figure 27 shows the conversion timing when 2 analog input channels are selected. The maximum throughput rate per channel is 3 MSPS in this mode. The data flow in the bottom of the figure shows in which order the converted data is available to the databus. The signal SYNC is active low when data of channel one is available to the databus. The data of channel one is followed by the data of channel two before channel one is again available and the SYNC signal is active low.

TREAD is the logical combination from $\overline{\mathrm{CSO}}, \mathrm{CS} 1$ and $\overline{\mathrm{RD}}$
Figure 27. Conversion Timing in 2-Channel Operation

Figure 28 shows the conversion timing when 3 analog input channels are selected. The maximum throughput rate per channel is 2 MSPS in this mode. The data flow in the bottom of the figure shows in which order the converted data is available to the databus. The signal SYNC is always active low if data of channel one is available to the databus. The data of channel one is followed by the data of channel two and data of channel three before channel one is again available to the data bus and SYNC is active low.

tREAD is the logical combination from $\overline{\mathrm{CSO}}, \mathrm{CS} 1$ and $\overline{\mathrm{RD}}$
Figure 28. Conversion Timing in 3-Channel Operation
Figure 29 shows the timing of the conversion mode where 4 analog input channels are selected. The maximum throughput rate per channel is 1.5 MSPS in this mode. The data flow in the bottom of the figure shows in which order the converted data is available to the databus. The signal SYNC is active low when data of channel one is available to the databus. The data of channel one is followed by the data of channel two, data of channel three and data of channel 4 before channel one is again available to the data bus and SYNC is active low.

tREAD is the logical combination from $\overline{\mathrm{CSO}}, \mathrm{CS} 1$ and $\overline{\mathrm{RD}}$
Figure 29. Timing of Continuous Conversion Mode (4-channel operation)

DIGITAL OUTPUT DATA FORMAT

The digital output data format of the THS1207 can either be in binary format or in twos complement format. The following tables list the digital outputs for the analog input voltages.

Table 2. Binary Output Format for Single-Ended Configuration

SINGLE-ENDED, BINARY OUTPUT	
ANALOG INPUT VOLTAGE	DIGITAL OUTPUT CODE
AIN $=\mathrm{V}_{\text {REFP }}$	FFFh
AIN $=\left(\mathrm{V}_{\text {REFP }}+\mathrm{V}_{\text {REFM }}\right) / 2$	800 h
AIN $=\mathrm{V}_{\text {REFM }}$	000 h

Table 3. Twos Complement Output Format for Single-Ended Configuration

SINGLE-ENDED, TWOS COMPLEMENT	
ANALOG INPUT VOLTAGE	DIGITAL OUTPUT CODE
AIN $=\mathrm{V}_{\text {REFP }}$	7FFh
AIN $=\left(\mathrm{V}_{\text {REFP }}+\mathrm{V}_{\text {REFM }}\right) / 2$	000 h
AIN $=\mathrm{V}_{\text {REFM }}$	800 h

Table 4. Binary Output Format for Differential Configuration

DIFFERENTIAL, BINARY OUTPUT	
ANALOG INPUT VOLTAGE	DIGITAL OUTPUT CODE
$\begin{gathered} \mathrm{V}_{\text {in }}=\text { AINP }- \text { AINM } \\ \mathrm{V}_{\text {REF }}=\mathrm{V}_{\text {REFP }}-\mathrm{V}_{\text {REFM }} \end{gathered}$	
$\mathrm{V}_{\text {in }}=\mathrm{V}_{\text {REF }}$	FFFh
$V_{\text {in }}=0$	800h
$\mathrm{V}_{\text {in }}=-\mathrm{V}_{\text {REF }}$	000h

Table 5. Twos Complement Output Format for Differential Configuration

DIFFERENTIAL, BINARY OUTPUT	
ANALOG INPUT VOLTAGE	DIGITAL OUTPUT CODE
 $\mathrm{V}_{\text {in }}=$ AINP - AINM $\mathrm{V}_{\text {REF }}=\mathrm{V}_{\text {REFP }}-\mathrm{V}_{\text {REFM }}$	
$\mathrm{V}_{\text {in }}=\mathrm{V}_{\text {REF }}$	7FFh
$\mathrm{V}_{\text {in }}=0$	000 h
$\mathrm{~V}_{\text {in }}=-\mathrm{V}_{\text {REF }}$	800 h

ADC CONTROL REGISTER

The THS1207 contains two 10-bit wide control registers (CR0, CR1) in order to program the device into the desired mode. The bit definitions of both control registers are shown in Table 6.

Table 6. Bit Definitions of Control Register CR0 and CR1

REG	BIT 9	BIT 8	BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0
CR0	TEST1	TEST0	SCAN	DIFF1	DIFF0	CHSEL1	CHSEL0	PD	RESERVED	VREF
CR1	RBACK	OFFSET	BIN/2's	R/W	RESERVED	RESERVED	RESERVED	RESERVED	SRST	RESET

Writing to Control Register 0 and Control Register 1

The 10-bit wide control register 0 and control register 1 can be programmed by addressing the desired control register and writing the register value to the ADC. The addressing is performed with the upper data bits D10 and D11, which function in this case as address lines RA0 and RA1. During this write process, the data bits D0 to D9 contain the desired control register value. Table 7 shows the addressing of each control register.

Table 7. Control Register Addressing

D0 - D9	D10/RA0	D11/RA1	Addressed Control Register
Desired register value	0	0	Control register 0
Desired register value	1	0	Control register 1
Desired register value	0	1	Reserved for future
Desired register value	1	1	Reserved for future

Figure 30. THS1207 Configuration Flow

INSTRUMENTS
www.ti.com

Control Register 0 (see Table 7)

BIT 11	BIT 10	BIT 9	BIT 8	BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0
0	0	TEST1	TEST0	SCAN	DIFF1	DIFF0	CHSEL1	CHSEL0	PD	RESERVED	VREF

Table 8. Control Register 0 Bit Functions

BITS	RESET VALUE	NAME	
0	0	VREF	Vref select: Bit $0=0 \rightarrow$ The internal reference is used Bit $0=1 \rightarrow$ The external reference voltage is used for the ADC
1	0	RESERVED	RESERVED
2	0	PD	Power down. Bit $2=0 \rightarrow$ The ADC is active Bit $2=1 \rightarrow$ Power down The reading and writing to and from the digital outputs is possible during power down.
3,4	0,0	CHSEL0, CHSEL1	Channel select Bit 3 and bit 4 select the analog input channel of the ADC. Refer to Table 9.
5,6	1,0	DIFF0, DIFF1	Number of differential channels Bit 5 and bit 6 contain information about the number of selected differential channels. Refer to Table 9.
7	0	SCAN	Autoscan enable Bit 7 enables or disables the autoscan function of the ADC. Refer to Table 9.
8,9	0,0	TEST0, TEST1	Test input enable Bit 8 and bit 9 control the test function of the ADC. Three different test voltages can be measured. This feedback allows the check of all hardware connections and the ADC in its bits. Refer to Table 10 for selection of the three different test voltages.

ANALOG INPUT CHANNEL SELECTION

The analog input channels of the THS1207 can be selected via bits 3 to 7 of control register 0 . One channel (single-ended or differential) is selected via bit 3 and bit 4 of control register 0 . Bit 5 controls the selection between single-ended and differential configuration. Bit 6 and bit 7 select the autoscan mode, if more than one input channel is selected. Table 9 shows the possible selections.

Table 9. Analog Input Channel Configurations

$\begin{aligned} & \hline \text { BIT } 7 \\ & \text { SCAN } \end{aligned}$	$\begin{aligned} & \hline \text { BIT } 6 \\ & \text { DIFF1 } \end{aligned}$	$\begin{aligned} & \hline \text { BIT } 5 \\ & \text { DIFFO } \end{aligned}$	BIT 4 CHSEL1	BIT 3 CHSELO	DESCRIPTION OF THE SELECTED INPUTS
0	0	0	0	0	Analog input AINP (single ended)
0	0	0	0	1	Analog input AINM (single ended)
0	0	0	1	0	Analog input BINP (single ended)
0	0	0	1	1	Analog input BINM (single ended)
0	0	1	0	0	Differential channel (AINP-AINM)
0	0	1	0	1	Differential channel (BINP-BINM)
1	0	0	0	1	Autoscan two single ended channels: AINP, AINM, AINP, ...
1	0	0	1	0	Autoscan three single ended channels: AINP, AINM, BINP, AINP, ...
1	0	0	1	1	Autoscan four single ended channels: AINP, AINM, BINP, BINM, AINP, ...
1	0	1	0	1	Autoscan one differential channel and one single ended channel AINP, (BINP-BINM), AINP, (BINP-BINM), ...
1	0	1	1	0	Autoscan one differential channel and two single ended channel AINP, AINM, (BINPBINM), AINP, ...
1	1	0	0	1	Autoscan two differential channels (AINP-AINM), (BINP-BINM), (AINP-AINM), ...
0	0	1	1	0	Reserved
0	0	1	1	1	Reserved
1	0	0	0	0	Reserved
1	0	1	0	0	Reserved
1	0	1	1	1	Reserved
1	1	0	0	0	Reserved
1	1	0	1	0	Reserved
1	1	0	1	1	Reserved
1	1	1	0	0	Reserved
1	1	1	0	1	Reserved
1	1	1	1	0	Reserved
1	1	1	1	1	Reserved

Test Mode

The test mode of the ADC is selected via bit 8 and bit 9 of control register 0 . The different selections are shown in Table 10.

Table 10. Test Mode

BIT 9 TEST1	BIT 8 TEST0	OUTPUT RESULT
0	0	Normal mode
0	1	$V_{\text {REFP }}$
1	0	$\left(\left(V_{\text {REFM }}\right)+\left(V_{\text {REFP }}\right)\right) / 2$
1	1	$V_{\text {REFM }}$

Three different options can be selected. This feature allows support testing of hardware connections between the ADC and the processor.

INSTRUMENTS
www.ti.com

Control Register 1 (see Table 7)

BIT 11	BIT 10	BIT 9	BIT 8	BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT $\mathbf{1}$	BIT 0
$\mathbf{0}$	$\mathbf{1}$	RBACK	OFFSET	BIN/2s	R/ \bar{W}	RESERVED	RESERVED	RESERVED	RESERVED	SRST	RESET

Table 11. Control Register 1 Bit Functions

BITS	RESET VALUE	NAME	FUNCTION
0	0	RESET	Reset Writing a 1 into this bit resets the device and sets the control register 0 and control register 1 to the reset values. To bring the device out of reset, a 0 has to be written into this bit.
1	0	SRST	Writing a 1 into this bit resets the sync generator. When running in multichannel mode, this must be set during the configuration cycle.
2, 3	0,0	RESERVED	Always write 0
4	1	RESERVED	Always write 0
5	1	RESERVED	Always write 0
6	0	R/W	R/ $\overline{\mathrm{W}}, \mathrm{RD} / \overline{\mathrm{WR}}$ selection Bit 6 of control register 1 controls the function of the inputs $\overline{\mathrm{RD}}$ and $\overline{\mathrm{WR}}$. When bit 6 in control register 1 is set to $1, \bar{W}$ becomes a $R \bar{W}$ input and $\overline{R D}$ is disabled. From now on a read is signalled with R / W high and a write with R / W as a low signal. If bit 6 in control register 1 is set to 0 , the input $\overline{R D}$ becomes a read input and the input $\overline{W R}$ becomes a write input.
7	0	BIN/2s	Complement select If bit 7 of control register 1 is set to 0 , the output value of the ADC is in twos complement. If bit 7 of control register 1 is set to 1 , the output value of the ADC is in binary format. Refer to Table 2 through Table 5.
8	0	OFFSET	Offset cancellation mode Bit $8=0 \rightarrow$ normal conversion mode Bit $8=1 \rightarrow$ offset calibration mode If a 1 is written into bit 8 of control register 1 , the device internally sets the inputs to zero and does a conversion. The conversion result is stored in an offset register and subtracted from all conversions in order to reduce the offset error.
9	0	RBACK	Debug mode Bit $9=0 \rightarrow$ normal conversion mode Bit $9=1 \rightarrow$ enable debug mode When bit 9 of control register 1 is set to 1 , debug mode is enabled. In this mode, the contents of control register 0 and control register 1 can be read back. The first read after bit 9 is set to 1 contains the value of control register 0 . The second read after bit 9 is set to 1 contains the value of control register 1 . To bring the device back into normal conversion mode, this bit has to be set back to 0 by writing again to control register 1 .

TIMING AND SIGNAL DESCRIPTION OF THE THS1207

The reading from the THS1207 and writing to the THS1207 is performed by using the chip select inputs ($\overline{\mathrm{CSO}}$, CS1), the write input $\overline{W R}$ and the read input $\overline{\mathrm{RD}}$. The write input is configurable to a combined read/write input (R / \bar{W}). This is desired in cases where the connected processor consists of a combined read/write output signal $(\mathrm{R} / \overline{\mathrm{W}})$. The two chip select inputs can be used to interface easily to a processor.
Reading from the THS1207 takes place by an internal $\overline{\mathrm{RD}}_{\text {int }}$ signal, which is generated from the logical combination of the external signals $\overline{\mathrm{CSO}}, \mathrm{CS} 1$ and $\overline{\mathrm{RD}}$ (see Figure 6). This signal is then used to strobe out the words and to enable the output buffers. The last external signal (either $\overline{\mathrm{CSO}}, \mathrm{CS} 1$ or $\overline{\mathrm{RD}}$) to become valid makes $\overline{\mathrm{RD}}_{\text {int }}$ active while the write input ($\overline{\mathrm{WR} \text {) is inactive. The first of those external signals switching to an inactive }}$ state deactivates $\overline{\mathrm{RD}}_{\text {int }}$ again.
Writing to the THS1207 takes place by an internal $\overline{W R}_{\text {int }}$ signal, which is generated from the logical combination of the external signals $\overline{\mathrm{CSO}}, \mathrm{CS} 1$ and $\overline{\mathrm{WR}}$. This signal strobes the control words into the control registers 0 and 1. The last external signal (either $\overline{\mathrm{CSO}}, \mathrm{CS} 1$ or $\overline{\mathrm{WR}}$) to become valid switches $\overline{\mathrm{WR}}_{\text {int }}$ active while the read input $(R D)$ is inactive. The first of those external signals going to its inactive state deactivates $\overline{W R}_{\text {int }}$ again.

Figure 31. Logical Combination of $\overline{\mathrm{CSO}}, \mathrm{CS} 1, \overline{\mathrm{RD}}$, and $\overline{\mathrm{WR}}$

Read Timing (using $\overline{\mathrm{RD}}, \overline{\mathrm{RD}}$-controlled)

Figure 32 shows the read-timing behavior when the $\overline{\mathrm{WR}}(\mathrm{R} / \overline{\mathrm{W}})$ input is programmed as a write-input only. The input $\overline{\mathrm{RD}}$ acts as the read-input in this configuration. This timing is called $\overline{\mathrm{RD}}$-controlled because $\overline{\mathrm{RD}}$ is the last external signal of $\overline{\mathrm{CSO}}, \mathrm{CS} 1$, and $\overline{\mathrm{RD}}$ which becomes valid.

Figure 32. Read Timing Diagram Using RD ($\overline{\mathrm{RD}}$-controlled)

Read Timing Parameter ($\overline{\mathrm{RD}}$-controlled)

PARAMETER		MIN	TYP	MAX	UNIT
$\mathrm{t}_{\text {su}}(\mathrm{CS})$	Setup time, $\overline{\mathrm{RD}}$ low to last CS valid	0			ns
ta_{a}	Access time, last CS valid to data valid	0		10	ns
td_{d} (CSDAV)	Delay time, last CS valid to DATA_AV inactive		12		ns
th	Hold time, first CS invalid to data invalid	0		5	ns
th(CS)	Hold time, $\overline{\mathrm{RD}}$ change to first CS invalid	5			ns
$\mathrm{t}_{\mathrm{w}}(\overline{\mathrm{RD}})$	Pulse duration, $\overline{\mathrm{RD}}$ active	10			ns

Write Timing (using $\overline{\mathrm{WR}}, \overline{\mathrm{WR}}$-controlled)

Figure 33 shows the write-timing behavior when the $\overline{\mathrm{WR}}(\mathrm{R} / \overline{\mathrm{W}})$ input is programmed as a write input $\overline{\mathrm{WR}}$ only. The input $\overline{\mathrm{RD}}$ acts as the read input in this configuration. This timing is called $\overline{\mathrm{WR}}$-controlled because $\overline{\mathrm{WR}}$ is the last external signal of $\overline{\mathrm{CSO}}, \mathrm{CS} 1$, and $\overline{\mathrm{WR}}$ which becomes valid.

Figure 33. Write Timing Diagram Using $\overline{\mathrm{WR}}$ ($\overline{\mathrm{WR}}$-controlled)
Write Timing Parameter Using $\overline{\text { WR }}$ ($\overline{\text { WR}}$-controlled)

PARAMETER		MIN	TYP	MAX	UNIT
$\mathrm{t}_{\text {su(}}$ (CS)	Setup time, CS stable to last $\overline{\text { WR }}$ valid	0			ns
$\mathrm{t}_{\text {su }}$	Setup time, data valid to first $\overline{\mathrm{WR}}$ invalid	5			ns
th	Hold time, $\overline{\mathrm{WR}}$ invalid to data invalid	2			ns
th(CS)	Hold time, $\overline{\text { WR }}$ invalid to CS change	5			ns
$\mathrm{t}_{\mathrm{w}}(\mathrm{WR})$	Pulse duration, $\overline{\text { WR }}$ active	10			ns

INSTRUMENTS
www.ti.com

Read Timing (using R/W, $\overline{\mathbf{C S O}}$-controlled)

Figure 34 shows the read-timing behavior when the $\overline{\mathrm{WR}}(\mathrm{R} / \overline{\mathrm{W}})$ input is programmed as a combined read-write input $\mathrm{R} / \overline{\mathrm{W}}$. The $\overline{\mathrm{RD}}$ input has to be tied to high-level in this configuration. This timing is called $\overline{\mathrm{CSO}}$-controlled because $\overline{\mathrm{CSO}}$ is the last external signal of $\overline{\mathrm{CSO}}, \mathrm{CS} 1$, and $\mathrm{R} / \overline{\mathrm{W}}$ which becomes valid. The reading of the data must be done with a certain timing relative to the conversion clock CONV_CLK, as illustrated in Figure 34.

Figure 34. Read Timing Diagram Using R/W ($\overline{\text { CSO}}$-controlled)
Read Timing Parameter ($\overline{\text { CSO }} \mathbf{- c o n t r o l l e d) ~}$

	PARAMETER	MIN	TYP MAX	UNIT
$\mathrm{t}_{\text {su(}}$ CONV_CLKL-CSOL)	Setup time, CONV_CLK low before CS valid	10		ns
$\mathrm{t}_{\text {su }}(\mathrm{CSOH}-\mathrm{CONV}$ _CLKL)	Setup time, CS invalid to CONV_CLK low	20		ns
$\mathrm{t}_{\text {su }}(\mathrm{R} / \overline{\mathrm{W}})$	Setup time, $\mathrm{R} / \overline{\mathrm{W}}$ high to last CS valid	0		ns
ta_{a}	Access time, last CS valid to data valid	0	10	ns
th	Hold time, first CS invalid to data invalid	0	5	ns
$\left.\mathrm{th}_{\text {(R }} / \overline{\mathrm{W}}\right)$	Hold time, first external CS invalid to R/W̄ change	5		ns
$\mathrm{t}_{\mathrm{w}}(\mathrm{CS})$	Pulse duration, CS active	10		ns

SLAS284A - AUGUST 2000 - REVISED DECEMBER 2002

Write Timing Diagram (using R/W, $\overline{\mathbf{C S O}}$-controlled)

Figure 35 shows the write-timing behavior when the $\overline{\mathrm{WR}}(\mathrm{R} / \overline{\mathrm{W}})$ input is programmed as a combined read-write input $\mathrm{R} / \overline{\mathrm{W}}$. The $\overline{\mathrm{RD}}$ input has to be tied to high-level in this configuration. This timing is called $\overline{\mathrm{CS} 0}$-controlled because $\overline{\mathrm{CSO}}$ is the last external signal of $\overline{\mathrm{CSO}}, \mathrm{CS} 1$, and $\mathrm{R} \overline{\mathrm{W}}$ which becomes valid. The writing to the THS1207 can be performed irrespective of the conversion clock signal CONV_CLK.

Figure 35. Write Timing Diagram Using R/W ($\overline{\mathbf{C S O}}$-controlled)
Write Timing Parameter ($\overline{\mathbf{C S O}}$-controlled)

	PARAMETER	MIN	TYP
$\mathrm{t}_{\text {su }}(\mathrm{R} / \overline{\mathrm{W}})$	Metup time, R $/ \overline{\mathrm{W}}$ stable to last CS valid	UNIT	
$\mathrm{t}_{\text {su }}$	Setup time, data valid to first CS invalid	5	ns
t_{h}	Hold time, first CS invalid to data invalid	2	ns
$\mathrm{t}_{\mathrm{n}}(\mathrm{R} / \overline{\mathrm{W}})$	Hold time, first CS invalid to $\mathrm{R} / \overline{\mathrm{W}}$ change	5	ns
$\mathrm{t}_{\mathrm{w}(\mathrm{CS})}$	Pulse duration, CS active	10	ns

ANALOG INPUT CONFIGURATION AND REFERENCE VOLTAGE

The THS1207 features four analog input channels. These can be configured for either single-ended or differential operation. Figure 36 shows a simplified model, where a single-ended configuration for channel AINP is selected. The reference voltages for the ADC itself are $\mathrm{V}_{\text {REFP }}$ and $\mathrm{V}_{\text {REFM }}$ (either internal or external reference voltages). The analog input voltage range is between $V_{\text {REFM }}$ to $V_{\text {REFP. }}$. This means that $V_{\text {REFM }}$ defines the minimum voltage, and $V_{\text {REFP }}$ defines the maximum voltage, which can be applied to the ADC. The internal reference source provides the voltage $\mathrm{V}_{\text {REFM }}$ of 1.5 V and the voltage $\mathrm{V}_{\text {REFP }}$ of 3.5 V (see also section reference voltage). The resulting analog input voltage swing of 2 V can be expressed by:

$$
\begin{equation*}
\mathrm{V}_{\text {REFM }} \leq \mathrm{AINP} \leq \mathrm{V}_{\text {REFP }} \tag{1}
\end{equation*}
$$

Figure 36. Single-Ended Input Stage
A differential operation is desired in many applications due to a better signal-to-noise ration. Figure 37 shows a simplified model for the analog inputs AINM and AINP, which are configured for differential operation. The differential operation mode provides in terms of performance benefits over single-ended mode and is therefore recommended for best performance. The THS1207 offers 2 differential analog inputs and in the single-ended mode 4 analog inputs. If the analog input architecture is differential, common mode noise and common mode voltages can be rejected. Additional details for both modes are given below.

Figure 37. Differential Input Stage
In comparison to the single-ended configuration it can be seen that the voltage, $\mathrm{V}_{\mathrm{ADC}}$, which is applied at the input of the ADC is the difference between the input AINP and AINM. The voltage $\mathrm{V}_{\text {ADC }}$ can be calculated as follows:

$$
\begin{equation*}
\mathrm{V}_{\mathrm{ADC}}=\mathrm{ABS}(\mathrm{AINP}-\mathrm{AINM}) \tag{2}
\end{equation*}
$$

The advantage to single-ended operation is that the common-mode voltage

$$
\begin{equation*}
V_{\mathrm{CM}}=\frac{\mathrm{AINM}+\mathrm{AINP}}{2} \tag{3}
\end{equation*}
$$

can be rejected in the differential configuration, if the following condition for the analog input voltages is true:

$$
\begin{align*}
& \mathrm{AGND} \leq \mathrm{AINM}, \mathrm{AINP} \leq \mathrm{AV}_{\mathrm{DD}} \tag{4}\\
& 1 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 4 \mathrm{~V} \tag{5}
\end{align*}
$$

SLAS284A - AUGUST 2000 - REVISED DECEMBER 2002

SINGLE-ENDED MODE OF OPERATION

The THS1207 can be configured for single-ended operation using dc or ac-coupling. In either case, the input of the THS1207 must be driven from an operational amplifier that does not degrade the ADC performance. Because the THS1207 operates from a single supply 5 V , it is necessary to level-shift ground-based bipolar signals to comply with its input requirements. This can be achieved with dc and ac-coupling.

DC-COUPLING

An operational amplifier can be configured to shift the signal level according to the analog input voltage range of the THS1207. The analog input voltage range of the THS1207 is between 1.5 V and 3.5 V . An operational amplifier can be used as shown in Figure 38.
Figure 38 shows an example where the analog input signal in the range between -1 V up to 1 V . This signal is shifted by an operational amplifier to the analog input range of the THS1207 (1.5 V to 3.5 V). The operational amplifier is configured as an inverting amplifier with a gain of -1 . The required dc voltage of 1.25 V at the noninverting input is derived from the $2.5-\mathrm{V}$ output reference REFOUT of the THS1207 by using a resistor divider. Therefore, the operational amplifier output voltage is centered at 2.5 V . The $10 \mu \mathrm{~F}$ tantalum capacitor is required for bypassing REFOUT. REFIN of the THS1207 must be connected directly to REFOUT in single-ended mode. The use of ratio matched, thin-film resistor networks minimizes gain and offset errors.

Figure 38. Level-Shift for DC-Coupled Input

DIFFERENTIAL MODE OF OPERATION

For the differential mode of operation, a conversion from single-ended to differential is required. A conversion to differential signals can be achieved by using an RF-transformer, which provides a center tap. Best performance is achieved in differential mode.

Figure 39. Transformer Coupled Input

DEFINITIONS OF SPECIFICATIONS AND TERMINOLOGY

Integral Nonlinearity

Integral nonlinearity refers to the deviation of each individual code from a line drawn from zero through full scale. The point used as zero occurs $1 / 2$ LSB before the first code transition. The full-scale point is defined as level $1 / 2$ LSB beyond the last code transition. The deviation is measured from the center of each particular code to the true straight line between these two points.

Differential Nonlinearity

An ideal ADC exhibits code transitions that are exactly 1 LSB apart. DNL is the deviation from this ideal value. A differential nonlinearity error of less than ± 1 LSB ensures no missing codes.

Zero Offset

The major carry transition should occur when the analog input is at zero volts. Zero error is defined as the deviation of the actual transition from that point.

Gain Error

The first code transition should occur at an analog value 1/2 LSB above negative full scale. The last transition should occur at an analog value $11 / 2$ LSB below the nominal full scale. Gain error is the deviation of the actual difference between first and last code transitions and the ideal difference between first and last code transitions.

Signal-to-Noise Ratio + Distortion (SINAD)

SINAD is the ratio of the rms value of the measured input signal to the rms sum of all other spectral components below the Nyquist frequency, including harmonics but excluding dc. The value for SINAD is expressed in decibels.

Effective Number Of Bits (ENOB)

For a sine wave, SINAD can be expressed in terms of the number of bits. Using the following formula,

$$
N=\frac{(\operatorname{SINAD}-1.76)}{6.02}
$$

it is possible to get a measure of performance expressed as N, the effective number of bits. Thus, effective number of bits for a device for sine wave inputs at a given input frequency can be calculated directly from its measured SINAD.

Total Harmonic Distortion (THD)

THD is the ratio of the rms sum of the first six harmonic components to the rms value of the measured input signal and is expressed as a percentage or in decibels.

Spurious Free Dynamic Range (SFDR)

SFDR is the difference in dB between the rms amplitude of the input signal and the peak spurious signal.

MECHANICAL DATA

DA (R-PDSO-G**)

NOTES:A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion.
D. Falls within JEDEC MO-153

PACKAGING INFORMATION

Orderable Device	Status $^{(1)}$	Package Type	Package Drawing	Pins Package Qty	Eco Plan ${ }^{(2)}$	Lead/Ball Finish	MSL Peak Temp ${ }^{(3)}$	
THS1207CDA	ACTIVE	TSSOP	DA	32	46	None	CU NIPDAU	Level-1-220C-UNLIM
THS1207CDAR	ACTIVE	TSSOP	DA	32	2000	None	CU NIPDAU	Level-1-220C-UNLIM
THS1207IDA	ACTIVE	TSSOP	DA	32	46	None	CU NIPDAU	Level-1-220C-UNLIM
THS1207IDAR	ACTIVE	TSSOP	DA	32	2000	None	CU NIPDAU	Level-1-220C-UNLIM

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but Tl does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
${ }^{(2)}$ Eco Plan - May not be currently available - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.
None: Not yet available Lead (Pb-Free).
Pb -Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Green (RoHS \& no $\mathbf{S b} / \mathbf{B r}$): TI defines "Green" to mean "Pb-Free" and in addition, uses package materials that do not contain halogens, including bromine (Br) or antimony (Sb) above 0.1% of total product weight.
${ }^{(3)}$ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDECindustry standard classifications, and peak solder temperature.

Important Information and Disclaimer:The information provided on this page represents Tl's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

DA (R-PDSO-G**)
PLASTIC SMALL-OUTLINE
38 PINS SHOWN

PIM	30	32	38
A MAX	11,10	11,10	12,60
A MIN	10,90	10,90	12,40

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion.
D. Falls within JEDEC MO-153

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to Tl's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with Tl's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI .

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. Tl is not responsible or liable for such altered documentation.

Resale of Tl products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. Tl is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products

Applications

Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video \& Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments
Post Office Box 655303 Dallas, Texas 75265

Copyright © 2005, Texas Instruments Incorporated

[^0]: (1) The start-conditions of $\overline{\mathrm{RD}}$ and $\overline{\mathrm{WR}}(\mathrm{R} / \overline{\mathrm{W}})$ are unknown. The first access to the ADC has to be a write access to initialize the ADC.

