3

MOTOROLA ■ SEMICONDUCTOR I **TECHNICAL DATA**

Designer's Data Sheet

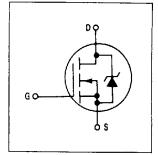
TMOS IV Power Field Effect Transistors N-Channel Enhancement-Mode Silicon Gate

This advanced "E" series of TMOS power MOSFETs is designed to withstand high energy in the avalanche and commutation modes. These new energy efficient devices also offer drain-to-source diodes with fast recovery times. Designed for low voltage, high speed switching applications in power supplies, converters and PWM motor controls, these devices are particularly well suited for bridge circuits where diode speed and commutating safe operating area are critical, and offer additional safety margin against unexpected voltage transients.

- Internal Source-to-Drain Diode Designed to Replace External Zener Transient Suppressor — Absorbs High Energy in the Avalanche Mode — Unclamped Inductive Switching (UIS) Energy Capability Specified
- Commutating Safe Operating Area (CSOA) Specified for Use in Half and Full Bridge Circuits
- Source-to-Drain Diode Recovery Time Comparable to a Discrete Fast Recovery Diode
- Diode is Characterized for Use in Bridge Circuits
- DC Equivalent to IRFZ40

MAXIMUM RATINGS ($T_J = 25^{\circ}C$ unless otherwise noted)

Rating	Symbol	Value	Unit
Drain-Source Voltage	VDSS	50	Vdc
Drain-Gate Voltage (RGS = 1 M Ω)	VDGR	50	Vdc
Gate-Source Voltage — Continuous — Non-repetitive ($t_p \le 50 \mu s$)	V _{GS} V _{GSM}	± 20 ± 40	Vdc Vpk
Drain Current — Continuous (T _C = 25°C) — Pulsed	IDM D	50 160	Adc
Total Power Dissipation @ T _C = 25°C Derate above 25°C	PD	125 1	Watts W/°C
Operating and Storage Temperature Range	Tj, T _{sta}	- 65 to 150	°C


THERMAL CHARACTERISTICS

Thermal Resistance Junction to Case Junction to Ambient	R _€ JC R _€ JA	1.0 30	°C/W
Maximum Lead Temperature for Soldering Purposes, 1/8" from case for 5 seconds	ΤŁ	300	°C

Designer's Data for "Worst Case" Conditions --- The Designer's Data Sheet permits the design of most circuits entirely from the information presented SOA Limit curves — representing boundaries on device characteristics — are given to facilitate "worst case" design

MTM50N05E

TMOS POWER FETs **50 AMPERES** $R_{DS(on)} = 0.028 OHM$ 50 VOLTS

ELECTRICAL	. CHARACTERISTICS ($T_C =$	25°C unless otherwise noted)	
			 _

Charact	eristic	Symbol	Min	Max	Unit	
OFF CHARACTERISTICS						
Drain-Source Breakdown Voltage (VGS = 0, ID = 0.25 mA)		V _{(BR)DSS}	50	_	Vdc	
Zero Gate Voltage Drain Current (VDS = Rated VDSS, VGS = 0) (VDS = 0.8 Rated VDSS, VGS = 0, TJ = 125°C)		loss	_	10 80	μΑ	
Gate-Body Leakage Current, Forward	$(V_{GSF} = 20 \text{ Vdc}, V_{DS} = 0)$	IGSSF		100	nAdc	
Gate-Body Leakage Current, Reverse	V _{GSR} = 20 Vdc, V _{DS} = 0)	IGSSR	_	100	nAdc	
N CHARACTERISTICS*					•	
Gate Threshold Voltage (VDS = VGS, ID = 250 μ A) T _J = 100°C		VGS(th)	2 1.5	4 3.5	Vdc	
Static Drain-Source On-Resistance (Vo	SS = 10 Vdc, ID = 25 Adc)	R _{DS(on)}	_	0.028	Ohm	
Drain-Source On-Voltage (V _{GS} = 10 V (I _D = 50 Adc) (I _D = 25 Adc, T _J = 100°C)	n	V _{DS(on)}	_	1.4 1.3	Vdc	
Forward Transconductance (VDS = 1	5 V, I _D = 25 A)	g _{FS}	17	-	mhos	
PRAIN-TO-SOURCE AVALANCHE CHAR	ACTERISTICS					
Unclamped Inductive Switching Energy (ID = 160 A, VDD = 25 V, TC = 25° (ID = 50 A, VDD = 25 V, TC = 25° (ID = 20 A, VDD = 25 V, TC = 100° (ID = 20 A, VDD = 20 A,	C, Single Pulse, Non-repetitive) C, P.W. ≤ 35 μs, Duty Cycle ≤ 1%)	WDSR	<u>-</u> -	55 100 35	mJ	
OYNAMIC CHARACTERISTICS			,,			
Input Capacitance	$(V_{DS} = 25 \text{ V}, V_{GS} = 0,$	C _{ISS}	_	3000	pF	
Output Capacitance	f = 1 MHz	Coss		1200		
Reverse Transfer Capacitance	See Figure 16	Crss	_	400		
WITCHING CHARACTERISTICS* (TJ =	100°C)					
Turn-On Delay Time		[†] d(on)	_	25	ns	
Rise Time	$(V_{DD} = 25 \text{ V, } I_{D} = 0.5 \text{ Rated } I_{D}$ $R_{gen} = 4.7 \text{ ohms})$	t _r	_	60		
Turn-Off Delay Time	See Figure 9	td(off)		70		
Fall Time		tf		25		
Total Gate Charge	(VDS = 0.8 Rated VDSS,	Ωg	55 (Typ)	60	nC	
Gate-Source Charge	$I_D = Rated I_D, V_{GS} = 10 V$	Ωgs	30 (Typ)			
Gate-Drain Charge	See Figures 17 and 18	Q _{gd}	25 (Typ)			
OURCE DRAIN DIODE CHARACTERIST	ICS*					
Forward On-Voltage	(I _{SD} = 51 A, V _{GS} = 0,	V _{SD}	19 (Typ)	2.5	Vdc	
Forward Turn-On Time	$dl_S/dt = 100 A/\mu s$	ton	Limited	by stray ind	ductance	
Reverse Recovery Time		t _{rr}	(Typ)	250	ns	
NTERNAL PACKAGE INDUCTANCE (TO	-204)					
Internal Drain Inductance (Measured from the contact screw of to the source pin and the center of		L _d	5 (Typ)	<u> </u>	nH	
internal Source Inductance (Measured from the source pin, 0.25" from the package to the source bond pad)		L _S	12.5 (Typ)			

^{*}Pulse Test Pulse Width ≤ 300 µs, Duty Cycle ≤ 2%

TYPICAL ELECTRICAL CHARACTERISTICS

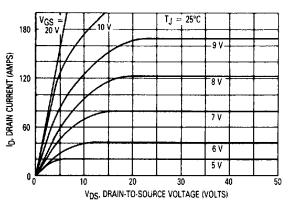


Figure 1. On-Region Characteristics

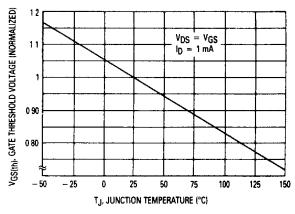


Figure 2. Gate-Threshold Voltage Variation With Temperature

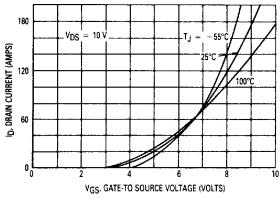


Figure 3. Transfer Characteristics

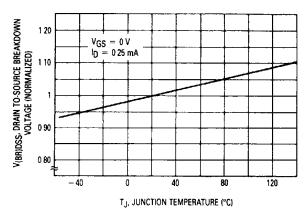


Figure 4. Breakdown Voltage Variation With Temperature

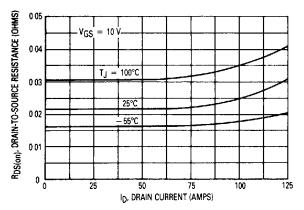


Figure 5. On-Resistance versus Drain Current

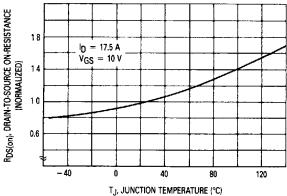


Figure 6. On-Resistance Variation With Temperature

MTM 50N05E

SAFE OPERATING AREA INFORMATION

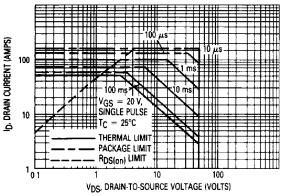


Figure 7. Maximum Rated Forward Biased Safe Operating Area

180 150 (AMPS 120 **DRAIN CURRENT** 90 60 T_J ≤ 150°C 30 Vos, Drain to-Source voltage (volts)

Figure 8. Maximum Rated Switching Safe Operating Area

FORWARD BIASED SAFE OPERATING AREA

The FBSOA curves define the maximum drain-tosource voltage and drain current that a device can safely handle when it is forward biased, or when it is on, or being turned on. Because these curves include the limitations of simultaneous high voltage and high current, up to the rating of the device, they are especially useful to designers of linear systems. The curves are based on a case temperature of 25°C and a maximum junction temperature of 150°C. Limitations for repetitive pulses at various case temperatures can be determined by using the thermal response curves. Motorola Application Note, AN569, "Transient Thermal Resistance-General Data and Its Use" provides detailed instructions.

SWITCHING SAFE OPERATING AREA

The switching safe operating area (SOA) of Figure 8 is the boundary that the load line may traverse without incurring damage to the MOSFET. The fundamental limits are the peak current, IDM and the breakdown voltage, V(BR)DSS. The switching SOA shown in Figure 8 is applicable for both turn-on and turn-off of the devices for switching times less than one microsecond.

The power averaged over a complete switching cycle must be less than:

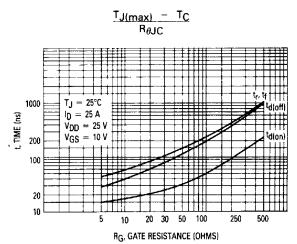


Figure 9. Resistive Switching Time Variation versus Gate Resistance



Figure 10. Thermal Response

COMMUTATING SAFE OPERATING AREA (CSOA)

The Commutating Safe Operating Area (CSOA) of Figure 12 defines the limits of safe operation for commutated source-drain current versus re-applied drain voltage when the source-drain diode has undergone forward bias. The curve shows the limitations of IFM and peak

V_{DS} for a given rate of change of source current. It is applicable when waveforms similar to those of Figure 11 are present. Full or half-bridge PWM DC motor controllers are common applications requiring CSOA data.

Device stresses increase with increasing rate of change of source current so dls/dt is specified with a maximum value. Higher values of dls/dt require an appropriate derating of IFM, peak VDS or both. Ultimately dl_s/dt is limited primarily by device, package, and circuit impedances. Maximum device stress occurs during trr as the diode goes from conduction to reverse blocking.

VDS(pk) is the peak drain-to-source voltage that the device must sustain during commutation; IFM is the maximum forward source-drain diode current just prior to the onset of commutation.

 $\ensuremath{V_R}$ is specified at 80% of $\ensuremath{V_{(BR)DSS}}$ to ensure that the CSOA stress is maximized as IS decays from IRM to zero.

RGS should be minimized during commutation. TJ has only a second order effect on CSOA.

Stray inductances in Motorola's test circuit are assumed to be practical minimums. dVDS/dt in excess of 10 V/ns was attained with dl_S/dt of 400 A/ μ s.

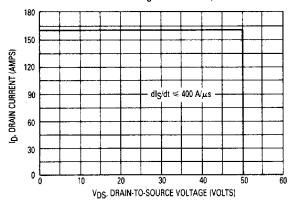


Figure 12. Commutating Safe Operating Area (CSOA)

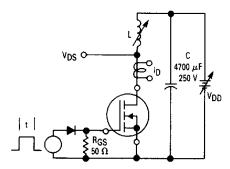


Figure 14. Unclamped Inductive Switching **Test Circuit**

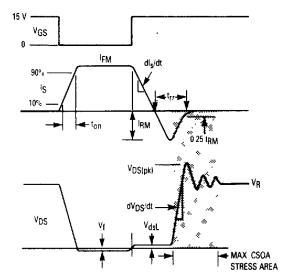


Figure 11. Commutating Waveforms

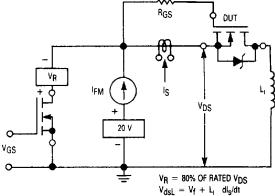


Figure 13. Commutating Safe Operating Area **Test Circuit**

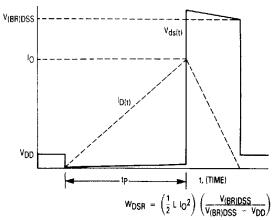
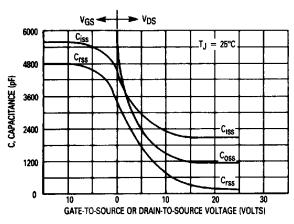
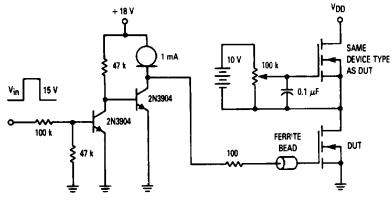



Figure 15. Unclamped Inductive Switching Waveforms


MTM50N05E

T_J = 25°C I_D = 50 A VGS, GATE-TO-SOURCE VOLTAGE (VOLTS) 40 Qg, TOTAL GATE CHARGE (nC)

Figure 16. Capacitance Variation

Figure 17. Gate Charge versus Gate-to-Source Voltage

 $m V_{in} = 15 \, V_{pk}$, PULSE WIDTH $m \leqslant 100 \; \mu s$, DUTY CYCLE $m \leqslant 10\%$

Figure 18. Gate Charge Test Circuit