200MHz Amplifiers

The EL5150, EL5151, EL5250, EL5251, and EL5451 are 200MHz bandwidth -3dB voltage mode feedback amplifiers with DC accuracy of $0.01 \%, 1 \mathrm{mV}$ offsets and $10 \mathrm{kV} / \mathrm{V}$ open loop gains. These amplifiers are ideally suited for applications ranging from precision measurement instrumentation to high speed video and monitor applications. Capable of operating with as little as 1.4 mA of current from a single supply ranging from 5 V to 12 V , dual supplies ranging from $\pm 2.5 \mathrm{~V}$ to $\pm 5.0 \mathrm{~V}$, these amplifiers are also well suited for handheld, portable and battery-powered equipment.

Single amplifiers are offered in SOT-23 packages and duals in a 10-pin MSOP package for applications where board space is critical. Quad amplifiers are available in a 14-pin SO package. Additionally, singles and duals are available in the industry-standard 8-pin SO package. All parts operate over the industrial temperature range of $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

Features

- 200MHz -3dB bandwidth
- $67 \mathrm{~V} / \mu$ s slew rate
- Very high open loop gains 50kV/V
- Low supply current $=1.4 \mathrm{~mA}$
- Single supplies from 5 V to 12 V
- Dual supplies from $\pm 2.5 \mathrm{~V}$ to $\pm 5 \mathrm{~V}$
- Fast disable on the EL5150 and EL5250
- Low cost
- Pb-free available (RoHS compliant)

Applications

- Imaging
- Instrumentation
- Video
- Communications devices

Ordering Information

PART NUMBER	PACKAGE	TAPE \& REEL	PKG. DWG. \#
EL5150IS	8-Pin SO	-	MDP0027
EL5150IS-T7	8-Pin SO	$7{ }^{\prime \prime}$	MDP0027
EL5150IS-T13	8 -Pin SO	13 "	MDP0027
EL5150ISZ (See Note)	8-Pin SO (Pb-Free)	-	MDP0027
EL5150ISZ-T7 (See Note)	8-Pin SO (Pb-Free) (Pb-Free)	7"	MDP0027
EL5150ISZ-T13 (See Note)	8-Pin SO (Pb-Free)	13 "	MDP0027
EL5150IW-T7	6-Pin SOT-23	7" (3K pcs)	MDP0038
EL5150IW-T7A	6-Pin SOT-23	7" (250 pcs)	MDP0038
EL5150IWZ-T7 (See Note)	$\begin{gathered} \text { 6-Pin SOT-23 } \\ \text { (Pb-Free) } \end{gathered}$	7" (3K pcs)	MDP0038
EL5150IWZ-T7A (See Note)	$\begin{aligned} & \text { 6-Pin SOT-23 } \\ & \text { (Pb-Free) } \end{aligned}$	7" (250 pcs)	MDP0038
EL5151IW-T7	5-Pin SOT-23	7" (3K pcs)	MDP0038
EL5151IW-T7A	5-Pin SOT-23	7" (250 pcs)	MDP0038
EL5151IWZ-T7 (See Note)	$\begin{gathered} \text { 5-Pin SOT-23 } \\ \text { (Pb-Free) } \end{gathered}$	7" (3K pcs)	MDP0038

PART NUMBER	PACKAGE	 REEL	PKG. DWG. \#
EL5151IWZ-T7A (See Note)	5-Pin SOT-23 (Pb-Free)	$7^{\prime \prime}$ (250 pcs)	MDP0038
EL5250IY	10-Pin MSOP	-	MDP0043
EL5250IY-T7	10-Pin MSOP	$7 \prime \prime$	MDP0043
EL5250IY-T13	10-Pin MSOP	$13^{\prime \prime}$	MDP0043
EL5251IS	8-Pin SO	-	MDP0027
EL5251IS-T7	8-Pin SO	$7 \prime \prime$	MDP0027
EL5251IS-T13	8-Pin SO	$13^{\prime \prime}$	MDP0027
EL5251IY	8-Pin MSOP	-	MDP0043
EL5251IY-T7	8-Pin MSOP	$7 "$	MDP0043
EL5251IY-T13	8-Pin MSOP	$13^{\prime \prime}$	MDP0043
EL5451IS	14-Pin SO	-	MDP0027
EL5451IS-T7	14-Pin SO	$7 "$	MDP0027
EL5451IS-T13	14-Pin SO	$13^{\prime \prime}$	MDP0027

NOTE: Intersil Pb-free products employ special Pb-free material sets; molding compounds/die attach materials and 100\% matte tin plate termination finish, which are RoHS compliant and compatible with both SnPb and Pb-free soldering operations. Intersil Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020C.

Pinouts

EL5150
(6-PIN SOT-23) TOP VIEW

EL5151
(5-PIN SOT-23)
TOP VIEW

> EL5250
> (10-PIN MSOP)
> TOP VIEW

EL5251
(8-PIN MSOP) TOP VIEW

EL5451 (14-PIN SO) TOP VIEW


```
Absolute Maximum Ratings \(\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.\) )
Supply Voltage between \(\mathrm{V}_{\text {S }}\) and GND. . . . . . . . . . . . . . . . . . . 13.2V
Maximum Continuous Output Current . . . . . . . . . . . . . . . . . . . 40mA
Pin Voltages. . . . . . . . . . . . . . . . . . . . . . . . . GND -0.5 V to \(\mathrm{V}_{\mathrm{S}}+0.5 \mathrm{~V}\)
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Curves
```

Junction Temperature	. $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature	. $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Operating Temperature	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Current into $\mathrm{I}^{+}{ }^{+}, \mathrm{I}_{\mathrm{N}^{-}}, \mathrm{CE}$	

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

IMPORTANT NOTE: All parameters having Min/Max specifications are guaranteed. Typical values are for information purposes only. Unless otherwise noted, all tests are at the specified temperature and are pulsed tests, therefore: $T_{J}=T_{C}=T_{A}$

Electrical Specifications $\quad \mathrm{V}_{\mathrm{S}^{+}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}^{-}}=-5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=150 \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified.

PARAMETER	DESCRIPTION	CONDITIONS	MIN	TYP	MAX	UNIT
AC PERFORMANCE						
BW	-3dB Bandwidth	$A_{V}=+1, R_{L}=500 \Omega$		200		MHz
		$A_{V}=+2, R_{L}=150 \Omega$		40		MHz
GBWP	Gain Bandwidth Product	$A_{V}=500$		40		MHz
BW1	0.1 dB Bandwidth	$A_{V}=+1, R_{L}=500 \Omega$		10		MHz
SR	Slew Rate	$\mathrm{V}_{\mathrm{O}}= \pm 2.5 \mathrm{~V}, \mathrm{~A}_{\mathrm{V}}=+2$	50	67		V/us
		$\mathrm{V}_{\mathrm{O}}= \pm 3.0 \mathrm{~V}, \mathrm{~A}_{\mathrm{V}}=1, \mathrm{R}_{\mathrm{L}}=500 \Omega$		100		V/ $/ \mathrm{s}$
t_{5}	0.1\% Settling Time	$\mathrm{V}_{\text {OUT }}=-1 \mathrm{~V}$ to $+1 \mathrm{~V}, A_{V}=-2$		80		ns
dG	Differential Gain Error (Note 1)	$A_{V}=+2, R_{L}=150 \Omega$		0.04		\%
dP	Differential Phase Error (Note 1)	$A_{V}=+2, R_{L}=150 \Omega$		0.9		-
V_{N}	Input Referred Voltage Noise			12		$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$
I_{N}	Input Referred Current Noise			1.0		$\mathrm{pA} / \sqrt{ } \mathrm{Hz}$
DC PERFORMANCE						
$\mathrm{V}_{\text {OS }}$	Offset Voltage		-1	0.5	1	mV
$\mathrm{T}_{\mathrm{C}} \mathrm{V}_{\mathrm{OS}}$	Input Offset Voltage Temperature Coefficient	Measured from $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$		-2		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
AVOL	Open Loop Gain		15	56		kV/V
INPUT CHARACTERISTICS						
CMIR	Common Mode Input Range	Guaranteed by CMRR test	-3.5		+3.5	V
CMRR	Common Mode Rejection Ratio		85	100		dB
I_{B}	Input Bias Current		-100	20	+100	nA
IOS	Input Offset Current		-30	6	30	nA
$\mathrm{R}_{\text {IN }}$	Input Resistance		80	170		$\mathrm{M} \Omega$
$\mathrm{C}_{\text {IN }}$	Input Capacitance			1		pF
OUTPUT CHARACTERISTICS						
V OUT	Output Voltage Swing Low	$\mathrm{R}_{\mathrm{L}}=150 \Omega$ to GND	± 2.5	± 2.8		V
		$\mathrm{R}_{\mathrm{L}}=500 \Omega$ to GND	± 3.1	± 3.4		V
IOUT	Output Current	$\mathrm{R}_{\mathrm{L}}=10 \Omega$ to GND	± 40	± 70		mA

EL5150, EL5151, EL5250, EL5251, EL5451

Electrical Specifications $\quad \mathrm{V}_{\mathrm{S}^{+}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}^{-}}=-5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=150 \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified. (Continued)

PARAMETER	DESCRIPTION	CONDITIONS	MIN	TYP	MAX	UNIT
ENABLE (SELECTED PACKAGES ONLY)						
$\mathrm{t}_{\text {EN }}$	Enable Time	EL5150		210		ns
${ }^{\text {D DIS }}$	Disable Time	EL5150		620		ns
$\mathrm{I}_{\text {IHCE }}$	$\overline{\mathrm{CE}}$ Pin Input High Current	$\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{S}^{+}}$	1	5	25	$\mu \mathrm{A}$
IILCE	$\overline{\mathrm{CE}}$ Pin Input Low Current	$\overline{C E}=V_{S}+-5 V$	-1	0	+1	$\mu \mathrm{A}$
$V_{\text {IHCE }}$	$\overline{\mathrm{CE}}$ Input High Voltage for Powerdown	Disable	$\mathrm{V}_{\mathrm{S}^{+-1}}$			V
$V_{\text {ILCE }}$	$\overline{\mathrm{CE}}$ Input Low Voltage for Powerdown	Enable			$\mathrm{V}_{\mathrm{S}^{+}-3}$	V
SUPPLY						
ISON	Supply Current - Enabled (per amplifier)	No load, $\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \overline{\mathrm{CE}}=+5 \mathrm{~V}$	1.12	1.35	1.6	mA
ISOFF+	Supply Current - Disabled (per amplifier)		-10	-1	+5	$\mu \mathrm{A}$
ISOFF-	Supply Current - Disabled (per amplifier)	No load, $\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$	-25	-14	0	$\mu \mathrm{A}$
PSRR	Power Supply Rejection Ratio	$\mathrm{DC}, \mathrm{V}_{S}= \pm 3.0 \mathrm{~V}$ to $\pm 6.0 \mathrm{~V}$	80	110		dB

NOTE:

1. Standard NTSC test, AC signal amplitude $=286 \mathrm{mV} \mathrm{V}_{\mathrm{P}-\mathrm{P}, \mathrm{f}} \mathrm{f}=3.58 \mathrm{MHz}, \mathrm{V}_{\mathrm{OUT}}$ is swept from 0.8 V to $3.4 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}$ is DC coupled.

Typical Performance Curves

FIGURE 1. EL5150 FREQUENCY vs OPEN LOOP GAIN/PHASE

FIGURE 2. PHASE vs FREQUENCY FOR VARIOUS GAINS

Typical Performance Curves (Continued)

FIGURE 3. EL5150 GAIN vs FREQUENCY FOR VARIOUS R_{L}

FIGURE 5. EL5150 GAIN vs FREQUENCY FOR VARIOUS R R_{L}

FIGURE 7. EL5150 GAIN vs FREQUENCY FOR VARIOUS C L_{L}

FIGURE 4. EL5150 GAIN vs FREQUENCY FOR VARIOUS R_{L}

FIGURE 6. EL5150 GAIN vs FREQUENCY FOR VARIOUS CL

FREQUENCY (Hz)
FIGURE 8. EL5150 GAIN vs FREQUENCY FOR VARIOUS C_{L}

Typical Performance Curves (Continued)

FIGURE 9. EL5150 GAIN vs FREQUENCY FOR VARIOUS $\mathrm{C}_{\mathrm{IN}^{-}}$

FIGURE 11. EL5150 GAIN vs FREQUENCY FOR VARIOUS $\mathrm{C}_{\mathrm{IN}^{-}}$

FIGURE 13. EL5150 GAIN vs FREQUENCY FOR VARIOUS $\mathbf{R}_{\mathbf{F}} / \mathbf{R}_{\mathbf{G}}$

FIGURE 10. EL5150 GAIN vs FREQUENCY FOR VARIOUS CIN

FREQUENCY (Hz)
FIGURE 12. EL5250 GAIN vs FREQUENCY FOR VARIOUS R_{L}

FIGURE 14. EL5250 GAIN vs FREQUENCY FOR VARIOUS GAINS

Typical Performance Curves (Continued)

FIGURE 15. EL5250 GAIN vs FREQUENCY FOR VARIOUS GAINS

FIGURE 17. PSRR vs FREQUENCY

FIGURE 19. EL5250 CROSSTALK vs FREQUENCY

FIGURE 16. PSRR vs FREQUENCY

FIGURE 18. EL5250 CROSSTALK vs FREQUENCY

FIGURE 20. OUTPUT IMPEDANCE

Typical Performance Curves (Continued)

FIGURE 21. CMRR

FIGURE 23. SUPPLY CURRENT vs SUPPLY VOLTAGE

FIGURE 25. DISTORTION vs OUTPUT AMPLITUDE

FIGURE 22. GROUP DELAY

FIGURE 24. VOLTAGE + CURRENT NOISE vs FREQUENCY

FIGURE 26. SLEW RATE vs POWER SUPPLY

Typical Performance Curves (Continued)

FIGURE 27. TOTAL HARMONIC DISTORTION vs OUTPUT VOLTAGE

TIME (40ns/DIV)
FIGURE 29. SMALL SIGNAL STEP RESPONSE

TIME (40ns/DIV)
FIGURE 31. SMALL SIGNAL STEP RESPONSE

FIGURE 28. HARMONIC DISTORTION vs FREQUENCY

TIME (40ns/DIV)
FIGURE 30. LARGE SIGNAL STEP RESPONSE

FIGURE 32. LARGE SIGNAL STEP RESPONSE

Typical Performance Curves (Continued)

TIME (400ns/DIV)
FIGURE 33. EL5150 ENABLE/DISABLE

FIGURE 35. DIFFERENTIAL GAIN

FIGURE 37. SMALL SIGNAL FREQUENCY vs SUPPLY

TIME ($1 \mu \mathrm{~s} / \mathrm{DIV}$)
FIGURE 34. EL5250 ENABLE/DISABLE

FIGURE 36. DIFFERENTIAL PHASE

FIGURE 38. INPUT-TO-OUTPUT ISOLATION WITH PART DISABLED

Typical Performance Curves (Continued)

FIGURE 39. PACKAGE POWER DISSIPATION vs AMBIENT TEMPERATURE

Product Description

The EL5150, EL5151, EL5250, EL5251 and EL5451 are wide bandwidth, low power, low offset voltage feedback operational amplifiers capable of operating from a single or dual power supplies. This family of operational amplifiers are internally compensated for closed loop gain of +1 or greater. Connected in voltage follower mode, driving a 500Ω load members of this amplifier family demonstrate a -3dB bandwidth of about 200 MHz . With the loading set to accommodate typical video application, 150Ω load and gain set to +2 , bandwidth reduces to about 40 MHz with a $67 \mathrm{~V} / \mu \mathrm{s}$ slew rate. Power down pins on the EL5151 and EL5251 reduce the already low power demands of this amplifier family to $12 \mu \mathrm{~A}$ typical while the amplifier is disabled.

Input, Output and Supply Voltage Range

The EL5150 and family members have been designed to operate with supply voltage ranging from 5 V to 12 V . Supply voltages range from $\pm 2.5 \mathrm{~V}$ to $\pm 5 \mathrm{~V}$ for split supply operation. And of course split supply operation can easily be achieved using single supplies with by splitting off half of the single supply with a simple voltage divider as illustrated in the application circuit section.

Input Common Mode Range

These amplifiers have an input common mode voltage ranging from 3.5 V above the negative supply ($\mathrm{V}_{\mathrm{S}^{-}}$pin) to 3.5 V below the positive supply $\left(\mathrm{V}_{\mathrm{S}^{+}}\right.$pin). If the input signal is driven beyond this range the output signal will exhibit distortion.

Maximum Output Swing \& Load Resistance

The outputs of the EL5150 and family members exhibit maximum output swing ranges from -4 V to 4 V for $\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}$ with a load resistance of 500Ω. Naturally, as the load resistance becomes lower, the output swing lowers

FIGURE 40. PACKAGE POWER DISSIPATION vs AMBIENT TEMPERATURE
accordingly; for instance, if the load resistor is 150Ω, the output swing ranges from -3.5 V to 3.5 V . This response is a simple application of Ohms law indicating a lower value resistance results in greater current demands of the amplifier. Additionally, the load resistance affects the frequency response of this family as well as all operational amplifiers; as clearly indicated by the Gain Vs Frequency For Various RL curves clearly indicate. In the case of the frequency response reduced bandwidth with decreasing load resistance is a function of load resistance in conjunction with the output zero response of the amplifier.

Choosing A Feedback Resistor

A feedback resistor is required to achieve unity gain; simply short the output pin to the inverting input pin. Gains greater than +1 require a feedback and gain resistor to set the desired gain. This gets interesting because the feedback resistor forms a pole with the parasitic capacitance at the inverting input; as the feedback resistance increases the position of the pole shifts in the frequency domain, the amplifier's phase margin is reduced and the amplifier becomes less stable. Peaking in the frequency domain and ringing in the time domain are symptomatic of this shift in pole location. So we want to keep the feedback resistor as small as possible. You may want to use a large feedback resistor for some reason; in this case to compensate the shift of the pole and maintain stability a small capacitor in the few Pico farad range in parallel with the feedback resistor is recommended.

For the gains greater than unity it has been determined a feedback resistance ranging from 500Ω to 750Ω provides optimal response.

Gain Bandwidth Product

The EL5150 and family members have a gain bandwidth product of 40 MHz for a gain of +5 . Bandwidth can be predicted by the following equation:
(Gain) $\times(B W)=$ GainBandwidthProduct

Video Performance

For good video performance, an amplifier is required to maintain the same output impedance and same frequency response as DC levels are changed at the output; this characteristic is widely referred to as "diffgain-diffphase". Many amplifiers have a difficult time with this especially while driving standard video loads of 150Ω, as the output current has a natural tendency to change with DC level. The dG and dP for these families is a respectable 0.04% and 0.9°, while driving 150Ω at a gain of 2 . Driving high impedance loads would give a similar or better dG and dP performance as the current output demands placed on the amplifier lessen with increased load.

Driving Capacitive Loads

These devices can easily drive capacitive loads as demanding as 27 pF in parallel with 500Ω while holding peaking to within 5 dB of peaking at unity gain. Of course if less peaking is desired, a small series resistor (usually between 5Ω to 50Ω) can be placed in series with the output to eliminate most peaking; however, there will be a small sacrifice of gain which can be recovered by simply adjusting the value of the gain resistor.

Driving Cables

Both ends of all cables must always be properly terminated; double termination is absolutely necessary for reflection-free performance. Additionally, a back-termination series resistor at the amplifier's output will isolate the amplifier from the cable and allow extensive capacitive drive. However, other applications may have high capacitive loads without a backtermination resistor. Again, a small series resistor at the output can help to reduce peaking.

Disable/Power-Down

Devices with disable can be disabled with their output placed in a high impedance state. The turn off time is about 330ns and the turn on time is about 130 ns . When disabled, the amplifier's supply current is reduced to $17 \mu \mathrm{~A}$ typically; essentially eliminating power consumption. The amplifier's power down is controlled by standard TTL or CMOS signal levels at the ENABLE pin. The applied logic signal is relative to $\mathrm{V}_{\mathrm{S}^{-}}$pin. Letting the ENABLE pin float or the application of a signal that is less than 0.8 V above $\mathrm{V}_{\mathrm{S}^{-}}$enables the amplifier. The amplifier is disabled when the signal at ENABLE pin is above $\mathrm{V}_{\mathrm{S}^{+}}-1.5 \mathrm{~V}$.

Output Drive Capability

Members of the EL5150 family do not have internal short circuit protection circuitry. Typically, short circuit currents
ranging from 70 mA and 95 mA can be expected and naturally, if the output is shorted indefinitely the part can easily be damaged from overheating; or excessive current density may eventually compromise metal integrity. Maximum reliability is maintained if the output current is always held below $\pm 40 \mathrm{~mA}$. This limit is set and limited by the design of the internal metal interconnect. Note that in transient applications, the part is extremely robust.

Power Dissipation

With the high output drive capability of these devices, it is possible to exceed the $125^{\circ} \mathrm{C}$ absolute maximum junction temperature under certain load current conditions.
Therefore, it is important to calculate the maximum junction temperature for an application to determine if load conditions or package types need to be modified to assure operation of the amplifier in a safe operating area.

The maximum power dissipation allowed in a package is determined according to:

$$
\mathrm{PD}_{M A X}=\frac{\mathrm{T}_{J M A X}-\mathrm{T}_{\mathrm{AMAX}}}{\Theta_{J A}}
$$

Where:
$T_{\text {JMAX }}=$ Maximum junction temperature
$T_{\text {AMAX }}=$ Maximum ambient temperature
$q_{J A}=$ Thermal resistance of the package
The maximum power dissipation actually produced by an IC is the total quiescent supply current times the total power supply voltage, plus the power in the IC due to the load, or:
For sourcing:

$$
P D_{M A X}=V_{S} \times I_{\text {SMAX }}+\sum_{i=1}^{n}\left(V_{S}-V_{\text {OUTi }}\right) \times \frac{V_{\text {OUTi }}}{R_{\text {Li }}}
$$

For sinking:

$$
\mathrm{PD}_{\mathrm{MAX}}=\mathrm{V}_{\mathrm{S}} \times \mathrm{I}_{\mathrm{SMAX}}+\sum_{\mathrm{i}=1}\left(\mathrm{~V}_{\mathrm{OUTi}}-\mathrm{V}_{\mathrm{S}}\right) \times \mathrm{I}_{\mathrm{LOADi}}
$$

Where:
$\mathrm{V}_{\mathrm{S}}=$ Supply voltage
$I_{\text {SMAX }}=$ Maximum quiescent supply current
$\mathrm{V}_{\text {OUT }}=$ Maximum output voltage of the application
$\mathrm{R}_{\text {LOAD }}=$ Load resistance tied to ground
LLOAD $=$ Load current
$N=$ number of amplifiers $(\operatorname{Max}=2)$
By setting the two $P D_{\text {MAX }}$ equations equal to each other, we can solve the output current and $\mathrm{R}_{\text {LOAD }}$ to avoid the device overheat.

Power Supply Bypassing Printed Circuit Board Layout

As with any high frequency device, a good printed circuit board layout is necessary for optimum performance. Lead lengths should be as short as possible. The power supply pin must be well bypassed to reduce the risk of oscillation. For normal single supply operation, where the $\mathrm{V}_{\mathrm{S}^{-}}$pin is connected to the ground plane, a single $4.7 \mu \mathrm{~F}$ tantalum capacitor in parallel with a $0.1 \mu \mathrm{~F}$ ceramic capacitor from $\mathrm{V}_{\mathrm{S}^{+}}$ to GND will suffice. This same capacitor combination should be placed at each supply pin to ground if split supplies are to be used. In this case, the $\mathrm{V}_{\mathrm{S}^{-}}$pin becomes the negative supply rail.

Printed Circuit Board Layout

For good AC performance, parasitic capacitance should be kept to a minimum. Use of wire wound resistors should be avoided because of their additional series inductance. Use of sockets should also be avoided if possible. Sockets add parasitic inductance and capacitance that can result in
compromised performance. Minimizing parasitic capacitance at the amplifier's inverting input pin is very important. The feedback resistor should be placed very close to the inverting input pin. Strip line design techniques are recommended for the signal traces.

Application Circuits

Sullen Key Low Pass Filter

A common and easy to implement filter taking advantage of the wide bandwidth, low offset and low power demands of the EL5150. A derivation of the transfer function is provided for convenience. (see Figure 39)

Sullen Key High Pass Filter

Again, this useful filter benefits from the characteristics of the EL5150. The transfer function is very similar to the low pass so only the results are presented.(see Figure 40)

FIGURE 41. SULLEN KEY LOW PASS FILTER

$$
\begin{aligned}
& \text { Holp }=K \\
& w o=\frac{1}{\sqrt{\text { R1C1R2C2 }}} \\
& Q=\frac{1}{(1-K) \sqrt{\frac{R 1 C 1}{R 2 C 2}}+\sqrt{\frac{R 1 C 2}{R_{2} C 1}}+\sqrt{\frac{R 2 C 2}{R 1 C 1}}} \\
& \text { Holp }=\frac{\mathrm{K}}{4-\mathrm{K}} \quad \text { Equations simplify if we let } \\
& \text { wo }=\frac{\sqrt{2}}{R C} \quad \text { all components be equal } R=C \\
& Q=\frac{\sqrt{2}}{4-K} \\
& \text { all components be equal } \mathrm{R}=\mathrm{C} \\
& Q=\frac{\sqrt{2}}{4-K}
\end{aligned}
$$

FIGURE 42. SULLEN KEY HIGH PASS FILTER

Differential Output Instrumentation Amplifier

The addition of a third amplifier to the conventional three amplifier Instrumentation Amplifier introduces the benefits of differential signal realization; specifically the advantage of using common mode rejection to remove coupled noise and ground -potential errors inherent in remote transmission. This configuration also provides enhanced bandwidth, wider output swing and faster slew rate than conventional three amplifier solutions with only the cost of an additional amplifier and few resistors.

Strain Gauge

The strain gauge is an ideal application to take advantage of the moderate bandwidth and high accuracy of the EL5150. The operation of the circuit is very straight-forward. As the strain variable component resistor in the balanced bridge is subjected to increasing strain, its resistance changes
resulting in an imbalance in the bridge. A voltage variation from the referenced high accuracy source is generated and translated to the difference amplifier through the buffer stage. This voltage difference as a function of the strain is converted into an output voltage.

MSOP Package Outline Drawing

SO Package Outline Drawing

SOT-23 Package Outline Drawing

DIMENSION TABLE			
Symbol	SOT23-5	SOT23-6	Tolerance
A	1.45	1.45	MAX.
A1	0.10	0.10	$+/-0.05$
A2	1.14	1.14	$+/-0.15$
b	0.40	0.40	$+/-0.05$
c	0.14	0.14	$+/-0.06$
D	2.90	2.90	Basic
E	2.80	2.80	Basic
E1	1.60	1.60	Basic
e	0.95	0.95	Basic
e1	1.90	1.90	Basic
L	0.45	0.45	+/- 0.10
L1	0.60	0.60	Reference
N	5	6	Reference

(1) Plastic or metal protrusions of 0.25 mm maximum per side are not included.

Drawing \#: MDP0038	PACKAGE OUTLINE DRAWING SOT-23 PACKAGE FAMILY
Rev: E	
Units: mm	ELETILEC semiconductor, Inc. high performance analog integrated circuits
$\begin{gathered} \text { JEDEC Reg: M0-178 } \\ \hline(9) \\ \hline \text { 果 } \end{gathered}$	

(2) Plastic interlead protrusions of 0.25 mm maximum per side are not included.
(3) This dimension is measured at Datum Plane " H ".
(4) Dimensioning and tolerancing per ASME Y14.5M-1994
(5) Index area - Pin \#1 I.D. will be located within the indicated zone (SOTZ3-6 only).
6) SOT23-5 version has no center lead (shown as a
dashed line).

NOTE: The package drawing shown here may not be the latest version. To check the latest revision, please reter to the Intersil website at http://www.intersil.com/design/packages/index.asp

All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems. Intersil Corporation's quality certifications can be viewed at www.intersil.com/design/quality

[^0]For information regarding Intersil Corporation and its products, see www.intersil.com

[^0]: Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

