$+3 \mathrm{~V} /+5 \mathrm{~V} / \pm 5 \mathrm{~V}$ CMOS 4-/8-Channel
Analog Multiplexers
ADG658/ADG659

## FEATURES

$\pm 2 \mathrm{~V}$ to $\pm 6 \mathrm{~V}$ Dual Supply
2 V to 12 V Single Supply
Automotive Temperature Range $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
<0.1 nA Leakage Currents
$45 \Omega$ On Resistance over Full Signal Range
Rail-to-Rail Switching Operation
Single 8-to-1 Multiplexer ADG658
Differential 4-to-1 Multiplexer ADG659
16-Lead LFCSP/TSSOP Packages
Typical Power Consumption <0.1 $\mu$ W
TTL/CMOS Compatible Inputs
Package Upgrades to 74HC4051/74HC4052 and MAX4051/MAX4052/MAX4581/MAX4582

## APPLICATIONS

Automotive Applications
Automatic Test Equipment
Data Acquisition Systems
Battery-Powered Systems
Communication Systems
Audio and Video Signal Routing
Relay Replacement
Sample-and-Hold Systems
Industrial Control Systems

## GENERAL DESCRIPTION

The ADG658 and ADG659 are low voltage, CMOS analog multiplexers comprised of eight single channels and four differential channels, respectively. The ADG658 switches one of eight inputs ( $\mathrm{S} 1-\mathrm{S} 8$ ) to a common output, D , as determined by the 3-bit binary address lines A0, A1, and A2. The ADG659 switches one of four differential inputs to a common differential output, as determined by the 2 -bit binary address lines A0 and A1. An $\overline{\mathrm{EN}}$ input on both devices is used to enable or disable the device. When disabled, all channels are switched off.

These parts are designed on an enhanced process that provides lower power dissipation yet gives high switching speeds. These parts can operate equally well as either multiplexers or demultiplexers and have an input range that extends to the supplies. All channels exhibit break-before-make switching action, preventing momentary shorting when switching channels. All digital inputs have 0.8 V to 2.4 V logic thresholds, ensuring TTL/ CMOS logic compatibility when using single +5 V or dual $\pm 5 \mathrm{~V}$ supplies.
The ADG658 and ADG659 are available in 16-lead TSSOP packages and 16-lead $4 \mathrm{~mm} \times 4 \mathrm{~mm}$ LFCSP packages.

## REV. 0

## PRODUCT HIGHLIGHTS

1. Single- and dual-supply operation. The ADG658 and ADG659 offer high performance and are fully specified and guaranteed with $\pm 5 \mathrm{~V},+5 \mathrm{~V}$, and +3 V supply rails.
2. Automotive temperature range $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
3. Low power consumption, typically $<0.1 \mu \mathrm{~W}$.
4. 16-lead $4 \mathrm{~mm} \times 4 \mathrm{~mm}$ LFCSP packages and 16-lead TSSOP package.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A

| Parameter | $+25^{\circ} \mathrm{C}$ | B Version $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | $\begin{aligned} & \text { Y Version } \\ & -40^{\circ} \mathrm{C} \\ & \text { to }+125^{\circ} \mathrm{C} \end{aligned}$ | Unit | Test Conditions/Comments |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ANALOG SWITCH <br> Analog Signal Range On Resistance ( $\mathrm{R}_{\mathrm{ON}}$ ) <br> On Resistance Match between Channels ( $\Delta \mathrm{R}_{\mathrm{ON}}$ ) <br> On Resistance Flatness ( $\mathrm{R}_{\text {FLAT(ON) }}$ ) | $\begin{aligned} & 45 \\ & 75 \\ & 1.3 \\ & 3 \\ & 10 \\ & 16 \end{aligned}$ | $\begin{aligned} & 90 \\ & 3.2 \\ & 17 \end{aligned}$ | $\mathrm{V}_{\mathrm{SS}}$ to $\mathrm{V}_{\mathrm{DD}}$ <br> 100 <br> 3.5 <br> 18 | V <br> $\Omega$ typ <br> $\Omega$ max <br> $\Omega$ typ <br> $\Omega$ max <br> $\Omega$ typ <br> $\Omega$ max | $\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-4.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=1 \mathrm{~mA} ; \end{aligned}$ <br> Test Circuit 1 $\begin{aligned} & \mathrm{V}_{\mathrm{S}}=3.5 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=1 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{DD}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-5 \mathrm{~V} ; \\ & \mathrm{V}_{\mathrm{S}}= \pm 3 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=1 \mathrm{~mA} \end{aligned}$ |
| LEAKAGE CURRENTS Source OFF Leakage $\mathrm{I}_{\mathrm{S}}(\mathrm{OFF})$ Drain OFF Leakage $\mathrm{I}_{\mathrm{D}}(\mathrm{OFF})$ ADG658 ADG659 Channel ON Leakage $\mathrm{I}_{\mathrm{D}}, \mathrm{I}_{\mathrm{S}}(\mathrm{ON})$ ADG658 ADG659 | $\begin{aligned} & \pm 0.005 \\ & \pm 0.2 \\ & \pm 0.005 \\ & \pm 0.2 \\ & \pm 0.1 \\ & \pm 0.005 \\ & \pm 0.2 \\ & \pm 0.1 \end{aligned}$ |  | $\pm 5$ <br> $\pm 5$ <br> $\pm 2.5$ <br> $\pm 5$ <br> $\pm 2.5$ | nA typ <br> nA max <br> nA typ <br> nA max <br> nA max <br> nA typ <br> nA max <br> $n A \max$ | $\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{D}}= \pm 4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=\mp 4.5 \mathrm{~V} ; \end{aligned}$ <br> Test Circuit 2 $\mathrm{V}_{\mathrm{D}}= \pm 4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=\mp 4.5 \mathrm{~V} ;$ <br> Test Circuit 3 $\mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\mathrm{S}}= \pm 4.5 \mathrm{~V} \text {; Test Circuit } 4$ |
| DIGITAL INPUTS <br> Input High Voltage, $\mathrm{V}_{\text {INH }}$ <br> Input Low Voltage, $\mathrm{V}_{\text {INL }}$ <br> Input Current $\mathrm{I}_{\text {INL }} \text { or } \mathrm{I}_{\mathrm{INH}}$ <br> $\mathrm{C}_{\text {IN }}$, Digital Input Capacitance | $\begin{aligned} & 0.005 \\ & 2 \end{aligned}$ |  | $\begin{aligned} & 2.4 \\ & 0.8 \\ & \\ & \pm 1 \end{aligned}$ | V min <br> $\mathrm{V} \max$ <br> $\mu \mathrm{A}$ typ <br> $\mu \mathrm{A} \max$ <br> pF typ | $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {INL }}$ or $\mathrm{V}_{\text {INH }}$ |
| ```DYNAMIC CHARACTERISTICS \({ }^{2}\) \(\mathrm{t}_{\text {TRANS }}\) \(\mathrm{t}_{\mathrm{ON}}(\overline{\mathrm{EN}})\) \(\mathrm{t}_{\mathrm{OFF}}(\overline{\mathrm{EN}})\) Break-Before-Make Time Delay, \(\mathrm{t}_{\text {ввм }}\) Charge Injection Off Isolation Total Harmonic Distortion, THD + N Channel-to-Channel Crosstalk (ADG659) -3 dB Bandwidth ADG658 ADG659 \(\mathrm{C}_{\mathrm{S}}\) (OFF) \(\mathrm{C}_{\mathrm{D}}\) (OFF) ADG658 ADG659 \(\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{S}}(\mathrm{ON})\) ADG658 ADG659``` | 80 115 80 115 30 45 50 2 4 -90 0.025 -90 210 400 4 23 12 28 16 | $\begin{aligned} & 140 \\ & 140 \\ & 50 \end{aligned}$ | 165 165 55 10 | ns typ <br> ns max <br> ns typ <br> ns max <br> ns typ <br> ns max <br> ns typ <br> ns min <br> pC typ <br> pC max <br> dB typ <br> \% typ <br> dB typ <br> MHz typ <br> MHz typ <br> pF typ | $\begin{aligned} & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}=3 \mathrm{~V} ; \text { Test Circuit } 5 \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}=3 \mathrm{~V} ; \text { Test Circuit } 7 \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}=3 \mathrm{~V} ; \text { Test Circuit } 7 \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S} 1}=\mathrm{V}_{\mathrm{S} 2}=3 \mathrm{~V} ; \text { Test Circuit } 6 \\ & \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \Omega \text {, } \\ & \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF} ; \text { Test Circuit } 8 \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \\ & \mathrm{f}=1 \mathrm{MHz} ; \text { Test Circuit } 9 \\ & \mathrm{R}_{\mathrm{L}}=600 \Omega, 2 \mathrm{~V} \text { p-p, } \\ & \mathrm{f}=20 \mathrm{~Hz} \text { to } 20 \mathrm{kHz} \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \\ & \mathrm{f}=1 \mathrm{MHz} ; \text { Test Circuit } 11 \\ & \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} ; \\ & \mathrm{Test} \operatorname{Circuit} 10 \\ & \mathrm{f}=1 \mathrm{MHz} \end{aligned}$ |
| POWER REQUIREMENTS <br> $\mathrm{I}_{\mathrm{DD}}$ <br> $\mathrm{I}_{\mathrm{SS}}$ | 0.01 0.01 |  | 1 1 | $\mu \mathrm{A}$ typ $\mu \mathrm{A} \max$ $\mu \mathrm{A}$ typ $\mu \mathrm{A} \max$ | $\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-5.5 \mathrm{~V} \\ & \text { Digital Inputs }=0 \mathrm{~V} \text { or } 5.5 \mathrm{~V} \\ & \text { Digital Inputs }=0 \mathrm{~V} \text { or } 5.5 \mathrm{~V} \end{aligned}$ |

[^0]SINGLE SUPPLY ${ }^{1}{ }_{\left(V_{00}=5 V\right.}=510 \%, V_{S S}=0 V, G N D=0 V$, unless otherwise noted.)

| Parameter | $+25^{\circ} \mathrm{C}$ | B Version $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | Y Version $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | Unit | Test Conditions/Comments |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ANALOG SWITCH <br> Analog Signal Range On Resistance ( $\mathrm{R}_{\mathrm{ON}}$ ) <br> On Resistance Match between Channels ( $\Delta \mathrm{R}_{\mathrm{ON}}$ ) <br> On Resistance Flatness ( $\mathrm{R}_{\text {FLat(ON) }}$ ) | $\begin{aligned} & 85 \\ & 150 \\ & 4.5 \\ & 8 \\ & 13 \end{aligned}$ | $\begin{aligned} & 160 \\ & 9 \\ & 14 \end{aligned}$ | $\begin{aligned} & 0 \text { to } \mathrm{V}_{\mathrm{DD}} \\ & 200 \\ & 10 \\ & 16 \end{aligned}$ | V <br> $\Omega$ typ <br> $\Omega$ max <br> $\Omega$ typ <br> $\Omega$ max <br> $\Omega$ typ | $\mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$ <br> $\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}$ to $4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=1 \mathrm{~mA}$; <br> Test Circuit 1 $\mathrm{V}_{\mathrm{S}}=3.5 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=1 \mathrm{~mA}$ $\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=1.5 \mathrm{~V} \text { to } 4 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=1 \mathrm{~mA} \end{aligned}$ |
| LEAKAGE CURRENTS <br> Source OFF Leakage $\mathrm{I}_{\mathrm{S}}$ (OFF) <br> Drain OFF Leakage $\mathrm{I}_{\mathrm{D}}$ (OFF) <br> ADG658 <br> ADG659 <br> Channel ON Leakage $\mathrm{I}_{\mathrm{D}}, \mathrm{I}_{\mathrm{S}}(\mathrm{ON})$ <br> ADG658 <br> ADG659 | $\begin{aligned} & \pm 0.005 \\ & \pm 0.2 \\ & \pm 0.005 \\ & \pm 0.2 \\ & \pm 0.1 \\ & \pm 0.005 \\ & \pm 0.2 \\ & \pm 0.1 \end{aligned}$ |  | $\begin{aligned} & \pm 5 \\ & \pm 5 \\ & \pm 2.5 \\ & \pm 5 \\ & \pm 2.5 \end{aligned}$ | nA typ nA max nA typ $n A \max$ nA max nA typ nA max nA max | $\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=1 \mathrm{~V} / 4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=4.5 \mathrm{~V} / 1 \mathrm{~V} ; \\ & \text { Test Circuit } 2 \\ & \mathrm{~V}_{\mathrm{S}}=1 \mathrm{~V} / 4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=4.5 \mathrm{~V} / 1 \mathrm{~V} ; \\ & \text { Test Circuit } 3 \\ & \\ & \mathrm{~V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}=1 \mathrm{~V} \text { or } 4.5 \mathrm{~V} \text {, Test Circuit } 4 \end{aligned}$ |
| DIGITAL INPUTS <br> Input High Voltage, $\mathrm{V}_{\text {INH }}$ <br> Input Low Voltage, $\mathrm{V}_{\text {INL }}$ <br> Input Current <br> $\mathrm{I}_{\text {INL }}$ or $\mathrm{I}_{\text {INH }}$ <br> $\mathrm{C}_{\text {IN }}$, Digital Input Capacitance | $\begin{aligned} & 0.005 \\ & 2 \end{aligned}$ |  | $\begin{gathered} 2.4 \\ 0.8 \\ \\ \pm 1 \end{gathered}$ | V min <br> V max <br> $\mu \mathrm{A}$ typ <br> $\mu \mathrm{A}$ max <br> pF typ | $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {INL }}$ or $\mathrm{V}_{\text {INH }}$ |
| ```DYNAMIC CHARACTERISTICS \({ }^{2}\) \(\mathrm{t}_{\text {TRANS }}\) \(\mathrm{t}_{\mathrm{ON}}(\overline{\mathrm{EN}})\) \(\mathrm{t}_{\text {OFF }}(\overline{\mathrm{EN}})\) Break-Before-Make Time Delay, \(\mathrm{t}_{\text {ввм }}\) Charge Injection Off Isolation Channel-to-Channel Crosstalk (ADG659) -3 dB Bandwidth ADG658 ADG659 \(\mathrm{C}_{\mathrm{S}}\) (OFF) \(\mathrm{C}_{\mathrm{D}}\) (OFF) ADG658 ADG659 \(\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{S}}(\mathrm{ON})\) ADG658 ADG659``` | 120 <br> 200 <br> 120 <br> 190 <br> 35 <br> 50 <br> 100 <br> 0.5 <br> 1 -90 <br> -90 <br> 180 <br> 330 <br> 5 <br> 29 <br> 15 <br> 30 <br> 16 | $\begin{aligned} & 270 \\ & 245 \\ & 60 \end{aligned}$ | 300 280 70 10 | ns typ <br> ns max <br> ns typ <br> ns max <br> ns typ <br> ns max <br> ns typ <br> ns min <br> pC typ <br> pC max <br> dB typ <br> dB typ <br> MHz typ <br> MHz typ <br> pF typ | $\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$ <br> $\mathrm{V}_{\mathrm{S}}=3 \mathrm{~V}$; Test Circuit 5 <br> $\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$ <br> $\mathrm{V}_{\mathrm{S}}=3 \mathrm{~V}$; Test Circuit 7 <br> $\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$ <br> $\mathrm{V}_{\mathrm{S}}=3 \mathrm{~V}$; Test Circuit 7 <br> $\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$ <br> $\mathrm{V}_{\mathrm{S} 1}=\mathrm{V}_{\mathrm{S} 2}=3 \mathrm{~V}$; Test Circuit 6 <br> $\mathrm{V}_{\mathrm{S}}=2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}$; <br> Test Circuit 8 $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$ <br> Test Circuit 9 $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} ; \mathrm{f}=1 \mathrm{MHz} ;$ <br> Test Circuit 11 $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ <br> Test Circuit 10 $\mathrm{f}=1 \mathrm{MHz}$ <br> $\mathrm{f}=1 \mathrm{MHz}$ <br> $\mathrm{f}=1 \mathrm{MHz}$ $\mathrm{f}=1 \mathrm{MHz}$ $\mathrm{f}=1 \mathrm{MHz}$ |
| POWER REQUIREMENTS $\mathrm{I}_{\mathrm{DD}}$ | 0.01 |  | 1 | $\mu \mathrm{A}$ typ <br> $\mu \mathrm{A}$ max | $\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V} \\ & \text { Digital Inputs }=0 \mathrm{~V} \text { or } 5.5 \mathrm{~V} \end{aligned}$ |

[^1]
## ADG658/ADG659-SPECIFICATIONS

SINGLE SUPPLY ${ }^{1}\left(V_{D D}=2.7 \mathrm{~V}\right.$ to $3.6 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted.)

| Parameter | $+25^{\circ} \mathrm{C}$ | B Version $\begin{aligned} & -40^{\circ} \mathrm{C} \\ & \text { to }+85^{\circ} \mathrm{C} \end{aligned}$ | $\begin{aligned} & \text { Y Version } \\ & -40^{\circ} \mathrm{C} \\ & \text { to }+125^{\circ} \mathrm{C} \end{aligned}$ | Unit | Test Conditions/Comments |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ANALOG SWITCH <br> Analog Signal Range <br> On Resistance ( $\mathrm{R}_{\mathrm{ON}}$ ) <br> On Resistance Match between Channels ( $\Delta \mathrm{R}_{\mathrm{ON}}$ ) | $\begin{aligned} & 185 \\ & 300 \\ & 2 \\ & 4.5 \end{aligned}$ | $\begin{aligned} & 350 \\ & 6 \end{aligned}$ | $\begin{aligned} & 0 \text { to } \mathrm{V}_{\mathrm{DD}} \\ & 400 \\ & 7 \end{aligned}$ | V <br> $\Omega$ typ <br> $\Omega$ max <br> $\Omega$ typ <br> $\Omega$ max | $\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V} \text { to } 2.7 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=0.1 \mathrm{~mA} ; \end{aligned}$ <br> Test Circuit 1 $\mathrm{V}_{\mathrm{S}}=1.5 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=0.1 \mathrm{~mA}$ |
| ```LEAKAGE CURRENTS Source OFF Leakage \(\mathrm{I}_{\mathrm{S}}\) (OFF) Drain OFF Leakage \(I_{D}(O F F)\) ADG658 ADG659 Channel ON Leakage \(\mathrm{I}_{\mathrm{D}}, \mathrm{I}_{\mathrm{S}}(\mathrm{ON})\) ADG658 ADG659``` | $\begin{aligned} & \pm 0.005 \\ & \pm 0.2 \\ & \pm 0.005 \\ & \pm 0.2 \\ & \pm 0.1 \\ & \pm 0.005 \\ & \pm 0.2 \\ & \pm 0.1 \end{aligned}$ |  | $\pm 5$ <br> $\pm 5$ <br> $\pm 2.5$ <br> $\pm 5$ <br> $\pm 2.5$ | nA typ <br> nA max <br> nA typ <br> nA max <br> nA max <br> nA typ <br> nA max <br> $n A \max$ | $\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=1 \mathrm{~V} / 3 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=3 \mathrm{~V} / 1 \mathrm{~V} \end{aligned}$ <br> Test Circuit 2 $\mathrm{V}_{\mathrm{S}}=1 \mathrm{~V} / 3 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=3 \mathrm{~V} / 1 \mathrm{~V}$ <br> Test Circuit 3 $\mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}=1 \mathrm{~V} \text { or } 3 \mathrm{~V} \text {; Test Circuit } 4$ |
| DIGITAL INPUTS <br> Input High Voltage, $\mathrm{V}_{\text {INH }}$ <br> Input Low Voltage, $\mathrm{V}_{\text {INL }}$ <br> Input Current <br> $\mathrm{I}_{\text {INL }}$ or $\mathrm{I}_{\text {INH }}$ <br> $\mathrm{C}_{\text {IN }}$, Digital Input Capacitance | $\begin{aligned} & 0.005 \\ & 2 \end{aligned}$ |  | $\begin{aligned} & 2.0 \\ & 0.5 \\ & \\ & \pm 1 \end{aligned}$ | V min <br> V max <br> $\mu \mathrm{A}$ typ <br> $\mu \mathrm{A}$ max <br> pF typ | $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {INL }}$ or $\mathrm{V}_{\text {INH }}$ |
| ```DYNAMIC CHARACTERISTICS \({ }^{2}\) \(\mathrm{t}_{\text {TRANS }}\) \(\mathrm{t}_{\mathrm{ON}}(\overline{\mathrm{EN}})\) \(\mathrm{t}_{\mathrm{OFF}}(\overline{\mathrm{EN}})\) Break-Before-Make Time Delay, \(\mathrm{t}_{\text {ввм }}\) Charge Injection Off Isolation Channel-to-Channel Crosstalk (ADG659) -3 dB Bandwidth ADG658 ADG659 \(\mathrm{C}_{\mathrm{S}}\) (OFF) \(\mathrm{C}_{\mathrm{D}}\) (OFF) ADG658 ADG659 \(\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{S}}(\mathrm{ON})\) ADG658 ADG659``` | 200 370 230 370 50 80 200 1 2 -90 -90 160 300 5 29 15 30 16 | $\begin{aligned} & 440 \\ & 440 \\ & 90 \end{aligned}$ | $\begin{aligned} & 490 \\ & 490 \\ & 110 \\ & 10 \end{aligned}$ | ns typ <br> ns max <br> ns typ <br> ns max <br> ns typ <br> ns max <br> ns typ <br> ns min <br> pC typ <br> pC max <br> dB typ <br> dB typ <br> MHz typ <br> MHz typ <br> pF typ | $\begin{aligned} & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}=1.5 \mathrm{~V} ; \text { Test Circuit } 7 \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}=1.5 \mathrm{~V} ; \text { Test Circuit } 7 \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}=1.5 \mathrm{~V} ; \text { Test Circuit } 7 \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S} 1}=\mathrm{V}_{\mathrm{S} 2}=1.5 \mathrm{~V} ; \text { Test Circuit } 6 \\ & \mathrm{~V}_{\mathrm{S}}=1.5 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF} ; \end{aligned}$ <br> Test Circuit 8 $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$ <br> Test Circuit 9 $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$ <br> Test Circuit 11 $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} ;$ <br> Test Circuit 10 $\mathrm{f}=1 \mathrm{MHz}$ <br> $\mathrm{f}=1 \mathrm{MHz}$ $\mathrm{f}=1 \mathrm{MHz}$ $\mathrm{f}=1 \mathrm{MHz}$ $\mathrm{f}=1 \mathrm{MHz}$ |
| POWER REQUIREMENTS $\mathrm{I}_{\mathrm{DD}}$ | 0.01 |  | 1 | $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max | $\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=3.6 \mathrm{~V} \\ & \text { Digital Inputs }=0 \mathrm{~V} \text { or } 3.6 \mathrm{~V} \end{aligned}$ |

## NOTES

${ }^{1}$ Temperature range is as follows: B Version: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Y Version: $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
${ }^{2}$ Guaranteed by design, not subject to production test.
Specifications subject to change without notice.

## ABSOLUTE MAXIMUM RATINGS ${ }^{1}$



```
0 的 Thermal Impedance, 16-Lead TSSOP
0 JA Thermal Impedance (4-Layer Board),
    16-Lead LFCSP
                            ...........
Lead Temperature, Soldering
    Vapor Phase (60 sec) . . . . . . . . . . . . . . . . . . . . . . 215}\mp@subsup{}{}{\circ}\textrm{C
    Infrared (15 sec) . . . . . . . . . . . . . . . . . . . . . . . . . . 220o}\textrm{C
ESD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.5 kV
```


## NOTES

${ }^{1}$ Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Only one absolute maximum rating may be applied at any one time.
${ }^{2}$ Overvoltages at $\mathrm{A}_{\mathrm{X}}, \overline{\mathrm{EN}}, \mathrm{S}$, or D will be clamped by internal diodes. Current should be limited to the maximum ratings given.

## CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the ADG658/ ADG659 feature proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.


ORDERING GUIDE

| Model | Temperature Range | Package Description | Package Option |
| :--- | :--- | :--- | :--- |
| ADG658YRU | $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | Thin Shrink Small Outline Package (TSSOP) | RU-16 |
| ADG658YCP | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | Lead Frame Chip Scale Package (LFCSP) | CP-16 |
| ADG659YRU | $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | Thin Shrink Small Outline Package (TSSOP) | RU-16 |
| ADG659YCP | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | Lead Frame Chip Scale Package (LFCSP) | CP-16 |

Table I. ADG658 Truth Table

| A2 | A1 | A0 | $\overline{\text { EN }}$ | Switch Condition |
| :--- | :--- | :--- | :--- | :--- |
| X | X | X | 1 | NONE |
| 0 | 0 | 0 | 0 | 1 |
| 0 | 0 | 1 | 0 | 2 |
| 0 | 1 | 0 | 0 | 3 |
| 0 | 1 | 1 | 0 | 4 |
| 1 | 0 | 0 | 0 | 5 |
| 1 | 0 | 1 | 0 | 6 |
| 1 | 1 | 0 | 0 | 7 |
| 1 | 1 | 1 | 0 | 8 |

Table II. ADG659 Truth Table

| A1 | A0 | $\overline{\text { EN }}$ | On Switch Pair |
| :--- | :--- | :--- | :--- |
| X | X | 1 | NONE |
| 0 | 0 | 0 | 1 |
| 0 | 1 | 0 | 2 |
| 1 | 0 | 0 | 3 |
| 1 | 1 | 0 | 4 |

X = Don't Care

PIN CONFIGURATIONS

## TSSOP



LFCSP


| Parameter | Description |
| :---: | :---: |
| $\mathrm{V}_{\mathrm{DD}}$ | Most Positive Power Supply Potential. |
| $\mathrm{V}_{\text {SS }}$ | Most Negative Power Supply Potential. |
| $\mathrm{I}_{\mathrm{DD}}$ | Positive Supply Current. |
| $\mathrm{I}_{\text {S }}$ | Negative Supply Current. |
| GND | Ground (0V) Reference. |
| S | Source Terminal. May be an input or output. |
| D | Drain Terminal. May be an input or output. |
| $\mathrm{A}_{\mathrm{X}}$ | Logic Control Input. |
| $\overline{\mathrm{EN}}$ | Active Low Digital Input. When high, device is disabled and all switches are OFF. When low, $\mathrm{A}_{\mathrm{X}}$ logic inputs determine ON switch. |
| $\mathrm{V}_{\mathrm{D}}\left(\mathrm{V}_{\mathrm{S}}\right)$ | Analog Voltage on Terminals D, S. |
| $\mathrm{R}_{\text {ON }}$ | Ohmic Resistance between D and S. |
| $\Delta \mathrm{R}_{\text {ON }}$ | On Resistance Match between Any Two Channels, i.e., $\mathrm{R}_{\mathrm{ON}} \mathrm{max}-\mathrm{R}_{\mathrm{ON}} \mathrm{min}$. |
| $\mathrm{R}_{\text {FLAT(ON) }}$ | Flatness is defined as the difference between the maximum and minimum value of ON Resistance as measured over the specified analog signal range. |
| $\mathrm{I}_{\mathrm{S}}(\mathrm{OFF})$ | Source Leakage Current with the Switch OFF. |
| $\mathrm{I}_{\mathrm{D}}$ (OFF) | Drain Leakage Current with the Switch OFF. |
| $\mathrm{I}_{\mathrm{D}}, \mathrm{I}_{\mathrm{S}}(\mathrm{ON})$ | Channel Leakage Current with the Switch ON. |
| $\mathrm{V}_{\text {INL }}$ | Maximum Input Voltage for Logic 0. |
| $\mathrm{V}_{\text {INH }}$ | Minimum Input Voltage for Logic 1. |
| $\mathrm{I}_{\text {INL }}\left(\mathrm{I}_{\text {INH }}\right)$ | Input Current of the Digital Input. |
| $\mathrm{C}_{\mathrm{S}}(\mathrm{OFF})$ | OFF Switch Source Capacitance. Measured with reference to ground. |
| $\mathrm{C}_{\mathrm{D}}$ (OFF) | OFF Switch Drain Capacitance. Measured with reference to ground. |
| $\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{S}(\mathrm{ON})$ | ON Switch Capacitance. Measured with reference to ground. |
| $\mathrm{C}_{\text {IN }}$ | Digital Input Capacitance. |
| $\mathrm{t}_{\text {ON }}$ | Delay between Applying the Digital Control Input and the Output Switching ON. See Test Circuit 7. |
| $\mathrm{t}_{\text {OFF }}$ | Delay between Applying the Digital Control Input and the Output Switching OFF. |
| $\mathrm{t}_{\text {ввм }}$ | ON Time. Measured between $80 \%$ points of both switches when switching from one address state to another. |
| Charge Injection | Measure of the Glitch Impulse Transferred from the Digital Input to the Analog Output during Switching. |
| Off Isolation | Measure of Unwanted Signal Coupling through an OFF Switch. |
| Crosstalk | Measure of Unwanted Signal Coupled through from One Channel to Another as a Result of Parasitic Capacitance. |
| Bandwidth | The Frequency at which the Output is Attenuated by 3 dB . |
| On Response | The Frequency Response of the ON Switch. |
| Insertion Loss | The Loss Due to the ON Resistance of the Switch. |

## Typical Performance Characteristics-ADG658/ADG659



TPC 1. On Resistance vs. $V_{D}\left(V_{S}\right)$ for Dual Supply


TPC 4. On Resistance vs. $V_{D}\left(V_{S}\right)$ for Different Temperatures (Single Supply)


TPC 7. Leakage Currents vs. Temperature (Single Supply)


TPC 2. On Resistance vs. $V_{D}\left(V_{S}\right)$ for Single Supply


TPC 5. On Resistance vs. $V_{D}\left(V_{S}\right)$ for Different Temperatures (Single Supply)


TPC 8. Charge Injection vs. Source Voltage


TPC 3. On Resistance vs. $V_{D}\left(V_{S}\right)$ for Different Temperatures (Dual Supply)


TPC 6. Leakage Currents vs. Temperature (Dual Supply)


TPC 9. $t_{\text {ON }} / t_{\text {OFF }}$ Times vs.
Temperature (Dual Supply)

## ADG658/ADG659



TPC 10. $t_{\text {ON }} / t_{\text {OFF }}$ Times vs. Temperature (Single Supply)


TPC 13. OFF Isolation vs. Frequency


TPC 16. $V_{D D}$ Current vs. Logic Level


TPC 11. ON Response vs. Frequency (ADG658)


TPC 14. Crosstalk vs. Frequency


TPC 17. Logic Threshold
Voltage vs. Supply Voltage
TPC 17. Logic Threshold
Voltage vs. Supply Voltage


TPC 12. ON Response vs. Frequency (ADG659)


TPC 15. THD + Noise

## Test Circuits



Test Circuit 1. On Resistance


Test Circuit 2. $I_{S}$ (OFF)



Test Circuit 3. $I_{D}$ (OFF)


Test Circuit 4. I (ON)


Test Circuit 5. Switching Time of Multiplexer, $t_{\text {TRANSITION }}$


Test Circuit 6. Break-Before-Make Delay, $t_{B B M}$


Test Circuit 7. Enable Delay, $t_{\text {ON }}(\overline{E N}), t_{\text {OFF }}(\overline{E N})$

*SIMILAR CONNECTION FOR ADG659


Test Circuit 8. Charge Injection


Test Circuit 9. OFF Isolation


INSERTION LOSS $=20$ LOG $\frac{V_{\text {OUT }} \text { WITH SWITCH }}{V_{\text {OUT }} \text { WITHOUT SWITCH }}$
Test Circuit 10. Bandwidth


ChANNeL-TO-ChANNEL CROSStaLK $=20$ LOG $\frac{\mathrm{V}_{\text {OUT }}}{\mathrm{V}_{\mathrm{S}}}$

## OUTLINE DIMENSIONS

## 16-Lead Thin Shrink Small Outline Package [TSSOP]

(RU-16)
Dimensions shown in millimeters


16-Lead Lead Frame Chip Scale Package [LFCSP]
$4 \mathrm{~mm} \times 4 \mathrm{~mm}$ Body
(CP-16)
Dimensions shown in millimeters



[^0]:    NOTES
    ${ }^{1}$ Temperature range is as follows: B Version: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Y Version: $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
    ${ }^{2}$ Guaranteed by design, not subject to production test.
    Specifications subject to change without notice.

[^1]:    NOTES
    ${ }^{1}$ Temperature range is as follows: B Version: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Y Version: $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
    ${ }^{2}$ Guaranteed by design, not subject to production test.
    Specifications subject to change without notice.

