TOSHIBA Photocoupler GaAs Ired & Photo-Thyristor

TLP741G

Office Machine
Household Use Equipment
Solid State Relay
Switching Power Supply

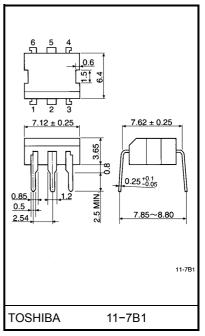
The TOSHIBA TLP741G consists of a photo-thyristor optically coupled to a gallium arsenide infrared emitting diode in a six lead plastic DIP package.

- Peak off-state voltage: 400V(min.)
- Trigger LED current: 10mA(max.)
- On-state current: 150mA(max.)
- UL recognized: UL1577, file no. E67349
- BSI approved: BS EN60065: 1994

Certificate no. 6617 BS EN60950: 1992 Certificate no. 7366

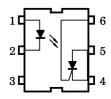
- Isolation voltage: 4000V_{rms}(min.)
- Option (D4) type

VDE approved: DIN VDE0884/08, 87


Certificate no. 65640

Maximum operating insulation voltage: 630 VPK Highest permissible over voltage: 6000 VPK

(Note) When a VDE0884 approved type is needed, please designate the "option (D4)"


		2mm pich ndard type	10.16mm pich (LF2) type
• Creepage dist	7.0	mm(min.)	8.0mm(min.)
Clearance:		mm(min.)	8.0mm(min.)
Insulation thi		mm(min.)	0.5mm(min.)

Unit in mm

Weight: 0.35 g

Pin Configuration (top view)

1 : ANODE 2 : CATHODE

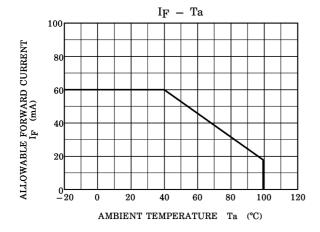
3: NC

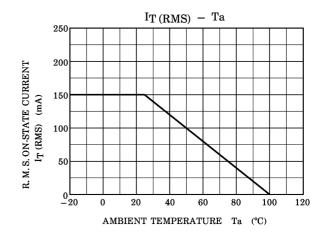
4 : CATHODE 5 : ANODE 6 : GATE

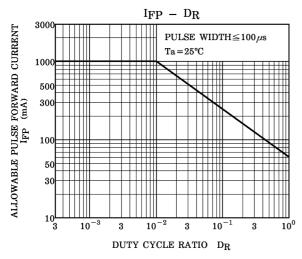
Maximum Ratings (Ta = 25°C)

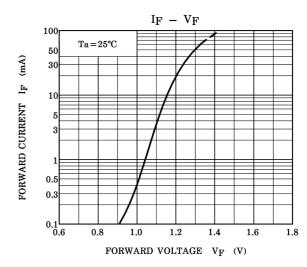
	Characteristic	Symbol	Rating	Unit	
	Forward current	IF	60	mA	
	Forward current derating (Ta ≥ 39°C)	ΔI _F / °C	-0.7	mA / °C	
	Peak forward current (100µs pulse, 100pps)	I _{FP}	1	Α	
LED	Power dissipation	P _D	100	mW	
	Power dissipation derating (Ta ≥ 25°C)	ΔP _D / °C	-1.0	mW / °C	
	Reverse voltage	V _R	5	V	
	Junction temperature	Tj	125	°C	
	Peak forward voltage($R_{GK} = 27k\Omega$)	V_{DRM}	400	V	
	Peak reverse voltage(R _{GK} = 27kΩ)	V_{RRM}	400	V	
	On-state current	I _{T(RMS)}	150	mA	
	On–state current derating (Ta ≥ 25°C)	ΔI _T / °C	-2.0	mA / °C	
Detector	Peak on-state current (100µs pulse, 120pps)	I _{TP}	3	Α	
Dete	Peak one cycle surge current	I _{TSM}	2	Α	
	Peak reverse gate voltage	V_{GM}	5	V	
	Power dissipation	P _D	150	mW	
	Power dissipation derating (Ta ≥ 25°C)	ΔP _D / °C	-2.0	mW / °C	
	Junction temperature	Tj	100	°C	
Storage temperature range		T _{stg}	-55~125	°C	
Operating temperature range		T _{opr}	-55~100	°C	
Lead soldering temperature (10s)		T _{sol}	260	°C	
Total package power dissipation		PT	250	mW	
Total package power dissipation derating (Ta ≥ 25°C)		ΔP _T / °C	-3.3	mW / °C	
Isolatio	on voltage (AC, 1 min., R.H. ≤ 60%)	BVS	4000	V _{rms}	

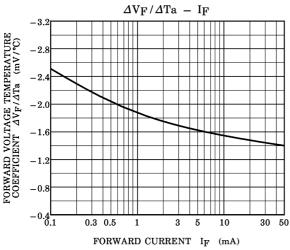
Recommended Operating Conditions

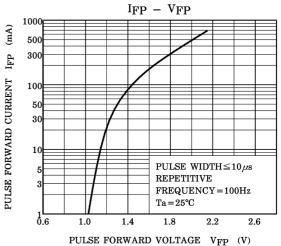

Characteristic	Symbol	Min.	Тур.	Max.	Unit
Supply voltage	V_{AC}	_	_	120	V _{ac}
Forward current	I _F	15	20	25	mA
Operating temperature	T _{opr}	-25	_	85	°C
Gate to cathode resistance	R _{GK}	_	27	33	kΩ
Gate to cathode capacity	C _{GK}	_	0.01	0.1	μF

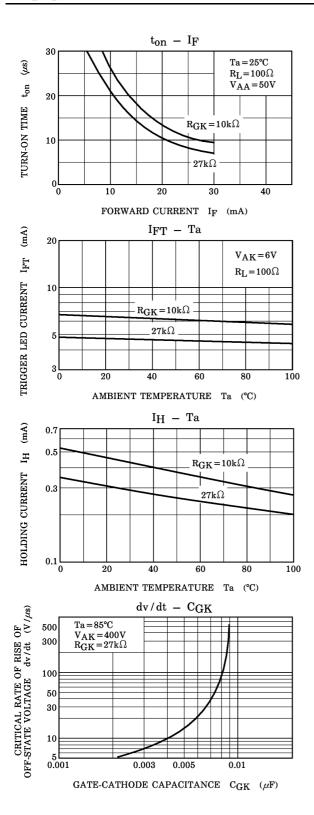

Individual Electrical Characteristics (Ta = 25°C)

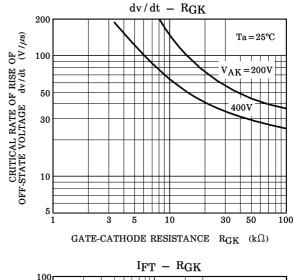

	Characteristic	Symbol	Test Condition		Min.	Тур.	Max.	Unit
	Forward voltage	V _F	I _F = 10mA		1.0	1.15	1.3	V
LED	Reverse current	I _R	V _R = 5V		_	_	10	μΑ
	Capacitance	C _T	V = 0, f = 1MHz		_	30	_	pF
Detector	Off-state current	I _{DRM}	V _{AK} = 400V R _{GK} = 27kΩ	Ta = 25°C	_	10	5000	nA
				Ta = 100°C	_	1	100	μΑ
	Reverse carrent	I _{RRM}	V _{KA} = 400V R _{GK} = 27kΩ	Ta = 25°C	_	10	5000	nA
				Ta = 100°C	_	1	100	μA
	On-state voltage	V _{TM}	I _{TM} = 100mA		_	0.9	1.3	V
	Holding current	lΗ	R _{GK} = 27kΩ		_	0.2	_	mA
	Off–state dv / dt	dv/dt	$V_D = 280V, R_{GK} = 27k\Omega$		5	10	_	V/µs
	Capacitance C _j V =	C.	V = 0, f = 1MHz	Anode to gate	_	20	_	pF
		V = 0, 1 = 11VIFIZ	Gate to cathode	_	350	_	PΓ	

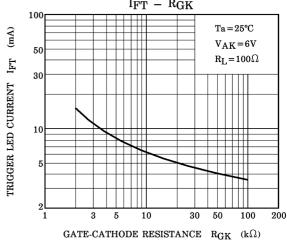

Coupled Characteristics (Ta = 25°C)

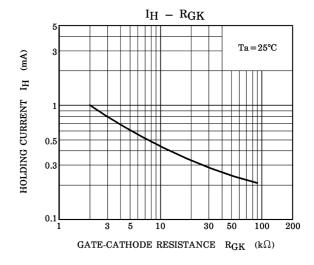

Characteristic	Symbol	Test Condition	Min.	Тур.	Max.	Unit	
Trigger LED current	I _{FT}	V_{AK} = 6V, R_{GK} = 27k Ω	_	4	10	mA	
Turn-on time	ton	$I_F = 30$ mA, $V_{AA} = 50$ V, $R_{GK} = 27$ k Ω	_	10	_	μs	
Coupled dv/dt	dv/dt	V_S = 500V, R_{GK} = 27k Ω	500	_	_	V/µs	
Capacitance (input to output)	CS	V _S = 0, f = 1MHz	_	0.8	_	pF	
Isolation resistance	R _S	V _S = 500V	1×10 ¹²	10 ¹⁴	_	Ω	
	BVS	AC, 1 minute	4000	_	_	V	
Isolation voltage		AC, 1 second, in oil	_	10000	_	V _{rms}	
		DC, 1 minute, in oil	_	10000	_	V _{dc}	











4

RESTRICTIONS ON PRODUCT USE

000707EBC

- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- Gallium arsenide (GaAs) is a substance used in the products described in this document. GaAs dust and fumes
 are toxic. Do not break, cut or pulverize the product, or use chemicals to dissolve them. When disposing of the
 products, follow the appropriate regulations. Do not dispose of the products with other industrial waste or with
 domestic garbage.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- The information contained herein is presented only as a guide for the applications of our products. No
 responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other
 rights of the third parties which may result from its use. No license is granted by implication or otherwise under
 any intellectual property or other rights of TOSHIBA CORPORATION or others.
- The information contained herein is subject to change without notice.