

LF111/LF211/LF311 Voltage Comparators

General Description

The LF111, LF211 and LF311 are FET input voltage comparators that virtually eliminate input current errors. Designed to operate over a 5.0V to \pm 15V range the LF111 can be used in the most critical applications.

The extremely low input currents of the LF111 allows the use of a simple comparator in applications usually requiring input current buffering. Leakage testing, long time delay circuits, charge measurements, and high source impedance voltage comparisons are easily done.

Further, the LF111 can be used in place of the LM111 eliminating errors due to input currents. See the "application hints" of the LM311 for application help.

Features

- Eliminates input current errors
- Interchangeable with LM111
- No need for input current buffering

©1995 National Semiconductor Corporation TL/H/5703

RRD-B30M115/Printed in U. S. A.

LF111/LF211/LF311 Voltage Comparators

November 1994

Absolute Maximum Ratings

Output Short Circuit Duration

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

nability and opeen		Kange		
LF111/LF211 36V	LF311 36V	LF111 LF211 LF311	-55°C to +125°C -25°C to +85°C	0°C to +70°C
50V	40V	Storage Temp. Range	-65°C to +150°C	-65°C to +150°C
30V	30V	Lead Temp.		
$\pm 30V$	$\pm 30V$	(Soldering,		
±15V	$\pm 15V$	10 seconds)	260°C	260°C
500 mW	500 mW	ESD rating to be	determined.	
	LF111/LF211 36V 50V ±30V ±30V ±15V 500 mW	LF111/LF211 LF311 36V 36V 50V 40V 30V 30V ±30V ±30V ±15V ±15V 500 mW 500 mW	LF111/LF211 LF311 LF111 36V 36V LF111 50V 40V Storage Temp. Range 30V 30V Lead Temp. ±30V ±30V (Soldering, 10 seconds) ±15V ±15V 10 seconds) 500 mW 500 mW ESD rating to be	LF111/LF211 36V LF311 36V LF311 26V LF311 LF211 -55°C to +125°C LF311 50V 40V Storage Temp. Range -65°C to +150°C 30V 30V Lead Temp. ±30V ±30V (Soldering, 10 seconds) 260°C 500 mW 500 mW ESD rating to be determined.

Operating Temp.

LF111/LF211

LF311

Electrical Characteristics (LF111/LF211) (Note 3)

10 seconds 10 seconds

Parameter	Conditions	Min	Тур	Мах	Units
Input Offset Voltage (Note 4)	$T_A = 25^{\circ}C, R_S \le 50k$		0.7	4.0	mV
Input Offset Current (Note 4)	T _A =25°C, V _{CM} =0 (Note 6)		5.0	25	pА
Input Bias Current	T _A =25°C, V _{CM} =0 (Note 6)		20	50	pА
Voltage Gain	T _A =25°C	40	200		V/mV
Response Time (Note 5)	T _A =25°C		200		ns
Saturation Voltage	$V_{IN} \le -5.0 \text{ mV}, I_{OUT} = 50 \text{ mA}, T_A = 25^{\circ}\text{C}$		0.75	1.5	V
Strobe On Current	T _A =25°C		3.0		mA
Output Leakage Current	$V_{IN} \le 5.0 \text{ mV}, V_{OUT} = 35 \text{V}, T_A = 25^{\circ}\text{C}$		0.2	10	nA
Input Offset Voltage (Note 4)	$R_{S} \le 50k$			6.0	mV
Input Offset Current (Note 4)	$V_{S} = \pm 15V$, $V_{CM} = 0$ (Note 6)		2.0	3.0	nA
Input Bias Current	$V_{S} = \pm 15V$, $V_{CM} = 0$ (Note 6)		5.0	7.0	nA
Input Voltage Range		-13.5	±14	13.0	V
Saturation Voltage	$V^+ \ge 4.5V, V^- = 0$ $V_{IN} \le -6.0 \text{ mV}, I_{OUT} \le 8.0 \text{ mA}$		0.23	0.4	V
Output Leakage Current	$V_{IN} \ge 5.0 \text{ mV}, V_{OUT} = 35 \text{V}$		0.1	0.5	μΑ
Positive Supply Current	T _A =25°C		5.1	6.0	mA
Negative Supply Current	T _A =25°C		4.1	5.0	mA

Note 1: This rating applies for ± 15V supplies. The positive input voltage limit is 30V above the negative supply. The negative input voltage limit is equal to the negative supply voltage or 30V below the positive supply, whichever is less.

Note 2: The maximum junction temperature of the LF111 is $+150^{\circ}$ C, the LF211 is $+110^{\circ}$ C and the LF311 is $+85^{\circ}$ C. For operating at elevated temperatures, devices in the H08 package must be derated based on a thermal resistance of $+65^{\circ}$ C/W junction to ambient (in 400 linear feet/min air flow), $+165^{\circ}$ C/W junction to ambient (in static air), or $+20^{\circ}$ C/W junction to case.

Note 3: These specifications apply for $V_S = \pm 15V$, and the Ground pin at ground, and $-55^{\circ}C \le T_A \le +125^{\circ}C$ for the LF111, unless otherwise stated. With the LF211, however, all temperature specifications are limited to $-25^{\circ}C \le T_A \le \pm 85^{\circ}C$ and for the LF311 $0^{\circ}C \le T_A \le +70^{\circ}C$. The offset voltage, offset current and bias current specifications apply for any supply voltage from a single 5.0V supply up to $\pm 15V$ supplies.

Note 4: The offset voltages and offset currents given are the maximum values required to drive the output within a volt of either supply with a 1.0 mA load. Thus, these parameters define an error band and take into account the worst case effects of voltage gain and input impedance.

Note 5: The response time specified (see definitions) is for a 100 mV input step with 5.0 mV overdrive.

Note 6: For input voltages greater than 15V above the negative supply the bias and offset currents will increase—see typical performance curves.

Note 7: This specification gives the current that must be drawn from the strobe pin to ensure the output is properly disabled. Do not short the strobe pin to ground; it should be current driven at 3 to 5 mA.

Note 8: Refer to RETSF111X for LF111H military specifications.

Parameter	Conditions	Min	Тур	Max	Units
Input Offset Voltage (Note 4)	$T_A = 25^{\circ}C, R_S \le 50k$		2.0	10	mV
Input Offset Current (Note 4)	T _A =25°C, V _{CM} =0 (Note 6)		5.0	75	pА
Input Bias Current	T _A =25°C, V _{CM} =0 (Note 6)		25	150	pА
Voltage Gain	T _A =25°C		200		V/mV
Response Time (Note 5)	T _A =25°C		200		ns
Saturation Voltage	$V_{IN} \le -10 \text{ mV}, I_{OUT} = 50 \text{ mA}, T_A = 25^{\circ}\text{C}$		0.75	1.5	V
Strobe On Current	T _A =25°C		3.0		mA
Output Leakage Current	$V_{IN} \ge 10 mV, V_{OUT} = 35V, T_A = 25^{\circ}C$		0.2	10	nA
Input Offset Voltage (Note 4)	R _S ≤50k			15	mV
Input Offset Current (Note 4)	$V_{S} = \pm 15V, V_{CM} = 0$ (Note 6)		1.0		nA
Input Bias Current	V _S =15V, V _{CM} =0 (Note 6)		3.0		nA
Input Voltage Range			+ 14 - 13.5		v v
Saturation Voltage	$V^+ \ge 4.5V, V^- = 0$ $V_{IN} \le -10 \text{ mV}, I_{OUT} \le 8.0 \text{ mA}$		0.23	0.4	v
Positive Supply Current	T _A =25°C		5.1	7.5	mA
Negative Supply Current	T _A =25°C		4.1	5.0	mA

Note 1: This rating applies for ±15V supplies. The positive input voltage limit is 30V above the negative supply. The negative input voltage limit is equal to the negative supply voltage or 30V below the positive supply, whichever is less.

Note 2: The maximum junction temperature of the LF111 is $+150^{\circ}$ C, the LF211 is $+110^{\circ}$ C and the LF311 is $+85^{\circ}$ C. For operating at elevated temperatures, devices in the H08 package must be derated based on a thermal resistance of $+165^{\circ}$ C/W, junction to ambient, or $+20^{\circ}$ C/W, junction to case.

Note 3: These specifications apply for $V_S = \pm 15V$ and $-55^{\circ}C \le T_A \le +125^{\circ}C$ for the LF111, unless otherwise stated. With the LF211, however, all temperature specifications are limited to $-25^{\circ}C \le T_A \le +85^{\circ}C$ and for the LF311 0°C $\le T_A \le +70^{\circ}C$. The offset voltage, offset current and bias current specifications apply for any supply voltage from a single 5.0 mV supply up to $\pm 15V$ supplies.

Note 4: The offset voltages and offset currents given are the maximum values required to drive the output within a volt of either supply with a 1.0 mA load. Thus, these parameters define an error band and take into account the worst case effects of voltage gain and input impedance.

Note 5: The response time specified (see definitions) is for a 100 mV input step with 5.0 mV overdrive.

Note 6: For input voltages greater than 15V above the negative supply the bias and offset currents will increase—see typical performance curves.

Note 7: This specification gives the current that must be drawn from the strobe pin to ensure the output is properly disabled. Do not short the strobe pin to ground; it should be current driven at 3 to 5 mA.

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.