

MC68HC908MR8

Technical Data

M68HC08 Microcontrollers

MC68HC908MR8/D Rev. 4, 8/2002

WWW.MOTOROLA.COM/SEMICONDUCTORS

For More Information On This Product, Go to: www.freescale.com

MC68HC908MR8 Technical Data — Rev 4.0

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life. or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

Motorola and (A) are registered trademarks of Motorola, Inc. DigitalDNA is a trademark of Motorola, Inc.

© Motorola, Inc., 2002

MC68HC908MR8 — Rev 4.0

MOTOROLA

For More Information On This Product, Go to: www.freescale.com 3

Technical Data

Technical Data — MC68HC908MR8

List of Paragraphs

Section 1. General Description29
Section 2. Memory Map37
Section 3. Random-Access Memory (RAM)53
Section 4. FLASH Memory55
Section 5. Configuration Register (CONFIG)67
Section 6. Central Processor Unit (CPU)71
Section 7. System Integration Module (SIM)89
Section 8. Clock Generator Module (CGM)111
Section 9. Pulse-Width Modulator for Motor Control (PWMMC)
Section 10. Monitor ROM (MON)187
Section 11. Timer Interface A (TIMA)
Section 12. Timer Interface B (TIMB)
Section 13. Serial Communications Interface (SCI)247
Section 14. Input/Output (I/O) Ports
Section 15. Computer Operating Properly (COP)291
Section 16. External Interrupt (IRQ)
Section 17. Low-Voltage Inhibit (LVI)
Section 18. Analog-to-Digital Converter (ADC)311
Section 19. Power-On Reset (POR)

MC68HC908MR8 - Rev 4.0

MOTOROLA

List of Paragraphs

Section 20. Break (BRK)	. 329
Section 21. Electrical Specifications	. 339
Section 22. Mechanical Specifications	. 351
Section 23. Ordering Information	. 355
Technical Data — Revision History	.357

Technical Data

MC68HC908MR8 - Rev 4.0

Table of Contents

~ ~

Section 1. General Description

1.1	Contents
1.2	Introduction
1.3	Features
1.4	MCU Block Diagram
1.5	Pin Assignments
1.5.1	Power Supply Pins (V _{DD} and V _{SS})
1.5.2	Oscillator Pins (OSC1 and OSC2)
1.5.3	External Reset Pin (RST)
1.5.4	External Interrupt Pin (IRQ)
1.5.5	CGM Power Supply Pins (V _{DDA} and V _{SSA})
1.5.6	ADC Reference Voltage Input Pin (V _{REFH})
1.5.7	External Filter Capacitor Pin (CGMXFC)
1.5.8	Port A Input/Output (I/O) Pins (PTA6/ATD6–PTA0/ATD0)35
1.5.9	Port B I/O Pins (PTB6/TCHB1–PTB0/RxD)
1.5.10	Port C I/O Pins (PTC1/FAULT1–PTC0/FAULT4)
1.5.1	1 PWM Pins (PWM6–PWM1)

Section 2. Memory Map

2.1	Contents
2.2	Introduction
2.3	Unimplemented Memory Locations
2.4	Reserved Memory Locations
2.5	I/O Section
2.6	Monitor ROM

Table of Contents

Section 3. Random-Access Memory (RAM)

3.1	Contents	. 53
3.2		. 53
3.3	Functional Description	. 53

Section 4. FLASH Memory

4.1	Contents
4.2	Introduction
4.2.1	Functional Description
4.2.2	FLASH Control Register
4.2.3	FLASH Page Erase Operation
4.2.4	FLASH Mass Erase Operation
4.2.5	FLASH Program/Read Operation59
4.3	FLASH Programming Algorithm
4.3.1	FLASH Block Protection
4.3.2	FLASH Block Protect Register
4.3.3	Low-Power Modes64
4.3.3.	1 Wait Mode64
4.3.3.2	2 Stop Mode

Section 5. Configuration Register (CONFIG)

5.1	Contents	67
5.2	Introduction	67
5.3	CONFIG	<mark>68</mark>
5.4	CONFIG Bits.	68

Section 6. Central Processor Unit (CPU)

6.1	Contents
6.2	Introduction
6.3	Features
6.4	CPU Registers
6.4.1	Accumulator
6.4.2	Index Register
6.4.3	Stack Pointer

Technical Data

6.4.4	Program Counter	.75
6.4.5	Condition Code Register	.76
6.5	Arithmetic/Logic Unit (ALU)	.78
6.6	Low-Power Modes	.78
6.6.1	Wait Mode	.78
6.6.2	Stop Mode	.78
6.7	Instruction Set Summary	.79
6.8	Opcode Map	. 86

Section 7. System Integration Module (SIM)

7.1 Contents
7.2 Introduction
7.3 SIM Bus Clock Control and Generation
7.3.1 Bus Timing
7.3.2 Clock Startup from POR or LVI Reset
7.3.3 Clocks in Wait Mode
7.4 Reset and System Initialization
7.4.1 External Pin Reset94
7.4.2 Active Resets from Internal Sources
7.4.2.1 Power-On Reset (POR)
7.4.2.2 Computer Operating Properly (COP) Reset
7.4.2.3 Illegal Opcode Reset
7.4.2.4 Illegal Address Reset
7.4.2.5 Low-Voltage Inhibit (LVI) Reset
7.5 SIM Counter
7.5.1 SIM Counter During Power-On Reset
7.5.2 SIM Counter and Reset States
7.6 Exception Control
7.6.1 Interrupts
7.6.1.1 Hardware Interrupts
7.6.1.2 SWI Instruction
7.6.2 Reset
7.6.3 Status Flag Protection in Break Mode
7.7 Low-Power Mode
7.7.1 Wait Mode

Table of Contents

Stop Mode	106
SIM Break Status Register	106
SIM Reset Status Register	108
SIM Break Flag Control Register	109
	SIM Break Status Register

Section 8. Clock Generator Module (CGM)

8.	1 Contents	111
8.2	2 Introduction	112
8.3	3 Features	112
8.4	4 Functional Description	113
8.4	4.1 Crystal Oscillator Circuit	113
8.4	4.2 Phase-Locked Loop Circuit (PLL)	
8.4	4.2.1 PLL Circuits	
8.4	4.2.2 Acquisition and Tracking Modes	
8.4	4.2.3 Manual and Automatic PLL Bandwidth Modes .	
8.4	4.2.4 Programming the PLL	120
8.4	4.2.5 Special Programming Exceptions	121
8.4	4.3 Base Clock Selector Circuit	121
8.4	4.4 CGM External Connections	122
8.	5 I/O Signals	123
8.	5.1 Crystal Amplifier Input Pin (OSC1)	123
8.	5.2 Crystal Amplifier Output Pin (OSC2)	
8.	5.3 External Filter Capacitor Pin (CGMXFC)	
8.	5.4 PLL Analog Power Pin (V _{DDA})	124
8.	5.5 Oscillator Enable Signal (SIMOSCEN)	
8.	5.6 Crystal Output Frequency Signal (CGMXCLK)	124
8.	5.7 CGM Base Clock Output (CGMOUT)	124
8.	5.8 CGM CPU Interrupt (CGMINT)	124
8.0	6 CGM Registers	125
8.0	6.1 PLL Control Register	126
8.0	6.2 PLL Bandwidth Control Register	
8.	6.3 PLL Programming Register	
8.	7 Interrupts	132
8.8	8 Wait Mode	133
8.9		
0.0		

Technical Data

MC68HC908MR8 — Rev 4.0

8.10 0	CGM During Break Mode
8.11 A	Acquisition/Lock Time Specifications
8.11.1	Acquisition/Lock Time Definitions
8.11.2	Parametric Influences on Reaction Time
8.11.3	Choosing a Filter Capacitor
8.11.4	Reaction Time Calculation

Section 9. Pulse-Width Modulator for Motor Control (PWMMC)

9.1	Contents
9.2	Introduction
9.3	Features
9.4	Timebase
9.4.1	Resolution
9.4.2	Prescaler
9.5	PWM Generators
9.5.1	Load Operation148
9.5.2	PWM Data Overflow and Underflow Conditions152
9.6	Output Control
9.6.1	Selecting Six Independent PWMs or Three Complementary
	PWM Pairs
9.6.2	Dead-Time Insertion154
9.6.3	Output Polarity
9.6.4	Output Port Control Register
9.7	Fault Protection
9.7.1	Fault Condition Input Pins164
9.7.1.1	
9.7.1.2	
9.7.1.3	
9.7.2	Software Output Disable168
9.7.3	Output Port Control168
9.8	Initialization and the PWMEN Bit169
9.9	PWM Operation in Wait Mode170
9.10	PWM Operation in Stop Mode170
9.11	PWM Operation in Break Mode171

Technical Data

Semiconductor, Inc.

Freescale

Table of Contents

9.12 C	ontrol Logic Block
9.12.1	PWM Counter Registers172
9.12.2	PWM Counter Modulo Registers173
9.12.3	PWMx Value Registers174
9.12.4	PWM Control Register 1175
9.12.5	PWM Control Register 2177
9.12.6	Dead-Time Write-Once Register
9.12.7	PWM Disable Mapping Write-Once Register179
9.12.8	Fault Control Register180
9.12.9	Fault Status Register181
9.12.10	Fault Acknowledge Register182
9.12.11	PWM Output Control Register
9.13 P	WM Glossary

Section 10. Monitor ROM (MON)

10.1	Contents
10.2	Introduction
10.3	Features
10.4	Functional Description
10.4.1	Entering Monitor Mode188
10.4.2	Forced Monitor Mode
10.4.3	Baud Rate
10.4.4	Data Format
10.4.5	Echoing
10.4.6	Break Signal
10.4.7	Commands193
10.5	Security

Section 11. Timer Interface A (TIMA)

11.1	Contents
11.2	Introduction
11.3	Features
11.4	Functional Description
11.4.	1 TIMA Counter Prescaler
11.4.	2 Input Capture

Te	ecł	nni	cal	Da	ta

MC68HC908MR8 — Rev 4.0

11.4.3 Output Compare
11.4.3.1 Unbuffered Output Compare
11.4.3.2 Buffered Output Compare
11.4.4 Pulse-Width Modulation (PWM)
11.4.4.1 Unbuffered PWM Signal Generation
11.4.4.2 Buffered PWM Signal Generation
11.4.4.3 PWM Initialization
11.5 Interrupts
11.6 Wait Mode
11.7 Stop Mode
11.8 TIMA During Break Interrupts
11.9 I/O Signals
11.9.1 TIMA Clock Pin (PTB2/TCLKA)
11.9.2 TIMA Channel I/O Pins (PTB3/TCH0A-PTB4/TCH1A)213
11.10 I/O Registers
11.10.1 TIMA Status and Control Register
11.10.2 TIMA Counter Registers
11.10.3 TIMA Counter Modulo Registers
11.10.4 TIMA Channel Status and Control Registers
11.10.5 TIMA Channel Registers

Section 12. Timer Interface B (TIMB)

12.1	Contents
12.2	Introduction
12.3	Features
12.4	Functional Description
12.4.1	TIMB Counter Prescaler
12.4.2	2 Input Capture
12.4.3	3 Output Compare230
12.4.3	3.1 Unbuffered Output Compare
12.4.3	B.2 Buffered Output Compare
12.4.4	Pulse-Width Modulation (PWM)
12.4.4	I.1 Unbuffered PWM Signal Generation
12.4.4	I.2 Buffered PWM Signal Generation
12.4.4	I.3 PWM Initialization234

Table of Contents

12.5	Interrupts
12.6	Wait Mode
12.7	Stop Mode
12.8	TIMB During Break Interrupts
12.9	TIMB Channel I/O Pins (PTB5/TCH0B–PTB6/TCH1B)237
12.10	I/O Registers
12.10	1 TIMB Status and Control Register
12.10	2 TIMB Counter Registers
12.10	3 TIMB Counter Modulo Registers
12.10	4 TIMB Channel Status and Control Registers
12.10	5 TIMB Channel Registers245

Section 13. Serial Communications Interface (SCI)

13.1 Contents	
13.2 Introduction.	
13.3 Features	
13.4 Functional D	escription
13.4.1 Data Form	nat
13.4.2 Transmitte	er
13.4.2.1 Charac	ter Length
13.4.2.2 Charac	ter Transmission252
13.4.2.3 Break C	Characters
13.4.2.4 Idle Ch	aracters
13.4.2.5 Inversio	on of Transmitted Output
13.4.2.6 Transm	itter Interrupts
13.4.3 Receiver.	
13.4.3.1 Charac	ter Length
13.4.3.2 Charac	ter Reception
13.4.3.3 Data Sa	ampling
13.4.3.4 Framing	g Errors
13.4.3.5 Receive	er Wakeup
13.4.3.6 Receive	er Interrupts
13.4.3.7 Error In	terrupts
13.5 Wait Mode	
13.6 Stop Mode .	

Section 14. Input/Output (I/O) Ports

14.1 Contents
14.2 Introduction
14.3 Port A
14.3.1 Port A Data Register
14.3.2 Data Direction Register A
14.4 Port B
14.4.1 Port B Data Register
14.4.2 Data Direction Register B
14.5 Port C
14.5.1 Port C Data Register
14.5.2 Data Direction Register C

Section 15. Computer Operating Properly (COP)

15.1	Contents
15.2	Introduction
15.3	Functional Description
15.4	I/O Signals
15.4.1	CGMXCLK
15.4.2	2 COPCTL Write
15.4.3	B Power-On Reset
15.4.4	Internal Reset

Table of Contents

15.4.5	Reset Vector Fetch.	294
15.4.6	COP Disable	294
15.5	COP Control Register	294
15.6	Interrupts	294
15.7	Monitor Mode	295
15.8	Wait Mode	295
15.9	Stop Mode	295
15.10	COP Module During Break Mode	295

Section 16. External Interrupt (IRQ)

16.1	Contents
16.2	Introduction
16.3	Features
16.4	Functional Description
16.5	IRQ Pin
16.6	IRQ Module During Wait Mode
16.7	IRQ Module During Stop Mode
16.8	IRQ Module During Break Mode
16.9	IRQ Status and Control Register

Section 17. Low-Voltage Inhibit (LVI)

MC68HC908MR8 — Rev 4.0

17.8 Stop Mode
Section 18. Analog-to-Digital Converter (ADC)
18.1 Contents
18.2 Introduction
18.3 Features
18.4 Functional Description
18.4.1 ADC Port I/O Pins
18.4.2 Voltage Conversion
18.4.3 Conversion Time
18.4.4 Continuous Conversion
18.4.5 Result Justification
18.4.6 Monotonicity
18.5 Interrupts
18.6 Wait Mode
18.7 Stop Mode
18.8 I/O Signals
18.8.1 ADC Voltage Reference Pin (V _{REFH})
18.8.2 ADC Voltage In (ADVIN)
18.8.3 ADC External Connection
18.8.3.1 V _{REFH}
18.8.3.2 ANx
18.8.3.3 Grounding
18.9 I/O Registers
18.9.1 ADC Status and Control Register
18.9.2 ADC Data Register High 322 10.0 ADC Data Register High 322
18.9.3 ADC Data Register Low
18.9.4 ADC Clock Register

Section 19. Power-On Reset (POR)

19.1	Contents	1
19.2	Introduction	7
19.3	Functional Description	7

Table of Contents

Section 20. Break (BRK)

20.1 Contents
20.2 Introduction
20.3 Features
20.4 Functional Description
20.4.1 Flag Protection During Break Interrupts
20.4.2 CPU During Break Interrupts
20.4.3 TIM During Break Interrupts
20.4.4 COP During Break Interrupts
20.5 Low-Power Modes
20.5.1 Wait Mode
20.5.2 Stop Mode
20.6 Break Module Registers
20.6.1 Break Status and Control Register
20.6.2 Break Address Registers
20.6.3 SIM Break Status Register
20.6.4 SIM Break Flag Control Register

Section 21. Electrical Specifications

21.1	Contents
21.2	Introduction
21.3	Absolute Maximum Ratings
21.4	Functional Operating Range
21.5	Thermal Characteristics
21.6	DC Electrical Characteristics
21.7	Memory Characteristics
21.8	Control Timing
21.9	Timer Interface Module Characteristics
21.10	Clock Generation Module Component Specifications347
21.11	CGM Operating Conditions
21.12	CGM Acquisition/Lock Time Specifications
21.13	Analog-to-Digital Converter (ADC) Characteristics
	21.2 21.3 21.4 21.5 21.6 21.7 21.8 21.9 21.10 21.11 21.12

Semiconductor, Inc.

Freescale

Technical Data

Section 22. Mechanical Specifications

22.1	Contents	.351
22.2	Introduction	. 351
22.3	32-Pin LQFP (Case #873A)	.352
22.4	28-Pin PDIP (Case #710)	. 353
22.5	28-Pin SOIC (Case #751F)	. 353

Section 23. Ordering Information

23.1	Contents	. 355
23.2		. 355
23.3	MC Order Numbers	.355

Technical Data — Revision History

Contents	57
Introduction	57
Changes from Rev 3.0 published in April 2002 to Rev 4.0 pub-	
lished in July 2002	57

MC68HC908MR8 - Rev 4.0

Table of Contents

Technical Data

MC68HC908MR8 — Rev 4.0

List of Figures

Figure	Title	Page
1-1	MCU Block Diagram	
1-2	QFP and DIP/SOIC Pin Assignments	
1-3	Power Supply Bypassing	
2-1	Memory Map	
2-2	Control, Status, and Data Registers	
4-1	FLASH Control Register (FLCR)	
4-2	FLASH Programming Algorithm	61
4-3	FLASH Block Protect Register (FLBPR)	63
4-4	FLASH Block Protect Address	64
5-1	CONFIG Register	68
6-1	CPU Registers	
6-2	Accumulator (A)	
6-3	Index Register (H:X)	
6-4	Stack Pointer (SP)	
6-5	Program Counter (PC)	
6-6	Condition Code Register (CCR)	
7-1	SIM Block Diagram.	
7-2	SIM I/O Register Summary	
7-3	CGM Clock Signals	
7-4	External Reset Timing	
7-5	Internal Reset Timing	
7-6	Sources of Internal Reset	
7-7	POR Recovery	
7-8		
7-9	Interrupt Processing	
7-10		
7-11	Interrupt Recognition Example	103

U
Ē
U
-
Ē
0
Ŏ
Ð
U
i.
5
Ő
U
LL.

MC68HC908MR8 — Rev 4.0

List of Figures

7-12	Wait Mode Entry Timing104
7-13	Wait Recovery from Interrupt or Break
7-14	Wait Recovery from Internal Reset
7-15	SIM Break Status Register (SBSR)
7-16	SIM Reset Status Register (SRSR)
7-17	SIM Break Flag Control Register (SBFCR)
8-1	CGM Block Diagram
8-2	CGM I/O Register Summary115
8-3	CGM External Connections
8-4	CGM I/O Register Summary125
8-5	PLL Control Register (PCTL)
8-6	PLL Bandwidth Control Register (PBWC)129
8-7	PLL Programming Register (PPG)
9-1	PWM Module Block Diagram
9-2	Register Summary142
9-3	Center-Aligned PWM (Positive Polarity)
9-4	Edge-Aligned PWM (Positive Polarity)147
9-5	Reload Frequency Change149
9-6	PWM Interrupt Requests150
9-7	Center-Aligned PWM Value Loading
9-8	Center-Aligned Loading of Modulus
9-9	Edge-Aligned PWM Value Loading
9-10	Edge-Aligned Modulus Loading
9-11	Complementary Pairing153
9-12	Typical AC Motor Drive153
9-13	Dead-Time Generators
9-14	Effects of Dead-Time Insertion
9-15	Dead-Time at Duty Cycle Boundaries
9-16 9-17	Dead-Time and Small Pulse Widths.157PWM Polarity158
9-17 9-18	PWM Output Control Register (PWMOUT)
9-18 9-19	Dead-Time Insertion During OUTCTL = 1
9-20	Dead-Time Insertion During OUTCTL = 1
9-21	PWM Disabling Scheme
9-22	PWM Disable Mapping Write-Once Register (DISMAP) 163

Technical Data

9-23	PWM Disabling Decode Scheme	.164
9-24	PWM Disabling in Automatic Mode	.166
9-25	PWM Disabling in Manual Mode (Example 1)	. 167
9-26	PWM Disabling in Manual Mode (Example 2)	. 167
9-27	PWM Software Disable	.168
9-28	PWMEN and PWM Pins	. <mark>16</mark> 9
9-29	PWM Counter Register High (PCNTH)	.172
9-30	PWM Counter Register Low (PCNTH)	.172
9-31	PWM Counter Modulo Register High (PDMODH)	.173
9-32	PWM Counter Modulo Register Low (PDMODL)	.173
9-33	PWMx Value Registers High (PVALxH)	.174
9-34	PWMx Value Registers Low (PVALxL)	.174
9-35	PWM Control Register 1 (PCTL1)	.175
9-36	PWM Control Register 2 (PCTL2)	.177
9-37	Dead-Time Write-Once Register (DEADTM)	.179
9-38	PWM Disable Mapping Write-Once Register (DISMAP) .	.179
9-39	Fault Control Register (FCR)	.180
9-40	Fault Status Register (FSR)	.181
9-41	Fault Acknowledge Register (FTACK)	. 182
9-42	PWM Output Control Register (PWMOUT)	.184
9-43	PWM Clock Cycle and PWM Cycle Definitions	. 186
9-44	PWM Load Cycle/Frequency Definition	.186
10-1	Monitor Mode Circuit	. 189
10-2	Monitor Data Format	. 191
10-3	Sample Monitor Waveforms	.191
10-4	Read Transaction	. 192
10-5	Break Transaction	.192
10-6	Monitor Mode Entry Timing	. 196
11-1	TIMA Block Diagram	
11-2	TIMA I/O Register Summary	
11-3	PWM Period and Pulse Width	
11-4	TIMA Status and Control Register (TASC)	
11-5	TIMA Counter Registers (TACNTH and TACNTL)	
11-6	TIMA Counter Modulo Registers (TMODH and TMODL).	.217

List of Figures

11-7	TIMA Channel Status and Control Registers (TASC0–TAS	C1)
218		
11-8	CHxMAX Latency	221
11-9	TIMA Channel Registers (TACH0H/L–TACH1H/L)	222
12-1	TIMB Block Diagram	
12-2	TIMB I/O Register Summary	225
12-3	PWM Period and Pulse Width	232
12-4	TIMB Status and Control Register (TBSC)	238
12-5	TIMB Counter Registers (TBCNTH and TBCNTL)	240
12-6	TIMB Counter Modulo Registers (TMODH and TMODL):	241
12-7	TIMB Channel Status and Control Registers (TBSC0-TBS	C1)
		242
12-8	CHxMAX Latency	245
12-9	TIMB Channel Registers (TBCH0H/L–TBCH1H/L)	246
13-1	SCI Module Block Diagram	250
13-2	SCI I/O Register Summary	251
13-3	SCI Data Formats	252
13-4	SCI Transmitter	254
13-5	SCI Receiver Block Diagram	
13-6	Receiver Data Sampling	
13-7	SCI Control Register 1 (SCC1)	264
13-8	SCI Control Register 2 (SCC2)	267
13-9	SCI Control Register 3 (SCC3)	270
13-10	SCI Status Register 1 (SCS1)	271
13-11	Flag Clearing Sequence	274
13-12	SCI Status Register 2 (SCS2)	275
13-13	SCI Data Register (SCDR)	276
13-14	SCI Baud Rate Register (SCBR)	276
14-1	I/O Port Register Summary	280
14-2	Port A Data Register (PTA)	281
14-3	Data Direction Register A (DDRA)	282
14-4	Port A I/O Circuit	
14-5	Port B Data Register (PTB)	284
14-6	Data Direction Register B (DDRB)	
14-7	Port B I/O Circuit	

Technical Data

14-8	Port C Data Register (PTC)
14-9	Data Direction Register C (DDRC)
14-10	Port C I/O Circuit
15-1	COP Block Diagram
15-2	COP I/O Register Summary
15-3	COP Control Register (COPCTL)
16-1	IRQ Module Block Diagram
16-2	IRQ I/O Register Summary
16-3	IRQ Interrupt Flowchart
16-4	IRQ Status and Control Register (ISCR)
17-1	LVI Module Block Diagram
17-2	LVI I/O Register Summary
17-3	LVI Status and Control Register (LVISCR)
18-1	ADC Block Diagram
18-2	8-Bit Truncation Mode Error
18-3	ADC Status and Control Register (ADSCR)
18-4	ADC Data Register High (ADRH) Left Justified Mode 322
18-5	ADC Data Register High (ADRH) Right Justified Mode 322
18-6	ADC Data Register Low (ADRL) Left Justified Mode 323
18-7	ADC Data Register Low (ADRL) Right Justified Mode 323
18-8	ADC Data Register Low (ADRL) 8-Bit Mode
18-9	ADC Clock Register (ADCLK)
20-1	Break Module Block Diagram
20-2	I/O Register Summary
20-3	Break Status and Control Register (BRKSCR)
20-4	Break Address Register High (BRKH)
20-5	Break Address Register Low (BRKL)
20-6	SIM Break Status Register (SBSR)
20-7	Example Code
20-8	SIM Break Flag Control Register (SBFCR)

MC68HC908MR8 - Rev 4.0

MOTOROLA

List of Figures

Technical Data

MC68HC908MR8 — Rev 4.0

List of Tables

Table	Title	Page
2-1	Vector Addresses	51
6-1	Instruction Set Summary	
6-2	Opcode Map	
7-1	Signal Name Conventions	
7-2	PIN Bit Set Timing	
8-1	VCO Frequency Multiplier (N) Selection	131
9-1	PWM Prescaler	148
9-2	PWM Reload Frequency	149
9-3	PWM Data Overflow and Underflow Conditions	152
9-4	OUTx Bits	159
9-5	PWM Reload Frequency	177
9-6	PWM Prescaler	178
9-7	OUTx Bits	185
10-1	Mode Selection	188
10-2	Mode Differences	190
10-3	READ (Read Memory) Command	193
10-4	WRITE (Write Memory) Command	193
10-5	IREAD (Indexed Read) Command	194
10-6	IWRITE (Indexed Write) Command	194
10-7	READSP (Read Stack Pointer) Command	
10-8	RUN (Run User Program) Command	195
11-1	Prescaler Selection	
11-2	Mode, Edge, and Level Selection	
12-1	Prescaler Selection	
12-2	Mode, Edge, and Level Selection	244
13-1	Start Bit Verification	
13-2	Data Bit Recovery.	
13-3	Stop Bit Recovery	
13-4	Character Format Selection	

MC68HC908MR8	Rev	4.0
--------------	-----	-----

List of Tables

13-5	SCI Baud Rate Prescaling
13-6	SCI Baud Rate Selection
13-7	SCI Baud Rate Selection Examples
14-1	Port A Pin Functions
14-2	Port B Pin Functions
14-3	Port C Pin Functions
17-1	LVIOUT Bit Indication
18-1	Mux Channel Select
18-2	ADC Clock Divide Ratio
23-1	MC Order Numbers

Technical Data

MC68HC908MR8 — Rev 4.0

Section 1. General Description

1.1 Contents

1.2	Introduction	. 29
1.3	Features	. 30
1.4	MCU Block Diagram	. 31
1.5	Pin Assignments.	. 33
1.5.1	Power Supply Pins (V _{DD} and V _{SS})	. 34
1.5.2	Oscillator Pins (OSC1 and OSC2)	. 34
1.5.3	External Reset Pin (RST)	. 34
1.5.4	External Interrupt Pin (IRQ)	. 35
1.5.5	CGM Power Supply Pins (V _{DDA} and V _{SSA})	. 35
1.5.6	ADC Reference Voltage Input Pin (V _{REFH})	. 35
1.5.7	External Filter Capacitor Pin (CGMXFC)	. 35
1.5.8	Port A Input/Output (I/O) Pins (PTA6/ATD6–PTA0/ATD0)
		. 35
1.5.9	Port B I/O Pins (PTB6/TCHB1–PTB0/RxD)	. 36
1.5.10	Port C I/O Pins (PTC1/FAULT1–PTC0/FAULT4)	. 36
1.5.11	PWM Pins (PWM6–PWM1)	. 36

1.2 Introduction

The MC68HC908MR8 is a member of the low-cost, high-performance M68HC08 Family of 8-bit microcontroller units (MCU). The M68HC08 Family is based on the customer-specified integrated circuit (CSIC) design strategy. All MCUs in the family use the enhanced M68HC08 central processor unit (CPU08) and are available with a variety of modules, memory sizes and types, and package types.

MC68HC908MR8 — Rev 4.0

General Description

1.3 Features

Features of the MC68HC908MR8 include:

- High-performance M68HC08 architecture
- Fully upward-compatible object code with M6805, M146805, and M68HC05 Families
- 8-MHz internal bus frequency
- 8 Kbytes of on-chip FLASH
- On-chip programming firmware for use with host personal computer
- 256 bytes of on-chip random-access memory (RAM):
- 12-bit, 6-channel center-aligned or edge-aligned pulse-width modulator (PWMMC)
- Serial communications interface module (SCI)
- Two 16-bit, 2-channel timer interface modules (TIMA and TIMB)
- Eight high current sink and source pins (PTA1/ATD1, PTA0/ATD0, PTB6/TCH1B, PTB5/TCH0B, PTB4/TCH1A, PTB3/TCH0A, PTB2/TCLKA, and PTB1/TxD)
- Clock generator module (CGM)
- Digitally filtered low-voltage inhibit (LVI), software selectable for ±5 percent or ±10 percent tolerance
- 10-bit, 4 to 7-channel analog-to-digital converter (ADC)
- System protection features:
 - Optional computer operating properly (COP) reset
 - Low-voltage detection with optional reset
 - Illegal opcode detection with optional reset
 - Illegal address detection with optional reset
 - Fault detection with optional PWM disabling

Technical Data

- Available packages:
 - 32-pin low-profile quad flat pack (LQFP)
 - 28-pin dual in-line package (PDIP)
 - 28-pin small outline package (SOIC)
- Low-power design, fully static with stop and wait modes
- Break (BRK) module allows single breakpoint setting during in-circuit debugging
- Master reset pin and power-on reset (POR)

Features of the CPU08 include:

- Enhanced HC05 programming model
- Extensive loop control functions
- 16 addressing modes (eight more than the M68HC05)
- 16-bit index register and stack pointer
- Memory-to-memory data transfers
- Fast 8 × 8 multiply instruction
- Fast 16 ÷ 8 divide instruction
- Binary-coded decimal (BCD) instructions
- Optimization for controller applications
- C language support

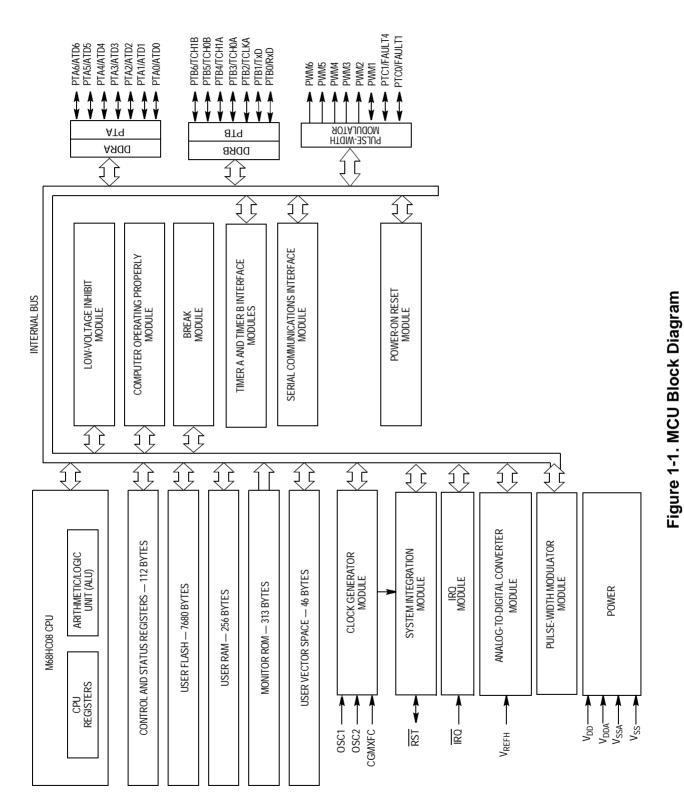
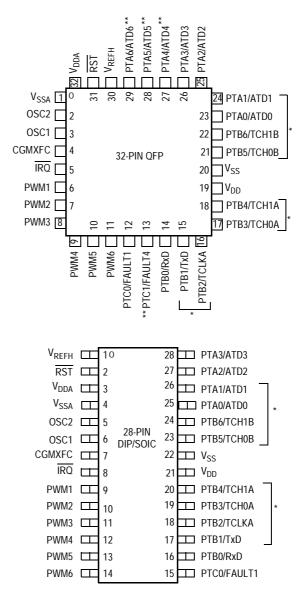

1.4 MCU Block Diagram

Figure 1-1 shows the structure of the MC68HC908MR8.

MC68HC908MR8 - Rev 4.0


MOTOROLA

General Description

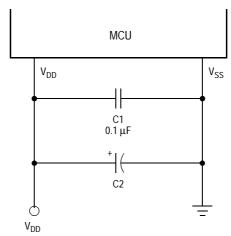
1.5 Pin Assignments

Figure 1-2 shows 32-pin QFP and 28-pin DIP/SOIC pin assignments.

* High current pins

** These pins are not bonded on the 28-pin package.

Figure 1-2. QFP and DIP/SOIC Pin Assignments


MC68HC908MR8 — Rev 4.0

General Description

1.5.1 Power Supply Pins (V_{DD} and V_{SS})

 V_{DD} and V_{SS} are the power supply and ground pins. The MCU operates from a single power supply.

Fast signal transitions on MCU pins place high, short-duration current demands on the power supply. To prevent noise problems, take special care to provide power supply bypassing at the MCU as Figure 1-3 shows. Place the C1 bypass capacitor as close to the MCU as possible. Use a high-frequency-response ceramic capacitor for C1. C2 is an optional bulk current bypass capacitor for use in applications that require the port pins to source high current levels.

Note: Component values shown represent typical applications.

Figure 1-3. Power Supply Bypassing

1.5.2 Oscillator Pins (OSC1 and OSC2)

The OSC1 and OSC2 pins are the connections for the on-chip oscillator circuit. See Section 8. Clock Generator Module (CGM).

1.5.3 External Reset Pin (RST)

A logic 0 on the RST pin forces the MCU to a known startup state. RST is bidirectional, allowing a reset of the entire system. It is driven low when any internal reset source is asserted. See Section 7. System Integration Module (SIM).

Technical Data

1.5.4 External Interrupt Pin (IRQ)

IRQ is an asynchronous external interrupt pin. See Section 16. External Interrupt (IRQ).

1.5.5 CGM Power Supply Pins (V_{DDA} and V_{SSA})

 V_{DDA} and V_{SSA} are the power supply pins for the analog portion of the clock generator module (CGM) and the analog-to-digital converter (ADC). Decoupling of these pins should be per the digital supply. See Section 8. Clock Generator Module (CGM) and Section 18. Analog-to-Digital Converter (ADC).

1.5.6 ADC Reference Voltage Input Pin (V_{REFH})

V_{REFH} is the power supply input for setting the reference voltage. See **Section 18. Analog-to-Digital Converter (ADC)**.

1.5.7 External Filter Capacitor Pin (CGMXFC)

CGMXFC is an external filter capacitor connection for the CGM. See **Section 8. Clock Generator Module (CGM)**.

1.5.8 Port A Input/Output (I/O) Pins (PTA6/ATD6-PTA0/ATD0)

Port A is a 7-bit special function port, sharing all of its pins with the analog-to-digital converter (ADC). On the 32-pin QFP package, all seven bits (PTA6/ATD6–PTA0/ATD0) of the port are available. On the 28-pin package, four bits (PTA3/ATD3–PTA0/ATD0) are available.

PTA3–PTA0 have high current source and sink capability. See **Section 14. Input/Output (I/O) Ports**.

MOTOROLA

General Description

1.5.9 Port B I/O Pins (PTB6/TCHB1-PTB0/RxD)

Port B is a 7-bit special function port, sharing five of its pins with the timer interface modules (TIMA and TIMB) and two of its pins with the serial communications interface (SCI). See Section 11. Timer Interface A (TIMA), Section 12. Timer Interface B (TIMB), Section 14. Input/Output (I/O) Ports, and Section 13. Serial Communications Interface (SCI).

1.5.10 Port C I/O Pins (PTC1/FAULT1-PTC0/FAULT4)

Port C is a 2-bit special function port, sharing its pins with pulse-width modulator fault inputs. See Section 9. Pulse-Width Modulator for Motor Control (PWMMC) and Section 14. Input/Output (I/O) Ports.

1.5.11 PWM Pins (PWM6-PWM1)

PWM6–PWM1 are dedicated pins used for the outputs of the pulsewidth modulator module (PWMMC). See Section 9. Pulse-Width Modulator for Motor Control (PWMMC).

Technical Data

Section 2. Memory Map

2.1 Contents

2.2	Introduction	. 37
2.3	Unimplemented Memory Locations	. 38
2.4	Reserved Memory Locations	. 38
2.5	I/O Section	. 39
2.6	Monitor ROM	. 52

2.2 Introduction

The central processor unit (CPU08) can address 64 Kbytes of memory space.

The memory map, shown in Figure 2-1, includes these features:

- 8 Kbytes of FLASH
- 256 bytes of RAM
- 313 bytes of monitor ROM
- 46 bytes of user-defined vectors

MC68HC908MR8 - Rev 4.0

Memory Map

2.3 Unimplemented Memory Locations

Some addresses are unimplemented. Accessing an unimplemented address will cause an illegal address reset. In the memory map and in the input/output (I/O) register summary, unimplemented addresses are shaded.

Some I/O bits are read-only; the write function is unimplemented. Writing to a read-only I/O bit has no effect on MCU operation. In register figures, the write function of read-only bits is shaded. Similarly, some I/O bits are write-only; the read function is unimplemented. Reading of write-only I/O bits has no effect on microcontroller unit (MCU) operation. In register figures, the read function of write-only bits is shaded.

2.4 Reserved Memory Locations

Some addresses are reserved. Writing to a reserved address can have unpredictable effects on MCU operation. In the memory map and in the I/O register summary, reserved addresses are marked with the word reserved.

Some I/O bits are reserved. Writing to a reserved bit can have unpredictable effects on MCU operation. In register figures, reserved bits are marked with the letter R.

Technical Data

MC68HC908MR8 — Rev 4.0

2.5 I/O Section

Addresses \$0000–\$005F, shown in **Figure 2-2**, contain most of the control, status, and data registers. Additional I/O registers have these addresses:

- \$FE00, system integration module (SIM) break status register (SBSR)
- \$FE01, SIM reset status register (SRSR)
- \$FE03, SIM break flag control register (SBFCR)
- \$FE08, FLASH control register (FLCR)
- \$FF57, FLASH test control register (FLTCR)
- \$FE0C, break address register high (BRKH)
- \$FE0D, break flag control register low (BRKL)
- \$FE0E, break status and control register (BRKSCR)
- \$FE0F, low-voltage inhibit (LVI) status and control register (LVISCR)
- \$FF7E, FLASH block protect register (FLBPR)
- \$FFFF, computer operating properly (COP) control register (COPCTL)

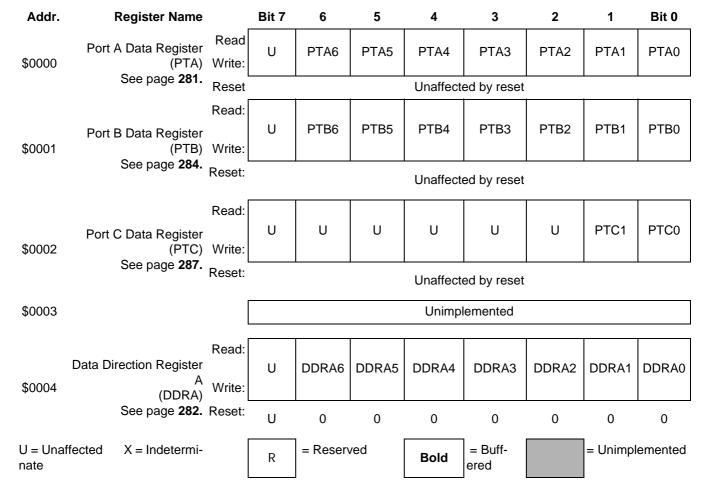
MC68HC908MR8 - Rev 4.0

Memory Map

\$0000↓V/O REGISTERS — 96 BYTES\$0000↓\$005F\$0060↓\$005F\$0060↓RAM — 256 BYTES↓\$011FRAM — 256 BYTES↓\$0120\$015F\$0120\$015F↓UNIMPLEMENTED — 56,992 BYTES↓\$FEFF\$EE000FLASH MEMORY — 7,680 BYTES↓\$FDFF\$FE01\$FE01\$FE01\$FE00SIM BREAK STATUS REGISTER (SBSR)\$FE01\$FE01SIM RESET STATUS REGISTER (SBSR)\$FE01\$FE02RESERVED\$FE02\$FE03SIM BREAK FLAG CONTROL REGISTER (SBFCR)\$FE03\$FE04RESERVED\$FE04\$FE05RESERVED\$FE05\$FE06RESERVED\$FE06\$FE07FLASH CONTROL REGISTER (FLCR)\$FE08\$FE08UNIMPLEMENTED\$FE08\$FE09UNIMPLEMENTED\$FE08\$FE00BREAK ADDRESS REGISTER HIGH (BRKH)\$FE00\$FE00BREAK ADDRESS REGISTER LOW (BRKL)\$FE00\$FE00BREAK ADDRESS REGISTER LOW (BRKL)\$FE00\$FE00BREAK ADDRESS REGISTER (LVISCR)\$FE00\$FE00BREAK ADDRESS REGISTER (LVISCR)\$FE01↓MONITOR ROM — 313 BYTES↓↓MONITOR ROM — 313 BYTES↓\$FF48\$FF49↓↓UNIMPLEMENTED — 53 BYTES↓		MC68HC908MR8	
\$005F\$005F\$0050↓\$011FRAM — 256 BYTES\$011F\$0150\$0120\$015F\$0120\$015F\$0120\$015F\$0120\$015F\$0160↓UNIMPLEMENTED — 56,992 BYTES↓\$EDFF\$E000\$FDFF\$FDFF\$FDFF\$FDFF\$F000\$IM BREAK STATUS REGISTER (SBSR)\$FE01\$IM RESET STATUS REGISTER (SBSR)\$FE02RESERVED\$FE03\$IM BREAK FLAG CONTROL REGISTER (SBFCR)\$FE04RESERVED\$FE05RESERVED\$FE06RESERVED\$FE07FLASH CONTROL REGISTER (FLCR)\$FE08\$FE07\$FE09UNIMPLEMENTED\$FE09UNIMPLEMENTED\$FE08\$FE09\$FE00BREAK ADDRESS REGISTER (IGRKH)\$FE00BREAK ADDRESS REGISTER LOW (BRKL)\$FE00BREAK ADDRESS REGISTER LOW (BRKL)\$FE00BREAK ADDRESS REGISTER (UVISCR)\$FE01\$FE02\$FE05BREAK STATUS AND CONTROL REGISTER (UVISCR)\$FE06\$FE07\$FE07LVI STATUS AND CONTROL REGISTER (UVISCR)\$FE06\$FE07\$FE07WONITOR ROM — 313 BYTES↓MONITOR ROM — 313 BYTES↓UNIMPLEMENTED — 53 BYTES↓	\$0000		\$0000
\$0060↓\$0060↓\$011F\$015F\$0120\$015F↓UNIMPLEMENTED 56,992 BYTES↓↓UNIMPLEMENTED 56,992 BYTES↓\$EDFF\$EDFF\$EE00↓↓FLASH MEMORY 7,680 BYTES↓\$FDFF\$E000\$FE01SIM BREAK STATUS REGISTER (SBSR)\$FE00SIM BREAK STATUS REGISTER (SBSR)\$FE01SIM RESET STATUS REGISTER (SRSR)\$FE01SIM BREAK FLAG CONTROL REGISTER (SBFCR)\$FE02RESERVED\$FE03SIM BREAK FLAG CONTROL REGISTER (SBFCR)\$FE04RESERVED\$FE05RESERVED\$FE06RESERVED\$FE07FLASH CONTROL REGISTER (FLCR)\$FE08UNIMPLEMENTED\$FE09UNIMPLEMENTED\$FE08SFE09\$FE09UNIMPLEMENTED\$FE08SFE09\$FE00BREAK ADDRESS REGISTER HIGH (BRKH)\$FE00BREAK ADDRESS REGISTER LOW (BRKL)\$FE00BREAK ADDRESS REGISTER LOW (BRKL)\$FE00BREAK ADDRESS REGISTER LOW (BRKL)\$FE00BREAK STATUS AND CONTROL REGISTER (LVISCR)\$FE00BREAK STATUS AND CONTROL REGISTER (LVISCR)\$FE00BREAK STATUS AND CONTROL REGISTER (LVISCR)\$FE00BREAK STATUS AND CONTROL REGISTER (LVISCR)\$FE10MONITOR ROM 313 BYTES↓MONITOR ROM 313 BYTES↓UNIMPLEMENTED 53 BYTES	\downarrow	I/O REGISTERS — 96 BYTES	\downarrow
↓ \$011FRAM — 256 BYTES↓ \$0157\$0120\$015F\$0120\$015F\$0120UNIMPLEMENTED — 56,992 BYTES\$0160↓\$EDFF\$EDFF\$EDFF\$E000\$FE07FLASH MEMORY — 7,680 BYTES\$FE01SIM BREAK STATUS REGISTER (SBSR)\$FE02\$FE03\$FE04RESERVED\$FE05RESERVED\$FE06RESERVED\$FE07RESERVED\$FE08\$FE09\$FE09UNIMPLEMENTED\$FE09SFE09\$FE00BREAK ADDRESS REGISTER (FLCR)\$FE08UNIMPLEMENTED\$FE09SFE09\$FE00BREAK ADDRESS REGISTER HIGH (BRKH)\$FE00BREAK ADDRESS REGISTER LOW (BRKL)\$FE00BREAK ADDRESS REGISTER (LVISCR)\$FE00BREAK STATUS AND CONTROL REGISTER (BRKSCR)\$FE00BREAK STATUS AND CONTROL REGISTER (LVISCR)\$FE00BREAK STATUS AND CONTROL REGISTER (LVISCR)\$FE01\$FE05\$FF48\$FF49\$FF48\$FF49\$FF48\$FF49\$FF49\$FF48\$FF49\$FF49	\$005F		\$005F
\$011FRAM — 256 BYTES↓\$0120\$015F\$0120\$015F\$0120\$0160↓UNIMPLEMENTED — 56,992 BYTES\$EDFF\$E000\$EE00FLASH MEMORY — 7,680 BYTES↓\$FDFF\$FDFF\$F00\$FE01SIM BREAK STATUS REGISTER (SBSR)\$FE02RESERVED\$FE03SIM BREAK FLAG CONTROL REGISTER (SBFCR)\$FE04RESERVED\$FE05RESERVED\$FE06\$FE07\$FE07FLASH CONTROL REGISTER (SBFCR)\$FE08\$FE07\$FE09UNIMPLEMENTED\$FE09UNIMPLEMENTED\$FE00\$FE00\$FE00\$REAK ADDRESS REGISTER HIGH (BRKH)\$FE00\$FE00\$FE00\$REAK ADDRESS REGISTER LOW (BRKL)\$FE00\$REAK ADDRESS REGISTER LOW (BRKL)\$FE00\$FE00\$FE00BREAK ADD CONTROL REGISTER (RKSCR)\$FE00\$FE00\$FE00BREAK ADD CONTROL REGISTER (UVISCR)\$FE01MONITOR ROM — 313 BYTES↓MONITOR ROM — 313 BYTES↓UNIMPLEMENTED — 53 BYTES↓	\$0060		\$0060
\$011F \$015F \$0120 \$0160 ↓ UNIMPLEMENTED - 56,992 BYTES ↓ \$EDFF \$SDFFF \$EE00 FLASH MEMORY - 7,680 BYTES ↓ \$FDFF \$E000 \$FF0FF \$FDFF \$FE00 SIM BREAK STATUS REGISTER (SBSR) \$FE00 \$FF01 SIM BREAK STATUS REGISTER (SBSR) \$FF01 \$FF02 RESERVED \$FF01 \$FF03 SIM BREAK FLAG CONTROL REGISTER (SBFCR) \$FF03 \$FE04 RESERVED \$FF03 \$FF05 RESERVED \$FF03 \$FF06 RESERVED \$FF03 \$FF07 FLASH CONTROL REGISTER (SBFCR) \$FF03 \$FF06 RESERVED \$FF07 \$FF07 FLASH CONTROL REGISTER (FLCR) \$FF08 \$FF07 FLASH CONTROL REGISTER (FLCR) \$FF08 \$FF08 UNIMPLEMENTED \$FF09 \$FF09 UNIMPLEMENTED \$FF00 \$FF00 BREAK ADDRESS REGISTER HIGH (BRKH) \$FF00 \$FF00 BREAK STATUS AND CONTROL REGISTER (LVISCR) \$FF00 \$FF00 BR	\downarrow		1
↓UNIMPLEMENTED — 56,992 BYTES\$0160↓\$DFFF\$EEDFF\$E000↓FLASH MEMORY — 7,680 BYTES↓\$FDFF\$F000\$FE01SIM BREAK STATUS REGISTER (SBSR)\$FE01\$FE02RESET STATUS REGISTER (SBSR)\$FE01\$FE03SIM BREAK FLAG CONTROL REGISTER (SBFCR)\$FE02\$FE04RESERVED\$FE03\$FE05RESERVED\$FE04\$FE06RESERVED\$FE05\$FE07FLASH CONTROL REGISTER (SBFCR)\$FE06\$FE07FLASH CONTROL REGISTER (FLCR)\$FE08\$FE09UNIMPLEMENTED\$FE03\$FE09UNIMPLEMENTED\$FE08\$FE00BREAK ADDRESS REGISTER HIGH (BRKH)\$FE08\$FE00BREAK ADDRESS REGISTER LOW (BRKL)\$FE00\$FE00BREAK ADDRESS REGISTER (LVISCR)\$FE06\$FE07LVI STATUS AND CONTROL REGISTER (BRKSCR)\$FE06\$FE07LVI STATUS AND CONTROL REGISTER (LVISCR)\$FE06\$FE10MONITOR ROM — 313 BYTES↓↓MONITOR ROM — 313 BYTES↓\$FF48\$FF49↓↓UNIMPLEMENTED — 53 BYTES↓	\$011F	RAIVI — 230 BTTES	\checkmark
↓UNIMPLEMENTED — 56,992 BYTES↓\$EDFF\$DFFF\$EE00FLASH MEMORY — 7,680 BYTES↓\$FDFF\$FDFF\$FE00SIM BREAK STATUS REGISTER (SBSR)\$FE01SIM RESET STATUS REGISTER (SBSR)\$FE02RESERVED\$FE03SIM BREAK FLAG CONTROL REGISTER (SBFCR)\$FE04RESERVED\$FE05RESERVED\$FE06SFE07\$FE07FLASH CONTROL REGISTER (FLCR)\$FE08\$FE07\$FE09UNIMPLEMENTED\$FE08\$FE09\$FE004RESERVED\$FE05\$FE07\$FE07FLASH CONTROL REGISTER (FLCR)\$FE08\$FE09\$FE09UNIMPLEMENTED\$FE09\$UNIMPLEMENTED\$FE08\$FE00\$FE00BREAK ADDRESS REGISTER HIGH (BRKH)\$FE00\$FE00\$FE00BREAK ADDRESS REGISTER LOW (BRKL)\$FE00\$FE00\$FE00\$REAK ADDRESS REGISTER LOW (BRKL)\$FE00\$FE00\$FE00\$REAK ADDRESS REGISTER (LVISCR)\$FE01\$MONITOR ROM — 313 BYTES↓MONITOR ROM — 313 BYTES↓\$MIMPLEMENTED — 53 BYTES↓	\$0120		\$015F
SEDFF \$EE00 ↓SDFFFSDFFF\$FDFF \$FE00SIM BREAK STATUS REGISTER (SBSR) \$FE01\$FDFF\$FE01SIM BREAK STATUS REGISTER (SBSR) \$FE01\$FE01\$FE02RESERVED \$FE02\$FE01\$FE03SIM BREAK FLAG CONTROL REGISTER (SBFCR) \$FE03\$FE03\$FE04RESERVED \$FE05\$FE06\$FE05RESERVED \$FE06\$FE07\$FE06RESERVED \$FE07\$FE06\$FE07RESERVED \$FE07\$FE07\$FE08UNIMPLEMENTED \$FE08\$FE09\$FE09UNIMPLEMENTED \$FE08\$FE09\$FE00BREAK ADDRESS REGISTER HIGH (BRKH) \$FE00\$FE00\$FE00BREAK ADDRESS REGISTER LOW (BRKL) \$FE00\$FE00\$FE00BREAK ADDRESS REGISTER (LVISCR) \$FE07\$FE06\$FE07LVI STATUS AND CONTROL REGISTER (BRKSCR) \$FE06\$FE07\$FE10MONITOR ROM - 313 BYTES↓\$FF48\$FF48\$FF48\$FF49UNIMPLEMENTED - 53 BYTES↓			\$0160
\$EDFF \$EE00 ↓\$E000 FLASH MEMORY — 7,680 BYTES\$E000 ↓\$FDFFSIM BREAK STATUS REGISTER (SBSR)\$FE07\$FE01SIM RESET STATUS REGISTER (SRSR)\$FE01\$FE02RESERVED\$FE02\$FE03SIM BREAK FLAG CONTROL REGISTER (SBFCR)\$FE03\$FE04RESERVED\$FE04\$FE05RESERVED\$FE06\$FE06RESERVED\$FE06\$FE07RESERVED\$FE06\$FE07FLASH CONTROL REGISTER (FLCR)\$FE08\$FE09UNIMPLEMENTED\$FE09\$FE00BREAK ADDRESS REGISTER HIGH (BRKH)\$FE09\$FE00BREAK ADDRESS REGISTER LOW (BRKL)\$FE00\$FE00BREAK STATUS AND CONTROL REGISTER (BRKSCR)\$FE06\$FE07LVI STATUS AND CONTROL REGISTER (LVISCR)\$FE07\$FE07SFE06\$FE07\$FE07\$FE07WONITOR ROM — 313 BYTES↓\$FF48\$FF48\$FF49↓UNIMPLEMENTED — 53 BYTES↓	\downarrow	UNIMPLEMENTED — 56,992 BYTES	\downarrow
\$EE00 ↓FLASH MEMORY — 7,680 BYTES↓\$FDFF\$FDFF\$FE00SIM BREAK STATUS REGISTER (SBSR)\$FE01SIM RESET STATUS REGISTER (SRSR)\$FE02RESERVED\$FE03SIM BREAK FLAG CONTROL REGISTER (SBFCR)\$FE04RESERVED\$FE05RESERVED\$FE06RESERVED\$FE07RESERVED\$FE07FLASH CONTROL REGISTER (FLCR)\$FE08\$FE07\$FE09UNIMPLEMENTED\$FE08\$FE09\$FE09UNIMPLEMENTED\$FE08\$FE00\$FE00BREAK ADDRESS REGISTER HIGH (BRKH)\$FE00BREAK ADDRESS REGISTER LOW (BRKL)\$FE00BREAK STATUS AND CONTROL REGISTER (BRKSCR)\$FE07\$FE07\$FE07\$FE07\$FE08UNINTOR ROM — 313 BYTES↓MONITOR ROM — 313 BYTES↓\$FF48\$FF48\$FF49↓UNIMPLEMENTED — 53 BYTES			\$DFFF
↓FLASH MEMORY — 7,680 BYTES↓\$FDFF\$FDFF\$FDFF\$FE00SIM BREAK STATUS REGISTER (SBSR)\$FE01\$FE01SIM RESET STATUS REGISTER (SRSR)\$FE01\$FE02RESERVED\$FE02\$FE03SIM BREAK FLAG CONTROL REGISTER (SBFCR)\$FE03\$FE04RESERVED\$FE04\$FE05RESERVED\$FE04\$FE06RESERVED\$FE06\$FE07RESERVED\$FE06\$FE07FLASH CONTROL REGISTER (FLCR)\$FE08\$FE09UNIMPLEMENTED\$FE08\$FE09UNIMPLEMENTED\$FE08\$FE00BREAK ADDRESS REGISTER HIGH (BRKH)\$FE00\$FE00BREAK ADDRESS REGISTER LOW (BRKL)\$FE00\$FE00BREAK STATUS AND CONTROL REGISTER (LVISCR)\$FE01\$FE10MONITOR ROM — 313 BYTES↓\$FF48\$FF48\$FF49\$FF48\$FF49\$FF48\$FF49UNIMPLEMENTED — 53 BYTES↓	\$EDFF		\$E000
\$FDFF\$FDFF\$FDFF\$FDFF\$FE00\$IM BREAK STATUS REGISTER (\$BSR)\$FE01\$IM RESET STATUS REGISTER (\$RSR)\$FE02RESERVED\$FE03\$IM BREAK FLAG CONTROL REGISTER (\$BFCR)\$FE04RESERVED\$FE05RESERVED\$FE06RESERVED\$FE07RESERVED\$FE07FLASH CONTROL REGISTER (FLCR)\$FE07\$FE07\$FE07FLASH CONTROL REGISTER (FLCR)\$FE08\$FE07\$FE09UNIMPLEMENTED\$FE09\$FE08\$FE09UNIMPLEMENTED\$FE08\$FE09\$FE00BREAK ADDRESS REGISTER HIGH (BRKH)\$FE00BREAK ADDRESS REGISTER LOW (BRKL)\$FE00BREAK STATUS AND CONTROL REGISTER (BRKSCR)\$FE00\$FE0F\$FE10\$FE0F↓MONITOR ROM - 313 BYTES↓\$FF48\$FF48\$FF49↓UNIMPLEMENTED - 53 BYTES	\$EE00	ELASH MEMORY — 7.680 BYTES	
\$FE00SIM BREAK STATUS REGISTER (SBSR)\$FE00\$FE01SIM RESET STATUS REGISTER (SRSR)\$FE01\$FE02RESERVED\$FE02\$FE03SIM BREAK FLAG CONTROL REGISTER (SBFCR)\$FE03\$FE04RESERVED\$FE04\$FE05RESERVED\$FE05\$FE06RESERVED\$FE06\$FE07RESERVED\$FE07\$FE09UNIMPLEMENTED\$FE09\$FE04RESERVED\$FE08\$FE05RESERVED\$FE08\$FE09UNIMPLEMENTED\$FE09\$FE00BREAK ADDRESS REGISTER HIGH (BRKH)\$FE00\$FE00BREAK ADDRESS REGISTER LOW (BRKL)\$FE00\$FE00BREAK ADDRESS REGISTER LOW (BRKL)\$FE00\$FE05LVI STATUS AND CONTROL REGISTER (LVISCR)\$FE05\$FE10MONITOR ROM — 313 BYTES↓\$FF48\$FF49\$FF49\$FF48\$FF49\$FF49\$FF49UNIMPLEMENTED — 53 BYTES\$	\downarrow		Ý
\$FE01SIM RESET STATUS REGISTER (SRSR)\$FE01\$FE02RESERVED\$FE02\$FE03SIM BREAK FLAG CONTROL REGISTER (SBFCR)\$FE03\$FE04RESERVED\$FE04\$FE05RESERVED\$FE05\$FE06RESERVED\$FE06\$FE07RESERVED\$FE07\$FE09UNIMPLEMENTED\$FE09\$FE08UNIMPLEMENTED\$FE09\$FE09UNIMPLEMENTED\$FE08\$FE00BREAK ADDRESS REGISTER HIGH (BRKH)\$FE00\$FE00BREAK ADDRESS REGISTER LOW (BRKL)\$FE00\$FE00BREAK AND CONTROL REGISTER (BRKSCR)\$FE06\$FE07LVI STATUS AND CONTROL REGISTER (LVISCR)\$FE10↓MONITOR ROM - 313 BYTES↓\$FF48\$FF49\$FF49↓UNIMPLEMENTED - 53 BYTES↓	\$FDFF		\$FDFF
\$FE02RESERVED\$FE02\$FE03SIM BREAK FLAG CONTROL REGISTER (SBFCR)\$FE03\$FE04RESERVED\$FE03\$FE05RESERVED\$FE05\$FE06RESERVED\$FE06\$FE07RESERVED\$FE07\$FE07FLASH CONTROL REGISTER (FLCR)\$FE08\$FE09UNIMPLEMENTED\$FE09\$FE08RESERVED\$FE09\$FE09UNIMPLEMENTED\$FE08\$FE08UNIMPLEMENTED\$FE08\$FE09BREAK ADDRESS REGISTER HIGH (BRKH)\$FE06\$FE00BREAK ADDRESS REGISTER LOW (BRKL)\$FE00\$FE00BREAK STATUS AND CONTROL REGISTER (BRKSCR)\$FE01\$FE07LVI STATUS AND CONTROL REGISTER (LVISCR)\$FE01\$FE10\$FE07\$FF48\$FF48UNIMPLEMENTED - 53 BYTES↓	\$FE00		\$FE00
\$FE03 SIM BREAK FLAG CONTROL REGISTER (SBFCR) \$FE03 \$FE04 RESERVED \$FE04 \$FE05 RESERVED \$FE05 \$FE06 RESERVED \$FE06 \$FE07 RESERVED \$FE07 \$FE09 UNIMPLEMENTED \$FE09 \$FE04 RESERVED \$FE08 \$FE09 UNIMPLEMENTED \$FE09 \$FE08 UNIMPLEMENTED \$FE08 \$FE09 UNIMPLEMENTED \$FE08 \$FE08 UNIMPLEMENTED \$FE08 \$FE09 BREAK ADDRESS REGISTER HIGH (BRKH) \$FE00 \$FE00 BREAK ADDRESS REGISTER LOW (BRKL) \$FE00 \$FE00 BREAK STATUS AND CONTROL REGISTER (BRKSCR) \$FE06 \$FE07 LVI STATUS AND CONTROL REGISTER (LVISCR) \$FE07 \$FE10 \$FE07 \$FE07 \$FF48 UNIMPLEMENTED — 53 BYTES ↓	\$FE01	SIM RESET STATUS REGISTER (SRSR)	\$FE01
\$FE04RESERVED\$FE04\$FE05RESERVED\$FE05\$FE06RESERVED\$FE06\$FE07RESERVED\$FE07\$FE07FLASH CONTROL REGISTER (FLCR)\$FE08\$FE09UNIMPLEMENTED\$FE09\$FE0ARESERVED\$FE0A\$FE0BUNIMPLEMENTED\$FE0B\$FE0CBREAK ADDRESS REGISTER HIGH (BRKH)\$FE0C\$FE0DBREAK ADDRESS REGISTER LOW (BRKL)\$FE0D\$FE0EBREAK STATUS AND CONTROL REGISTER (BRKSCR)\$FE0F\$FE10↓MONITOR ROM - 313 BYTES↓\$FF48UNIMPLEMENTED - 53 BYTES↓	\$FE02	-	\$FE02
\$FE05RESERVED\$FE05\$FE06RESERVED\$FE06\$FE07RESERVED\$FE07\$FE07FLASH CONTROL REGISTER (FLCR)\$FE08\$FE09UNIMPLEMENTED\$FE09\$FE0ARESERVED\$FE0A\$FE0BUNIMPLEMENTED\$FE0B\$FE0CBREAK ADDRESS REGISTER HIGH (BRKH)\$FE0C\$FE0DBREAK ADDRESS REGISTER LOW (BRKL)\$FE0D\$FE0EBREAK STATUS AND CONTROL REGISTER (BRKSCR)\$FE0E\$FE0FLVI STATUS AND CONTROL REGISTER (LVISCR)\$FE0F\$FE10↓MONITOR ROM - 313 BYTES↓\$FF49↓UNIMPLEMENTED - 53 BYTES↓	\$FE03	SIM BREAK FLAG CONTROL REGISTER (SBFCR)	\$FE03
\$FE06RESERVED\$FE06\$FE07RESERVED\$FE07\$FE07FLASH CONTROL REGISTER (FLCR)\$FE08\$FE09UNIMPLEMENTED\$FE09\$FE0ARESERVED\$FE0A\$FE0BUNIMPLEMENTED\$FE0B\$FE0CBREAK ADDRESS REGISTER HIGH (BRKH)\$FE0C\$FE0DBREAK ADDRESS REGISTER LOW (BRKL)\$FE0D\$FE0EBREAK STATUS AND CONTROL REGISTER (BRKSCR)\$FE0E\$FE0FLVI STATUS AND CONTROL REGISTER (LVISCR)\$FE10↓MONITOR ROM — 313 BYTES↓\$FF48\$FF49\$FF49↓UNIMPLEMENTED — 53 BYTES↓	\$FE04	RESERVED	\$FE04
\$FE07RESERVED\$FE07\$FE07FLASH CONTROL REGISTER (FLCR)\$FE08\$FE09UNIMPLEMENTED\$FE09\$FE0ARESERVED\$FE0A\$FE0BUNIMPLEMENTED\$FE0B\$FE0CBREAK ADDRESS REGISTER HIGH (BRKH)\$FE0C\$FE0DBREAK ADDRESS REGISTER LOW (BRKL)\$FE0D\$FE0EBREAK STATUS AND CONTROL REGISTER (BRKSCR)\$FE0E\$FE0FLVI STATUS AND CONTROL REGISTER (LVISCR)\$FE0F\$FE10MONITOR ROM — 313 BYTES↓\$FF48\$FF49\$FF49↓UNIMPLEMENTED — 53 BYTES↓	\$FE05	RESERVED	\$FE05
\$FE07FLASH CONTROL REGISTER (FLCR)\$FE08\$FE09UNIMPLEMENTED\$FE09\$FE0ARESERVED\$FE0A\$FE0BUNIMPLEMENTED\$FE0B\$FE0CBREAK ADDRESS REGISTER HIGH (BRKH)\$FE0C\$FE0DBREAK ADDRESS REGISTER LOW (BRKL)\$FE0D\$FE0EBREAK STATUS AND CONTROL REGISTER (BRKSCR)\$FE0E\$FE0FLVI STATUS AND CONTROL REGISTER (LVISCR)\$FE10↓MONITOR ROM — 313 BYTES↓\$FF48\$FF49\$FF49↓UNIMPLEMENTED — 53 BYTES↓	\$FE06	RESERVED	\$FE06
\$FE09UNIMPLEMENTED\$FE09\$FE0ARESERVED\$FE0A\$FE0BUNIMPLEMENTED\$FE0B\$FE0CBREAK ADDRESS REGISTER HIGH (BRKH)\$FE0C\$FE0DBREAK ADDRESS REGISTER LOW (BRKL)\$FE0D\$FE0EBREAK STATUS AND CONTROL REGISTER (BRKSCR)\$FE0E\$FE0FLVI STATUS AND CONTROL REGISTER (LVISCR)\$FE0F\$FE10MONITOR ROM — 313 BYTES↓\$FF48\$FF49↓↓UNIMPLEMENTED — 53 BYTES↓	\$FE07	RESERVED	\$FE07
\$FE0ARESERVED\$FE0A\$FE0BUNIMPLEMENTED\$FE0B\$FE0CBREAK ADDRESS REGISTER HIGH (BRKH)\$FE0C\$FE0DBREAK ADDRESS REGISTER LOW (BRKL)\$FE0D\$FE0EBREAK STATUS AND CONTROL REGISTER (BRKSCR)\$FE0E\$FE0FLVI STATUS AND CONTROL REGISTER (LVISCR)\$FE0F\$FE10MONITOR ROM — 313 BYTES↓\$FF48\$FF49↓↓UNIMPLEMENTED — 53 BYTES↓	\$FE07	FLASH CONTROL REGISTER (FLCR)	\$FE08
\$FE0BUNIMPLEMENTED\$FE0B\$FE0CBREAK ADDRESS REGISTER HIGH (BRKH)\$FE0C\$FE0DBREAK ADDRESS REGISTER LOW (BRKL)\$FE0D\$FE0EBREAK STATUS AND CONTROL REGISTER (BRKSCR)\$FE0E\$FE10LVI STATUS AND CONTROL REGISTER (LVISCR)\$FE0F\$FE10MONITOR ROM — 313 BYTES↓\$FF48\$FF49\$FF49↓UNIMPLEMENTED — 53 BYTES↓	\$FE09	UNIMPLEMENTED	\$FE09
\$FEOCBREAK ADDRESS REGISTER HIGH (BRKH)\$FEOC\$FEODBREAK ADDRESS REGISTER LOW (BRKL)\$FEOD\$FEOEBREAK STATUS AND CONTROL REGISTER (BRKSCR)\$FEOE\$FE10LVI STATUS AND CONTROL REGISTER (LVISCR)\$FEOF\$FE10MONITOR ROM — 313 BYTES↓\$FF48\$FF49↓↓UNIMPLEMENTED — 53 BYTES↓	\$FE0A	RESERVED	\$FE0A
\$FE0DBREAK ADDRESS REGISTER LOW (BRKL)\$FE0D\$FE0EBREAK STATUS AND CONTROL REGISTER (BRKSCR)\$FE0E\$FE0FLVI STATUS AND CONTROL REGISTER (LVISCR)\$FE0F\$FE10MONITOR ROM — 313 BYTES↓\$FF48\$FF49\$FF48↓UNIMPLEMENTED — 53 BYTES↓	\$FE0B	UNIMPLEMENTED	\$FE0B
\$FE0E BREAK STATUS AND CONTROL REGISTER (BRKSCR) \$FE0E \$FE0F LVI STATUS AND CONTROL REGISTER (LVISCR) \$FE0F \$FE10 MONITOR ROM — 313 BYTES ↓ \$FF48 MONITOR ROM — 53 BYTES ↓	\$FE0C	BREAK ADDRESS REGISTER HIGH (BRKH)	\$FE0C
\$FE0F LVI STATUS AND CONTROL REGISTER (LVISCR) \$FE0F \$FE10 ↓ MONITOR ROM — 313 BYTES ↓ \$FF48 ↓ ↓ \$FF48 \$FF49 ↓ ↓ ↓ ↓ UNIMPLEMENTED — 53 BYTES ↓	\$FE0D		\$FE0D
\$FE10 \$FE10 ↓ MONITOR ROM - 313 BYTES ↓ \$FF48 ↓ \$FF49 ↓ ↓ UNIMPLEMENTED - 53 BYTES	\$FE0E		\$FE0E
$\downarrow MONITOR ROM - 313 BYTES \qquad \downarrow$ $\$FF48$ $\$FF49$ $\downarrow UNIMPLEMENTED - 53 BYTES \qquad \downarrow$	\$FE0F	LVI STATUS AND CONTROL REGISTER (LVISCR)	\$FE0F
\$FF48 \$FF48 \$FF49 ↓ UNIMPLEMENTED — 53 BYTES ↓	\$FE10		\$FE10
\$FF48 \$FF48 \$FF49 ↓ UNIMPLEMENTED — 53 BYTES ↓			
\$FF48 \$FF48 \$FF49 ↓ UNIMPLEMENTED — 53 BYTES ↓			
\$FF49\$FF49 \downarrow UNIMPLEMENTED — 53 BYTES	\downarrow	MONITOR ROM — 313 BYTES	\downarrow
\$FF49\$FF49 \downarrow UNIMPLEMENTED — 53 BYTES			
\$FF49\$FF49 \downarrow UNIMPLEMENTED — 53 BYTES	.		.
\downarrow UNIMPLEMENTED — 53 BYTES \downarrow			
	· .		
\$FF7D \$FF7D	·	UNIMPLEMENTED — 53 BYTES	•
	\$FF7D		\$FF7D

MC68HC908MR8

Figure 2-1. Memory Map


MC68HC908MR8 — Rev 4.0

Memory Map For More Information On This Product, Go to: www.freescale.com

Memory Map I/O Section

\$FF7E	FLASH BLOCK PROTECT REGISTER (FLBPR)	\$FF7E
\$FF7F		\$FF7F
\downarrow	UNIMPLEMENTED — 83 BYTES	\downarrow
\$FFD1		\$FFD1
\$FFD2		\$FFD2
\downarrow	VECTORS — 45 BYTES (46 including \$FFFF)	\downarrow
\$FFFE		\$FFFE
\$FFFF	Low byte of reset vector when read	\$FFFF
ψιιι	COP Control Register (COPCTL)	ψιιιι

MC68HC908MR8 — Rev 4.0

Memory Map

Addr.	Register Name		Bit 7	6	5	4	3	2	1	Bit 0
\$0005	Data Direction Register B (DDRB)	Read: Write:	U	DDRB6	DDRB5	DDRB4	DDRB3	DDRB2	DDRB1	DDRB0
	See page 284.	Reset:	U	0	0	0	0	0	0	0
\$0006	Data Direction Register C (DDRC)	Read: Write:							DDRC1	DDRC0
	See page 288.	Reset:	U	U	U	U	U	U	0	0
\$0007						Unimp	lemented			
\downarrow										
\$000D						Unimp	lemented			
		Read:	TOF			0	0			
\$000E	TIMA Status/Control Register (TASC)	Write:	0	TOIE	TSTOP	TRST	R	PS2	PS1	PS0
<i>40001</i>	See page 214.	Reset:	0	0	1	0	0	0	0	0
	TIMA Counter Register	Read:	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
\$000F	High (TACNTH)	Write:	R	R	R	R	R	R	R	R
	See page 216.	Reset:	0	0	0	0	0	0	0	0
	TIMA Counter Register	Read:	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
\$0010	Low (TACNTL)	Write:	R	R	R	R	R	R	R	R
	See page 216.		0	0	0	0	0	0	0	0
\$0011	TIMA Counter Modulo Register High (TAMODH)	Read: Write:	Bit 15	14	13	12	11	10	9	Bit 8
	See page 217.	Reset:	1	1	1	1	1	1	1	1
\$0012	TIMA Counter Modulo Register Low (TAMODL)	Read: Write:	Bit 7	6	5	4	3	2	1	Bit 0
	See page 217.	Reset:	1	1	1	1	1	1	1	1
\$0013	TIMA Channel 0 Sta- tus/Control Register (TASC0)	Read: Write:	CH0F 0	CH0IE	MS0B	MS0A	ELS0B	ELS0A	TOV0	CH0MA X
	See page 218 .	Reset:	0	0	0	0	0	0	0	0
U = Una nate	ffected X = Indetermi-		R	= Reserv	/ed	Bold	= Buff- ered		= Unimpl	emented

Figure 2-2. Control, Status, and Data Registers (Sheet 2 of 10)

Technical Data

MC68HC908MR8 — Rev 4.0

Addr.	Register Name		Bit 7	6	5	4	3	2	1	Bit 0
\$0014	TIMA Channel 0 Regis- ter High (TACH0H)	Read: Write:	Bit 15	14	13	12	11	10	9	Bit 8
	See page 222.	Reset:			I	ndetermina	ate after res	set		
\$0015	TIMA Channel 0 Regis- ter Low (TACH0L)	Read: Write:	Bit 7	6	5	4	3	2	1	Bit 0
	See page 218.	Reset:			I	ndetermina	ate after res	set		
\$0016	TIMA Channel 1 Sta- tus/Control	Read: Write:	CH1F 0	CH1IE	0 R	MS1A	ELS1B	ELS1A	TOV1	CH1MA X
Q 0010	Register (TASC1) See page 222.		0	0	0	0	0	0	0	0
\$0017	TIMA Channel 1 Regis- ter High (TACH1H)	Read:	Bit 15	14	13	12	11	10	9	Bit 8
	See page 222.	Reset:			I	ndetermina	ate after res	set		
\$0018	TIMA Channel 1 Regis- ter Low (TACH1L)	Read: Write:	Bit 7	6	5	4	3	2	1	Bit 0
	See page 222.	Reset:			I	ndetermina	ate after res	set		
\$0019						Unimp	emented			
\downarrow										
\$001E						Unimp	emented			
\$001F	Configuration Register (CONFIG)	Read: Write:	EDGE	BOT- NEG	TOP- NEG	INDEP	LVIRST	LVIPWR	STOPE	COPD
	See page 68.	Reset:	0	0	0	0	1	1	0	0
\$0020	PWM Control Register 1 (PCTL1)	Read: Write:	DISX	DISY	PW- MINT	PWMF			LDOK	PW- MEN
	See page 175.	Reset:	0	0	0	0	0	0	0	0
\$0021	PWM Control Register 2 (PCTL2)		LDFQ1	LDFQ0	0	SEL12	SEL34	SEL56	PRSC1	PRSC0
	See page 177.	Reset:	0	0	0	0	0	0	0	0
U = Una nate	affected X = Indetermi-		R	= Reserv	/ed	Bold	= Buff- ered		= Unimpl	emented

MC68HC908MR8 — Rev 4.0

MOTOROLA

Memory Map

Addr.	Register Name		Bit 7	6	5	4	3	2	1	Bit 0
\$0022	Fault Control Register (FCR)	Read: Write:	FINT4	FMODE 4					FINT1	FMODE 1
	See page 180.	Reset:	0	0	0	0	0	0	0	0
\$ 2222	Fault Status Register	Read:	FPIN4	FFLAG 4	0	0	0	0	FPIN1	FFLAG 1
\$0023	(FSR) See page 181.	Write:								
		Reset:	U	0	U	0	U	0	U	0
		Read:	0	0	0	0	0	0	0	0
\$0024	Fault Acknowledge Reg- ister (FTACK) See page 182 .	Write:		FTACK 4						FTACK 1
		Reset:	0	0	0	0	0	0	0	0
\$0025	PWM Output Control (PWMOUT)	Read: Write:	0	OUT- CTL	OUT6	OUT5	OUT4	OUT3	OUT2	OUT1
	See page 159.	Reset:	0	0	0	0	0	0	0	0
	PWM Counter Register	Read:	0	0	0	0	Bit 11	Bit 10	Bit 9	Bit 8
\$0026	High (PCNTH)	Write:								
	See page 172.	Reset:	0	0	0	0	0	0	0	0
	PWM Counter Register	Read:	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
\$0027	Low (PCNTL)	Write:								
	See page 172.	Reset:	0	0	0	0	0	0	0	0
	PWM Counter Modulo	Read:	0	0	0	0	Bit 11	Bit 10	Bit 9	Bit 8
\$0028	Register High (PMODH)	Write:					BRTT	Dit 10	Ditto	Dir O
	See page 173.	Reset:	0	0	0	0	Х	Х	Х	Х
\$0029	PWM Counter Modulo Register Low (PMODL)	Read: Write:	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
	See page 173.	Reset:	Х	Х	Х	Х	Х	Х	Х	Х
\$002A	PWM 1 Value Register High (PVAL1H)	Read: Write:	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
	See page 174.	Reset:	0	0	0	0	0	0	0	0
U = Una nate	affected X = Indetermi-		R	= Reserv	red	Bold	= Buff- ered		= Unimpl	emented

Figure 2-2. Control, Status, and Data Registers (Sheet 4 of 10)

Technical Data

MC68HC908MR8 - Rev 4.0

Addr.	Register Name		Bit 7	6	5	4	3	2	1	Bit 0
\$002B	PWM 1 Value Register Low (PVAL1L)	Read: Write:	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
	See page 174.	Reset:	0	0	0	0	0	0	0	0
\$002C	PWM 2 Value Register High (PVAL2H)	Read: Write:	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
	See page 174.	Reset:	0	0	0	0	0	0	0	0
\$002D	PWM 2 Value Register Low (PVAL2L)	Read: Write:	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
	See page 174.	Reset:	0	0	0	0	0	0	0	0
\$002E	PWM 3 Value Register High (PVAL3H)	Read: Write:	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
	See page 174.	Reset:	0	0	0	0	0	0	0	0
\$002F	PWM 3 Value Register Low (PVAL3L)	Read: Write:	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
	See page 174.	Reset:	0	0	0	0	0	0	0	0
\$0030	PWM 4 Value Register High (PVAL4H)	Read: Write:	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
	See page 174.	Reset:	0	0	0	0	0	0	0	0
\$0031	PWM 4 Value Register Low (PVAL4L)	Read: Write:	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
	See page 174.	Reset:	0	0	0	0	0	0	0	0
\$0032	PWM 5 Value Register High (PMVAL5H)	Read: Write:	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
	See page 174.	Reset:	0	0	0	0	0	0	0	0
\$0033	PWM 5 Value Register Low (PVAL5L)	Read: Write:	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
	See page 174.	Reset:	0	0	0	0	0	0	0	0
\$0034	PWM 6 Value Register High (PVAL6H)		Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
	See page 174.	Reset:	0	0	0	0	0	0	0	0
U = Unaf nate	fected X = Indetermi-		R	= Reserv	/ed	Bold	= Buff- ered		= Unimpl	emented

Figure 2-2. Control, Status, and Data Registers (Sheet 5 of 10)

Memory Map

Addr.	Register Name		Bit 7	6	5	4	3	2	1	Bit 0
\$0035	PWM 6 Value Register Low (PMVAL6L)	Read: Write:	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
	See page 174 .	Reset:	0	0	0	0	0	0	0	0
\$0036	Dead-Time Write-Once Register (DEADTM)	Read: Write:	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
	See page 179.	Reset:	1	1	1	1	1	1	1	1
\$0037	PWM Disable Mapping Write-Once Register (DISMAP)	Read: Write:	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
	See page 179.	Reset:	1	1	1	1	1	1	1	1
\$0038	SCI Control Register 1 (SCC1)	Read: Write:	LOOP S	ENSCI	TXINV	Μ	WAKE	ILTY	PEN	ΡΤΥ
	See page 264.	Reset:	0	0	0	0	0	0	0	0
\$0039	SCI Control Register 2 (SCC2)	Read: Write:	SCTIE	TCIE	SCRIE	ILIE	TE	RE	RWU	SBK
	See page 267.	Reset:	0	0	0	0	0	0	0	0
	SCI Control Register 3	Read:	R8	Т8	0	0	ORIE	NEIE	FEIE	PEIE
\$003A	(SCC3)	Write:	R	10	R	R	ONE			
	See page 270.	Reset:	U	U	0	0	0	0	0	0
	SCI Status Register 1	Read:	SCTE	тс	SCRF	IDLE	OR	NF	FE	PE
\$003B	(SCS1)	Write:	R	R	R	R	R	R	R	R
	See page 271.	Reset:	1	1	0	0	0	0	0	0
	SCI Status Register 2	Read:	0	0	0	0	0	0	BKF	RPF
\$003C	(SCS2)	Write:	R	R	R	R	R	R	R	R
	See page 275.	Reset:	0	0	0	0	0	0	0	0
	SCI Data Register	Read:	R7	R6	R5	R4	R3	R2	R1	R0
\$003D	(SCDR)	Write:	T7	T6	T5	T4	Т3	T2	T1	Т0
	See page 276.	Reset:				Unaffect	ed by reset			
	SCI Baud Rate Register	Read:	0	0	SCP1	SCP0	0	SCR2	SCR1	SCR0
\$003E	(SCBR)	Write:	R	R	JUF 1	50F0	R	00112		5010
	See page 276.	Reset:	0	0	0	0	0	0	0	0
U = Una nate	ffected X = Indetermi-		R	= Reserv	ved	Bold	= Buff- ered		= Unimpl	emented

Figure 2-2. Control, Status, and Data Registers (Sheet 6 of 10)

Technical Data

MC68HC908MR8 — Rev 4.0

Addr.	Register Name		Bit 7	6	5	4	3	2	1	Bit 0
	IRQ Status/Control Reg-	Read:	0	0	0	0		0	IMASK1	
\$003F	ister (ISCR)	Write:	R	R	R	R	IRQF	ACK1	INASKI	MODET
	See page 303 .	Reset:	0	0	0	0	0	0	0	0
\$0040	ADC Status and Control Register (ADSCR)	Read: Write:	COCO	AIEN	ADCO	ADCH4	ADCH3	ADCH2	ADCH1	ADCH0
	See page 319.	Reset:	0	0	0	1	1	1	1	1
	ADC Data Register High	Read:	0	0	0	0	0	0	AD9	AD8
\$0041	(ADRH)	Write:	R	R	R	R	R	R	R	R
	See page 322.	Reset:				Unaffecte	ed by reset			
	ADC Data Register Low	Read:	AD7	AD6	AD5	AD4	AD3	AD2	AD1	AD0
\$0042	(ADRL)	Write:	R	R	R	R	R	R	R	R
	See page 323.	Reset:			1	Unaffecte	ed by reset		1	
	ADC Clock Register	Read:						MODEO	_	0
\$0043	(ADCLK)	Write:	ADIV2	ADIV1	ADIV0	ADICLK	MODE1	MODE0	0	R
	See page 324.	Reset:	0	0	0	0	0	1	0	0
\$0044						Unimpl	emented			
\downarrow										
\$0050						Unimpl	emented			
	TIMB Status/Control	Read:	TOF	TOIE	TSTOP	0	0	PS2	PS1	PS0
\$0051	Register (TBSC)	Write:	0			TRST	R			
	See page 238.	Reset:	0	0	1	0	0	0	0	0
	TIMB Counter Register	Read:	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
\$0052	High (TBCNTH)	Write:	R	R	R	R	R	R	R	R
	See page 240.	Reset:	0	0	0	0	0	0	0	0
	TIMB Counter Register	Read;	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
\$0053	Low (TBCNTL)	Write:	R	R	R	R	R	R	R	R
	See page 240.	Reset:	0	0	0	0	0	0	0	0
\$0054	TIMB Counter Modulo Register High (TB- MODH)	Write:	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
	See page 241.	Reset:	1	1	1	1	1	1	1	1
U = Una nate	affected X = Indetermi-		R	= Reserv	ved	Bold	= Buff- ered		= Unimpl	emented

Figure 2-2. Control, Status, and Data Registers (Sheet 7 of 10)

MC68HC908MR8 - Rev 4.0

Memory Map

Addr.	Register Name		Bit 7	6	5	4	3	2	1	Bit 0
\$0055	TIMB Counter Modulo Register Low (TBMODL)	Read: Write:	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
	See page 241.	Reset:	1	1	1	1	1	1	1	1
	TIMB Channel 0 Sta-	Read:	CH0F	CHOIE	MS0B	MS0A	ELS0B	ELS0A	ΤΟΛ0	СНОМА
\$0056	tus/Control Register (TBSC0)	Write:	0	CHUE	NISOD	IVISUA	ELSUD	ELSUA	1000	Х
	See page 242 .	Reset:	0	0	0	0	0	0	0	0
\$0057	TIMB Channel 0 Regis- ter High (TBCH0H)	Read: Write:	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
	See page 246.	Reset:				ndetermina	ate after res	et		
\$0058	TIMB Channel 0 Regis- ter Low (TBCH0L)	Read: Write:	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
	See page 246.	Reset:			I	ndetermina	ate after res	et		
	TIMB Channel 1 Sta-		CH1F	CH1IE	0	MS1A	ELS1B	ELS1A	TOV1	CH1MA
\$0059	tus/Control Register (TBSC1)	Write:	0	Onne	R	NOTA	LLOID	LLOIA	1001	Х
	See page 242.	Reset:	0	0	0	0	0	0	0	0
\$005A	TIMB Channel 1 Regis- ter High (TBCH1H)	Read: Write:	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
	See page 246.	Reset:			I	ndetermina	ate after res	et		
\$005B	TIMB Channel 1 Regis- ter Low (TBCH1L)	Read: Write:	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
	See page 246.	Reset:			I	ndetermina	ate after res	et		
	PLL Control Register	Read:	PLLIE	PLLF	PLLON	BCS	1	1	1	1
\$005C	(PCTL)	Write:		R	TLEON	ВСС	R	R	R	R
	See page 126.	Reset:	0	0	1	0	1	1	1	1
	PLL Bandwidth Control	Read:	AUTO	LOCK	ACQ	XLD	0	0	0	0
\$005D	Register (PBWC)	Write:	//010	R	neg	ALD.	R	R	R	R
	See page 129.	Reset:	0	0	0	0	0	0	0	0
\$005E	PLL Programming Reg- ister (PPG)	Read: Write:	MUL7	MUL6	MUL5	MUL4	VRS7	VRS6	VRS5	VRS4
	See page 131.	Reset:	0	1	1	0	0	1	1	0
U = Una nate	ffected X = Indetermi-		R	= Reserv	ved	Bold	= Buff- ered		= Unimpl	emented
	F '	^					(0)	0 . (4 0	、	

Figure 2-2. Control, Status, and Data Registers (Sheet 8 of 10)

Technical Data

MC68HC908MR8 — Rev 4.0

Addr.	Register Name		Bit 7	6	5	4	3	2	1	Bit 0
\$005F	Reserved		R	R	R	R	R	R	R	R
	SIM Break Status Regis-	Read:	Р	R	R	Р	P	R	SBSW	R
\$FE00	ter (SBSR)	Write:	R	ĸ	ĸ	R	R	ĸ	Note ⁽¹⁾	ĸ
	See page 336.	Reset:							0	
Note 1.	Writing a logic 0 clears	SBSW.								
	SIM Reset Status Regis-	Read:	POR	PIN	COP	ILOP	ILAD	0	LVI	0
\$FE01	ter (SRSR)	Write:	R	R	R	R	R	R	R	R
	See page 108.	Reset:	1	0	0	0	0	0	0	0
•	SIM Break Flag Control	Read:	BCFE	R	R	R	R	R	R	R
\$FE03	Register (SBFCR) See page 109.	Write:								
			0			-				
^	FLASH Control Register	Read:	0	0	0	0	HVEN	MASS	ERASE	PGM
\$FE08	(FLCR) See page 57.	Write:								
		Reset:	0	0	0	0	0	0	0	0
\$FE0A	Reserved		R	R	R	R	R	R	R	R
\$FE0B						Unimp	lemented			
		Read:								
\$FE0C	Break Address Register High (BRKH)	Write:	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
	See page 334.	Reset:	0	0	0	0	0	0	0	0
	Break Address Register	Read:		Dive		5.4	Dire	D' C		Dit o
\$FE0D	Low (BRKL)	Write:	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
	See page 334.	Reset:	0	0	0	0	0	0	0	0
	Break Status and Con-	Read:			0	0	0	0	0	0
\$FE0E	trol Register (BRKSCR)	Write:	BRKE	BRKA						
	See page 333.	Reset:	0	0	0	0	0	0	0	0
U = Una nate	ffected X = Indetermi-		R	= Reserv	ved	Bold	= Buff- ered		= Unimple	emented

Figure 2-2. Control, Status, and Data Registers (Sheet 9 of 10)

MC68HC908MR8 — Rev 4.0

MOTOROLA

Memory Map

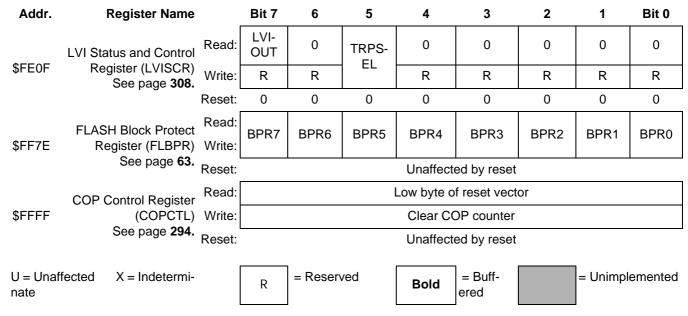


Figure 2-2. Control, Status, and Data Registers (Sheet 10 of 10)

Technical Data

MC68HC908MR8 - Rev 4.0

Semiconductor, Inc.

Freescale

 Table 2-1 is a list of vector locations.

	Address	Vector
ş	\$FFD2	SCI transmit vector (high)
Low	\$FFD3	SCI transmit vector (low)
A	\$FFD4	SCI receive vector (high)
	\$FFD5	SCI receive vector (low)
	\$FFD6	SCI error vector (high)
	\$FFD7	SCI error vector (low)
	\$FFD8	Reserved
	\$FFD9	Reserved
	\$FFDA	Reserved
	\$FFDB	Reserved
	\$FFDC	A/D vector (high)
	\$FFDD	A/D vector (low)
	\$FFDE	TIMB overflow vector (high)
	\$FFDF	TIMB overflow vector (low)
ج ج	\$FFE0	TIMB channel 1 vector (high)
Priority	\$FFE1	TIMB channel 1 vector (low)
۲ ۲	\$FFE2	TIMB channel 0 vector (high)
	\$FFE3	TIMB channel 0 vector (low)
	\$FFE4	TIMA overflow vector (high)
	\$FFE5	TIMA overflow vector (low)
	\$FFE6	Reserved
	\$FFE7	Reserved
	\$FFE8	Reserved
	\$FFE9	Reserved
	\$FFEA	TIMA channel 1 vector (high)
	\$FFEB	TIMA channel 1 vector (low)
	\$FFEC	TIMA channel 0 vector (high)
¥	\$FFED	TIMA channel 0 vector (low)

MC68HC908MR8 — Rev 4.0

MOTOROLA

Technical Data

51

	Address	Vector		
A	\$FFEE	PWMMC vector (high)		
	\$FFEF	PWMMC vector (low)		
	\$FFF0	FAULT 4 (high)		
	\$FFF1	FAULT 4 (low)		
	\$FFF2	Reserved		
	\$FFF3	Reserved		
	\$FFF4	Reserved		
ty	\$FFF5	Reserved		
Priority	\$FFF6	FAULT 1 (high)		
₽	\$FFF7	FAULT 1 (low)		
	\$FFF8	PLL vector (high)		
	\$FFF9	PLL vector (low)		
	\$FFFA	IRQ vector (high)		
	\$FFFB	IRQ vector (low)		
	\$FFFC	SWI vector (high)		
V	\$FFFD	SWI vector (low)		
High	\$FFFE	Reset vector (high)		
ΗÌ	\$FFFF	Reset vector (low)		

Table 2-1. Vector Addresses (Continued)

2.6 Monitor ROM

313 bytes at addresses \$FE10–\$FF48 are reserved ROM addresses that contain the instructions for the monitor functions.

See Section 10. Monitor ROM (MON).

Technical Data

MC68HC908MR8 — Rev 4.0

Section 3. Random-Access Memory (RAM)

3.1 Contents

3.2	Introduction	53
3.3	Functional Description	53

3.2 Introduction

This section describes the 256 bytes of random-access memory (RAM) on the MC68HC908MR8.

3.3 Functional Description

Addresses \$0060–\$015F are RAM locations. The location of the stack RAM is programmable. The 16-bit stack pointer allows the stack to be anywhere in the 64-Kbyte memory space.

NOTE: For correct operation, the stack pointer must point only to RAM locations.

Within page zero are 160 bytes of RAM. Because the location of the stack RAM is programmable, all page zero RAM locations can be used for input/output (I/O) control and user data or code. When the stack pointer is moved from its reset location at \$00FF, direct addressing mode instructions can access efficiently all page zero RAM locations. Page zero RAM, therefore, provides ideal locations for frequently accessed global variables.

Before processing an interrupt, the CPU uses five bytes of the stack to save the contents of the central processor unit (CPU) registers.

NOTE: For M6805 compatibility, the H register is not stacked.

Random-Access Memory (RAM)

During a subroutine call, the CPU uses two bytes of the stack to store the return address. The stack pointer decrements during pushes and increments during pulls.

NOTE: Be careful when using nested subroutines. The CPU may overwrite data in the RAM during a subroutine or during the interrupt stacking operation.

Technical Data

MC68HC908MR8 - Rev 4.0

Section 4. FLASH Memory

4.1 Contents

4.2	Introduction	55
4.2.1	Functional Description	56
4.2.2	FLASH Control Register	57
4.2.3	FLASH Page Erase Operation	58
4.2.4	FLASH Mass Erase Operation.	59
4.2.5	FLASH Program/Read Operation	59
4.3	FLASH Programming Algorithm	60
4.3.1	FLASH Block Protection	62
4.3.2	FLASH Block Protect Register	63
4.3.3	Low-Power Modes	64

4.2 Introduction

This section describes the operation of the MC68HC908MR8 embedded FLASH memory. This memory can be read, programmed, and erased from a single external supply. The program and erase operations are enabled through the use of an internal charge pump.

MC68HC908MR8 — Rev 4.0

FLASH Memory

4.2.1 Functional Description

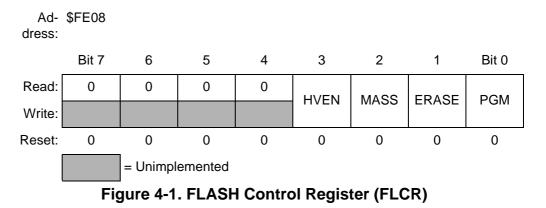
The FLASH memory physically consists of an array of 7680 bytes with an additional 46 bytes of user vectors and one byte of block protection. An erased bit reads as a logic 1 and a programmed bit reads as a logic 0. Program and erase operations are facilitated through control bits in a memory mapped register. Details for these operations appear later in this section.

Memory in the FLASH array is organized into two rows per page base. For the 8-K word by 8-bit embedded FLASH memory, the page size is 64 bytes per page. The minimum erase page size is 64 bytes. Program and erase operations are performed through control bits in the FLASH control register (FLCR).

The address ranges for the user memory, control register, and vectors are:

- \$E000-\$FDFF, user memory
- \$FF7E, block protect register (FLBPR)
- \$FE08, FLASH control register (FLCR)
- \$FFD2-\$FFFF, locations reserved for user-defined interrupt and reset vectors

Programming tools are available from Motorola. Contact a local Motorola representative for more information.


NOTE: A security feature¹ prevents viewing of the FLASH contents.

Technical Data

^{1.} No security feature is absolutely secure. However, Motorola's strategy is to make reading or copying the FLASH difficult for unauthorized users.

4.2.2 FLASH Control Register

The FLASH control register (FLCR) controls the FLASH program, erase, and read operations.

HVEN — High-Voltage Enable Bit

This read/write bit enables the charge pump to drive high voltages for program and erase operations in the array. HVEN can be set only if either PGM = 1 or ERASE = 1 and the proper sequence for program/margin read or erase is followed.

1 = High voltage enabled to array and charge pump on

- 0 = High voltage disabled to array and charge pump off
- MASS Mass Erase Control Bit

This read/write bit configures the memory for mass erase operation.

- 1 = Mass erase operation selected
- 0 = Mass erase operation unselected

ERASE — Erase Control Bit

This read/write bit configures the memory for erase operation. ERASE is interlocked with the PGM bit such that both bits cannot be set at the same time.

1 = Erase operation selected

0 = Erase operation unselected

MC68HC908MR8 — Rev 4.0

FLASH Memory

PGM — Program Control Bit

This read/write bit configures the memory for program operation. PGM is interlocked with the ERASE bit such that both bits cannot be set at the same time.

- 1 = Program operation selected
- 0 = Program operation unselected

4.2.3 FLASH Page Erase Operation

Use this step-by-step procedure to erase a page (64 bytes) of FLASH memory to read as logic 1:

- 1. Set the ERASE bit and clear the MASS bit in the FLASH control register.
- 2. Read the FLASH block protect register.
- 3. Write to any FLASH address with any data within the page address range desired.
- 4. Wait for a time, t_{NVS} (minimum of 10 μ s).
- 5. Set the HVEN bit.
- 6. Wait for a time, t_{Erase} (minimum of 1 ms).
- 7. Clear the ERASE bit.
- 8. Wait for a time, t_{NVH} (minimum of 5 μ s).
- 9. Clear the HVEN bit.
- 10. After a time, t_{RCV} (typically 1 μ s), the memory can be accessed in read mode again.
- **NOTE:** While these operations must be performed in the order shown, other unrelated operations may occur between the steps. Do not exceed t_{NVH} maximum. See **21.7 Memory Characteristics**.

4.2.4 FLASH Mass Erase Operation

Use this step-by-step procedure to erase the entire FLASH memory to read as logic 1:

- 1. Set the ERASE bit and the MASS bit in the FLASH control register.
- 2. Read the block protect register.
- 3. Write to any FLASH address with any data within the page address range desired.
- 4. Wait for a time, t_{NVS} (minimum of 10 μ s).
- 5. Set the HVEN bit.
- 6. Wait for a time, t_{Erase} (minimum of 4 ms).
- 7. Clear the ERASE bit.
- 8. Wait for a time, t_{NVHL} (minimum of 100 μ s).
- 9. Clear the HVEN bit.
- 10. After a time, t_{RCV} (typically 1 μ s), the memory can be accessed in read mode again.
- **NOTE:** Programming and erasing of FLASH locations cannot be performed by code being executed from the FLASH memory. While these operations must be performed in the order shown, other unrelated operations may occur between the steps. Do not exceed t_{NVH} maximum. See 21.7 Memory Characteristics.

4.2.5 FLASH Program/Read Operation

Programming of the FLASH memory is done on a row basis. A row consists of 32 consecutive bytes starting from address \$XX00, \$XX20, \$XX40, and \$XX80.

Use this step-by-step procedure to program a row of FLASH memory:

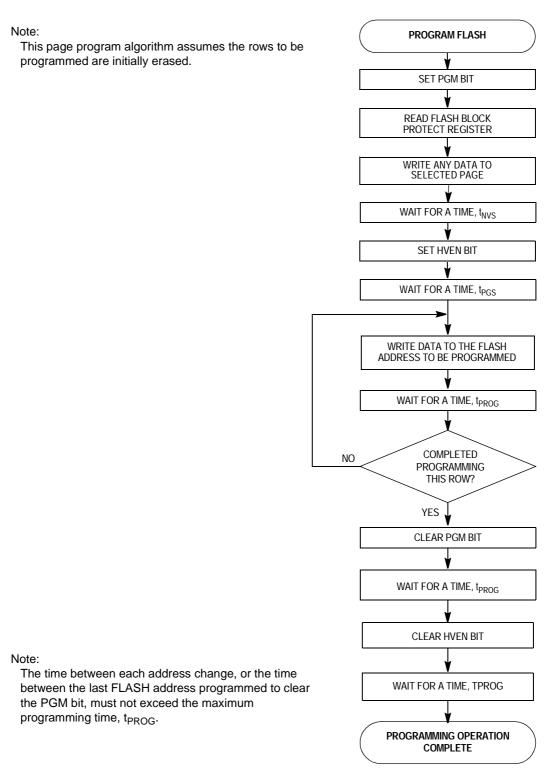
- 1. Set the PGM bit in the FLASH control register. This configures the memory for program operation and enables the latching of address and data programming.
- 2. Read the block protect register.
- 3. Write to any FLASH address with any data within the page

MC68HC908MR8 - Rev 4.0

MOTOROLA

FLASH Memory

address range desired.


- 4. Wait for a time, t_{NVS} (minimum of 10 μ s).
- 5. Set the HVEN bit.
- 6. Wait for a time, t_{PGS} (minimum of 5 μ s).
- 7. Write data to the FLASH address to be programmed.
- 8. Wait for a time, t_{PROG} (minimum of 30 µs).
- 9. Repeat step 7 and step 8 until all the bytes within the row are programmed.
- 10. Clear the PGM bit.
- 11. Wait for a time, t_{NVH} (minimum of 5 μ s).
- 12. Clear the HVEN bit.
- 13. After a time, t_{RCV} (typically 1 μ s), the memory can be accessed in read mode again.
- **NOTE:** The time between each FLASH address change, or the time between the last FLASH address programmed to clear the PGM bit, must not exceed the maximum programming time, t_{PROG}.

Programming and erasing of FLASH locations cannot be performed by code being executed from the FLASH memory. While these operations must be performed in the order shown, other unrelated operations may occur between the steps. Do not exceed t_{PROG} maximum. See **21.7** *Memory Characteristics*.

4.3 FLASH Programming Algorithm

Refer to **Figure 4-2** for an algorithm for programming a row (32 bytes) of FLASH memory.

FLASH Memory FLASH Programming Algorithm

MC68HC908MR8 — Rev 4.0

MOTOROLA

FLASH Memory

4.3.1 FLASH Block Protection

Due to the ability of the on-board charge pump to erase and program the FLASH memory in the target application, provision is made for protecting blocks of memory from unintentional erase or program operations due to system malfunction. This protection is done by using a FLASH protection register (FLBPR).

The FLBPR determines the range of the FLASH memory which is to be protected. The range of the protected area starts from a location defined by FLBPR and ends at the bottom of the FLASH memory (\$FFFF). When the memory is protected, the HVEN bit cannot be set in either erase or program operations.

NOTE: In performing a program erase operation, the FLASH block protect register must be read after setting the PGM or ERASE bit and before asserting the HVEN bit.

When the block protect register is erased (all 1s), the entire memory is accessible for program and erase. When bits within the register are programmed (set to 0), they lock blocks of memory address ranges as shown in **4.3.2 FLASH Block Protect Register**. Once the block protect register is programmed with value other than \$FF, any erase or program of the block protect register or the protected pages will be prohibited. The block protect register itself can be erased or programmed only with an external voltage V_{HI} present on the IRQ pin. The presence of V_{HI} on the ability to change the block protect register is voltage dependent and can occur in either user or monitor modes.

Technical Data

MC68HC908MR8 — Rev 4.0

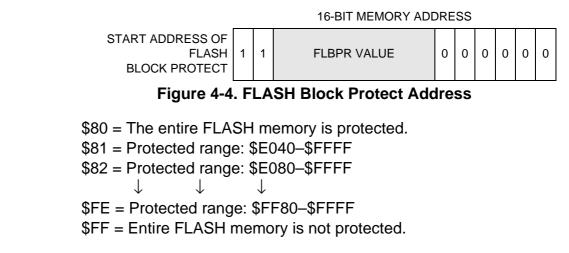
4.3.2 FLASH Block Protect Register

The block protect register (FLBPR) is implemented as a byte within the FLASH memory, and therefore can only be written during a programming sequence of the FLASH memory. The value in this register determines the starting location of the protected range within the FLASH memory.

Ad- dress:	\$FF7E							
	Bit 7	6	5	4	3	2	1	Bit 0
Read: Write:	BPR7	BPR6	BPR5	BPR4	BPR3	BPR2	BPR1	BPR0
Reset:	U	U	U	U	U	U	U	U

U= Unaffected by reset. Initial value from factory is 1. Write to this register by a programming sequence to the FLASH memory.

Figure 4-3. FLASH Block Protect Register (FLBPR)


BPR[7:0] — Block Protect Register Bits

These eight bits represent bits [13:6] of a 16-bit memory address. Bits[15:14] are logical 1s and bits [5:0] are logic 0s.

The resultant 16-bit address is used for specifying the start address of the FLASH memory for block protection. The FLASH is protected from this start address to the end of FLASH memory at \$FFFF. With this mechanism, the protect start address can be \$XX00, \$XX40, \$XX80, and \$XXC0 (64-byte page boundaries) within the FLASH memory.

MC68HC908MR8 - Rev 4.0

FLASH Memory

If all bits are erased, then all of the memory is available for erase and program. The presence of a voltage V_{HI} on the \overline{IRQ} pin will bypass the block protection so that all of the memory, including the block protect register, is open for program and erase operations.

4.3.3 Low-Power Modes

The WAIT and STOP instructions will place the MCU in a low powerconsumption standby mode.

4.3.3.1 Wait Mode

Putting the MCU into wait mode while the FLASH is in read mode does not affect the operation of the FLASH memory directly, but there will not be any memory activity since the CPU is inactive.

The WAIT instruction should never be executed while performing a program or erase operation on the FLASH. When the MCU is put into wait mode, the charge pump for the FLASH is disabled so that either a program or erase operation will not continue. If the memory is in either program mode (PGM = 1, HVEN = 1) or erase mode (ERASE = 1, HVEN = 1), then it will remain in that mode during wait.

NOTE: Exiting from wait must now be done with a reset rather than an interrupt because if exiting wait with an interrupt, the memory will not be in read mode and the interrupt vector cannot be read from the memory.

Technical Data

MC68HC908MR8 — Rev 4.0

4.3.3.2 Stop Mode

If the FLASH is in read mode, when the MCU is put into stop mode, the FLASH will be put into low-power standby mode.

The STOP instruction should never be executed while performing a program or erase operation on the FLASH. Otherwise the operation will be discontinued and the FLASH will be in standby mode.

NOTE: Standby mode is the power-saving mode of the FLASH module, in which all internal control signals to the FLASH are inactive and the current consumption of the FLASH is minimum.

MC68HC908MR8 - Rev 4.0

MOTOROLA

FLASH Memory

Technical Data

MC68HC908MR8 - Rev 4.0

Section 5. Configuration Register (CONFIG)

5.1 Contents

5.2	Introduction	67
5.3	CONFIG	68
5.4	CONFIG Bits	<mark>68</mark>

5.2 Introduction

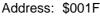
This section describes the configuration register (CONFIG).

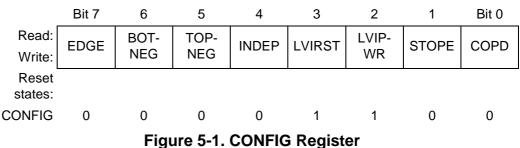
The CONFIG registers contain bits that configure these options:

- Resets caused by the low-voltage inhibit (LVI) module
- Power to the LVI module
- Computer operating properly (COP) module
- Top-side pulse-width modulator (PWM) polarity
- Bottom-side PWM polarity
- Edge-aligned versus center-aligned PWMs
- Six independent PWMs versus three complementary PWM pairs
- STOP instruction enable

MC68HC908MR8 - Rev 4.0

Configuration Register (CONFIG)


5.3 CONFIG


The configuration register (CONFIG) is a write-once register. Once the register is written, further writes will have no effect until a reset occurs.

5.4 CONFIG Bits

NOTE:

If the LVI module and the LVI reset signal are enabled, a reset occurs when V_{DD} falls to a voltage, LVI_{TRIPF} , and remains at or below that level for at least nine consecutive central processor unit (CPU) cycles. Once an LVI reset occurs, the microcontroller unit (MCU) remains in reset until V_{DD} rises to a voltage, LVI_{TRIPR} .

EDGE — Edge-Align Enable Bit

EDGE determines if the motor control PWM will operate in edge-aligned mode or center-aligned mode. See Section 9. Pulse-Width Modulator for Motor Control (PWMMC).

1 = Edge-aligned mode enabled

0 = Center-aligned mode enabled

BOTNEG — Bottom-Side PWM Polarity Bit

BOTNEG determines if the bottom-side PWMs will have positive or negative polarity. See Section 9. Pulse-Width Modulator for Motor Control (PWMMC).

- 1 = Negative polarity
- 0 = Positive polarity

TOPNEG — Top-Side PWM Polarity Bit

TOPNEG determines if the top-side PWMs will have positive or negative polarity. See **Section 9. Pulse-Width Modulator for Motor Control (PWMMC)**.

- 1 = Negative polarity
- 0 = Positive polarity
- INDEP Independent Mode Enable Bit

INDEP determines if the motor control PWMs will be six independent PWMs or three complementary PWM pairs. See **Section 9.**

Pulse-Width Modulator for Motor Control (PWMMC).

- 1 = Six independent PWMs
- 0 = Three complementary PWM pairs
- LVIPWR LVI Power Enable Bit

LVIPWR enables the LVI module. See **Section 17. Low-Voltage** Inhibit (LVI).

- 1 = LVI module power enabled
- 0 = LVI module power disabled
- LVIRST LVI Reset Enable Bit

LVIRST enables the reset signal from the LVI module. See **Section 17. Low-Voltage Inhibit (LVI)**.

1 = LVI module resets enabled

- 0 = LVI module resets disabled
- STOPE STOP Enable Bit

STOPE enables the STOP instruction. See **Section 6. Central Processor Unit (CPU)**.

- 1 = STOP instruction is enabled.
- 0 = STOP instruction is disabled and executes as an illegal instruction.
- COPD COP Disable Bit

COPD disables the COP module. See **Section 15. Computer Operating Properly (COP)**.

- 1 = COP module disabled
- 0 = COP module enabled

MC68HC908MR8 — Rev 4.0

Configuration Register (CONFIG)

Technical Data

MC68HC908MR8 - Rev 4.0

Section 6. Central Processor Unit (CPU)

6.1 Contents

6.2	Introduction	'1
6.3	Features	2
6.4	CPU Registers	'2
6.4.1	Accumulator	'3
6.4.2	Index Register	'3
6.4.3	Stack Pointer	'4
6.4.4	Program Counter	'5
6.4.5	Condition Code Register7	'6
6.5	Arithmetic/Logic Unit (ALU)	'8
6.6	Low-Power Modes	'8
6.6.1	Wait Mode	'8
6.6.2	Stop Mode	'8
6.7	Instruction Set Summary	'9
6.8	Opcode Map	6

6.2 Introduction

This section describes the central processor unit (CPU08, version A). The M68HC08 CPU is an enhanced and fully object-code-compatible version of the M68HC05 CPU. The *CPU08 Reference Manual*, Motorola document number CPU08RM/AD, contains a description of the CPU instruction set, addressing modes, and architecture.

MC68HC908MR8 — Rev 4.0

Central Processor Unit (CPU)

6.3 Features

Features of the CPU include:

- Fully upward, object-code compatibility with M68HC05 family
- 16-bit stack pointer with stack manipulation instructions
- 16-bit index register with X-register manipulation instructions
- 8-MHz CPU internal bus frequency
- 64-Kbyte program/data memory space
- Sixteen addressing modes
- Memory-to-memory data moves without using the accumulator
- Fast 8-bit by 8-bit multiply and 16-bit by 8-bit divide instructions
- Enhanced binary-coded decimal (BCD) data handling
- Modular architecture with expandable internal bus definition for extension of addressing range beyond 64 Kbytes
- Low-power stop and wait modes

6.4 CPU Registers

Figure 6-1 shows the five CPU registers. CPU registers are not part of the memory map.

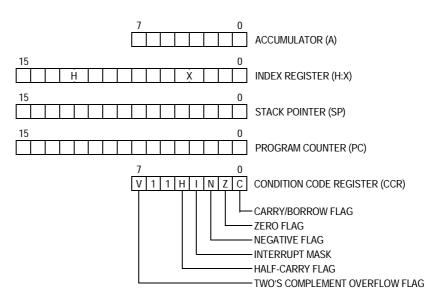


Figure 6-1. CPU Registers

Technical Data

MC68HC908MR8 — Rev 4.0

6.4.1 Accumulator

The accumulator is a general-purpose 8-bit register. The CPU uses the accumulator to hold operands and the results of arithmetic/logic operations.

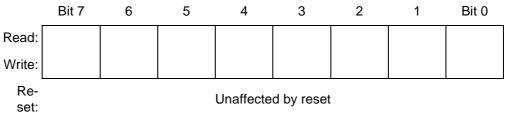


Figure 6-2. Accumulator (A)

6.4.2 Index Register

The 16-bit index register allows indexed addressing of a 64-Kbyte memory space. H is the upper byte of the index register, and X is the lower byte. H:X is the concatenated 16-bit index register.

In the indexed addressing modes, the CPU uses the contents of the index register to determine the conditional address of the operand.

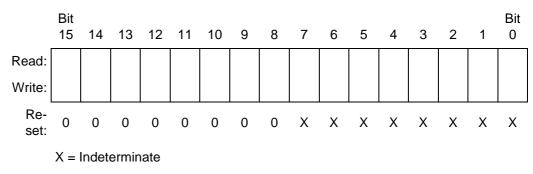
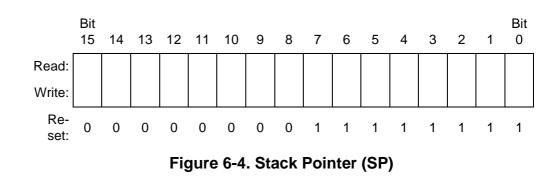


Figure 6-3. Index Register (H:X)


The index register can serve also as a temporary data storage location.

Central Processor Unit (CPU)

6.4.3 Stack Pointer

The stack pointer (SP) is a 16-bit register that contains the address of the next location on the stack. During a reset, the stack pointer is preset to \$00FF. The reset stack pointer (RSP) instruction sets the least significant byte to \$FF and does not affect the most significant byte. The stack pointer decrements as data is pushed onto the stack and increments as data is pulled from the stack.

In the stack pointer 8-bit offset and 16-bit offset addressing modes, the stack pointer can function as an index register to access data on the stack. The CPU uses the contents of the stack pointer to determine the conditional address of the operand.

NOTE: The location of the stack is arbitrary and may be relocated anywhere in RAM. Moving the SP out of page zero (\$0000 to \$00FF) frees direct address (page zero) space. For correct operation, the stack pointer must point only to RAM locations.

Technical Data

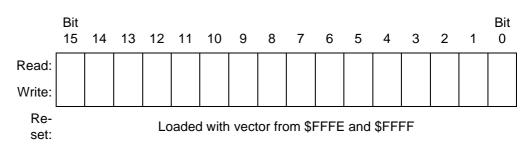
MC68HC908MR8 — Rev 4.0

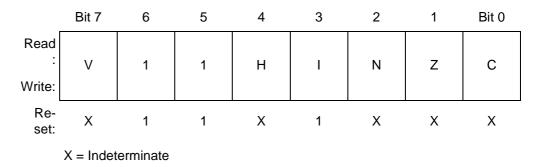
6.4.4 Program Counter

The program counter (PC) is a 16-bit register that contains the address of the next instruction or operand to be fetched.

Normally, the program counter automatically increments to the next sequential memory location every time an instruction or operand is fetched. Jump, branch, and interrupt operations load the program counter with an address other than that of the next sequential location.

During reset, the program counter is loaded with the reset vector address located at \$FFFE and \$FFFF. The vector address is the address of the first instruction to be executed after exiting the reset state.




Figure 6-5. Program Counter (PC)

MC68HC908MR8 - Rev 4.0

Central Processor Unit (CPU)

6.4.5 Condition Code Register

The 8-bit condition code register (CCR) contains the interrupt mask and five flags that indicate the results of the instruction just executed. Bit 6 and bit 5 are set permanently to logic 1. The functions of the condition code register are described here.

V — Overflow Flag

The CPU sets the overflow flag when a two's complement overflow occurs. The signed branch instructions BGT, BGE, BLE, and BLT use the overflow flag.

- 1 = Overflow
- 0 = No overflow
- H Half-Carry Flag

The CPU sets the half-carry flag when a carry occurs between accumulator bits 3 and 4 during an add without carry (ADD) or add with carry (ADC) operation. The half-carry flag is required for binary-coded decimal (BCD) arithmetic operations. The DAA instruction uses the states of the H and C flags to determine the appropriate correction factor.

- 1 = Carry between bits 3 and 4
- 0 = No carry between bits 3 and 4
- I Interrupt Mask

When the interrupt mask is set, all maskable CPU interrupts are disabled. CPU interrupts are enabled when the interrupt mask is cleared. When a CPU interrupt occurs, the interrupt mask is set automatically after the CPU registers are saved on the stack, but before the interrupt vector is fetched.

Technical Data

- 1 = Interrupts disabled
- 0 = Interrupts enabled
- **NOTE:** To maintain M6805 compatibility, the upper byte of the index register (H) is not stacked automatically. If the interrupt service routine modifies H, then the user must stack and unstack H using the PSHH and PULH instructions.

After the I bit is cleared, the highest-priority interrupt request is serviced first.

A return-from-interrupt (RTI) instruction pulls the CPU registers from the stack and restores the interrupt mask from the stack. After any reset, the interrupt mask is set and can be cleared only by the clear interrupt mask software instruction (CLI).

N — Negative Flag

The CPU sets the negative flag when an arithmetic operation, logic operation, or data manipulation produces a negative result, setting bit 7 of the result.

- 1 = Negative result
- 0 = Non-negative result
- Z Zero Flag

The CPU sets the zero flag when an arithmetic operation, logic operation, or data manipulation produces a result of \$00.

- 1 = Zero result
- 0 = Non-zero result
- C Carry/Borrow Flag

The CPU sets the carry/borrow flag when an addition operation produces a carry out of bit 7 of the accumulator or when a subtraction operation requires a borrow. Some instructions — such as bit test and branch, shift, and rotate — also clear or set the carry/borrow flag.

- 1 = Carry out of bit 7
- 0 = No carry out of bit 7

MC68HC908MR8 — Rev 4.0

Central Processor Unit (CPU)

6.5 Arithmetic/Logic Unit (ALU)

The ALU performs the arithmetic and logic operations defined by the instruction set.

Refer to the *CPU08 Reference Manual*, Motorola document number CPU08RM/AD, for a description of the instructions and addressing modes and more detail about CPU architecture.

6.6 Low-Power Modes

The WAIT and STOP instructions put the MCU in low power-consumption standby modes.

6.6.1 Wait Mode

The WAIT instruction:

- Clears the interrupt mask (I bit) in the condition code register, enabling interrupts. After exit from wait mode by interrupt, the I bit remains clear. After exit by reset, the I bit is set.
- Disables the CPU clock

6.6.2 Stop Mode

The STOP instruction:

- Clears the interrupt mask (I bit) in the condition code register, enabling external interrupts. After exit from stop mode by external interrupt, the I bit remains clear. After exit by reset, the I bit is set.
- Disables the CPU clock

After exiting stop mode, the CPU clock begins running after the oscillator stabilization delay.

Technical Data

MC68HC908MR8 — Rev 4.0

6.7 Instruction Set Summary

Table 6-1 provides a summary of the M68HC08 instruction set.

Source Form	Onerstien	Description		Effe	ect	on	CCI	R	ess	ode	and	SS
Form	Operation	Description	۷	Η	I	Ν	Z	С	Address Mode	Opcode	Operand	Cycles
ADC #opr ADC opr ADC opr ADC opr,X ADC opr,X ADC opr,X ADC opr,SP ADC opr,SP	Add with Carry	A ← (A) + (M) + (C)	\$	\$	-	\$	\$	\$	IMM DIR EXT IX2 IX1 IX SP1 SP2	A9 B9 C9 D9 E9 F9 9EE9 9ED9	ii dd hh II ee ff ff ee ff	2 3 4 3 2 4 5
ADD #opr ADD opr ADD opr ADD opr,X ADD opr,X ADD opr,SP ADD opr,SP	Add without Carry	A ← (A) + (M)	\$	\$	_	\$	\$	\$	IMM DIR EXT IX2 IX1 IX SP1 SP2	AB BB CB DB EB FB 9EEB 9EDB	ii dd hh II ee ff ff ee ff	2 3 4 3 2 4 5
AIS #opr	Add Immediate Value (Signed) to SP	$SP \leftarrow (SP) + (16 \ \ M)$	-	-	-	-	-	-	IMM	A7	ii	2
AIX #opr	Add Immediate Value (Signed) to H:X	$H:X \gets (H:X) + (16 \mathrel{\scriptstyle{\scriptstyle \circledast}} M)$	-	-	-	-	-	-	IMM	AF	ii	2
AND #opr AND opr AND opr AND opr,X AND opr,X AND ,X AND opr,SP AND opr,SP	Logical AND	A ← (A) & (M)	0	-	-	\$	\$	-	IMM DIR EXT IX2 IX1 IX SP1 SP2	A4 B4 C4 D4 E4 F4 9EE4 9ED4	ii dd hh II ee ff ff ee ff	2 3 4 3 2 4 5
ASL opr ASLA ASLX ASL opr,X ASL ,X ASL opr,SP	Arithmetic Shift Left (Same as LSL)	← C ← − 0 b 7 b 0	\$	-	-	\$	\$	\$	DIR INH INH IX1 IX SP1	38 48 58 68 78 9E68	dd ff ff	4 1 1 4 3 5
ASR opr ASRA ASRX ASR opr,X ASR opr,X ASR opr,SP	Arithmetic Shift Right		\$	-	-	\$	\$	\$	DIR INH INH IX1 IX SP1	37 47 57 67 77 9E67	dd ff ff	4 1 4 3 5
BCC rel	Branch if Carry Bit Clear	PC ← (PC) + 2 + rel ? (C) = 0	-	-	-	-	-	-	REL	24	rr	3

MC68HC908MR8 - Rev 4.0

MOTOROLA

Central Processor Unit (CPU)

Table 6-1. Instruction Set Summary (Sheet 2 of 8)

Source Form	Onorstien	Description		Effe	ect	on	CCI	R	ess	ode	and	SS
Form	Operation	Description	۷	Н	I	Ν	Z	С	Address Mode	Opcode	Operand	Cycles
BCLR n, opr	Clear Bit n in M	Mn ← 0	-	_	_	_	_	_	DIR (b0) DIR (b1) DIR (b2) DIR (b3) DIR (b4) DIR (b5) DIR (b5) DIR (b7)	11 13 15 17 19 1B 1D 1F	dd dd dd dd dd dd dd dd dd	4 4 4 4 4 4 4 4
BCS rel	Branch if Carry Bit Set (Same as BLO)	PC ← (PC) + 2 + <i>rel</i> ? (C) = 1	-	-	-	-	-	-	REL	25	rr	3
BEQ rel	Branch if Equal	PC ← (PC) + 2 + <i>rel</i> ? (Z) = 1	-	-	-	-	-	-	REL	27	rr	3
BGE opr	Branch if Greater Than or Equal To (Signed Operands)	$PC \leftarrow (PC) + 2 + rel? (N \ V) = 0$	-	-	-	-	-	-	REL	90	rr	3
BGT <i>opr</i>	Branch if Greater Than (Signed Operands)	$PC \leftarrow (PC) + 2 + rel? (Z) \mid (N \lor V) = 0$	-	-	-	-	-	-	REL	92	rr	3
BHCC rel	Branch if Half Carry Bit Clear	$PC \leftarrow (PC) + 2 + rel? (H) = 0$	-	-	-	-	-	-	REL	28	rr	3
BHCS rel	Branch if Half Carry Bit Set	PC ← (PC) + 2 + <i>rel</i> ? (H) = 1	-	-	-	-	-	-	REL	29	rr	3
BHI <i>rel</i>	Branch if Higher	$PC \leftarrow (PC) + 2 + rel?(C) \mid (Z) = 0$	-	-	-	-	-	-	REL	22	rr	3
BHS rel	Branch if Higher or Same (Same as BCC)	$PC \leftarrow (PC) + 2 + rel? (C) = 0$	-	-	I	-	-	-	REL	24	rr	3
BIH <i>rel</i>	Branch if IRQ Pin High	$PC \leftarrow (PC) + 2 + rel? \overline{IRQ} = 1$	-	-	-	-	-	-	REL	2F	rr	3
BIL rel	Branch if IRQ Pin Low	$PC \leftarrow (PC) + 2 + rel? \overline{IRQ} = 0$	-	-	-	-	-	-	REL	2E	rr	3
BIT #opr BIT opr BIT opr BIT opr,X BIT opr,X BIT ,X BIT opr,SP BIT opr,SP	Bit Test	(A) & (M)	0	_	_	\$	\$	_	IMM DIR EXT IX2 IX1 IX SP1 SP2	A5 B5 C5 D5 E5 F5 9EE5 9ED5	ii dd hh II ee ff ff ee ff	2 3 4 3 2 4 5
BLE <i>opr</i>	Branch if Less Than or Equal To (Signed Operands)	PC ← (PC) + 2 + <i>rel</i> ? (Z) (N Ý V) = 1	-	-	-	_	-	_	REL	93	rr	3
BLO rel	Branch if Lower (Same as BCS)	PC ← (PC) + 2 + <i>rel</i> ? (C) = 1	-	-	-	-	-	-	REL	25	rr	3
BLS <i>rel</i>	Branch if Lower or Same	PC ← (PC) + 2 + <i>rel</i> ? (C) (Z) = 1	-	-	-	-	-	-	REL	23	rr	3
BLT opr	Branch if Less Than (Signed Operands)	PC ← (PC) + 2 + <i>rel</i> ? (N Ý V) =1	-	-	_	-	-	-	REL	91	rr	3
BMC rel	Branch if Interrupt Mask Clear	$PC \leftarrow (PC) + 2 + rel? (I) = 0$	-	-	-	-	-	-	REL	2C	rr	3
BMI rel	Branch if Minus	PC ← (PC) + 2 + <i>rel</i> ? (N) = 1	-	-	-	-	-	-	REL	2B	rr	3
BMS rel	Branch if Interrupt Mask Set	PC ← (PC) + 2 + <i>rel</i> ? (I) = 1	-	-	-	-	-	-	REL	2D	rr	3

Technical Data

MC68HC908MR8 - Rev 4.0

Source Form	On continu	Description		Effe	ect	on	CC	R	ess	de	and	S
Form	Operation	Description	۷	Н	I	Ν	Z	С	Address Mode	Opcode	Operand	Cycles
BNE <i>rel</i>	Branch if Not Equal	$PC \leftarrow (PC) + 2 + \mathit{rel}?(Z) = 0$	-	-	-	-	-	-	REL	26	rr	3
BPL <i>rel</i>	Branch if Plus	$PC \leftarrow (PC) + 2 + rel? (N) = 0$	-	-	-	-	-	-	REL	2A	rr	3
BRA rel	Branch Always	PC " (PC) + 2 + <i>rel</i>	-	-	-	-	-	-	REL	20	rr	3
BRCLR n,opr,rel	Branch if Bit <i>n</i> in M Clear	PC ← (PC) + 3 + <i>rel</i> ? (Mn) = 0	-	_	_	_	_	\$	DIR (b0) DIR (b1) DIR (b2) DIR (b3) DIR (b4) DIR (b5) DIR (b5) DIR (b7)	01 03 05 07 09 0B 0D 0F	dd rr dd rr dd rr dd rr dd rr dd rr dd rr dd rr dd rr	5 5 5 5 5 5 5 5 5 5 5 5 5
BRN <i>rel</i>	Branch Never	$PC \leftarrow (PC) + 2$	-	-	-	-	-	-	REL	21	rr	3
BRSET n,opr,rel	Branch if Bit <i>n</i> in M Set	PC ← (PC) + 3 + <i>rel</i> ? (Mn) = 1	_	-	_	-	_	\$	DIR (b0) DIR (b1) DIR (b2) DIR (b3) DIR (b4) DIR (b5) DIR (b5) DIR (b7)	00 02 04 06 08 0A 0C 0E	dd rr dd rr dd rr dd rr dd rr dd rr dd rr dd rr dd rr	55555555
BSET n,opr	Set Bit <i>n</i> in M	Mn ← 1	-	-	_	-	-	-	DIR (b0) DIR (b1) DIR (b2) DIR (b3) DIR (b3) DIR (b4) DIR (b5) DIR (b6) DIR (b7)	10 12 14 16 18 1A 1C 1E	dd dd dd dd dd dd dd dd dd	4 4 4 4 4 4 4
BSR rel	Branch to Subroutine	$\begin{array}{l} PC \leftarrow (PC) + 2; push (PCL) \\ SP \leftarrow (SP) - 1; push (PCH) \\ SP \leftarrow (SP) - 1 \\ PC \leftarrow (PC) + \mathit{rel} \end{array}$	_	_	_	-	_	_	REL	AD	rr	4
CBEQ opr,rel CBEQA # opr,rel CBEQX # opr,rel CBEQ opr,X+,rel CBEQ X+,rel CBEQ opr,SP,rel	Compare and Branch if Equal	$\begin{array}{l} PC \leftarrow (PC) + 3 + rel ? (A) - (M) = \$00 \\ PC \leftarrow (PC) + 3 + rel ? (A) - (M) = \$00 \\ PC \leftarrow (PC) + 3 + rel ? (X) - (M) = \$00 \\ PC \leftarrow (PC) + 3 + rel ? (A) - (M) = \$00 \\ PC \leftarrow (PC) + 2 + rel ? (A) - (M) = \$00 \\ PC \leftarrow (PC) + 4 + rel ? (A) - (M) = \$00 \end{array}$	-	-	-	-	-	-	DIR IMM IX1+ IX+ SP1	31 41 51 61 71 9E61	dd rr ii rr ii rr ff rr rr ff rr	5 4 4 5 4 6
CLC	Clear Carry Bit	$C \leftarrow 0$	-	-	_	-	-	0	INH	98		1
CLI	Clear Interrupt Mask	l ← 0	[-	-	0	-	-	-	INH	9A		2
CLR opr CLRA CLRX CLRH CLR opr,X CLR ,X CLR opr,SP	Clear	$\begin{array}{c} M \leftarrow \$00\\ A \leftarrow \$00\\ X \leftarrow \$00\\ H \leftarrow \$00\\ M \leftarrow \$00\\ M \leftarrow \$00\\ M \leftarrow \$00\\ M \leftarrow \$00 \end{array}$	0	-	_	0	1	-	DIR INH INH INH IX1 IX SP1	3F 4F 5F 8C 6F 7F 9E6F	dd ff ff	3 1 1 3 2 4

Table 6-1. Instruction Set Summary (Sheet 3 of 8)

Central Processor Unit (CPU)

Table 6-1. Instruction Set Summary (Sheet 4 of 8)

Source	On continue	Description		Effe	cto	on (CCI	R	ess	de	and	S
Form	Operation	Description	۷	Η	I	Ν	Z	С	Address Mode	Opcode	Operand	Cycles
CMP #opr CMP opr CMP opr CMP opr,X CMP opr,X CMP opr,SP CMP opr,SP	Compare A with M	(A) – (M)	\$	_	_	\$	\$	\$	IMM DIR EXT IX2 IX1 IX SP1 SP2	A1 B1 C1 E1 F1 9EE1 9ED1	ii dd hh II ee ff ff ee ff	2 3 4 3 2 4 5
COM opr COMA COMX COM opr,X COM ,X COM opr,SP	Complement (One's Complement)	$\begin{array}{l} M \leftarrow (\overline{M}) = \$FF - (M) \\ A \leftarrow (A) = \$FF - (M) \\ X \leftarrow (\underline{X}) = \$FF - (M) \\ M \leftarrow (\underline{M}) = \$FF - (M) \\ M \leftarrow (\underline{M}) = \$FF - (M) \\ M \leftarrow (M) = \$FF - (M) \end{array}$	0	-	I	\$	↔	1	DIR INH INH IX1 IX SP1	73	dd ff ff	4 1 4 3 5
CPHX # <i>opr</i> CPHX <i>opr</i>	Compare H:X with M	(H:X) – (M:M + 1)	€	-	-	¢	\$	\$	imm Dir	65 75	ii ii+1 dd	3 4
CPX #opr CPX opr CPX opr CPX ,X CPX opr,X CPX opr,X CPX opr,SP CPX opr,SP	Compare X with M	(X) – (M)	\$	_	_	\$	\$	\$	IMM DIR EXT IX2 IX1 IX SP1 SP2	A3 B3 C3 D3 E3 F3 9EE3 9ED3	ii dd hh II ee ff ff ee ff	2 3 4 3 2 4 5
DAA	Decimal Adjust A	(A) ₁₀	U	-	-	\$	€	\$	INH	72		2
DBNZ opr,rel DBNZA rel DBNZX rel DBNZ opr,X,rel DBNZ X,rel DBNZ opr,SP,rel	Decrement and Branch if Not Zero	$\begin{array}{c} A \leftarrow (A) - 1 \text{ or } M \leftarrow (M) - 1 \text{ or } X \leftarrow (X) - 1 \\ PC \leftarrow (PC) + 3 + \mathit{rel}? (result) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	_	_	_	_	_	-	DIR INH INH IX1 IX SP1	6B 7B	dd rr rr rr ff rr rr ff rr	5 3 3 5 4 6
DEC opr DECA DECX DEC opr,X DEC ,X DEC opr,SP	Decrement	$\begin{array}{c} M \leftarrow M) - 1 \\ A \leftarrow A) - 1 \\ X \leftarrow (X) - 1 \\ M \leftarrow (M) - 1 \end{array}$	\$	-	I	\$	↔		DIR INH INH IX1 IX SP1	3A 4A 5A 6A 7A 9E6A	dd ff ff	4 1 4 3 5
DIV	Divide	$A \leftarrow (H:A)/(X)$ H \leftarrow Remainder	-	-	-	-	↔	€	INH	52		7
EOR #opr EOR opr EOR opr EOR opr,X EOR opr,X EOR ,X EOR opr,SP EOR opr,SP	Exclusive OR M with A	A ← (A Ý M)	0	_	l	\$	↔	-	IMM DIR EXT IX2 IX1 IX SP1 SP2	C8	ii dd hh II ee ff ff ee ff	2 3 4 3 2 4 5

Technical Data

Source	0			Effe	ect	on	CCI	R	ess	de	and	S
Form	Operation	Description	۷	Н	I	Ν	Z	С	Address Mode	Opcode	Operand	Cycles
INC opr INCA INCX INC opr,X INC ,X INC opr,SP	Increment	$\begin{array}{c} M \leftarrow M) + 1 \\ A \leftarrow (A) + 1 \\ X \leftarrow X) + 1 \\ M \leftarrow (M) + 1 \end{array}$	\$	_	-	\$	\$	_	DIR INH INH IX1 IX SP1	3C 4C 5C 6C 7C 9E6C	dd ff	4 1 4 3 5
JMP opr JMP opr JMP opr,X JMP opr,X JMP ,X	Jump	$PC \leftarrow Jump Address$	-	-	-	-	-	-	DIR EXT IX2 IX1 IX	BC CC DC EC FC	dd hh II ee ff ff	2 3 4 3 2
JSR opr JSR opr JSR opr,X JSR opr,X JSR ,X	Jump to Subroutine	-	_	_	_	_	_	DIR EXT IX2 IX1 IX	BD CD DD ED FD	dd hh II ee ff ff	4 5 6 5 4	
LDA # opr LDA opr LDA opr LDA opr,X LDA opr,X LDA ,X LDA opr,SP LDA opr,SP	Load A from M	A ← (M)	0	-	_	¢	¢	_	IMM DIR EXT IX2 IX1 IX SP1 SP2	A6 B6 C6 D6 E6 F6 9EE6 9ED6	ii dd hh II ee ff ff ee ff	2 3 4 3 2 4 5
LDHX # <i>opr</i> LDHX <i>opr</i>	Load H:X from M	H:X ← (M:M + 1)	0	-	-	\$	¢	-	imm Dir	45 55	ii jj dd	3 4
LDX # opr LDX opr LDX opr LDX opr,X LDX opr,X LDX ,X LDX opr,SP LDX opr,SP	Load X from M	X ← (M)	0	_	_	\$	\$	_	IMM DIR EXT IX2 IX1 IX SP1 SP2	AE BE CE DE EE FE 9EEE 9EDE		2 3 4 4 3 2 4 5
LSL opr LSLA LSLX LSL opr,X LSL ,X LSL opr,SP	Logical Shift Left (Same as ASL)	C ←	\$	-	_	¢	¢	\$	DIR INH INH IX1 IX SP1	38 48 58 68 78 9E68	dd ff ff	4 1 4 3 5
LSR opr LSRA LSRX LSR opr,X LSR ,X LSR opr,SP	Logical Shift Right	0 → [] → C b7 b0	\$	-	-	0	\$	\$	DIR INH INH IX1 IX SP1	34 44 54 64 74 9E64	dd ff ff	4 1 4 3 5
MOV opr,opr MOV opr,X+ MOV #opr,opr MOV X+,opr	Move	$(M)_{\text{Destination}} \leftarrow (M)_{\text{Source}}$ $H:X \leftarrow (H:X) + 1 (IX+D, DIX+)$	0	-	-	\$	\$	_	DD DIX+ IMD IX+D	4E 5E 6E 7E	dd dd dd ii dd dd	5 4 4 4
MUL	Unsigned multiply	X:A [~] (X) ¥ (A)	-	0	-	-	-	0	INH	42		5

Table 6-1. Instruction Set Summary (Sheet 5 of 8)

Central Processor Unit (CPU)

Table 6-1. Instruction Set Summary (Sheet 6 of 8)

Source	On continue	Description		Effe	ect	on (CCI	R	ess	de	and	S
Form	Operation	Description	v	Η	I	Ν	Z	С	Address Mode	Opcode	Operand	Cycles
NEG opr NEGA NEGX NEG opr,X NEG opr,SP	Negate (Two's Complement)	$\begin{array}{c} M \gets -(M) = \$00 - (M) \\ A \leftarrow -(A) = \$00 - (A) \\ X \leftarrow -(X) = \$00 - (X) \\ M \leftarrow -(M) = \$00 - (M) \\ M \leftarrow -(M) = \$00 - (M) \end{array}$	\$	_	_	\$	\$	\$	DIR INH INH IX1 IX SP1	30 40 50 60 70	dd ff ff	4 1 4 3 5
NOP	No Operation	None	-	-	-	-	-	-	INH	9D		1
NSA	Nibble Swap A	A ← (A[3:0]:A[7:4])	-	-	-	-	-	-	INH	62		3
ORA #opr ORA opr ORA opr ORA opr,X ORA opr,X ORA opr,SP ORA opr,SP	Inclusive OR A and M	A ← (A) (M)	0	_	_	\$	\$	_	IMM DIR EXT IX2 IX1 IX SP1 SP2	AA BA CA DA EA FA 9EEA 9EDA	ii dd hh II ee ff ff ee ff	2 3 4 3 2 4 5
PSHA	Push A onto Stack	Push (A); SP \leftarrow (SP) – 1	-	-	I	1	-	-	INH	87		2
PSHH	Push H onto Stack	Push (H); SP \leftarrow (SP) – 1	-	-	I	1	-	-	INH	8B		2
PSHX	Push X onto Stack	Push (X); SP \leftarrow (SP) – 1	-	-	-	-	-	-	INH	89		2
PULA	Pull A from Stack	$SP \leftarrow (SP + 1); Pull (A)$	-	-	-	-	-	-	INH	86		2
PULH	Pull H from Stack	$SP \leftarrow (SP + 1); Pull (H)$	-	-	-	-	-	-	INH	8A		2
PULX	Pull X from Stack	$SP \leftarrow (SP + 1); Pull (X)$	-	-	-	-	-	-	INH	88		2
ROL <i>opr</i> ROLA ROLX ROL <i>opr</i> ,X ROL ,X ROL <i>opr</i> ,SP	Rotate Left through Carry	-C	\$	-	-	\$	\$	\$	DIR INH INH IX1 IX SP1	39 49 59 69 79 9E69	dd ff ff	4 1 4 3 5
ROR <i>opr</i> RORA RORX ROR <i>opr</i> ,X ROR ,X ROR <i>opr</i> ,SP	Rotate Right through Carry		\$	_	_	\$	\$	\$	DIR INH INH IX1 IX SP1	36 46 56 66 76 9E66	dd ff ff	4 1 4 3 5
RSP	Reset Stack Pointer	$SP \gets \$FF$	-	-	-	-	-	-	INH	9C		1
RTI	Return from Interrupt	$\begin{array}{l} SP \leftarrow SP) + 1; \ Pull \ (CCR) \\ & SP \leftarrow (SP) + 1; \ Pull \ (A) \\ & SP \leftarrow (SP) + 1; \ Pull \ (X) \\ & SP \leftarrow (SP) + 1; \ Pull \ (PCH) \\ & SP \leftarrow (SP) + 1; \ Pull \ (PCL) \end{array}$	\$	\$	\$	\$	\$	\$	INH	80		7
RTS	Return from Subroutine	$SP \leftarrow SP + 1$; Pull (PCH) $SP \leftarrow SP + 1$; Pull (PCL)	-	-	_	_	-	-	INH	81		4

Technical Data

Source Form	Onerstien	Description		Effe	ect	on (CCI	R	ess	ode	and	SS
Form	Operation	Description	۷	Н	I	N	Z	С	Address Mode	Opcode	Operand	Cycles
SBC #opr SBC opr SBC opr SBC opr,X SBC opr,X SBC opr,SP SBC opr,SP	Subtract with Carry	A ← (A) – (M) – (C)	\$	_	_	\$	\$	\$	IMM DIR EXT IX2 IX1 IX SP1 SP2	A2 B2 C2 D2 E2 F2 9EE2 9ED2	ii dd hh II ee ff ff ee ff	2 3 4 4 3 2 4 5
SEC	Set Carry Bit	$C \leftarrow 1$	-	-	-	-	-	1	INH	99		1
SEI	Set Interrupt Mask	I ← 1	-	-	1	-	-	-	INH	9B		2
STA opr STA opr STA opr,X STA opr,X STA opr,SP STA opr,SP	Store A in M	M ← (A)	0	-	_	\$	\$	-	DIR EXT IX2 IX1 IX SP1 SP2	B7 C7 D7 E7 F7 9EE7 9ED7	dd hh II ee ff ff ee ff	3 4 3 2 4 5
STHX opr	Store H:X in M	(M:M + 1) ← (H:X)	0	-	-	\$	\$	-	DIR	35	dd	4
STOP	Enable IRQ Pin; Stop Oscillator	$I \leftarrow 0$; Stop Oscillator	-	-	0	-	-	-	INH	8E		1
STX opr STX opr STX opr,X STX opr,X STX ,X STX opr,SP STX opr,SP	Store X in M	M ← (X)	0	_	_	\$	\$	_	DIR EXT IX2 IX1 IX SP1 SP2	BF CF DF EF FF 9EEF 9EDF	dd hh II ee ff ff ee ff	3 4 4 3 2 4 5
SUB #opr SUB opr SUB opr SUB opr,X SUB opr,X SUB opr,SP SUB opr,SP	Subtract	A ← (A) – (M)	\$	_	_	\$	\$	\$	IMM DIR EXT IX2 IX1 IX SP1 SP2	A0 B0 C0 D0 E0 F0 9EE0 9ED0	ii dd hh II ee ff ff ee ff	2 3 4 4 3 2 4 5
SWI	Software Interrupt	$\begin{array}{c} PC \leftarrow (PC) + 1; Push (PCL) \\ SP \leftarrow (SP) - 1; Push (PCH) \\ SP \leftarrow (SP) - 1; Push (X) \\ SP \leftarrow (SP) - 1; Push (A) \\ SP \leftarrow (SP) - 1; Push (CCR) \\ SP \overset{\circ}{-} (SP) - 1; I 1 \\ PCH \leftarrow Interrupt Vector High Byte \\ PCL \leftarrow Interrupt Vector Low Byte \end{array}$	_	_	1	_	_	_	INH	83		9
TAP	Transfer A to CCR	$CCR \leftarrow (A)$	\$	\$	\$	\$	\$	\$	INH	84		2
TAX	Transfer A to X	$X \gets (A)$	-	-	-	-	-	-	INH	97		1
TPA	Transfer CCR to A	$A \gets (CCR)$	-	-	-	-	-	-	INH	85		1

Table 6-1. Instruction Set Summary (Sheet 7 of 8)

MC68HC908MR8 — Rev 4.0

Technical Data

Central Processor Unit (CPU) For More Information On This Product, Go to: www.freescale.com

Central Processor Unit (CPU)

Table 6-1. Instruction Set Summary (Sheet 8 of 8)

Source	Onerstien	Description			Eff	ect	on (CCI	R	ess	ode	and	SS
Form	Operation	Description		V	H	I	Ν	Z	С	Address Mode	Opcode	Operand	Cycles
TST opr TSTA TSTX TST opr,X TST opr,SP	Test for Negative or Zero	(A) – \$00 or (X) – \$00 o	r (M) – \$C	00 C	-	-	\$	\$	-	DIR INH INH IX1 IX SP1	3D 4D 5D 6D 7D 9E6D	dd ff ff	3 1 3 2 4
TSX	Transfer SP to H:X	$H:X \gets (SP) +$	1	-	· -	-	-	-	-	INH	95		2
ТХА	Transfer X to A	$A \gets (X)$		-	· -	-	-	-	-	INH	9F		1
TXS	Transfer H:X to SP	$(SP) \gets (H{:}X) -$) ← (H:X) – 1 – – – – IN						INH	94		2	
WAIT	Enable Interrupts; Stop Processor I bit $\leftarrow 0$									INH	8F		1
dd rrDirect acDDDirect toDIRDirect toDIX+Direct toee ffHigh andEXTExtendedffOffset byHHalf-carrHIndex reghh IIHigh andIInterruptiiImmediaIMDImmediaIMHInherentIXIndexed,IX+Indexed,IX+Indexed,IX1Indexed,IX1+Indexed,	nrow bit n code register ddress of operand ddress of operand and relative offset direct addressing mode ddressing mode indexed with post increment address d low bytes of offset in indexed, 16-bi d addressing mode /te in indexed, 8-bit offset addressing y bit gister high byte d low bytes of operand address in ext mask te operand byte te source to direct destination address te addressing mode addressing mode , no offset addressing mode , no offset addressing mode , no offset, post increment addressing with post increment to direct address , 8-bit offset, post increment addressing , 16-bit offset addressing mode location	sing mode t offset addressing tended addressing ssing mode g mode sing mode	opr 0 PC F PCH F PCL F REL F rel F SP1 S SP2 S SP S U U V Q X I C Z & I () Q -() I # I ? I ? I ? I ? I ? I ? I	Relative Stack po	a co a co a co pro pro pinte pinte ed v bit gist ANE DR EXC S of n (tw ate v end with enate	unte unte unte ggra ggra ggra ggra ggra ggra ggra ggr	er er h er lo ssin m c m c -bit 6-bi 6-bi SIV ; co e	igh ow I g m cour off t of	byte hod nter nter set ifse	te e r offset by r offset by addressir t addressi	te 1g mode		

6.8 Opcode Map

See Table 6-2.

Technical Data

MC68HC908MR8 - Rev 4.0

Register/Memory IX2 SP2 IX1 SP1 IX			E 9EE 3 3 4 2 IX1 3 SP1 1	E 9EE 3 4 SUB SUB 2 IX1 3	E 9EE 3 9E 3 SUB 2 IX1 3 2 IX1 3 2 IX1 3 SP1 2 IX1 3 SP1 1 2 IX1 3 SP1 1 2 IX1 3 SP1 1 2 SBC SSC 3 SP1	F 9E 3 SUB 3 SUB 2 IXI 2 IXI 2 IXI 2 IXI 2 IXI 3 SP1 2 IXI 3 SP1 2 IXI 3 SP1 1 SBC 2 IXI 3 SP1 1 SP1 3 SP1 1 SP1 2 IXI 3 SP1 2 IXI 3 SP1 1 SP1	F 9E 3 4 SUB 2 SUB 2 CMP 3 CMP 3 CMP 1 CMP 3 CMP 1 CMP 1 CMP 3 SP1 1 SBC 3 SP1 1 SBC 3 CPX 3 2 1X1 3 SP1 2 1X1 2 1X1 AND AND 2 1X1 3 SP1 2 1X1 2 1X1 3 SP1 2 1X1 3 SP1	F 9E 3 9E 2 SUB 2 IX1 3 2 IX1 3 SP1 2 IX1 3 SP1 1 3 AD 1 1 1 2 IX1 3 SP1 1 2 IX1 3 SP1 1	F 9E 3 SUB 2 SUB 2 IX1 3 2 IX1 3 2 IX1 3 SP1 2 IX1 3 SP1 1	E PEE 3 9 2 SUB 3 SP1 2 IX1 3 SP1 1 2 IX1 3 SP1 1 /td> 2 IX1	F PEE 2 SUB 3 SU4 2 SUB 3 SP1 1 2 IX1 3 SP1 1 <th>F PEE 3 9 2 1X1 3 5P1 2 1X1 3 SP1 1 3 3 CPX 3 SP1 1 2 1X1 3 SP1 1 1 <t< th=""><th>F PEE 2 UXI 3 PPE 2 UXI 3 SPI 1 3 AND 2 UXI 3 SPI 2 UXI 3 SPI 1 1 3 SPI 3 SPI 1 1 3 SPI 3 SPI <t< th=""><th>F PEE 2 SUB 3 SP1 2 IXI 3 SP1 1 2 IXI 3 SP1 1 <th>F 94E 2 SUB 3 SP1 2 IX1 3 SP1 1 3 SP1 3 SP1 1 3 SP1 3 SP1 1 <th>F PEE 2 SUB 3 SU4 2 IX1 3 SP1 3 AD 2 IX1 3 AD 2 IX1 3</th><th>F PEE 2 XX1 3 24 2 XX1 3 SPI 1 3 SPI 1 1 1 2 XX1 3 SPI 1 3 3 SPI 1 1</th><th>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</th></th></th></t<></th></t<></th>	F PEE 3 9 2 1X1 3 5P1 2 1X1 3 SP1 1 3 3 CPX 3 SP1 1 2 1X1 3 SP1 1 1 <t< th=""><th>F PEE 2 UXI 3 PPE 2 UXI 3 SPI 1 3 AND 2 UXI 3 SPI 2 UXI 3 SPI 1 1 3 SPI 3 SPI 1 1 3 SPI 3 SPI <t< th=""><th>F PEE 2 SUB 3 SP1 2 IXI 3 SP1 1 2 IXI 3 SP1 1 <th>F 94E 2 SUB 3 SP1 2 IX1 3 SP1 1 3 SP1 3 SP1 1 3 SP1 3 SP1 1 <th>F PEE 2 SUB 3 SU4 2 IX1 3 SP1 3 AD 2 IX1 3 AD 2 IX1 3</th><th>F PEE 2 XX1 3 24 2 XX1 3 SPI 1 3 SPI 1 1 1 2 XX1 3 SPI 1 3 3 SPI 1 1</th><th>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</th></th></th></t<></th></t<>	F PEE 2 UXI 3 PPE 2 UXI 3 SPI 1 3 AND 2 UXI 3 SPI 2 UXI 3 SPI 1 1 3 SPI 3 SPI 1 1 3 SPI 3 SPI <t< th=""><th>F PEE 2 SUB 3 SP1 2 IXI 3 SP1 1 2 IXI 3 SP1 1 <th>F 94E 2 SUB 3 SP1 2 IX1 3 SP1 1 3 SP1 3 SP1 1 3 SP1 3 SP1 1 <th>F PEE 2 SUB 3 SU4 2 IX1 3 SP1 3 AD 2 IX1 3 AD 2 IX1 3</th><th>F PEE 2 XX1 3 24 2 XX1 3 SPI 1 3 SPI 1 1 1 2 XX1 3 SPI 1 3 3 SPI 1 1</th><th>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</th></th></th></t<>	F PEE 2 SUB 3 SP1 2 IXI 3 SP1 1 2 IXI 3 SP1 1 <th>F 94E 2 SUB 3 SP1 2 IX1 3 SP1 1 3 SP1 3 SP1 1 3 SP1 3 SP1 1 <th>F PEE 2 SUB 3 SU4 2 IX1 3 SP1 3 AD 2 IX1 3 AD 2 IX1 3</th><th>F PEE 2 XX1 3 24 2 XX1 3 SPI 1 3 SPI 1 1 1 2 XX1 3 SPI 1 3 3 SPI 1 1</th><th>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</th></th>	F 94E 2 SUB 3 SP1 2 IX1 3 SP1 1 3 SP1 3 SP1 1 3 SP1 3 SP1 1 <th>F PEE 2 SUB 3 SU4 2 IX1 3 SP1 3 AD 2 IX1 3 AD 2 IX1 3</th> <th>F PEE 2 XX1 3 24 2 XX1 3 SPI 1 3 SPI 1 1 1 2 XX1 3 SPI 1 3 3 SPI 1 1</th> <th>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</th>	F PEE 2 SUB 3 SU4 2 IX1 3 SP1 3 AD 2 IX1 3 AD 2 IX1 3	F PEE 2 XX1 3 24 2 XX1 3 SPI 1 3 SPI 1 1 1 2 XX1 3 SPI 1 3 3 SPI 1 1	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
IX2 SP2 IX1	D 9ED E		4 5 3 SUB SUB SUB IX2 4 SP2 2 IX1 3	4 5 3 3 SUB SUB SUB SUB 3 IX2 4 SP2 2 IX1 3 CMP CMP CMP 2 IX1 3 IX2 4 SP2 2 IX1 3	4 5 3 3 SUB SUB SUB SUB 3 3 IX2 4 SP2 2 IX1 3 CMP 5 SUB 2 IX1 3 CMP 5 CMP CMP 2 1 3 IX2 4 SP2 2 IX1 3 3 3 SBC SBC SSC SSC 2 IX1 3 3	4 5 3 3 SUB SUB SUB SUB 3 3 IX2 4 SP2 2 IX1 3 CMP CMP CMP 2 IX1 3 CMP CMP CMP 2 IX1 3 CMP CMP CMP 2 IX1 3 SBC 4 5 2 IX1 3 IX2 4 SP2 2 IX1 3 CPX 4 SP2 2 IX1 3 IX2 4 SP2 2 IX1 3	4 5 3 3 SUB SUB SUB SUB 3 3 IX2 4 SP2 2 IX1 3 CM4 CM5 CM7 2 IX1 3 CM4 CM7 4 SP2 2 IX1 3 SBC A SP2 2 IX1 3	4 5 3 3 SUB SUB SUB SUB 3 3 IX2 4 SP2 2 IX1 3 CM4 SM2 SUB SUB 3 3 CM4 CM5 CM7 2 IX1 3 R CM5 CM7 2 IX1 3 A SBC SBC SBC SR1 3 3 CPX A SP2 Z IX1 3 <	4 5 3 3 SUB SUB SUB SUB 3 3 IX2 4 SP2 2 IX1 3 CMP T SUB SUB 3 3 CMP SUB SUB SUB 3 3 CMP CMP CMP SU1 3 3 SEC A SP2 IX1 3 3 SEC SSC SSC SS1 3 3 IX2 4 SP2 2 IX1 3 A 5 SS2 SS1 3 3 AUD 4 SP2 2 IX1 3 AUD 4 SP2 2 IX1 3 BIT BIT BIT BIT BIT 3 IX2 4 SP2 2 IX1 3 IX2 4 SP2 2 IX1 3	4 5 5 3 3 SUB SUB SUB SUB 3 3 IX2 4 SP2 2 IX1 3 CMP KC 5 2 IX1 3 CMP CMP SBC CMP 3 3 SBC SBC SBC SBC 3 3 SBC SBC SBC SBC 3 3 K2 SBC SBC SBC 3 3 K2 SBC SBC SBC 3 3 K2 SEC SBC SBC 3 3 A 5 SP2 2 1X1 3 AND AND AND 2 1X1 3 IX2 4 SP2 2 1X1 3 IX2 4 SP2 2 1X1 3 IX2 4 SP2 2 1X1	4 5 3 3 SUB SUB SUB SUB 3 3 IX2 4 SP2 2 IX1 3 CMP CMP CMP 2 IX1 3 CMP CMP CMP 2 IX1 3 SBC BT CMP 2 IX1 3 A SP2 2 IX1 3 3 CPX 4 SP2 2 IX1 3 A SP2 2 IX1 3 3 IX2 4 SP2 2 IX1 3 IX2 4 SP2 2 IX1 3	4 5 3 3 SUB SUB SUB SUB 3 IX2 4 SP2 IX1 3 CMP CMP SUB SUB 3 IX2 4 SP2 IX1 3 Sec CMP CMP SU3 3 Sec SP2 S IX1 3 3 A SP2 S IX1 3 3 CPX A SP2 S IX1 3 3 AND AND AND AND 3 3 IX2 4 SP2 IX1 3 3 AND AND AND AND 3 3 IX2 4 SP2 IX1 3 3 <t< td=""><td>4 5 5 3 3 SUB SUB SUB SUB 3 3 IX2 4 SP2 2 IX1 3 CMP CMP SUB SUB 3 3 IX2 4 SP2 2 IX1 3 SEC ECMP CMP 2 IX1 3 SEC IX2 4 SP2 2 IX1 3 SEC PA SP2 2 IX1 3</td><td>4 5 3 3 SUB SUB SUB SUB 3 IX2 4 SP2 2 IX1 3 CMP KC 5 CMP 2 SUB 3 SEC E SP2 2 IX1 3 3 SEC E SP2 2 IX1 3 3 3 SEC E SP2 2 IX1 3</td><td>4 5 5 3 3 SUB SUB SUB SUB 3 3 IX2 4 SP2 2 IX1 3 CMP KZ 5 SUB 3 3 SBC A SP2 2 IX1 3 SBC BT CMP SBC 3 3 SBC SP2 2 IX1 3 3 A SP2 SP2 2 IX1 3 AND A SP2 2 IX1 3 AND A SP2 2 IX1 3 AND A SP2 2 IX1 3 ILDA LDA LDA STA 3 3 IX2 4 SP2 2 IX1 3 IX2 4 SP2 2 IX1 3 IX2 4 SP2 2 IX1</td><td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td><td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td><td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td></t<>	4 5 5 3 3 SUB SUB SUB SUB 3 3 IX2 4 SP2 2 IX1 3 CMP CMP SUB SUB 3 3 IX2 4 SP2 2 IX1 3 SEC ECMP CMP 2 IX1 3 SEC IX2 4 SP2 2 IX1 3 SEC PA SP2 2 IX1 3	4 5 3 3 SUB SUB SUB SUB 3 IX2 4 SP2 2 IX1 3 CMP KC 5 CMP 2 SUB 3 SEC E SP2 2 IX1 3 3 SEC E SP2 2 IX1 3 3 3 SEC E SP2 2 IX1 3	4 5 5 3 3 SUB SUB SUB SUB 3 3 IX2 4 SP2 2 IX1 3 CMP KZ 5 SUB 3 3 SBC A SP2 2 IX1 3 SBC BT CMP SBC 3 3 SBC SP2 2 IX1 3 3 A SP2 SP2 2 IX1 3 AND A SP2 2 IX1 3 AND A SP2 2 IX1 3 AND A SP2 2 IX1 3 ILDA LDA LDA STA 3 3 IX2 4 SP2 2 IX1 3 IX2 4 SP2 2 IX1 3 IX2 4 SP2 2 IX1	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	D	4	SUB SUB 3 IX2 4 SP2	SUB SUB 3 IX2 4 SP2 4 5 CMP CMP 3 IX2 4 SP2	SUB SUB SUB 3 IX2 4 SP2	SUB SUB SUB 3 IX2 4 SP2 CMP CMP 5 5 3 IX2 4 SP2	SUB SUB SUB 3 IX2 4 SP2 CMP 5 4 SP2 3 IX2 4 SP2	SUB SUB SUB 3 IX2 4 SP2	SUB SUB SUB 3 IX2 4 SP2	SUB SUB SUB 3 IX2 4 SP2	SUB SUB SUB 3 IX2 4 SP2 3 IX2 4 S	SUB SUB SUB 3 IX2 4 SP2 3 IX2 4 S	3 SUB 1X2 4 SUB 5P2 3 1X2 4 SP2 3 1X2	SUB SUB SUB 3 IX2 4 SP2 3 IX2 4 S	SUB SUB SUB 3 IX2 4 SP2 3 IX2 4 S	3 SUB 3 XUB 4 SUB 5 3 IX2 4 SP2 3 IX2	3 UB 3 UB 3 US 4 SP2 3 IX2 4 SP2 4 SP2 3 IX2 4 SP2 3 SBC 3 IX2 4 SP2 3 SP2 3 IX2 4 SP2 3 IX2	3 UB 3 UB 3 US 4 SP2 3 IX2 4 SP2 4 SP2 3 IX2 4 SP2 3 SB5 3 IX2 4 SP2 3 SP2
υ				CMP 3 EXT 3	CMP 3 CMP 3 EXT 3 SBC 3 EXT 5	CMP 3 CMP 3 EXT 3 EXT 3 EXT 3 CPX 3 EXT 3 EXT 3 CPX 3 EXT 3 CPX 3 EXT 3 CPX 5 CMP 5	CM ⁴ 3 EXT 3 2 EXT 3 3 EXT 3 3 EXT 3 3 EXT 3 3 EXT 3 3 EXT 3	CM ⁴ CM ⁴ 3 EXT 3 5 EXT 3 5 EXT 3 5 EXT 3 6 E 7 3 E 7 3 E 7 3 E 7 3 E 7 3 E 7 3 E 7 3 E 7 3 E 7	CM ⁴ CM ⁴ 3 EXT 3 SBC 3 SBC 3 SBT 3 3 SET 3 4 4 3 3 ETT 3 3 SET 3 3 SET 3 3 ETT 3	CM ⁴ 3 CM ⁴ EXT 3 3 EXT 3 1 104 3 1 104 3 1 2 2 3 EXT 3 1 104 3 3 EXT 3 2 EXT 3 3 EXT 3 3 EXT 3	CM ⁴ 3 CM ⁴ 5 3 EXT 3 8 4 3 1 3 EXT 3 EXT 3 1 4 3 3 EXT 3	CM ⁴ 3 CM ⁴ EXT 3 3 EXT 3 3 EXT 3 3 EXT 3 3 EXT 3 4 3 EXT 3 EXT 3 4 3 EXT 3 EXT 3 5 EXT 3 6 4 3 3 EXT 3 5 EXT 3 6 4 3 3 EXT 3 6 A 3 5 EXT 3 6 A 3 7 4 3 7 A A 8 A A 7 A A	CM ⁴ CM ⁴ 3 EXT 3 SB2 3 EXT 3 SB4 3 SB7 3 AND 3 EXT 3 AND 3 EXT 3 SB7 3 EXT 3 AND 3 EXT 3 STA 3 EXT 3 STA 3 EXT 3 STA 3 EXT 3 Abc 3 EXT 3 STA 3 EXT 3 Abc 3 EXT 3 Stot 3 EXT 3	CM ⁴ 3 CM ⁴ 5 3 SBC 3 EXT 3 SBC 3 EXT 3 SET 3 EXT 3 SEXT 3 EXT 3 SEXT 3 EXT 3 SEXT 3 EXT 3 SEXT 3 EXT 3	CM ⁴ 3 CM ⁴ 5 3 3 EXT 3 4 3 EXT 3 EXT 3 3 EXT 3 <t< td=""><td>CM⁴ 3 CM⁴ 4 3 3 EXT 3 4 1 3 3 EXT 3 3 EXT 3 4 1 3 3 EXT 3 3 EXT 3 44 3 EXT 3 EXT 3 3 EXT 3 3</td><td>CM⁴ CM⁴ 3 EXT 3 5BC 3 EXT 3 3 EXT 3 EXT 3 3</td><td>CM⁴ CM⁴ 3 EXT 3 3</td></t<>	CM ⁴ 3 CM ⁴ 4 3 3 EXT 3 4 1 3 3 EXT 3 3 EXT 3 4 1 3 3 EXT 3 3 EXT 3 44 3 EXT 3 EXT 3 3 EXT 3 3	CM ⁴ CM ⁴ 3 EXT 3 5BC 3 EXT 3 3 EXT 3 EXT 3 3	CM ⁴ CM ⁴ 3 EXT 3 3
A Subscript	2 CIID	- 2 IMM 2	CMP 2 IMM 2		2 SBC 2 IMM 2	2 SBC 2 IMM 2 2 CPX 2 IMM 2	2 SBC 2 SBC 2 IMM 2 2 CPX 2 CPX 2 MM 2 2 IMM 2	SBC SBC 2 IMM 2 3 BIT 2 8 IMM 2	SBC 2 2 IMM	SBC 2 2 IMM 2 2 IMM 2 2 CPX 2 2 IMM 2 1 2 IMM 2 IMM 2 1 2 IMM 2 IMM 2	SBC 2 SBC 2 SIM 2 SE 1000 CPX 2 CPX 2 AND 2 AND 2 BIT 2 LDA 2 LOA 2 LOA 2 LOA 2 LOA 2 SIM 2 LOA 2	SBC 2 SBC 2 SEC 1MM 2 1MM 2 1MM 2 1MM 2 1MM 2 1MM 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 3 1 2 1 3 1 2 1 3 1 3 1 3 1 4 1 3 1 4 1 3 1 4 1 3 1 4 1 4 1 4 1 4 1 4 1 4 1 4	SBC 2 SBC 2 SEC 1000 SEC 2 SEC 1000	2 SBC 2 2 IMM 2 2 CPX 2 2 CPX 2 2 CPX 2 2 IMM 2 3 ADS 2	2 SBC 2 IMM 3 IM 3 IM 4 <	2 SBC 2 2 NMM 2 2 NMM 2 2 CPX 2 2 CPX 2 2 NMM 2 3 S 2 3 S 3 4 2 N 2 N 2 3 </td <td>2 SBC 2 NMM 3</td> <td>2 SBC 2 IMM 2</td>	2 SBC 2 NMM 3	2 SBC 2 IMM 2
8 9 7 BGE INH 2 REL 2	3 BGE 2 REL	1	RTS BLT 2 REL 2		BGT 2 REL	BGT 2 REL 3 BLE 2 REL	2 BGT 2 REL 3 8LE 2 REL 1 INH	2 BGT 3 BLE 2 REL 2 REL 1 TX 1 TX 1 TX 1 NH	2 REL 2 REL 2 REL 1 TNH 1 TNH 1 TNH 1 TNH	2 REL 2 REL 2 REL 1 INH 1 INH 1 INH 1 INH 1 INH	2 REL 2 REL 2 REL 1 INH 1 INH 1 INH 1 INH 1 INH 1 INH 1 INH 1 INH	2 REL 2 REL 2 REL 1 NNH 1 NNH	2 REL 2 REL 2 REL 1 NH 1 NH 1 NH 1 NH 1 NH 1 NH 1 NH 1 NH	2 REL 2 REL 2 REL 1 INH 1 INH	2 REL 2 REL 2 REL 1 INH 1 INH	2 BGT REL 2 REL 2 REL 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 BGT 2 REL 2 REL 1 TXS 1 TXS	2 BGT REL 2 REL 2 REL 2 REL 1 1
7	~	1 IX 1	CBEQ 2 IX+ 1		1 DAA 1 INH	1 DAA 1 DAA 1 INH 1 COM 1 IX 1	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	DAA DAA 1 INH 1 INH 1 IX 1 IX 1 IX 1 IX 1 Z 2 DIR 2 DIR 2 DIR	DAA DAA 1 NN 1 NN 1 NN 1 NN 1 NN 1 NN 1 NN 1	DAA DAA 1 NNH 1 NN 1 NN 1 NN 1 NN 1 NN 1 NN 1 N	DAA DAA 1 INH 2 DHR 1 INH	DAA DAA 1 INH	DAA DAA LDAA 1 NM	DAA Load 1 INH 1 1 COM 1 1 INH 1 1	DAA DAA 1 DAA 1 INH	DAA DAA 1 DAA 1 INH	DAA DAA 1 DAA 1 INIH	DBAA 1 DAA 1 NM 1 NM 1 NM 1 NM 1 1 NM 1 N 1 1 N 1 N 1 1 N 1 N 1 1 N 1 N 1 1 N 1 N 1 <t< td=""></t<>
6 9E6		4 5 NEG NEG IX1 3 SP1	4		3 ISA INH	NSA NSA INH COM IX1 3 SP1	3 M	<u> </u>	<u>m</u> m	<u> </u>	<u>m m m m</u>	m m m m	m m m m m			m m		m m
	5 6	1 NEGX 1 INH 2	CBEOX CBE 3 IMM 3 IX	,		5 1	5 5 7	DIV INH 1 INH 2 INH 1 INH 2 INH 2 IN 2 IN 2 IN 2 INH 2 IN 2 INH 2 INH 2	DIV INH 1 INH 2 INH 2 INH 2 INH 2 INH 2 INH 2 INH 2 INH 2 INH 2	DIV INH 2 INH 2 INH 2 INH 2 INH 2 INH 2 INH 2 ASRX 2 INH 2 INNH 2 INH 2 INH 2 INH 2	DIV 1 INH 1 INH 2	DIV 1 NH 1 INH 2	DIV 1 NH 1 NH 2 NH 2 NH 2 INH	PICAL COMMA 2 INH	DIVL L 1 NH 1 1 NH 2 1 LLST LLST 1 LLST 2	DIVL L NH 1 NH 2 NNH 2 NNH 2 NINH 2 NINH 2 NINH 2 NINH	Image: Constraint of the second se	Image: Second state Image: Second state Imag
_	4	1 NEGA 1 INH 1	CBEOA 3 IMM 3		1 MUL 1 MUL 1 INH	A COMA 1 COMA 1 COMA 1	5 MUL 1 INH 1 1 COMA 1 1 CMA 1 1 LSRA 1 1 INH 1	6 MUL 1 MUL 1 NIH 1 1 COMA 1 COMA 1 LSRA 1 LSRA 1 NIH 1 1 NIH 1 3 LDHX 2 MMM 2	5 MUL 1 MUH 1 MUH 1 INH 1 COMA 1 INH 1 INH 1 INH 1 INH 1 INH 1 INH 3 IMM 1 RORA 1 RORA 1 INH	5 1 MUL 1 1 NUL 1 NUL 1 1 1 NUL 1 1 1 ASRA 1 1 1	Mult 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5 MUL 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	MUL MUL MUL 1 NUL 1 1 NUL 1 1 INH 1	MUL MUL MUL 1 1 1 1 1 COMA 1 1 1 LUNH 1 1 1 LSRA 1 1 1 LSRA 1 1 1 LNH 1 1 1 LSRA 1 1 1 LNH 1 1 1 NMM 2 2 1 NH 1 1 1	MUL MUL MUL 1 1 1 1 1 1 1 COMA 1 1 COMA 1 1 LSRA 1 1 LBRA 2 1 LBRA 3 1 NMM 2 1 NMM 1 1 NMH 1 1 NMM 1 1 NMH 1 1 NMH 1 1 NMM 1	MUL MUL MUL 1 1 1	MUL MUL 1 MUL 1 INIL 1 INIL 1 COMA 1 LSRA 1 LSRA 1 LINH 1 LSRA 1 LNH 1 LNH 1 LNH 1 LNH 1 RORA 1 INH 1	MUL INUL INUL <thi< td=""></thi<>
3	_	3 4 Rel 2 DIR		ر ،	H	5	2 2	2 2	2 2 2	2 2 2 2	2 2 2 2 2	2 2 2 2 2		3 2 2 2 2 2 2 2	3 3 5 5 5 5 5			2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
1 2	-	BSET0 BRA DIR 2 REL	BCLR0 BRN DIR 2 REI		DIR 2 R	2 2	2 2 2	7 2 2 2	5 7 7 7	2 7 7 <u>7</u> 7	2 2 2 2 2 2	2 2 2 2 2 2 2	<u> </u>	<u> </u>				
_		2	5		2	7 7	2 2 2	BRSET1 5 BRCLR1 2 BRCLR1 2 DIR 2 5 3 RSET2 5 3 RCLR2 2 BRCLR2 2 1 R	BRSET1 5 BRCLR1 2 BRCLR1 2 5 3 BRSET2 2 BRSET3 2 BRSET3 2 BRSET3 2 BRSET3 2 BRSET3	RSET1 DIR 2 RRCLF1 DIR 2 5 5 8RCLR2 BIR 2 8RCLR2 BIR 2 8RCLR2 BIR 2 8RCR2 BIR 2 8RCF13 DIR 2 5 8RCF13 DIR 2 0 R 2 1 8RCF13 2 8RCF13 2 8 1 8 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1	BRSETI 2 DIR 2 BRCLR1 2 DIR 2 DIR 2 BRCLR2 2 BRCLR2 2 BRCLR2 2 BRCLR2 2 BRCLR3 2 BRCR3 2 BRCLR3 2 BRCR	SRSET1 DR DR DIR DIR DIR DIR DIR DIR SRCER DIR SRCER DIR SRCER DIR SRCER DIR SRCER DIR DIR DIR	BRSET1 DIR 2 NCLF3 2 BIR 5 2 SRSET3 2 2	BRSET1 DIR 2 DIR 2 BRCLF1 2 BRSET2 2 SRSET3 2 SR	BRSET1 DIR 2 DIR 2 BRCLF1 2 BRSET2 2 BRSET2 2 BRSET3 2 BRSET3 2 BRSET3 2 BRSET3 2 BRSET3 2 BRSET3 2 BRSET4 2 BRSET3 2 BRSET4 2 BRSET5 2 BRSET5 2 BR 3 BR 2 BR 2 BR 3 BR 3 BR 3	BRSET1 BRSET1 DIR 2 BRCLR1 2 BRCLR1 2 BRSET1 2 BRCLR1 2 BRCLR2 2 BRCLR2 2 BRCLR2 2 BRCLR2 2 BRCLR2 2 BRSET3 2 BRSET4 2 BRSET4 2 BRSET4 2 BRSET6 2	SRSET1 SRSET1 SRSET1 SRSET1 DIR 2 BRCLR1 DIR 2 SRSET2 2 SRSET1 2 BRCLR2 DIR 2 SRSET1 2 SRSET1 2 SRSET1 SRSET2 2 SRSET2 2 S 2	T T <tht< th=""> <tht< th=""> <tht< th=""> <tht< th=""></tht<></tht<></tht<></tht<>
¥	0	5 BRSET0 3 DIR	BR(L	~													

MC68HC908MR8 - Rev 4.0

MOTOROLA

Central Processor Unit (CPU) For More Information On This Product, Go to: www.freescale.com

٦

Opcode Map

Central Processor Unit (CPU)

Central Processor Unit (CPU)

Technical Data

MC68HC908MR8 - Rev 4.0

Section 7. System Integration Module (SIM)

7.1 Contents

70	had a set to be the set	~~~
7.2	Introduction.	90
7.3	SIM Bus Clock Control and Generation	93
7.3.1	Bus Timing	93
7.3.2	Clock Startup from POR or LVI Reset	93
7.3.3	Clocks in Wait Mode	94
7.4	Reset and System Initialization	94
7.4.1	External Pin Reset	
7.4.2	Active Resets from Internal Sources	
7.5	SIM Counter.	99
7.5.1	SIM Counter During Power-On Reset	
7.5.2	SIM Counter and Reset States	
7.6	Exception Control	99
7.6.1	Interrupts	
7.6.2	Reset	
7.6.3	Status Flag Protection in Break Mode	. 103
7.7	Low-Power Mode	.104
7.7.1	Wait Mode	. 106
7.7.2	Stop Mode	
7.7.3	SIM Break Status Register	. 106
7.7.4	SIM Reset Status Register	
7.7.5	SIM Break Flag Control Register	

System Integration Module (SIM)

7.2 Introduction

This section describes the system integration module (SIM). Together with the central processor unit (CPU), the SIM controls all microcontroller unit (MCU) activities. A block diagram of the SIM is shown in **Figure 7-1**. **Figure 7-2** is a summary of the SIM inout/output (I/O) registers.

The SIM is a system state controller that coordinates CPU and exception timing. The SIM is responsible for:

- Bus clock generation and control for CPU and peripherals:
 - Stop, wait, reset, break entry, and recovery
 - Internal clock control
- Master reset control, including power-on reset (POR) and computer operating properly (COP) timeout
- Interrupt control:
 - Acknowledge timing
 - Arbitration control timing
 - Vector address generation
- CPU enable/disable timing
- Modular architecture expandable to 128 interrupt sources

Technical Data

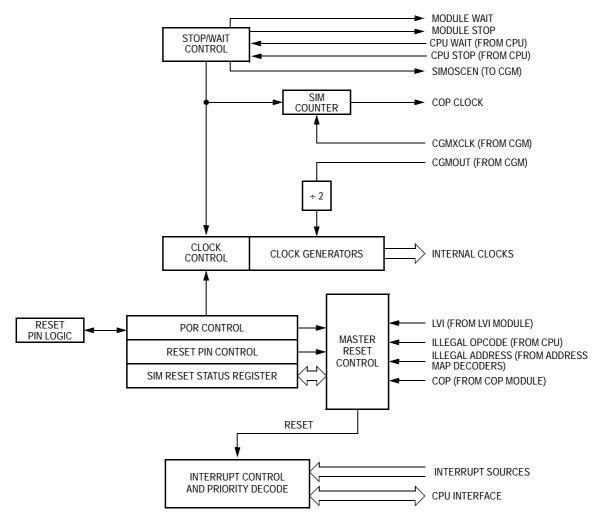


Figure 7-1. SIM Block Diagram

MC68HC908MR8 — Rev 4.0

System Integration Module (SIM)

Addr.	Register Name		Bit 7	6	5	4	3	2	1	Bit 0
\$FE00	SIM Break Status Register (SBSR)	Read: Write:	R	R	R	R	R	R	SBSW Note 1	R
	See page 106 .	Re- set:							0	
		Read:	POR	PIN	COP	ILOP	ILAD	0	LVI	0
\$FE01	SIM Reset Status Register (SRSR)	Write:	R	R	R	R	R	R	R	R
	See page 108 .	Re- set:	1	0	0	0	0	0	0	0
\$FE03	SIM Break Flag Control Register (SBFCR)	Read: Write:	BCFE	R	R	R	R	R	R	R
	See page 109.	Re- set:	0							
Note 1. SW.	Writing a logic 0 clears SB-		R	= Reser	ved					
	C;	auro T	7.2 61		aictor (Summa	P17			

Figure 7-2. SIM I/O Register Summary

Table 7-1 shows the internal signal names used in this section.

Table 7-1	. Signal	Name	Conventions
-----------	----------	------	-------------

Signal Name	Description				
CGMXCLK	Buffered version of OSC1 from clock generator module (CGM)				
CGMVCLK	PLL output				
CGMOUT	PLL-based or OSC1-based clock output from CGM module (bus clock = CGMOUT divided by two)				
IAB	Internal address bus				
IDB	Internal data bus				
PORRST	Signal from the power-on reset module to the SIM				
IRST	Internal reset signal				
R/W	Read/write signal				

System Integration Module (SIM) SIM Bus Clock Control and Generation

7.3 SIM Bus Clock Control and Generation

The bus clock generator provides system clock signals for the CPU and peripherals on the MCU. The system clocks are generated from an incoming clock, CGMOUT, as shown in Figure 7-3. This clock can come from either an external oscillator or from the on-chip phase-locked loop (PLL). See Section 8. Clock Generator Module (CGM).

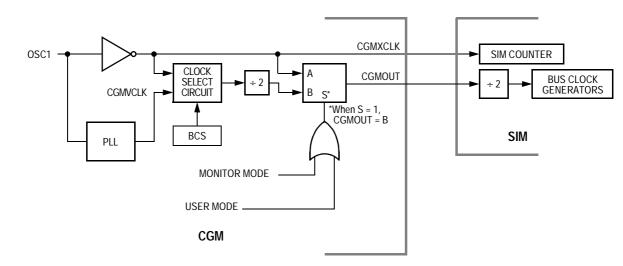


Figure 7-3. CGM Clock Signals

7.3.1 Bus Timing

In user mode, the internal bus frequency is either the crystal oscillator output (CGMXCLK) divided by four or the PLL output (CGMVCLK) divided by four. See **Section 8. Clock Generator Module (CGM)**.

7.3.2 Clock Startup from POR or LVI Reset

When the power-on reset (POR) module or the low-voltage inhibit (LVI) module generates a reset, the clocks to the CPU and peripherals are inactive and held in an inactive phase until after the 4096 CGMXCLK cycle POR timeout has completed. The RST pin is driven low by the SIM during this entire period. The IBUS clocks start upon completion of the timeout.

MC68HC908MR8 - Rev 4.0

MOTOROLA

System Integration Module (SIM)

7.3.3 Clocks in Wait Mode

In wait mode, the CPU clocks are inactive. The SIM also produces two sets of clocks for other modules. Refer to the wait mode subsection of each module to see if the module is active or inactive in wait mode. Some modules can be programmed to be active in wait mode.

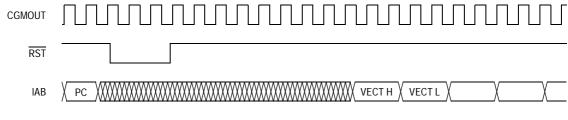
7.4 Reset and System Initialization

The MCU has these reset sources:

- Power-on reset module (POR)
- External reset pin (RST)
- Computer operating properly module (COP)
- Low-voltage inhibit module (LVI)
- Illegal opcode
- Illegal address

All of these resets produce the vector \$FFFE-FFF (\$FEFE-FEFF in monitor mode) and assert the internal reset signal (IRST). IRST causes all registers to be returned to their default values and all modules to be returned to their reset states.

An internal reset clears the SIM counter (see **7.5 SIM Counter**), but an external reset does not. Each of the resets sets a corresponding bit in the SIM reset status register (SRSR). See **7.7.4 SIM Reset Status Register**.


7.4.1 External Pin Reset

Pulling the asynchronous RST pin low halts all processing. The PIN bit of the SIM reset status register (SRSR) is set as long as RST is held low for a minimum of 67 CGMXCLK cycles, assuming that neither the POR nor the LVI was the source of the reset. See Table 7-2 for details. Figure 7-4 shows the relative timing.

MC68HC908MR8 — Rev 4.0

Reset Type	Number of Cycles Required to set PIN
POR/LVI	4163 (4096 + 64 + 3)
All Others	67 (64 + 3)

Table 7-2. PIN Bit Set Timing

Figure 7-4. External Reset Timing

7.4.2 Active Resets from Internal Sources

All internal reset sources actively pull the \overline{RST} pin low for 32 CGMXCLK cycles to allow resetting of external peripherals. The internal reset signal (IRST) continues to be asserted for an additional 32 cycles (see Figure 7-5). An internal reset can be caused by an illegal address, illegal opcode, COP timeout, LVI, or POR (see Figure 7-6).

NOTE: For LVI or POR resets, the SIM cycles through 4096 CGMXCLK cycles during which the SIM forces the RST pin low. The internal reset signal then follows the sequence from the falling edge of RST as shown in **Figure 7-5**.

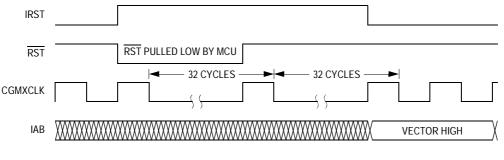


Figure 7-5. Internal Reset Timing

95

System Integration Module (SIM)

The COP reset is asynchronous to the bus clock.

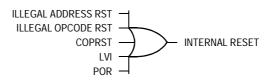


Figure 7-6. Sources of Internal Reset

The active reset feature allows the part to issue a reset to peripherals and other chips within a system built around the MCU.

7.4.2.1 Power-On Reset (POR)

When power is first applied to the MCU, the power-on reset (POR) module generates a pulse to indicate that power-on has occurred. The external reset pin ($\overline{\text{RST}}$) is held low while the SIM counter counts out 4096 CGMXCLK cycles. Sixty-four CGMXCLK cycles later, the CPU and memories are released from reset to allow the reset vector sequence to occur.

At power-on, these events occur:

- A POR pulse is generated.
- The internal reset signal is asserted.
- The SIM enables CGMOUT.
- Internal clocks to the CPU and modules are held inactive for 4096 CGMXCLK cycles to allow stabilization of the oscillator.
- The RST pin is driven low during the oscillator stabilization time.
- The POR bit of the SIM reset status register (SRSR) is set and all other bits in the register are cleared.

MC68HC908MR8 — Rev 4.0

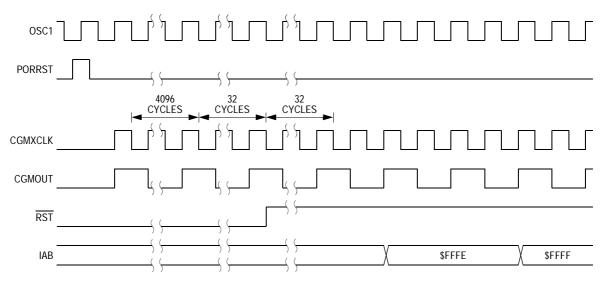


Figure 7-7. POR Recovery

7.4.2.2 Computer Operating Properly (COP) Reset

An input to the SIM is reserved for the COP reset signal. The overflow of the COP counter causes an internal reset and sets the COP bit in the SIM reset status register (SRSR). The SIM actively pulls down the RST pin for all internal reset sources.

To prevent a COP module timeout, write any value to location \$FFFF. Writing to location \$FFFF clears the COP counter and bits 12–4 of the SIM counter. The SIM counter output, which occurs at least every $2^{13}-2^4$ CGMXCLK cycles, drives the COP counter. The COP should be serviced as soon as possible out of reset to guarantee the maximum amount of time before the first timeout.

The COP module is disabled if the RST pin or the IRQ pin is held at $V_{DD} + V_{HI}$ while the MCU is in monitor mode. The COP module can be disabled only through combinational logic conditioned with the high voltage signal on the RST or the IRQ pin. This prevents the COP from becoming disabled as a result of external noise. During a break state, $V_{DD} + V_{HI}$ on the RST pin disables the COP module.

MC68HC908MR8 — Rev 4.0

System Integration Module (SIM)

7.4.2.3 Illegal Opcode Reset

The SIM decodes signals from the CPU to detect illegal instructions. An illegal instruction sets the ILOP bit in the SIM reset status register (SRSR) and causes a reset.

Because the MC68HC08MR8 has stop mode disabled by bit 1 in the CONFIG register, execution of the STOP instruction will cause an illegal opcode reset if stop mode has not been enabled by setting CONFIG register bit 1.

7.4.2.4 Illegal Address Reset

An opcode fetch from addresses other than FLASH, I/O, or RAM addresses generates an illegal address reset (unimplemented locations within memory map). The SIM verifies that the CPU is fetching an opcode prior to asserting the ILAD bit in the SIM reset status register (SRSR) and resetting the MCU. A data fetch from an unmapped address does not generate a reset.

7.4.2.5 Low-Voltage Inhibit (LVI) Reset

The low-voltage inhibit module (LVI) asserts its output to the SIM when the V_{DD} voltage falls to the LVI_{LVRX} voltage and remains at or below that level for at least nine consecutive CPU cycles. The LVI bit in the SIM reset status register (SRSR) is set, and the external reset pin (RST) is held low while the SIM counter counts out 4096 CGMXCLK cycles. Sixty-four CGMXCLK cycles later, the CPU is released from reset to allow the reset vector sequence to occur. The SIM actively pulls down the RST pin for all internal reset sources.

Technical Data

7.5 SIM Counter

The SIM counter is used by the POR module to allow the oscillator time to stabilize before enabling the internal bus (IBUS) clocks. The SIM counter also serves as a prescaler for the COP module. The SIM counter overflow supplies the clock for the COP module. The SIM counter is 13 bits long and is clocked by the falling edge of CGMXCLK.

7.5.1 SIM Counter During Power-On Reset

The POR detects power applied to the MCU. At power-on, the POR circuit asserts the signal PORRST. Once the SIM is initialized, it enables the clock generation module (CGM) to drive the bus clock state machine.

7.5.2 SIM Counter and Reset States

External reset has no effect on the SIM counter. The SIM counter is free-running after all reset states. See **7.4.2 Active Resets from Internal Sources** for counter control and internal reset recovery sequences.

7.6 Exception Control

Normal, sequential program execution can be changed in three different ways:

- 1. Interrupts:
 - a. Maskable hardware CPU interrupts
 - b. Non-maskable software interrupt instruction (SWI)
- 2. Reset
- 3. Break interrupts

System Integration Module (SIM)

7.6.1 Interrupts

At the beginning of an interrupt, the CPU saves the CPU register contents on the stack and sets the interrupt mask (I bit) to prevent additional interrupts. At the end of an interrupt, the return from interrupt (RTI) instruction recovers the CPU register contents from the stack so that normal processing can resume. **Figure 7-8** shows interrupt entry timing. **Figure 7-10** shows interrupt recovery timing.

Interrupts are latched, and arbitration is performed in the SIM at the start of interrupt processing. The arbitration result is a constant that the CPU uses to determine which vector to fetch. Once an interrupt is latched by the SIM, no other interrupt can take precedence, regardless of priority, until the latched interrupt is serviced (or the I bit is cleared). See Figure 7-9.

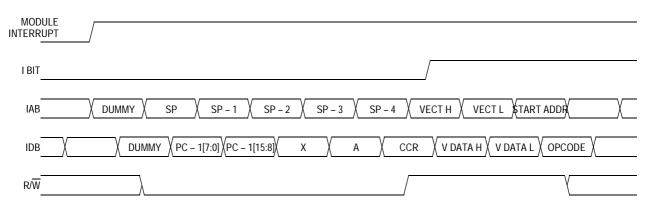


Figure 7-8. Interrupt Entry

Technical Data

MC68HC908MR8 — Rev 4.0

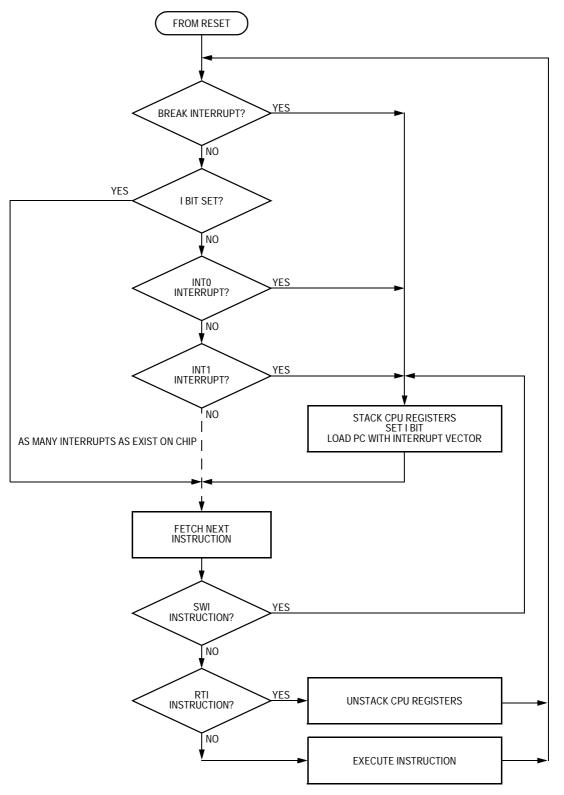
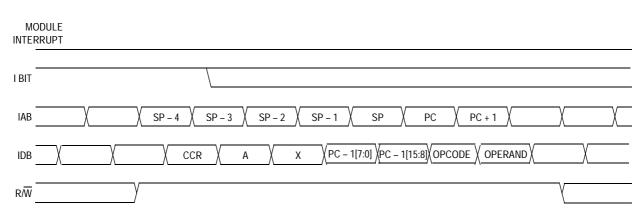



Figure 7-9. Interrupt Processing

MC68HC908MR8 - Rev 4.0

MOTOROLA

System Integration Module (SIM)

Figure 7-10. Interrupt Recovery

7.6.1.1 Hardware Interrupts

A hardware interrupt does not stop the current instruction. Processing of a hardware interrupt begins after completion of the current instruction. When the current instruction is complete, the SIM checks all pending hardware interrupts. If interrupts are not masked (I bit clear in the condition code register), and if the corresponding interrupt enable bit is set, the SIM proceeds with interrupt processing; otherwise, the next instruction is fetched and executed.

If more than one interrupt is pending at the end of an instruction execution, the highest priority interrupt is serviced first. Figure 7-11 demonstrates what happens when two interrupts are pending. If an interrupt is pending upon exit from the original interrupt service routine, the pending interrupt is serviced before the LDA instruction is executed.

The LDA opcode is prefetched by both the INT1 and INT2 RTI instructions. However, in the case of the INT1 RTI prefetch, this is a redundant operation.

NOTE: To maintain compatibility with the M6805 Family, the H register is not pushed on the stack during interrupt entry. If the interrupt service routine modifies the H register or uses the indexed addressing mode, software should save the H register and then restore it prior to exiting the routine.

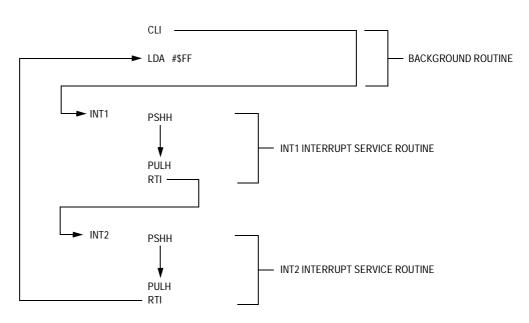


Figure 7-11. Interrupt Recognition Example

7.6.1.2 SWI Instruction

The SWI instruction is a non-maskable instruction that causes an interrupt regardless of the state of the interrupt mask (I bit) in the condition code register.

NOTE: A software interrupt pushes PC onto the stack. A software interrupt does not push PC – 1, as a hardware interrupt does.

7.6.2 Reset

All reset sources always have equal and highest priority and cannot be arbitrated.

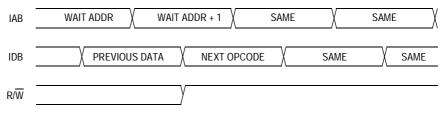
7.6.3 Status Flag Protection in Break Mode

The SIM controls whether status flags contained in other modules can be cleared during break mode. The user can select whether flags are protected from being cleared by properly initializing the break clear flag enable bit (BCFE) in the SIM break flag control register (SBFCR).

MC68HC908MR8 — Rev 4.0

System Integration Module (SIM)

Protecting flags in break mode ensures that set flags will not be cleared while in break mode. This protection allows registers to be freely read and written during break mode without losing status flag information.


Setting the BCFE bit enables the clearing mechanisms. Once cleared in break mode, a flag remains cleared even when break mode is exited. Status flags with a 2-step clearing mechanism — for example, a read of one register followed by the read or write of another — are protected, even when the first step is accomplished prior to entering break mode. Upon leaving break mode, execution of the second step will clear the flag as normal.

7.7 Low-Power Mode

Executing the WAIT or STOP instruction puts the MCU in a low power-consumption mode for standby situations. The SIM holds the CPU in a non-clocked state. Both STOP and WAIT clear the interrupt mask (I) in the condition code register, allowing interrupts to occur.

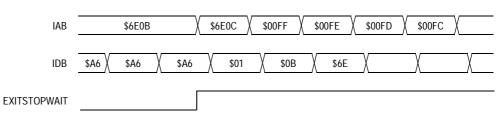
7.7.1 Wait Mode

In wait mode, the CPU clocks are inactive while the peripheral clocks continue to run. **Figure 7-12** shows the timing for wait mode entry.

Note: Previous data can be operand data or the WAIT opcode, depending on the last instruction.

Figure 7-12. Wait Mode Entry Timing

A module that is active during wait mode can wake up the CPU with an interrupt if the interrupt is enabled. Stacking for the interrupt begins one cycle after the WAIT instruction during which the interrupt occurred. Refer to the wait mode subsection of each module to see if the module


Technical Data

MC68HC908MR8 — Rev 4.0

is active or inactive in wait mode. Some modules can be programmed to be active in wait mode.

Wait mode can also be exited by a reset or break. A break interrupt during wait mode sets the SIM break stop/wait bit, SBSW, in the SIM break status register (SBSR). If the COP disable bit, COPD, in the configuration register is logic 0, then the computer operating properly module (COP) is enabled and remains active in wait mode.

Figure 7-13 and Figure 7-14 show the timing for wait recovery.

Note: EXITSTOPWAIT = \overline{RST} pin or CPU interrupt or break interrupt

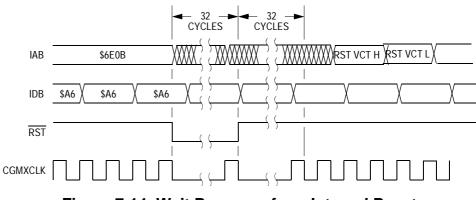
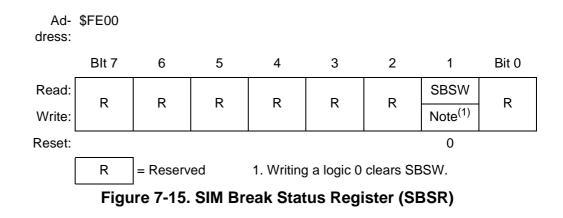


Figure 7-14. Wait Recovery from Internal Reset

MC68HC908MR8 - Rev 4.0

System Integration Module (SIM)

7.7.2 Stop Mode


In stop mode, the SIM counter is reset and the system clock is disabled. An external interrupt request will cause an exit from stop mode. Stacking for interrupts begins after the stop recovery delay time of 4096 CGMXCLK cycles has elapsed. Reset or break also cause an exit from stop mode.

The SIM disables the clock generator module outputs in stop mode, stopping the CPU and all peripherals.

NOTE: It is important to note that when using the PWM generator Its outputs will stop toggling when stop mode is entered. The PWM module must be disabled before entering stop mode to prevent external inverter failure.

7.7.3 SIM Break Status Register

The SIM break status register (SBSR) contains a flag to indicate that a break caused an exit from wait mode.

SBSW — SIM Break Stop/Wait Bit

This status bit is useful in applications requiring a return to wait mode after exiting from a break interrupt. Clear SBSW by writing a logic 0 to it. Reset clears SBSW.

1 = Wait mode was exited by break interrupt.

0 = Wait mode was not exited by break interrupt.

ы.

SBSW can be read within the break state SWI routine. The user can modify the return address on the stack by subtracting one from it. The following code is an example of this. Writing 0 to the SBSW bit clears it.

; This code works if the H register has been pushed onto the stack in the break ; service routine software. This code should be executed at the end of the break ; service routine software. HIBYTE EQU 5 LOBYTE EOU 6 If not SBSW, do RTI ; BRCLR SBSW, SBSR, RETURN ; See if wait mode was exited by break. TST ; If RETURNLO is not zero, LOBYTE, SP BNE DOLO ; then just decrement low byte. DEC HIBYTE, SP ; Else deal with high byte, too. DOLO DEC LOBYTE, SP ; Point to WAIT opcode. RETURN PULH ; Restore H register. RTI

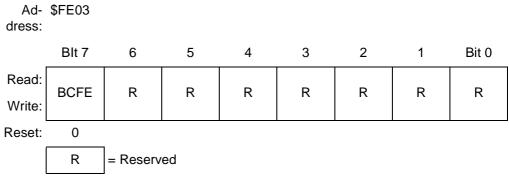
MC68HC908MR8 — Rev 4.0

System Integration Module (SIM)

7.7.4 SIM Reset Status Register

The SIM reset status register (SRSR) contains six flags that show the source of the last reset. Clear the SRSR by reading it. A power-on reset sets the POR bit and clears all other bits in the register.

Ad- dress:	\$FE01									
	Blt 7	6	5	4	3	2	1	Bit 0		
Read:	POR	PIN	COP	ILOP	ILAD	0	LVI	0		
Write:	R	R	R	R	R	R	R	R		
Reset:	1	0	0	0	0	0	0	0		
	R	R = Reserved								



POR — Power-On Reset Bit

- 1 = Last reset caused by POR circuit
- 0 = Read of SRSR
- PIN External Reset Bit
 - 1 = Last reset caused by external reset pin (\overline{RST})
 - 0 = POR or read of SRSR
- COP Computer Operating Properly Reset Bit
 - 1 = Last reset caused by COP counter
 - 0 = POR or read of SRSR
- ILOP Illegal Opcode Reset Bit
 - 1 = Last reset caused by an illegal opcode
 - 0 = POR or read of SRSR
- ILAD Illegal Address Reset Bit (opcode fetches only)
 - 1 = Last reset caused by an opcode fetch from an illegal address
 - 0 = POR or read of SRSR
- LVI Low-Voltage Inhibit Reset Bit
 - 1 = Last reset was caused by the LVI circuit
 - 0 = POR or read of SRSR

7.7.5 SIM Break Flag Control Register

The SIM break control register (SBFCR) contains a bit that enables software to clear status bits while the MCU is in a break state.

BCFE — Break Clear Flag Enable Bit

This read/write bit enables software to clear status bits by accessing status registers while the MCU is in a break state. To clear status bits during the break state, the BCFE bit must be set.

1 = Status bits clearable during break

0 = Status bits not clearable during break

MC68HC908MR8 - Rev 4.0

System Integration Module (SIM)

Technical Data

MC68HC908MR8 — Rev 4.0

Section 8. Clock Generator Module (CGM)

8.1 Contents

8.2	Introduction	112
8.3	Features	112
8.4	Functional Description	113
8.4.1	Crystal Oscillator Circuit	
8.4.2	Phase-Locked Loop Circuit (PLL)	
8.4.3	Base Clock Selector Circuit	
8.4.4	CGM External Connections	122
8.5	I/O Signals	123
8.5.1	CGM External Connections	122
8.5.2	Crystal Amplifier Output Pin (OSC2)	123
8.5.3	External Filter Capacitor Pin (CGMXFC)	123
8.5.4	PLL Analog Power Pin (V _{DDA})	
8.5.5	Oscillator Enable Signal (SIMOSCEN)	
8.5.6	Crystal Output Frequency Signal (CGMXCLK)	
8.5.7	CGM Base Clock Output (CGMOUT)	
8.5.8	CGM CPU Interrupt (CGMINT)	124
8.6	CGM Registers	125
8.6.1	PLL Control Register	126
8.6.2	PLL Bandwidth Control Register	
8.6.3	PLL Programming Register	131
8.7	Interrupts	132
8.8	Wait Mode	133
8.9	Stop Mode	133
8.10	CGM During Break Mode	133
8.11	Acquisition/Lock Time Specifications	134
8.11.1		
8.11.2		

MC68HC908MR8 — Re	v 4.0
-------------------	-------

8.11.3	Choosing a Filter Capacitor	
8.11.4	Reaction Time Calculation .	

8.2 Introduction

This section describes the clock generator module (CGM, version A). The CGM generates the crystal clock signal, CGMXCLK, which operates at the frequency of the crystal. The CGM also generates the base clock signal, CGMOUT, from which the system integration module (SIM) derives the system clocks.

CGMOUT is based on either the crystal clock divided by two or the phase-locked loop (PLL) clock, CGMVCLK, divided by two. The PLL is a frequency generator designed for use with crystals or ceramic resonators. The PLL can generate an 8-MHz bus frequency without using a 32-MHz crystal.

8.3 Features

Features of the CGM include:

- Phase-locked loop with output frequency in integer multiples of the crystal reference
- Programmable hardware voltage-controlled oscillator (VCO) for low-jitter operation
- Automatic bandwidth control mode for low-jitter operation
- Automatic frequency lock detector
- Central processor unit (CPU) interrupt on entry or exit from locked condition

Technical Data

MC68HC908MR8 — Rev 4.0

8.4 Functional Description

The CGM consists of three major submodules:

- 1. Crystal oscillator circuit The crystal oscillator circuit generates the constant crystal frequency clock, CGMXCLK.
- 2. Phase-locked loop (PLL) The PLL generates the programmable VCO frequency clock, CGMVCLK.
- Base clock selector circuit This software-controlled circuit selects either CGMXCLK divided by two or the VCO clock, CGMVCLK, divided by two as the base clock, CGMOUT. The SIM derives the system clocks from CGMOUT.

Figure 8-1 shows the structure of the CGM.

8.4.1 Crystal Oscillator Circuit

The crystal oscillator circuit consists of an inverting amplifier and an external crystal. The OSC1 pin is the input to the amplifier and the OSC2 pin is the output. The SIMOSCEN signal from the system integration module (SIM) enables the crystal oscillator circuit.

The CGMXCLK signal is the output of the crystal oscillator circuit and runs at a rate equal to the crystal frequency. CGMXCLK is then buffered to produce CGMRCLK, the PLL reference clock.

CGMXCLK can be used by other modules which require precise timing for operation. The duty cycle of CGMXCLK is not guaranteed to be 50 percent and depends on external factors, including the crystal and related external components.

An externally generated clock also can feed the OSC1 pin of the crystal oscillator circuit. Connect the external clock to the OSC1 pin and let the OSC2 pin float.

MC68HC908MR8 - Rev 4.0

Clock Generator Module (CGM)

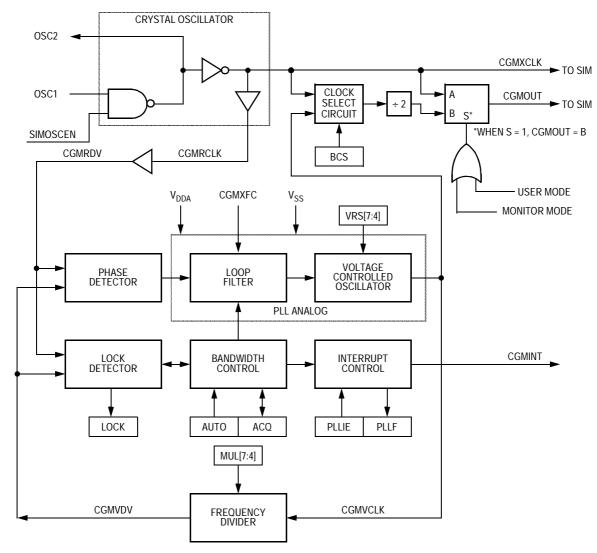
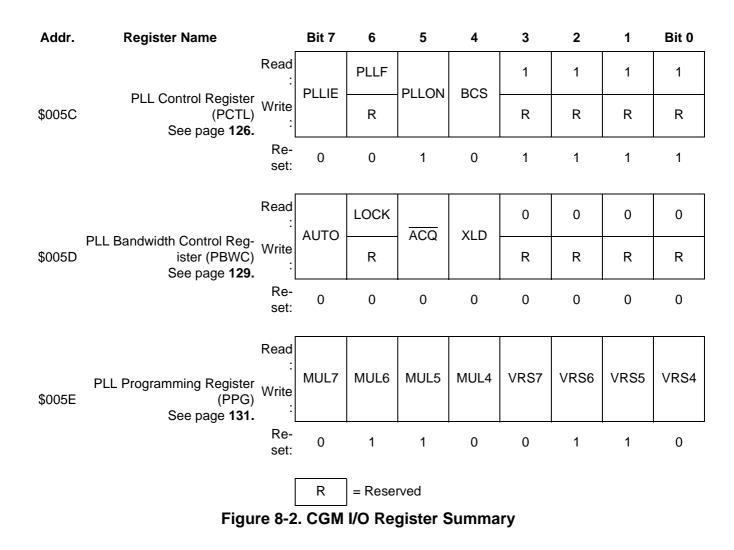



Figure 8-1. CGM Block Diagram

Technical Data

MC68HC908MR8 — Rev 4.0

Clock Generator Module (CGM) Functional Description

8.4.2 Phase-Locked Loop Circuit (PLL)

The PLL is a frequency generator that can operate in either acquisition mode or tracking mode, depending on the accuracy of the output frequency. The PLL can change between acquisition and tracking modes either automatically or manually.

8.4.2.1 PLL Circuits

The PLL consists of these circuits:

- Voltage-controlled oscillator (VCO)
- Modulo VCO frequency divider

- Phase detector
- Loop filter
- Lock detector

Technical Data

MC68HC908MR8 - Rev 4.0

The operating range of the VCO is programmable for a wide range of frequencies and for maximum immunity to external noise, including supply and CGMXFC noise. The VCO frequency is bound to a range from roughly one-half to twice the center-of-range frequency, f_{VRS} . Modulating the voltage on the CGMXFC pin changes the frequency within this range. By design, f_{VRS} is equal to the nominal center-of-range frequency, f_{NOM} , (4.9152 MHz) times a linear factor L, or (L) f_{NOM} .

CGMRCLK is the PLL reference clock, a buffered version of CGMXCLK. CGMRCLK runs at a frequency, f_{RCLK} , and is fed to the PLL through a buffer. The buffer output is the final reference clock, CGMRDV, running at a frequency, $f_{RDV} = f_{RCLK}$.

The VCO's output clock, CGMVCLK, running at a frequency f_{VCLK} , is fed back through a programmable modulo divider. The modulo divider reduces the VCO clock by a factor, N. The divider's output is the VCO feedback clock, CGMVDV, running at a frequency, $f_{VDV} = f_{VCLK/N}$. See **8.4.2.4 Programming the PLL** for more information.

The phase detector then compares the VCO feedback clock, CGMVDV, with the final reference clock, CGMRDV. A correction pulse is generated based on the phase difference between the two signals. The loop filter then slightly alters the dc voltage on the external capacitor connected to CGMXFC based on the width and direction of the correction pulse. The filter can make fast or slow corrections depending on its mode, described in **8.4.2.2 Acquisition and Tracking Modes**. The value of the external capacitor and the reference frequency determines the speed of the corrections and the stability of the PLL.

The lock detector compares the frequencies of the VCO feedback clock, CGMVDV, and the final reference clock, CGMRDV. Therefore, the speed of the lock detector is directly proportional to the final reference frequency, f_{RDV} . The circuit determines the mode of the PLL and the lock condition based on this comparison.

MC68HC908MR8 - Rev 4.0

8.4.2.2 Acquisition and Tracking Modes

The PLL filter is manually or automatically configurable into one of two operating modes:

- Acquisition mode In acquisition mode, the filter can make large frequency corrections to the VCO. This mode is used at PLL startup or when the PLL has suffered a severe noise hit and the VCO frequency is far off the desired frequency. When in acquisition mode, the ACQ bit is clear in the PLL bandwidth control register. See 8.6.2 PLL Bandwidth Control Register.
- Tracking mode In tracking mode, the filter makes only small corrections to the frequency of the VCO. PLL jitter is much lower in tracking mode, but the response to noise is also slower. The PLL enters tracking mode when the VCO frequency is nearly correct, such as when the PLL is selected as the base clock source. The PLL is automatically in tracking mode when not in acquisition mode or when the ACQ bit is set. See 8.4.3 Base Clock Selector Circuit.

8.4.2.3 Manual and Automatic PLL Bandwidth Modes

The PLL can change the bandwidth or operational mode of the loop filter manually or automatically.

In automatic bandwidth control mode (AUTO = 1), the lock detector automatically switches between acquisition and tracking modes. Automatic bandwidth control mode also is used to determine when the VCO clock, CGMVCLK, is safe to use as the source for the base clock, CGMOUT (8.6.2 PLL Bandwidth Control Register). If PLL interrupts are enabled, the software can wait for a PLL interrupt request and then check the LOCK bit. If interrupts are disabled, software can poll the LOCK bit continuously (during PLL startup, usually) or at periodic intervals. In either case, when the LOCK bit is set, the VCO clock is safe to use as the source for the base clock (see 8.4.3 Base Clock Selector Circuit). If the VCO is selected as the source for the base clock and the LOCK bit is clear, the PLL has suffered a severe noise hit and the software must take appropriate action, depending on the application. See 8.7 Interrupts for information and precautions on using interrupts.

Technical Data

MC68HC908MR8 — Rev 4.0

These conditions apply when the PLL is in automatic bandwidth control mode:

- The ACQ bit (see 8.6.2 PLL Bandwidth Control Register) is a read-only indicator of the mode of the filter. See 8.4.2.2 Acquisition and Tracking Modes.
- The ACQ bit is set when the VCO frequency is within a certain tolerance, Δ_{TRK}, and is cleared when the VCO frequency is out of a certain tolerance, Δ_{UNT}. See 8.11 Acquisition/Lock Time Specifications for more information.
- The LOCK bit is a read-only indicator of the locked state of the PLL.
- The LOCK bit is set when the VCO frequency is within a certain tolerance, Δ_{Lock}, and is cleared when the VCO frequency is out of a certain tolerance, Δ_{UNL}. See 8.11 Acquisition/Lock Time Specifications for more information.
- CPU interrupts can occur if enabled (PLLIE = 1) when the PLL's lock condition changes, toggling the LOCK bit. See 8.6.1 PLL Control Register.

The PLL also may operate in manual mode (AUTO = 0). Manual mode is used by systems that do not require an indicator of the lock condition for proper operation. Such systems typically operate well below f_{BUSMAX} and require fast startup.

These conditions apply when in manual mode:

- ACQ is a writable control bit that controls the mode of the filter. Before turning on the PLL in manual mode, the ACQ bit must be clear.
- Before entering tracking mode (ACQ = 1), software must wait a given time, t_{ACQ} (see 8.11 Acquisition/Lock Time Specifications), after turning on the PLL by setting PLLON in the PLL control register (PCTL).
- Software must wait a given time, t_{AL}, after entering tracking mode before selecting the PLL as the clock source to CGMOUT (BCS = 1).
- The LOCK bit is disabled.
- CPU interrupts from the CGM are disabled.

8.4.2.4 Programming the PLL

This procedure shows how to program the PLL.

NOTE: The round function in the following equations means that the real number should be rounded to the nearest integer number.

- 1. Choose the desired bus frequency, f_{BUSDES}.
- 2. Calculate the desired VCO frequency (four times the desired bus frequency).

 f VCLKDES = $^{4 \times f}$ BUSDES

- 3. Choose a practical PLL reference frequency, f_{RCLK}.
- 4. Select a VCO frequency multiplier, N.
- 5. Calculate and verify the adequacy of the VCO and bus frequencies f_{VCLK} and f_{BUS} .

 $f_{VCLK} = N \times f_{RCLK}$ $f_{BUS} = (f_{VCLK})/4$

- 6. Select a VCO linear range multiplier, L. where $f_{NOM} = 4.9152 \text{ MHz}$
- 7. Calculate and verify the adequacy of the VCO programmed center-of-range frequency, f_{VRS}.

 $f_{VRS} = (L) f_{NOM}$

- 8. Verify the choice of N and L by comparing f_{VCLK} to f_{VRS} and $f_{VCLKDES}$. For proper operation, f_{VCLK} must be within the application's tolerance of $f_{VCLKDES}$, and f_{VRS} must be as close as possible to f_{VCLK} .
- **CAUTION:** Exceeding the recommended maximum bus frequency or VCO frequency can crash the MCU.
 - 9. Program the PLL registers accordingly:
 - a. In the upper four bits of the PLL programming register (PPG), program the binary equivalent of N.
 - b. In the lower four bits of the PLL programming register (PPG), program the binary equivalent of L.

8.4.2.5 Special Programming Exceptions

The programming method described in **8.4.2.4 Programming the PLL** does not account for possible exceptions. A value of 0 for N or L is meaningless when used in the equations given. To account for these exceptions:

- A 0 value for N is interpreted exactly the same as a value of 1.
- A 0 value for L disables the PLL and prevents its selection as the source for the base clock. See 8.4.3 Base Clock Selector Circuit.

8.4.3 Base Clock Selector Circuit

This circuit is used to select either the crystal clock, CGMXCLK, or the VCO clock, CGMVCLK, as the source of the base clock, CGMOUT. The two input clocks go through a transition control circuit that waits up to three CGMXCLK cycles and three CGMVCLK cycles to change from one clock source to the other. During this time, CGMOUT is held in state. The output of the transition control circuit is then divided by two to correct the duty cycle. Therefore, the bus clock frequency, which is one-half of the base clock frequency, is one-fourth the frequency of the selected clock (CGMXCLK or CGMVCLK).

The BCS bit in the PLL control register (PCTL) selects which clock drives CGMOUT. The VCO clock cannot be selected as the base clock source if the PLL is not turned on. The PLL cannot be turned off if the VCO clock is selected. The PLL cannot be turned on or off simultaneously with the selection or deselection of the VCO clock. The VCO clock also cannot be selected as the base clock source if the factor L is programmed to a 0. This value would set up a condition inconsistent with the operation of the PLL, so that the PLL would be disabled and the crystal clock would be forced as the source of the base clock.

MC68HC908MR8 - Rev 4.0

8.4.4 CGM External Connections

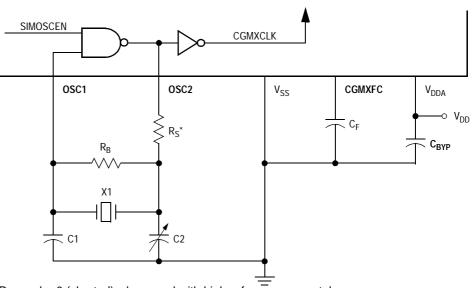
In its typical configuration, the CGM requires seven external components. Five of these are for the crystal oscillator and two are for the PLL.

The crystal oscillator is normally connected in a Pierce oscillator configuration, as shown in **Figure 8-3**. **Figure 8-3** shows only the logical representation of the internal components and may not represent actual circuitry.

The oscillator configuration uses five components:

- 1. Crystal, X₁
- 2. Fixed capacitor, C1
- 3. Tuning capacitor, C₂ (can also be a fixed capacitor)
- 4. Feedback resistor, R_B
- 5. Series resistor, R_S (optional)

The series resistor (R_S) is included in the diagram to follow strict Pierce oscillator guidelines and may not be required for all ranges of operation, especially with high frequency crystals. Refer to the crystal manufacturer's data for more information.


Figure 8-3 also shows the external components for the PLL:

- Bypass capacitor, C_{BYP}
- Filter capacitor, C_F

Routing should be done with great care to minimize signal cross talk and noise. See **8.11 Acquisition/Lock Time Specifications** for routing information and more information on the filter capacitor's value and its effects on PLL performance.

Technical Data

Clock Generator Module (CGM) I/O Signals

*R_S can be 0 (shorted) when used with higher-frequency crystals. Refer to manufacturer's data.

Figure 8-3. CGM External Connections

8.5 I/O Signals

The following paragraphs describe the CGM input/output (I/O) signals.

8.5.1 Crystal Amplifier Input Pin (OSC1)

The OSC1 pin is an input to the crystal oscillator amplifier.

8.5.2 Crystal Amplifier Output Pin (OSC2)

The OSC2 pin is the output of the crystal oscillator inverting amplifier.

8.5.3 External Filter Capacitor Pin (CGMXFC)

The CGMXFC pin is required by the loop filter to filter out phase corrections. A small external capacitor is connected to this pin.

NOTE: To prevent noise problems, C_F should be placed as close to the CGMXFC pin as possible, with minimum routing distances and no routing of other signals across the C_F connection.

MC68HC908MR8 — Rev 4.0

MOTOROLA

8.5.4 PLL Analog Power Pin (V_{DDA})

 V_{DDA} is a power pin used by the analog portions of the PLL. Connect the V_{DDA} pin to the same voltage potential as the V_{DD} pin.

NOTE: Route V_{DDA} carefully for maximum noise immunity and place bypass capacitors as close as possible to the package.

8.5.5 Oscillator Enable Signal (SIMOSCEN)

The SIMOSCEN signal comes from the system integration module (SIM) and enables the oscillator and PLL.

8.5.6 Crystal Output Frequency Signal (CGMXCLK)

CGMXCLK is the crystal oscillator output signal. It runs at the full speed of the crystal (f_{XCLK}) and comes directly from the crystal oscillator circuit. **Figure 8-3** shows only the logical relation of CGMXCLK to OSC1 and OSC2 and may not represent the actual circuitry. The duty cycle of CGMXCLK is unknown and may depend on the crystal and other external factors. Also, the frequency and amplitude of CGMXCLK can be unstable at startup.

8.5.7 CGM Base Clock Output (CGMOUT)

CGMOUT is the clock output of the CGM. This signal goes to the SIM, which generates the MCU clocks. CGMOUT is a 50 percent duty cycle clock running at twice the bus frequency. CGMOUT is software programmable to be either the oscillator output, CGMXCLK, divided by two or the VCO clock, CGMVCLK, divided by two.

8.5.8 CGM CPU Interrupt (CGMINT)

CGMINT is the interrupt signal generated by the PLL lock detector.

Semiconductor, Inc.

Freescale

Technical Data

8.6 CGM Registers

These registers control and monitor operation of the CGM:

- PLL control register (PCTL), see 8.6.1 PLL Control Register
- PLL bandwidth control register (PBWC), see 8.6.2 PLL Bandwidth Control Register
- PLL programming register (PPG), see 8.6.3 PLL Programming Register

Figure 8-4 is a summary of the CGM registers.

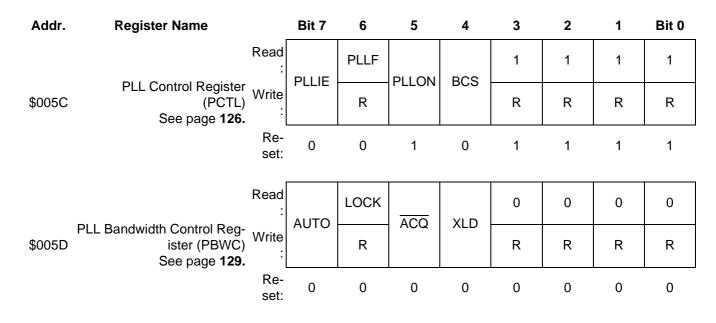
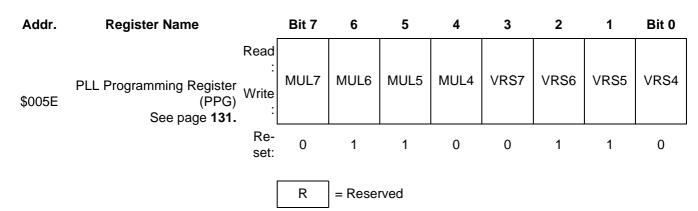



Figure 8-4. CGM I/O Register Summary

MC68HC908MR8 - Rev 4.0

Clock Generator Module (CGM)

Notes:

- 1. When AUTO = 0, PLLIE is forced to logic 0 and is read-only.
- 2. When AUTO = 0, PLLF and LOCK read as logic 0.
- 3. When AUTO = 1, ACQ is read-only.
- 4. When PLLON = 0 or VRS[7:4] = \$0, BCS is forced to logic 0 and is read-only.
- 5. When PLLON = 1, the PLL programming register is read-only.
- 6. When BCS = 1, PLLON is forced set and is read-only.

Figure 8-4. CGM I/O Register Summary

8.6.1 PLL Control Register

The PLL control register (PCTL) contains the interrupt enable and flag bits, the on/off switch, and the base clock selector bit.

Ad- \$005C dress:

	Bit 7	6	5	4	3	2	1	Bit 0	
Read:	ad: P PLLIE		PLLON	BCS	1	1	1	1	
Write:		R		000	R	R	R	R	
Reset:	0	0	1	0	1	1	1	1	
R = Reserved									

Figure 8-5. PLL Control Register (PCTL)

Technical Data

PLLIE — PLL Interrupt Enable Bit

This read/write bit enables the PLL to generate an interrupt request when the LOCK bit toggles, setting the PLL flag, PLLF. When the AUTO bit in the PLL bandwidth control register (PBWC) is clear, PLLIE cannot be written and reads as logic 0. Reset clears the PLLIE bit.

1 = PLL interrupts enabled

- 0 = PLL interrupts disabled
- PLLF PLL Interrupt Flag Bit

This read-only bit is set whenever the LOCK bit toggles. PLLF generates an interrupt request if the PLLIE bit also is set. PLLF always reads as logic 0 when the AUTO bit in the PLL bandwidth control register (PBWC) is clear. Clear the PLLF bit by reading the PLL control register. Reset clears the PLLF bit.

- 1 = Change in lock condition
- 0 = No change in lock condition
- **NOTE:** Do not inadvertently clear the PLLF bit. Any read or read-modify-write operation on the PLL control register clears the PLLF bit.

PLLON — PLL On Bit

This read/write bit activates the PLL and enables the VCO clock, CGMVCLK. PLLON cannot be cleared if the VCO clock is driving the base clock, CGMOUT (BCS = 1). Reset sets this bit so that the loop can stabilize as the MCU is powering up. See **8.4.3 Base Clock** Selector Circuit.

1 = PLL on

0 = PLL off

BCS — Base Clock Select Bit

This read/write bit selects either the crystal oscillator output, CGMXCLK, or the VCO clock, CGMVCLK, as the source of the CGM output, CGMOUT. CGMOUT frequency is one-half the frequency of the selected clock. BCS cannot be set while the PLLON bit is clear. After toggling BCS, it may take up to three CGMXCLK and three CGMVCLK cycles to complete the transition from one source clock to the other. During the transition, CGMOUT is held in stasis. Reset clears the BCS bit. See **8.4.3 Base Clock Selector Circuit**.

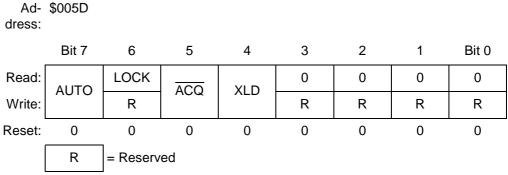
1 = CGMVCLK divided by two drives CGMOUT

0 = CGMXCLK divided by two drives CGMOUT

NOTE: PLLON and BCS have built-in protection that prevents the base clock selector circuit from selecting the VCO clock as the source of the base clock if the PLL is off. Therefore, PLLON cannot be cleared when BCS is set, and BCS cannot be set when PLLON is clear. If the PLL is off (PLLON = 0), selecting CGMVCLK requires two writes to the PLL control register. See **8.4.3 Base Clock Selector Circuit**.

PCTL Bits 3–0 — Unimplemented Bits

These bits provide no function and always read as logic 1s.


Technical Data

MC68HC908MR8 - Rev 4.0

8.6.2 PLL Bandwidth Control Register

The PLL bandwidth control register:

- Selects automatic or manual (software-controlled) bandwidth control mode
- Indicates when the PLL is locked
- In automatic bandwidth control mode, indicates when the PLL is in acquisition or tracking mode
- In manual operation, forces the PLL into acquisition or tracking mode

AUTO — Automatic Bandwidth Control Bit

This read/write bit selects automatic or manual bandwidth control. When initializing the PLL for manual operation (AUTO = 0), clear the $\overline{\text{ACQ}}$ bit before turning on the PLL. Reset clears the AUTO bit.

- 1 = Automatic bandwidth control
- 0 = Manual bandwidth control
- LOCK Lock Indicator Bit

When the AUTO bit is set, LOCK is a read-only bit that becomes set when the VCO clock, CGMVCLK, is locked (running at the programmed frequency). When the AUTO bit is clear, LOCK reads as logic 0 and has no meaning. Reset clears the LOCK bit.

- 1 = VCO frequency correct or locked
- 0 = VCO frequency incorrect or unlocked

MC68HC908MR8 - Rev 4.0

ACQ — Acquisition Mode Bit

When the AUTO bit is set, \overline{ACQ} is a read-only bit that indicates whether the PLL is in acquisition mode or tracking mode. When the AUTO bit is clear, \overline{ACQ} is a read/write bit that controls whether the PLL is in acquisition or tracking mode.

In automatic bandwidth control mode (AUTO = 1), the last-written value from manual operation is stored in a temporary location and is recovered when manual operation resumes. Reset clears this bit, enabling acquisition mode.

- 1 = Tracking mode
- 0 = Acquisition mode

XLD — Crystal Loss Detect Bit

When the VCO output, CGMVCLK, is driving CGMOUT, this read/write bit can indicate whether the crystal reference frequency is active or not. To check the status of the crystal reference, follow these steps:

- 1. Write a logic 1 to XLD.
- 2. Wait N \times 4 cycles. (N is the VCO frequency multiplier.)
- 3. Read XLD.
 - 1 = Crystal reference is not active.
 - 0 = Crystal reference is active.

The crystal loss detect function works only when the BCS bit is set, selecting CGMVCLK to drive CGMOUT. When BCS is clear, XLD always reads as logic 0.

PBWC Bits 3–0 — Reserved for Test

These bits enable test functions not available in user mode. To ensure software portability from development systems to user applications, software should write 0s to PBWC[3:0] whenever writing to PBWC.

Technical Data

8.6.3 PLL Programming Register

The PLL programming register (PPG) contains the programming information for the modulo feedback divider and the programming information for the hardware configuration of the VCO.

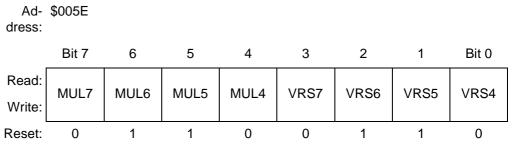


Figure 8-7. PLL Programming Register (PPG)

MUL[7:4] — Multiplier Select Bits

These read/write bits control the modulo feedback divider that selects the VCO frequency multiplier, N. See **8.4.2.1 PLL Circuits** and **8.4.2.4 Programming the PLL**. A value of \$0 in the multiplier select bits configures the modulo feedback divider the same as a value of \$1. Reset initializes these bits to \$6 to give a default multiply value of 6.

Table 8-1. VCO Frequency Multiplier (N) Selection

MUL7:MUL6:MUL5:MUL4	VCO Frequency Multiplier (N)
0000	1
0001	1
0010	2
0011	3
1101	13
1110	14
1111	15

NOTE: The multiplier select bits have built-in protection that prevents them from being written when the PLL is on (PLLON = 1).

MC68HC908MR8 — Rev 4.0

VRS[7:4] — VCO Range Select Bits

These read/write bits control the hardware center-of-range linear multiplier L, which controls the hardware center-of-range frequency f_{VRS} . See 8.4.2.1 PLL Circuits, 8.4.2.4 Programming the PLL, and 8.6.1 PLL Control Register. VRS[7:4] cannot be written when the PLLON bit in the PLL control register (PCTL) is set. See 8.4.2.5 Special Programming Exceptions. A value of \$0 in the VCO range select bits disables the PLL and clears the BCS bit in the PCTL. See 8.4.3 Base Clock Selector Circuit and 8.4.2.5 Special Programming Exceptions for more information.

Reset initializes the bits to \$6 to give a default range multiply value of 6.

NOTE: The VCO range select bits have built-in protection that prevents them from being written when the PLL is on (PLLON = 1) and prevents selection of the VCO clock as the source of the base clock (BCS = 1) if the VCO range select bits are all clear.

The VCO range select bits must be programmed correctly. Incorrect programming may result in failure of the PLL to achieve lock.

8.7 Interrupts

When the AUTO bit is set in the PLL bandwidth control register (PBWC), the PLL can generate a CPU interrupt request every time the LOCK bit changes state. The PLLIE bit in the PLL control register (PCTL) enables CPU interrupts from the PLL. PLLF, the interrupt flag in the PCTL, becomes set whether interrupts are enabled or not. When the AUTO bit is clear, CPU interrupts from the PLL are disabled and PLLF reads as logic 0.

Software should read the LOCK bit after a PLL interrupt request to see if the request was due to an entry into lock or an exit from lock. When the PLL enters lock, the VCO clock, CGMVCLK, divided by two can be selected as the CGMOUT source by setting BCS in the PCTL. When the PLL exits lock, the VCO clock frequency is corrupt, and appropriate precautions should be taken. If the application is not

Technical Data

MC68HC908MR8 — Rev 4.0

frequency-sensitive, interrupts should be disabled to prevent PLL interrupt service routines from impeding software performance or from exceeding stack limitations.

NOTE: Software can select the CGMVCLK divided by two as the CGMOUT source even if the PLL is not locked (LOCK = 0). Therefore, software should make sure the PLL is locked before setting the BCS bit.

8.8 Wait Mode

The WAIT instruction puts the MCU in low power-consumption standby mode.

The WAIT instruction does not affect the CGM. Before entering wait mode, software can disengage and turn off the PLL by clearing the BCS and PLLON bits in the PLL control register (PCTL). Less power-sensitive applications can disengage the PLL without turning it off. Applications that require the PLL to wake the MCU from wait mode also can deselect the PLL output without turning off the PLL.

8.9 Stop Mode

The STOP instruction puts the MCU in low power-consumption standby mode.

The STOP instruction disables the CGMC (oscillator and phase-lock loop) and holds the CGM outputs low.

8.10 CGM During Break Mode

The system integration module (SIM) controls whether status bits in other modules can be cleared during the break state. The BCFE bit in the SIM break flag control register (SBFCR) enables software to clear status bits during the break state. See **7.7.5 SIM Break Flag Control Register**.

To allow software to clear status bits during a break interrupt, write a logic 1 to the BCFE bit. If a status bit is cleared during the break state, it remains cleared when the MCU exits the break state.

MC68HC908MR8 — Rev 4.0		

To protect the PLLF bit during the break state, write a logic 0 to the BCFE bit. With BCFE at logic 0 (its default state), software can read and write the PLL control register during the break state without affecting the PLLF bit.

8.11 Acquisition/Lock Time Specifications

The acquisition and lock times of the PLL are, in many applications, the most critical PLL design parameters. Proper design and use of the PLL ensures the highest stability and lowest acquisition/lock times.

8.11.1 Acquisition/Lock Time Definitions

Typical control systems refer to the acquisition time or lock time as the reaction time, within specified tolerances, of the system to a step input. In a PLL, the step input occurs when the PLL is turned on or when it suffers a noise hit. The tolerance is usually specified as a percent of the step input or when the output settles to the desired value plus or minus a percent of the frequency change. Therefore, the reaction time is constant in this definition, regardless of the size of the step input. For example, consider a system with a 5 percent acquisition time tolerance. If a command instructs the system to change from 0 Hz to 1 MHz, the acquisition time is the time taken for the frequency to reach 1 MHz \pm 50 kHz. Fifty kHz = 5 percent of the 1-MHz step input. If the system is operating at 1 MHz and suffers a -100-kHz noise hit, the acquisition time is the time taken to return from 900 kHz to 1 MHz \pm 5 kHz. Five kHz = 5 percent of the 100-kHz step input.

Other systems refer to acquisition and lock times as the time the system takes to reduce the error between the actual output and the desired output to within specified tolerances. Therefore, the acquisition or lock time varies according to the original error in the output. Minor errors may not even be registered. Typical PLL applications prefer to use this definition because the system requires the output frequency to be within a certain tolerance of the desired frequency regardless of the size of the initial error.

Technical Data

MC68HC908MR8 — Rev 4.0

The discrepancy in these definitions makes it difficult to specify an acquisition or lock time for a typical PLL. Therefore, the definitions for acquisition and lock times for this module are:

- Acquisition time, t_{ACQ}, is the time the PLL takes to reduce the error between the actual output frequency and the desired output frequency to less than the tracking mode entry tolerance, Δ_{TRK}. Acquisition time is based on an initial frequency error, (f_{DES}- f_{ORIG})/f_{DES}, of not more than ±100 percent. In automatic bandwidth control mode (see 8.4.2.3 Manual and Automatic PLL Bandwidth Modes), acquisition time expires when the ACQ bit becomes set in the PLL bandwidth control register (PBWC).
- Lock time, t_{Lock} , is the time the PLL takes to reduce the error between the actual output frequency and the desired output frequency to less than the lock mode entry tolerance, Δ_{Lock} . Lock time is based on an initial frequency error, $(f_{DES}-f_{ORIG})/f_{DES}$, of not more than \pm 100 percent. In automatic bandwidth control mode, lock time expires when the LOCK bit becomes set in the PLL bandwidth control register (PBWC). See 8.4.2.3 Manual and Automatic PLL Bandwidth Modes.

Obviously, the acquisition and lock times can vary according to how large the frequency error is and may be shorter or longer in many cases.

8.11.2 Parametric Influences on Reaction Time

Acquisition and lock times are designed to be as short as possible while still providing the highest possible stability. These reaction times are not constant, however. Many factors directly and indirectly affect the acquisition time.

The most critical parameter which affects the reaction times of the PLL is the reference frequency, f_{RDV} . This frequency is the input to the phase detector and controls how often the PLL makes corrections. For stability, the corrections must be small compared to the desired frequency, so several corrections are required to reduce the frequency error. Therefore, the slower the reference the longer it takes to make these corrections. This parameter is also under user control via the choice of crystal frequency, f_{XCLK} .

Technical Data

135

Freescale

Semiconductor, Inc.

Another critical parameter is the external filter capacitor. The PLL modifies the voltage on the VCO by adding or subtracting charge from this capacitor. Therefore, the rate at which the voltage changes for a given frequency error (thus change in charge) is proportional to the capacitor size. The size of the capacitor also is related to the stability of the PLL. If the capacitor is too small, the PLL cannot make small enough adjustments to the voltage and the system cannot lock. If the capacitor is too large, the PLL may not be able to adjust the voltage in a reasonable time. See **8.11.3 Choosing a Filter Capacitor**.

Also important is the operating voltage potential applied to V_{DDA} . The power supply potential alters the characteristics of the PLL. A fixed value is best. Variable supplies, such as batteries, are acceptable if they vary within a known range at very slow speeds. Noise on the power supply is not acceptable, because it causes small frequency errors which continually change the acquisition time of the PLL.

Temperature and processing also can affect acquisition time because the electrical characteristics of the PLL change. The part operates as specified as long as these influences stay within the specified limits. External factors, however, can cause drastic changes in the operation of the PLL. These factors include noise injected into the PLL through the filter capacitor, filter capacitor leakage, stray impedances on the circuit board, and even humidity or circuit board contamination.

8.11.3 Choosing a Filter Capacitor

As described in 8.11.2 Parametric Influences on Reaction Time, the external filter capacitor, C_F , is critical to the stability and reaction time of the PLL. The PLL is also dependent on reference frequency and supply voltage. The value of the capacitor must, therefore, be chosen with supply potential and reference frequency in mind. For proper operation, the external filter capacitor must be chosen according to this equation:

$$C_{F} = C_{FACT} \left(\frac{V_{DDA}}{f_{RDV}} \right)$$

For acceptable values of C_{FACT} , see **8.11 Acquisition/Lock Time Specifications**. For the value of V_{DDA} , choose the voltage potential at which the MCU is operating. If the power supply is variable, choose a value near the middle of the range of possible supply values.

Technical Data

MC68HC908MR8 — Rev 4.0

This equation does not always yield a commonly available capacitor size, so round to the nearest available size. If the value is between two different sizes, choose the higher value for better stability. Choosing the lower size may seem attractive for acquisition time improvement, but the PLL can become unstable. Also, always choose a capacitor with a tight tolerance (± 20 percent or better) and low dissipation.

8.11.4 Reaction Time Calculation

The actual acquisition and lock times can be calculated using the equations here. These equations yield nominal values under these conditions:

- Correct selection of filter capacitor, C_F; see 8.11.3 Choosing a Filter Capacitor
- Room temperature operation
- Negligible external leakage on CGMXFC
- Negligible noise

The K factor in the equations is derived from internal PLL parameters. K_{ACQ} is the K factor when the PLL is configured in acquisition mode, and K_{TRK} is the K factor when the PLL is configured in tracking mode. See **8.4.2.2 Acquisition and Tracking Modes**.

$$t_{ACQ} = \left(\frac{V_{DDA}}{f_{RDV}}\right) \left(\frac{8}{K_{ACQ}}\right)$$
$$t_{AL} = \left(\frac{V_{DDA}}{f_{RDV}}\right) \left(\frac{4}{K_{TRK}}\right)$$

 $t_{Lock} = t_{ACQ} + t_{AL}$

NOTE: Inverse proportionality between the lock time and the reference frequency

In automatic bandwidth control mode, the acquisition and lock times are quantized into units based on the reference frequency, see **8.4.2.3 Manual and Automatic PLL Bandwidth Modes**. A certain number of clock cycles, n_{ACQ} , is required to ascertain that the PLL is within the tracking mode entry tolerance, Δ_{TRK} , before exiting acquisition mode. A

MC68HC908MR8 - Rev 4.0

Technical Data

certain number of clock cycles, n_{TRK} , is required to ascertain that the PLL is within the lock mode entry tolerance, Δ_{Lock} . Therefore, the acquisition time, t_{ACQ} , is an integer multiple of n_{ACQ}/f_{RDV} , and the acquisition to lock time, t_{AL} , is an integer multiple of n_{TRK}/f_{RDV} . Also, since the average frequency over the entire measurement period must be within the specified tolerance, the total time usually is longer than t_{Lock} as calculated above.

In manual mode, it is usually necessary to wait considerably longer than t_{Lock} before selecting the PLL clock (see 8.4.3 Base Clock Selector Circuit) because the factors described in 8.11.2 Parametric Influences on Reaction Time may slow the lock time considerably.

Technical Data

138

MC68HC908MR8 — Rev 4.0

Section 9. Pulse-Width Modulator for Motor Control (PWMMC)

9.1 Contents

9.2	Introduction	140
9.3	Features	141
9.4	Timebase	146
9.4.1	Resolution	146
9.4.2	Prescaler	148
9.5	PWM Generators.	148
9.5.1	Load Operation	148
9.5.2	PWM Data Overflow and Underflow Conditions	152
9.6	Output Control	152
9.6.1	Selecting Six Independent PWMs or Three	
	Complementary PWM Pairs.	152
9.6.2	Dead-Time Insertion	154
9.6.3	Output Polarity	157
9.6.4	Output Port Control Register	159
9.7	Fault Protection	161
9.7.1	Fault Condition Input Pins.	164
9.7.2	Software Output Disable	168
9.7.3	Output Port Control	168
9.8	Initialization and the PWMEN Bit	169
9.9	PWM Operation in Wait Mode	170
9.10	PWM Operation in Stop Mode	170
9.11	PWM Operation in Break Mode	171
9.12	Control Logic Block	172
9.12.1	PWM Counter Registers	172
9.12.2	PWM Counter Modulo Registers	173
9.12.3		
9.12.4	PWM Control Register 1	175

Pulse-Width Modulator for Motor Control

9.12.5	PWM Control Register 2	
9.12.6	Dead-Time Write-Once Register	179
9.12.7	PWM Disable Mapping Write-Once Register	179
9.12.8	Fault Control Register	180
9.12.9	Fault Status Register	181
9.12.10	Fault Acknowledge Register	182
9.12.11	PWM Output Control Register	184
9.13 P	WM Glossary	185

9.2 Introduction

This section describes the pulse-width modulator for motor control (PWMMC, version A). The MC68HC908MR8 PWM module can generate three complementary PWM pairs or six independent PWM signals. These PWM signals can be center-aligned or edge-aligned. A block diagram of the PWM module is shown in **Figure 9-1**.

A 12-bit timer PWM counter is common to all six channels. PWM resolution is one clock period for edge-aligned operation and two clock periods for center-aligned operation. The clock period is dependent on the internal operating frequency (f_{OP}) and a programmable prescaler. The highest resolution for edge-aligned operation is 125 ns ($f_{OP} = 8$ MHz). The highest resolution for center-aligned operation is 250 ns ($f_{OP} = 8$ MHz).

When generating complementary PWM signals, the module features automatic dead-time insertion to the PWM output pairs.

A summary of the PWM registers is shown in Figure 9-2.

Pulse-Width Modulator for Motor Control (PWMMC) Features

9.3 Features

Features of the PWMMC include:

- Three complimentary PWM pairs or six independent PWM signals
- Edge-aligned PWM signals or center-aligned PWM signals
- PWM signal polarity control
- Manual PWM output control through software
- Programmable fault protection
- Complimentary mode also features:
 - Dead-time insertion
 - Separate top/bottom pulse width correction via current sensing or programmable software bits

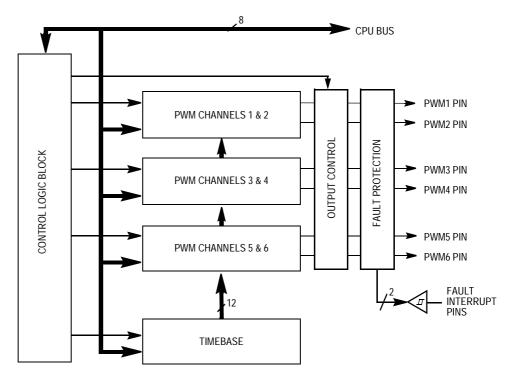


Figure 9-1. PWM Module Block Diagram

MC68HC908MR8 - Rev 4.0

Pulse-Width Modulator for Motor Control

Addr.	Register Name		Bit 7	6	5	4	3	2	1	Bit 0
\$0020	PWM Control Register 1 (PCTL1)	Read: Write:	DISX	DISY	PWMIN T	PWMF			LDOK	PWME N
	See page 175.	Reset :	0	0	0	0	0	0	0	0
\$0021	PWM Control Register 2 (PCTL2)	Write:	LDFQ1	LDFQ0	0	SEL12	SEL34	SEL56	PRSC1	PRSC0
·	See page 177 .	Reset :	0	0	0	0	0	0	0	0
\$0022	Fault Control Register (FCR)	Read: Write:	FINT4	FMODE 4					FINT1	FMODE 1
	See page 180.	Reset :	0	0	0	0	0	0	0	0
	Fault Status Register (FSR) See page 181.	Read:	FPIN4	FFLAG 4	0	0	0	0	FPIN1	FFLAG 1
\$0023		Write:								
		Reset :	U	0	U	0	U	0	U	0
	Fault Acknowledge Register (FTACK) See page 182.	Read:	0	0	0	0	0	0	0	0
\$0024		Write:		FTACK 4						FTACK 1
		Reset :	0	0	0	0	0	0	0	0
\$0025	PWM Output Control (PWMOUT)	Read: Write:	0	OUTCT L	OUT6	OUT5	OUT4	OUT3	OUT2	OUT1
Φ0025	(PWM001) See page 159 .	Reset :	0	0	0	0	0	0	0	0
		Read:	0	0	0	0	Bit 11	Bit 10	Bit 9	Bit 8
\$0026	PWM Counter Register High (PCNTH)	Write:								
	See page 172.	Reset :	0	0	0	0	0	0	0	0
U = Unaffected X = Indeter- minate			R	= Reser	ved	Bold	= Buff- ered			

Figure 9-2. Register Summary (Sheet 1 of 4)

Technical Data

MC68HC908MR8 - Rev 4.0

MOTOROLA

Pulse-Width Modulator for Motor Control (PWMMC) Features

Addr.	Register Name		Bit 7	6	5	4	3	2	1	Bit 0
	PWM Counter Register Low (PCNTL) See page 172.	Read:	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
\$0027		Write:								
		Reset :	0	0	0	0	0	0	0	0
		Read:	0	0	0	0	Bit 11	Bit 10	Bit 9	Bit 8
\$0028	PWM Counter Modulo Register High (PMODH)	Write:					BRTT	Dit 10	DI	Dir o
	See page 173.	Reset :	0	0	0	0	Х	Х	Х	х
¢0000	PWM Counter Modulo	Read: Write:	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
\$0029	Register Low (PMODL) See page 173 .	Reset :	х	Х	Х	Х	Х	Х	Х	Х
\$002A	PWM 1 Value Register High (PVAL1H) See page 174.	Read: Write:	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
ψυσΖΑ		Reset :	0	0	0	0	0	0	0	0
\$002B	PWM 1 Value Register Low (PVAL1L) See page 174.	Read: Write:	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
ΨΟΟΖΒ		Reset :	0	0	0	0	0	0	0	0
\$002C	PWM 2 Value Register High (PVAL2H)	Read: Write:	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
<i>\</i>	See page 174 .	Reset :	0	0	0	0	0	0	0	0
\$002D	PWM 2 Value Register Low (PVAL2L)	Read: Write:	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
ΨŪŪĹD	See page 174 .	Reset :	0	0	0	0	0	0	0	0
U = Unaffected X = Indeter- minate			R	= Reser	ved	Bold	= Buff- ered			

Figure 9-2. Register Summary (Sheet 2 of 4)

Pulse-Width Modulator for Motor Control (PWMMC) For More Information On This Product, Go to: www.freescale.com

Pulse-Width Modulator for Motor Control

Addr.	Register Name		Bit 7	6	5	4	3	2	1	Bit 0
\$002E	PWM 3 Value Register High (PVAL3H)	Read: Write:	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
	See page 174.	Reset :	0	0	0	0	0	0	0	0
\$002F	PWM 3 Value Register Low (PVAL3L)	Read: Write:	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
	See page 174.	Reset :	0	0	0	0	0	0	0	0
\$0030	PWM 4 Value Register High (PVAL4H)		Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
	See page 174.	Reset :	0	0	0	0	0	0	0	0
\$0031	PWM 4 Value Register Low (PVAL4L)	Read: Write:	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
	See page 174.	Reset :	0	0	0	0	0	0	0	0
\$0032	PWM 5 Value Register High (PMVAL5H)	Read: Write:	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
	See page 174.	Reset :	0	0	0	0	0	0	0	0
\$0033	PWM 5 Value Register Low (PVAL5L)		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
	See page 174.	Reset :	0	0	0	0	0	0	0	0
\$0034	PWM 6 Value Register High (PVAL6H)	write.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
	See page 174.	Reset :	0	0	0	0	0	0	0	0
U = Unaffected X = Indeter- minate			R	= Reser	ved	Bold	= Buff- ered			

Figure 9-2. Register Summary (Sheet 3 of 4)

Pulse-Width Modulator for Motor Control (PWMMC) Features

Addr.	Register Name		Bit 7	6	5	4	3	2	1	Bit 0
\$0035	PWM 6 Value Register 0035 Low (PMVAL6L)		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
	See page 174.	Reset :	0	0	0	0	0	0	0	0
\$0036	Dead-Time Write-Once Register (DEADTM)	Read: Write:	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
	See page 179.	Reset :	1	1	1	1	1	1	1	1
\$0037	PWM Disable Mapping Write-Once Register	Read: Write:	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
	(DISMAP) See page 179.	Reset :	1	1	1	1	1	1	1	1
U = Una minate	ffected X = Indeter-		R	= Reser	ved	Bold	= Buff- ered			

Figure 9-2. Register Summary (Sheet 4 of 4)

MC68HC908MR8 - Rev 4.0

Pulse-Width Modulator for Motor Control (PWMMC) For More Information On This Product, Go to: www.freescale.com

9.4 Timebase

This subsection provides for a discussion of the timebase.

9.4.1 Resolution

In center-aligned mode, a 12-bit up/down counter is used to create the PWM period. Therefore, the PWM resolution in center-aligned mode is two clocks (highest resolution is 250 ns @ $f_{OP} = 8$ MHz) as shown in **Figure 9-3**. The up/down counter uses the value in the timer modulus register to determine its maximum count. The PWM period will equal:

(timer modulus) x (PWM clock period) x 2

For edge-aligned mode, a 12-bit up-only counter is used to create the PWM period. Therefore, the PWM resolution in edge-aligned mode is one clock (highest resolution is 125 ns @ $f_{OP} = 8$ MHz) as shown in Figure 9-4. Again, the timer modulus register is used to determine the maximum count. The PWM period will equal:

(timer modulus) x (PWM clock period)

Center-aligned operation versus edge-aligned operation is determined by the option EDGE. See **5.4 CONFIG Bits**.

Technical Data

MC68HC908MR8 — Rev 4.0

Pulse-Width Modulator for Motor Control (PWMMC) Timebase

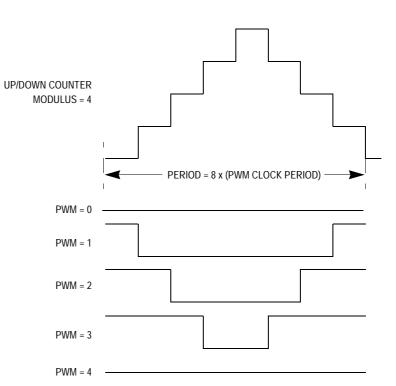


Figure 9-4. Edge-Aligned PWM (Positive Polarity)

MC68HC908MR8 - Rev 4.0

Pulse-Width Modulator for Motor Control (PWMMC) For More Information On This Product, Go to: www.freescale.com

9.4.2 Prescaler

To permit lower PWM frequencies, a prescaler is provided which will divide the PWM clock frequency by 1, 2, 4, or 8. **Table 9-1** shows how setting the prescaler bits in PWM control register 2 affects the PWM clock frequency. This prescaler is buffered and will not be used by the PWM generator until the LDOK bit is set and a new PWM reload-cycle begins.

Prescaler Bits PRSC1:PRSC0	PWM Clock Frequency
00	f _{OP}
01	f _{OP} /2
10	f _{OP} /4
11	f _{OP} /8

Table 9-1. PWM Prescaler

9.5 **PWM Generators**

This subsection describes the pulse-width modulator (PWM) generators.

9.5.1 Load Operation

To help avoid erroneous pulse widths and PWM periods, the modulus, prescaler, and PWM value registers are buffered. New PWM values, counter modulus values, and prescalers can be loaded from their buffers into the PWM module every one, two, four, or eight PWM cycles. LDFQ1:LDFQ0 in PWM control register 2 are used to control this reload frequency, as shown in **Table 9-2**. When a reload cycle arrives, regardless of whether an actual reload occurs (as determined by the LDOK bit), the PWM reload flag bit in PWM control register 1 will be set. If the PWMINT bit in PWM control register 1 is set, a CPU interrupt request will be generated when PWMF is set. Software can use this interrupt to calculate new PWM parameters in real time for the PWM module.

MC68HC908MR8 — Rev 4.0

Pulse-Width Modulator for Motor Control (PWMMC) PWM Generators

Reload Frequency Bits LDFQ1:LDFQ0	PWM Reload Frequency
00	Every PWM cycle
01	Every 2 PWM cycles
10	Every 4 PWM cycles
11	Every 8 PWM cycles

For ease of software, the LDFQx bits are buffered. When the LDFQx bits are changed, the reload frequency will not change until the previous reload cycle is completed. See Figure 9-5.

NOTE: When reading the LDFQx bits, the value is the buffered value (for example, not necessarily the value being acted upon).

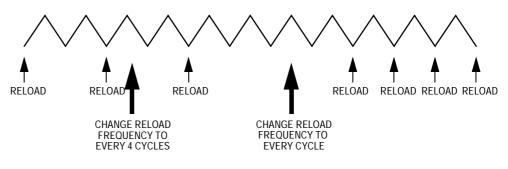


Figure 9-5. Reload Frequency Change

PWMINT enables CPU interrupt requests as shown in **Figure 9-6**. When this bit is set, CPU interrupt requests are generated when the PWMF bit is set. When the PWMINT bit is clear, PWM interrupt requests are inhibited. PWM reloads will still occur at the reload rate, but no interrupt requests will be generated.

MC68HC908MR8 - Rev 4.0

Pulse-Width Modulator for Motor Control

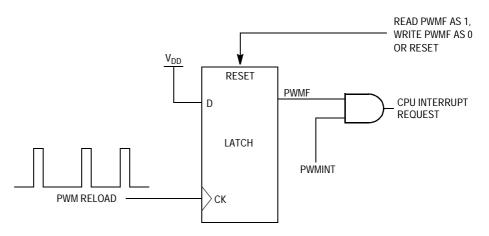


Figure 9-6. PWM Interrupt Requests

To prevent a partial reload of PWM parameters from occurring while the software is still calculating them, an interlock bit controlled from software is provided. This bit informs the PWM module that all the PWM parameters have been calculated, and it is okay to use them. A new modulus, prescaler, and/or PWM value cannot be loaded into the PWM module until the LDOK bit in PWM control register 1 is set. When the LDOK bit is set, these new values are loaded into a second set of registers and used by the PWM generator at the beginning of the next PWM reload cycle as shown in Figure 9-7, Figure 9-8, Figure 9-9, and Figure 9-10. After these values are loaded, the LDOK bit is cleared.

NOTE: When the PWM module is enabled (via the PWMEN bit), a load will occur if the LDOK bit is set. Even if it is not set, an interrupt will occur if the PWMINT bit is set. To prevent this, the software should clear the PWMINT bit before enabling the PWM module.

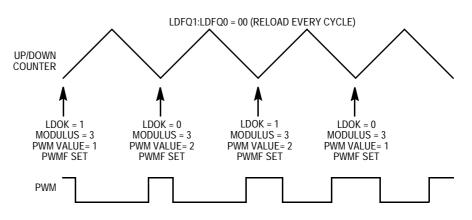
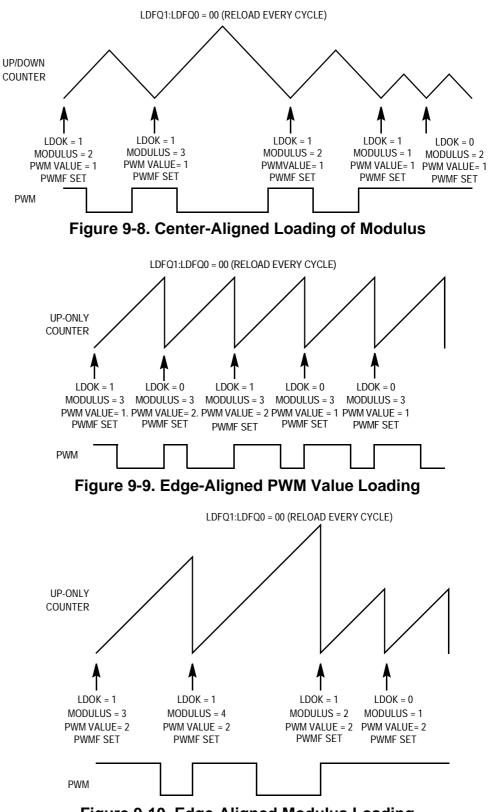



Figure 9-7. Center-Aligned PWM Value Loading

Technical Data

MC68HC908MR8 — Rev 4.0

Pulse-Width Modulator for Motor Control (PWMMC) PWM Generators

Figure 9-10. Edge-Aligned Modulus Loading

MC68HC908MR8 — Rev 4.0

Pulse-Width Modulator for Motor Control (PWMMC) For More Information On This Product, Go to: www.freescale.com 151

9.5.2 PWM Data Overflow and Underflow Conditions

The PWM value registers are 16-bit registers. Although the counter is only 12 bits, the user may write a 16-bit signed value to a PWM value register. As shown in **Figure 9-3** and **Figure 9-4**, if the PWM value is less than or equal to 0, the PWM will be inactive for the entire period. Conversely, if the PWM value is greater than or equal to the timer modulus, the PWM will be active for the entire period. Refer to **Table 9-3**.

NOTE: The terms active and inactive refer to the asserted and negated states of the PWM signals and should not be confused with the high-impedance state of the PWM pins.

PWMVALxH:PWMVALxL	Condition	PWM Value Used		
\$0000-\$0FFF	Normal	Per registers contents		
\$1000–\$7FFF	Overflow	\$FFF		
\$8000-\$FFFF	Underflow	\$000		

Table 9-3. PWM Data Overflow and Underflow Conditions

9.6 Output Control

This subsection discusses output control.

9.6.1 Selecting Six Independent PWMs or Three Complementary PWM Pairs

The PWM outputs can be configured as six independent PWM channels or three complementary channel pairs. The option INDEP determines which mode is used (see **5.4 CONFIG Bits**). If complementary operation is chosen, the PWM pins are paired as shown in **Figure 9-11**. Operation of one pair is then determined by one PWM value register. This type of operation is meant for use in motor drive circuits such as the one in **Figure 9-12**.

MC68HC908MR8 — Rev 4.0

Pulse-Width Modulator for Motor Control (PWMMC) Output Control

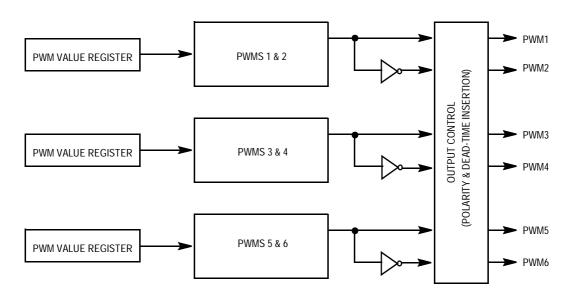
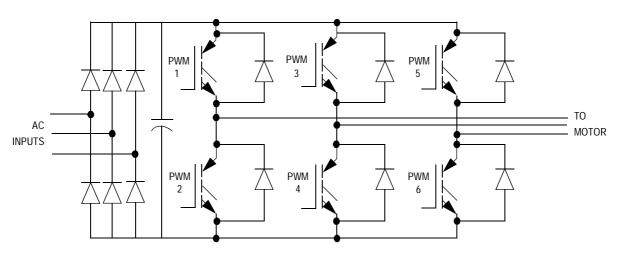



Figure 9-11. Complementary Pairing

When complementary operation is used, two additional features are provided:

- Dead-time insertion
- Separate top/bottom pulse width correction to correct for distortions caused by the motor drive characteristics.

If independent operation is chosen, each PWM has its own PWM value register.

MC68HC908MR8 - Rev 4.0

9.6.2 Dead-Time Insertion

As shown in **Figure 9-12**, in complementary mode, each PWM pair can be used to drive top-side/bottom-side transistors.

NOTE: When controlling DC-to-AC inverters such as this, the top and bottom PWMs in one pair should never be active at the same time.

In **Figure 9-12**, if PWM1 and PWM2 were on at the same time, large currents would flow through the two transistors as they discharge the bus capacitor. The IGBTs could be weakened or destroyed.

Simply forcing the two PWMs to be inversions of each other is not always sufficient. Since a time delay is associated with turning off the transistors in the motor drive, there must be a "dead-time" between the deactivation of one PWM and the activation of the other.

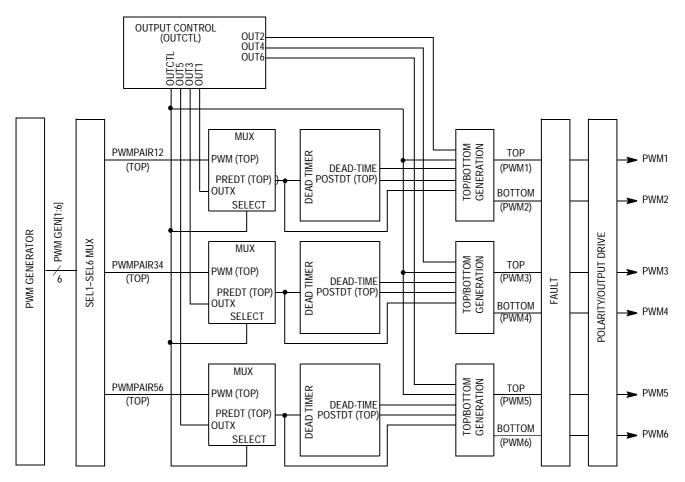
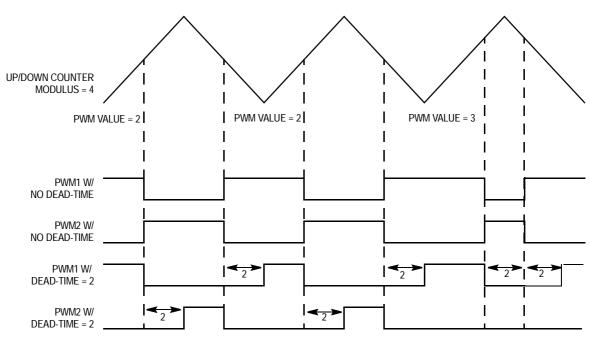
A dead-time can be specified in the dead-time write-once register. This 8-bit value specifies the number of CPU clock cycles to use for the dead-time. The dead-time is not affected by changes in the PWM period caused by the prescaler.

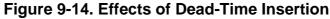
Dead-time insertion is achieved by feeding the top PWM outputs of the PWM generator into dead-time generators, as shown in **Figure 9-13**. When output control is enabled, the odd OUT bits, rather than the PWM generator outputs, are fed into the dead-time generators. See **9.6.4 Output Port Control Register.**

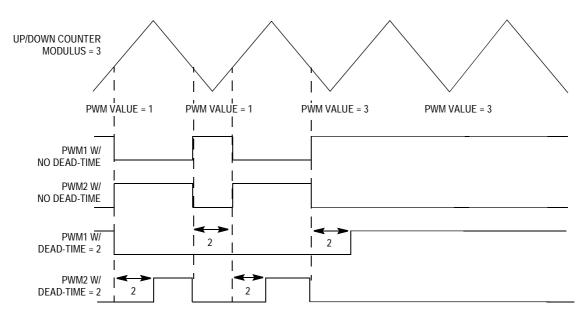
Technical Data

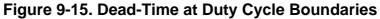
MC68HC908MR8 — Rev 4.0

Pulse-Width Modulator for Motor Control (PWMMC) Output Control

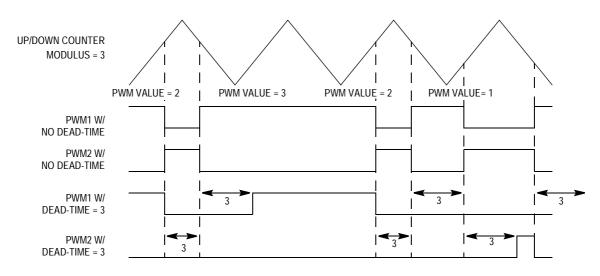



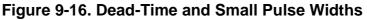

Figure 9-13. Dead-Time Generators


Whenever an input to a dead-time generator transitions, a dead-time is inserted (for example, both PWMs in the pair are forced to their inactive state). The BOTTOM PWM signal is generated from the TOP PWM and the dead-time. In the case of output control enabled, the odd OUTx bits control the top PWMs, the even OUTx bits control the bottom PWMs *with respect to the odd OUTx bits* (see Table 9-4). Figure 9-14 shows the effects of the dead-time insertion.


Examples of dead-time insertion are shown in **Figure 9-14** through **Figure 9-16**. **Figure 9-15** shows the effects of dead-time insertion at the duty cycle boundaries (near 0% and 100% duty cycles). **Figure 9-16** shows the effects of dead-time insertion on pulse widths smaller than the dead-time.

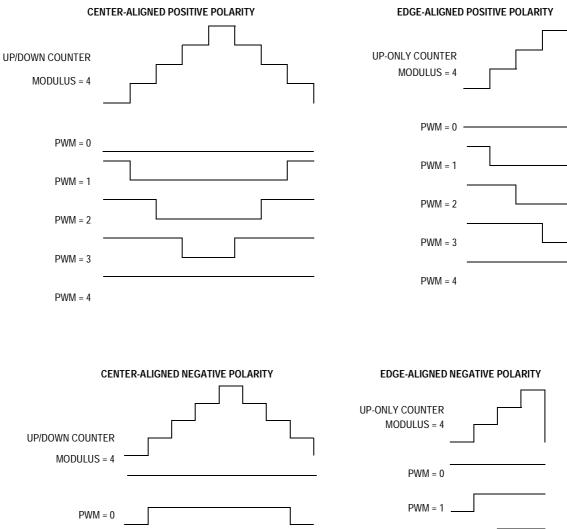
Pulse-Width Modulator for Motor Control





Technical Data

Pulse-Width Modulator for Motor Control (PWMMC) Output Control



9.6.3 Output Polarity

The output polarity of the PWMs is determined by two options: TOPNEG and BOTNEG. The top polarity option, TOPNEG, controls the polarity of PWMs 1, 3, and 5. The bottom polarity option, BOTNEG, controls the polarity of PWMs 2, 4, and 6. Positive polarity means that when the PWM is active, the PWM output is high. Conversely, negative polarity means that when the PWM is active, PWM output is low. See **Figure 9-17**.

NOTE: Both bits are found in the CONFIG register, which is a write-once register. This reduces the chances of the software inadvertently changing the polarity of the PWM signals and possibly damaging the motor drive hardware.

Pulse-Width Modulator for Motor Control

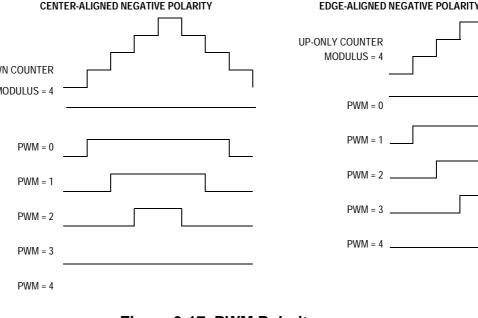
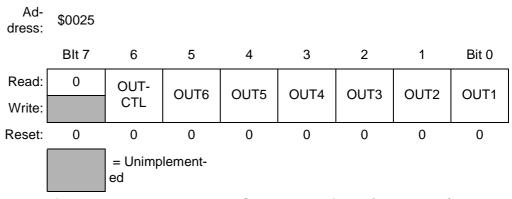



Figure 9-17. PWM Polarity

Technical Data

9.6.4 Output Port Control Register

Conditions may arise in which the PWM pins need to be individually controlled. This is made possible by the PWM output control register (PWMOUT) shown in Figure 9-18.

If the OUTCTL bit is set, the PWM pins can be controlled by the OUTx bits. These bits behave according to **Table 9-4**.

OUTx Bit	Complementary Mode	Independent Mode
OUT1	1 — PWM1 is active. 0 — PWM1 is inactive.	1 — PWM1 is active 0 — PWM1 is inactive
OUT2	1 — PWM2 is complement of PWM1. 0 — PWM2 is inactive.	1 — PWM2 is active 0 — PWM2 is inactive
OUT3	1 — PWM3 is active. 0 — PWM3 is inactive.	1 — PWM3 is active 0 — PWM3 is inactive
OUT4	 PWM4 is complement of PWM3. PWM4 is inactive. 	1 — PWM4 is active 0 — PWM4 is inactive
OUT5	1 — PWM5 is active. 0 — PWM5 is inactive.	1 — PWM5 is active 0 — PWM5 is inactive
OUT6	1 — PWM6 is complement of PWM5. 0 — PWM6 is inactive.	1 — PWM6 is active 0 — PWM6 is inactive

Table 9-4. OUTx Bits

When OUTCTL is set, the polarity options TOPPOL and BOTPOL will still affect the outputs. In addition, if complementary operation is in use, the PWM pairs will not be allowed to be active simultaneously, and dead-time will still not be violated. When OUTCTL is set and

MC68HC908MR8 - Rev 4.0

Pulse-Width Modulator for Motor Control (PWMMC) For More Information On This Product, Go to: www.freescale.com

complimentary operation is in use, the odd OUTx bits are inputs to the dead-time generators as shown in Figure 9-14. Dead-time is inserted whenever the odd OUTx bit toggles as shown in Figure 9-19. Although dead-time is not inserted when the even OUTx bits change, there will be no dead-time violation as shown in Figure 9-20.

Setting the OUTCTL bit does not disable the PWM generator and current sensing circuitry. They continue to run, but are no longer controlling the output pins. In addition, OUTCTL will control the PWM pins even when PWMEN = 0. When OUTCTL is cleared, the outputs of the PWM generator become the inputs to the dead-time and output circuitry at the beginning of the next PWM cycle.

NOTE: To avoid an unexpected dead-time occurrence, it is recommended that the OUTx bits be cleared prior to entering and prior to exiting individual PWM output control mode.

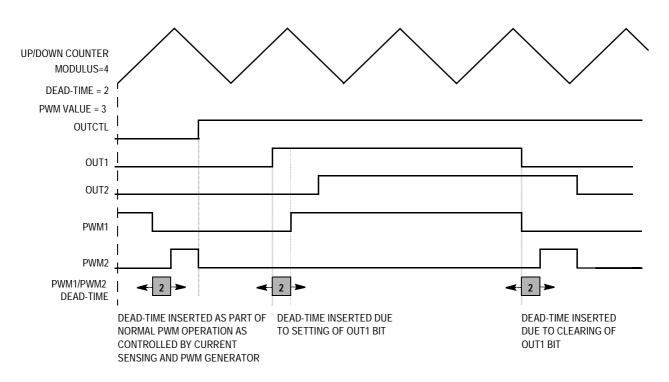
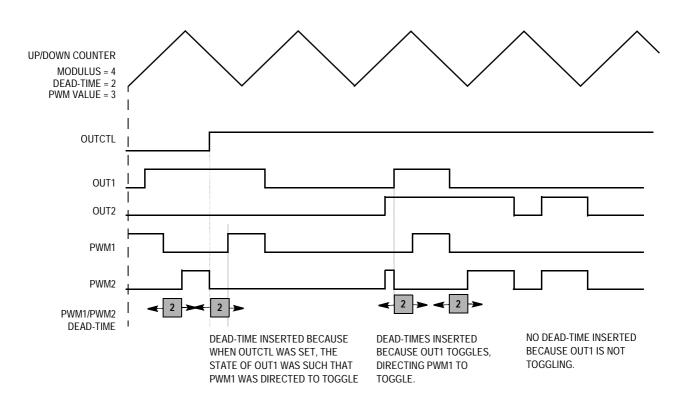
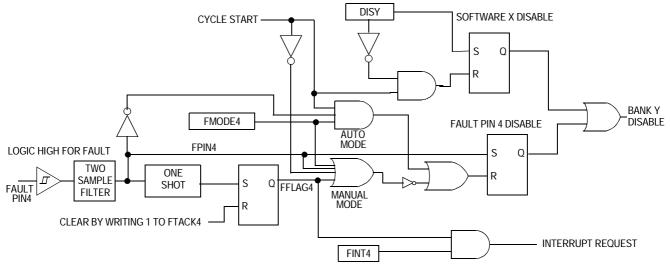



Figure 9-19. Dead-Time Insertion During OUTCTL = 1

Technical Data

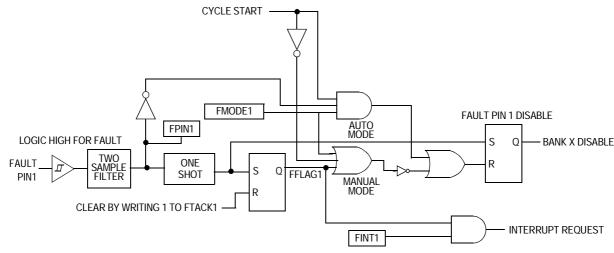
MC68HC908MR8 — Rev 4.0

Pulse-Width Modulator for Motor Control (PWMMC) Fault Protection



9.7 Fault Protection

Conditions may arise in the external drive circuitry which require that the PWM signals become inactive immediately, such as an overcurrent fault condition. Furthermore, it may be desirable to selectively disable PWM(s) solely with software.


One or more PWM pins can be disabled (forced to their inactive state) by applying a logic high to either of the two external fault pins or by writing a logic high to either of the disable bits (DISX and DISY in PWM control register 1). Figure 9-21 shows the structure of the PWM disabling scheme. While the PWM pins are disabled, they are forced to their inactive state. The PWM generator continues to run — only the output pins are disabled

Pulse-Width Modulator for Motor Control

The example is of fault pin 4 with DISY.

Note: In manual mode (FMODE = 0), fault 4 may be cleared only if a logic level low at the input of the fault pin is present.

The example is of fault pin 1.

Note: In manual mode (FMODE = 0), fault 1 may be cleared regardless of the logic level at the input of the fault pin.

Figure 9-21. PWM Disabling Scheme

To allow for different motor configurations and the controlling of more than one motor, the PWM disabling function is organized as two banks, bank X and bank Y. Bank information combines with information from the disable mapping register to allow selective PWM disabling. Fault

Technical Data

MC68HC908MR8 — Rev 4.0

Pulse-Width Modulator for Motor Control (PWMMC) Fault Protection

pin 1 and PWM disable bit X constitute the disabling function of bank X. Fault pin 4 and PWM disable bit Y constitute the disabling function of bank Y. **Figure 9-22** and **Figure 9-23** show the disable mapping write-once register and the decoding scheme of the bank which selectively disables PWM(s). When all bits of the disable mapping register are set, any disable condition will disable all PWMs.

A fault can also generate a CPU interrupt. Each fault pin has its own interrupt vector.

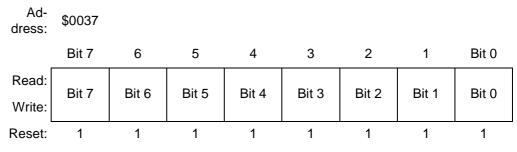


Figure 9-22. PWM Disable Mapping Write-Once Register (DISMAP)

MC68HC908MR8 — Rev 4.0

Pulse-Width Modulator for Motor Control (PWMMC) For More Information On This Product, Go to: www.freescale.com

Pulse-Width Modulator for Motor Control

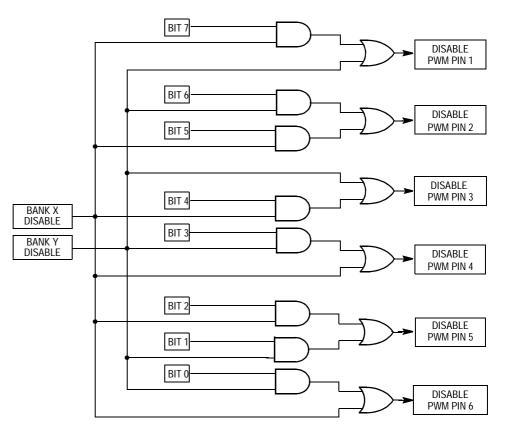


Figure 9-23. PWM Disabling Decode Scheme

9.7.1 Fault Condition Input Pins

A logic high level on a fault pin disables the respective PWM(s) determined by the bank and the disable mapping register. Each fault pin incorporates a filter to assist in rejecting spurious faults. All of the external fault pins are software-configurable to re-enable the PWMs either with the fault pin (automatic mode) or with software (manual mode). Each fault pin has an associated FMODE bit to control the PWM re-enabling method. Automatic mode is selected by setting the FMODEx bit in the fault control register. Manual mode is selected when FMODEx is clear.

NOTE: PORTC, when used as an input port, mirrors the state of the fault input pins, as PORTC has the capability of being used as an output port. When either pin of PORTC is set as an output, by setting its respective PORTC data direction register bit, the respective fault pin logic is disconnected from that pin and the fault input will be defaulted to normal

Technical Data

MC68HC908MR8 — Rev 4.0

non-fault condition to facilitate the use of PORTC as an output pin and not interfere with the PWM generator. To regain the fault capability for the respective fault input pin, clear the PORTC data direction register bit for that pin.

Additionally, when the device is reset, by default, PORTC is configured as an input. If either bit(s) of PORTC is intended to be used as an output, the logic state of the driven device's input is indeterminate. The state of the driven device, if at a logic one will drive the respective bit of PORTC input high, thus causing a fault to be input to the respective PORTC input and to the PWM module.

After setting the PORTC data direction register, clear the respective fault bits by writing a 1 to bit(s) 0 and or bit 6 in the FTACK Fault Acknowledge Register (FTACK) and Fault Status Registers (FSR), based on which PORTC bits that are used as output(s).

9.7.1.1 Fault Pin Filter

The two fault pins incorporate a filter to assist in determining a genuine fault condition. After a fault pin has been logic low for one CPU cycle, a rising edge (logic high) will be synchronously sampled once per CPU cycle for two cycles. If both samples are detected logic high, the corresponding FPIN bit and FFLAG bit will be set. The FPIN bit will remain set until the corresponding fault pin is logic low and synchronously sampled once in the following CPU cycle.

9.7.1.2 Automatic Mode

In automatic mode, the PWM(s) are disabled immediately once a filtered fault condition is detected (logic high). The PWM(s) remain disabled until the filtered fault condition is cleared (logic low) and a new PWM cycle begins as shown in Figure 9-24. Clearing the corresponding FFLAGx event bit will not enable the PWMs in automatic mode.

MC68HC908MR8 - Rev 4.0

Pulse-Width Modulator for Motor Control

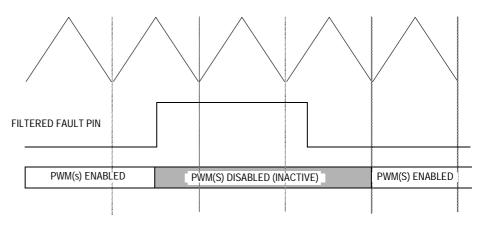


Figure 9-24. PWM Disabling in Automatic Mode

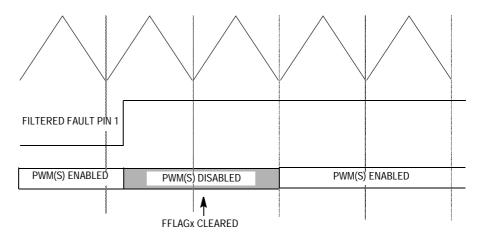
The filtered fault pin's logic state is reflected in the respective FPINx bit. Any write to this bit is overwritten by the pin state. The FFLAGx event bit is set with each rising edge of the respective fault pin after filtering has been applied. To clear the FFLAGx bit, the user must write a 1 to the corresponding FTACKx bit.

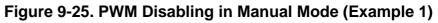
If the FINTx bit is set, a fault condition resulting in setting the corresponding FFLAG bit will also latch a CPU interrupt request. The interrupt request latch is not cleared until one of these actions occurs:

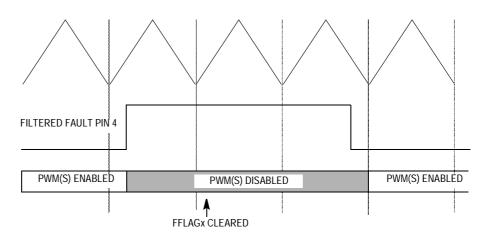
- The FFLAGx bit is cleared by writing a 1 to the corresponding FTACKx bit.
- The FINTx bit is cleared. (This will not clear the FFLAGx bit.)
- Reset A reset automatically clears all four interrupt latches.

If prior to a vector fetch the interrupt request latch is cleared by one of the above actions, a CPU interrupt will no longer be requested. A vector fetch does not alter the state of the PWMs, the FFLAGx event flag, or FINTx.

NOTE: If the FFLAGx or FINTx bits are not cleared during the interrupt service routine, the interrupt request latch will not be cleared.


Technical Data


MC68HC908MR8 - Rev 4.0


Pulse-Width Modulator for Motor Control (PWMMC) Fault Protection

9.7.1.3 Manual Mode

In manual mode, the PWM(s) are disabled immediately once a filtered fault condition is detected (logic high). The PWM(s) remain disabled until software clears the corresponding FFLAGx event bit and a new PWM cycle begins. In manual mode, the fault pins are grouped in pairs, each pair sharing common functionality. A fault condition on fault 1 may be cleared, allowing the PWM(s) to enable at the start of a PWM cycle regardless of the logic level at the fault pin. See **Figure 9-25**. A fault condition on fault 4 can be cleared, allowing the PWM(s) to enable, only if a logic low level at the fault pin is present at the start of a PWM cycle. See **Figure 9-26**.

MC68HC908MR8 - Rev 4.0

MOTOROLA

Pulse-Width Modulator for Motor Control (PWMMC) For More Information On This Product, Go to: www.freescale.com 167

The function of the fault control and event bits is the same as in automatic mode except that the PWMs are not re-enabled until the FFLAGx event bit is cleared by writing to the FTACKx bit and the filtered fault condition is cleared (logic low).

9.7.2 Software Output Disable

Setting PWM disable bit DISX or DISY in PWM control register 1 immediately disables the corresponding PWM pins as determined by the bank and disable mapping register. The PWM pin(s) remain disabled until the PWM disable bit is cleared and a new PWM cycle begins as shown in **Figure 9-27**. Setting a PWM disable bit does not latch a CPU interrupt request, and there are no event flags associated with the PWM disable bits.

9.7.3 Output Port Control

When operating the PWMs using the OUTx bits (OUTCTL = 1), fault protection applies as described in this section. Due to the absence of periodic PWM cycles, fault conditions are cleared upon each CPU cycle and the PWM outputs are re-enabled, provided all fault clearing conditions are satisfied.

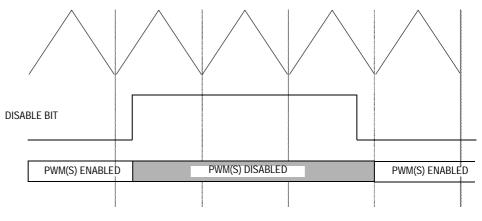


Figure 9-27. PWM Software Disable

Technical Data

Pulse-Width Modulator for Motor Control (PWMMC) Initialization and the PWMEN Bit

9.8 Initialization and the PWMEN Bit

For proper operation, all registers should be initialized and the LDOK bit should be set before enabling the PWM via the PWMEN bit. When the PWMEN bit is first set, a reload will occur immediately, setting the PWMF flag and generating an interrupt if PWMINT is set. In addition, in complementary mode, PWM value registers 1, 3, and 5 will be used for the first PWM cycle if current sensing is selected.

NOTE: If the LDOK bit is not set when PWMEN is set after a RESET, the prescaler and PWM values will be 0, but the modulus will be unknown. If the LDOK bit is not set after the PWMEN bit has been cleared then set (without a RESET), the modulus value that was last loaded will be used.

If the dead-time register (DEADTM) is changed after PWMEN or OUTCTL is set, an improper dead-time insertion could occur. However, the dead-time can never be shorter than the specified value.

Because of the equals-comparator architecture of this PWM, the modulus = 0 case is considered illegal. Therefore, the modulus register is not reset, and a modulus value of 0 will result in waveforms inconsistent with the other modulus waveforms. See **9.12.2 PWM Counter Modulo Registers**.

When PWMEN is set, the PWM pins change from high impedance to outputs. At this time, assuming no fault condition is present, the PWM pins will drive according to the PWM values, polarity, and dead-time. See the timing diagram in **Figure 9-28**.

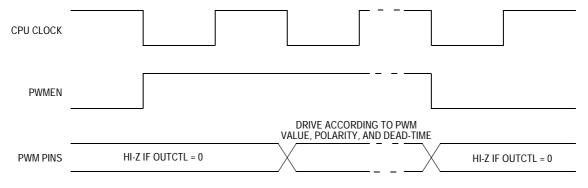


Figure 9-28. PWMEN and PWM Pins

Pulse-Width Modulator for Motor Control (PWMMC) For More Information On This Product, Go to: www.freescale.com 169

When the PWMEN bit is cleared, the following will occur:

- PWM pins will be three-stated unless OUTCTL = 1.
- PWM counter is cleared and will not be clocked.
- Internally, the PWM generator will force its outputs to 0 to avoid glitches when the PWMEN is set again.

When PWMEN is cleared, these features remain active:

- All fault circuitry
- Manual PWM pin control via the PWMOUT register
- Dead-time insertion when PWM pins change via the PWMOUT register
- **NOTE:** The PWMF flag and pending CPU interrupts are NOT cleared when PWMEN = 0.

9.9 PWM Operation in Wait Mode

When the microcontroller is put in low-power wait mode via the WAIT instruction, all clocks to the PWM module will continue to run. If an interrupt is issued from the PWM module (via a reload or a fault), the microcontroller will exit wait mode.

Clearing the PWMEN bit before entering wait mode will reduce power consumption in wait mode because the counter, prescaler divider, and LDFQ divider will no longer be clocked. In addition, power will be reduced because the PWMs will no longer toggle.

9.10 PWM Operation in Stop Mode

When the microcontroller is put in low-power wait mode via the STOP instruction, all clocks to the PWM module will stop.

NOTE: It is imperative that the program to clear the PWMEN bit before entering stop mode. Leaving the PWM module enabled during stop mode can destroy power stages connected to the PWM outputs. The PWM generator will no longer be clocked during stop mode and the PWM outputs will no longer toggle.

Technical Data

MC68HC908MR8 — Rev 4.0

9.11 PWM Operation in Break Mode

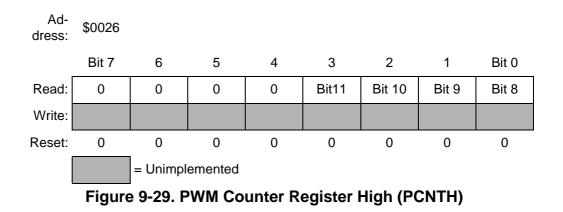
If the microcontroller goes into break mode (or background mode), the clocks to the PWM generator and output control blocks will freeze. This allows the user to set a breakpoint on a development system and examine the register contents and PWM outputs at that point. It also allows the user to single-step through the code.

The clocks to the fault block will continue to run. Therefore, if a fault occurs while the microcontroller is in break mode, the PWM outputs will immediately be driven to their inactive state(s).

During break mode, the system integration module (SIM) controls whether status bits in other modules can be cleared during the break state. The BCFE bit in the SIM break flag control register (SBFCR) enables software to clear status bits during the break state. Refer to **7.7.5 SIM Break Flag Control Register**.

To allow software to clear status bits during a break interrupt, write a logic 1 to the BCFE bit. If a status bit is cleared during the break state, it remains cleared when the MCU exits the break state.

To protect the PWMF and FFLAGx bits during the break state, make sure BCFE is a logic 0. With BCFE at logic 0 (its default state), software can read and write the status and control registers during the break state without affecting the PWMF and FFLAGx bits.


MC68HC908MR8 - Rev 4.0

9.12 Control Logic Block

This subsection provides a description of the control logic block.

9.12.1 PWM Counter Registers

The PWM counter registers (PCNTH and PCNTL) display the12-bit up/down or up-only counter. When the high byte of the counter is read, the lower byte is latched. PCNTL will hold this latched value until it is read.

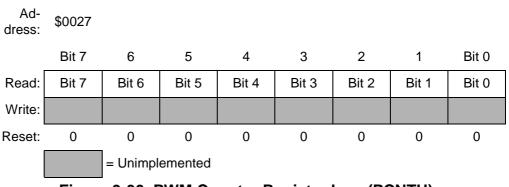


Figure 9-30. PWM Counter Register Low (PCNTH)

Pulse-Width Modulator for Motor Control (PWMMC) Control Logic Block

9.12.2 PWM Counter Modulo Registers

The PWM counter modulus registers (PDMODH and PDMODL) hold a 12-bit unsigned number that determines the maximum count for the up/down or up-only counter. In center-aligned mode, the PWM period will be twice the modulus (assuming no prescaler). In edge-aligned mode, the PWM period will equal the modulus.

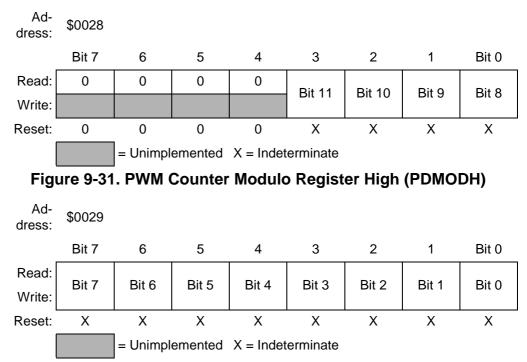


Figure 9-32. PWM Counter Modulo Register Low (PDMODL)

To avoid erroneous PWM periods, this value is buffered and will not be used by the PWM generator until the LDOK bit has been set and the next PWM load cycle begins.

NOTE: When reading this register, the value read is the buffer (not necessarily the value the PWM generator is currently using).

Because of the equals-comparator architecture of this PWM, the modulus = 0 case is considered illegal. Therefore, the modulus register is not reset, and a modulus value of 0 will result in waveforms inconsistent with the other modulus waveforms. If a modulus of 0 is loaded, the counter will continually count down from \$FFF. This operation will not be tested or guaranteed. (The user should consider it

MC68HC908MR8 - Rev 4.0

illegal.) However, the dead-time constraints and fault conditions will still be guaranteed.

9.12.3 PWMx Value Registers

Each of the six PWMs has a 16-bit PWM value register.

	Bit 7	6	5	4	3	2	1	Bit 0
Read: Write:	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
Write:								
Reset:	0	0	0	0	0	0	0	0

Figure 9-33. PWMx Value Registers High (PVALxH)

	Bit 7	6	5	4	3	2	1	Bit 0
Read:	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Write:	DIL 7	DILO	DII 0	DIL 4	DIUS	DIL Z	DILI	Bit U
Reset:	0	0	0	0	0	0	0	0

Figure 9-34. PWMx Value Registers Low (PVALxL)

The 16-bit signed value stored in this register determines the duty cycle of the PWM. The duty cycle is defined as: (PWM value/modulus) x 100.

Writing a number less than or equal to 0 causes the PWM to be off for the entire PWM period. Writing a number greater than or equal to the 12-bit modulus causes the PWM to be on for the entire PWM period.

If the complementary mode is selected, the PWM pairs share PWM value registers.

To avoid erroneous PWM pulses, this value is buffered and will not be used by the PWM generator until the LDOK bit has been set and the next PWM load cycle begins.

NOTE: When reading these registers, the value read is the buffer (not necessarily the value the PWM generator is currently using).

9.12.4 PWM Control Register 1

PWM control register 1 controls PWM enabling/disabling, the loading of new modulus, prescaler, and PWM values, and the PWM correction method. In addition, this register contains the software disable bits to force the PWM outputs to their inactive states (according to the disable mapping register).

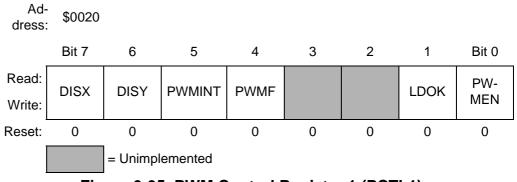


Figure 9-35. PWM Control Register 1 (PCTL1)

DISX — Software Disable for Bank X Bit

This read/write bit allows the user to disable one or more PWM pins in bank X. The pins that are disabled are determined by the disable mapping write-once register.

1 = Disable PWM pins in bank X

0 = Re-enable PWM pins at beginning of next PWM cycle

DISY — Software Disable for Bank Y Bit

This read/write bit allows the user to disable one or more PWM pins in bank Y. The pins that are disabled are determined by the disable mapping write-once register.

1 = Disable PWM pins in Bank Y Bit

0 = Re-enable PWM pins at beginning of next PWM cycle

PWMINT — PWM Interrupt Enable Bit

This read/write bit allows the user to enable and disable PWM CPU interrupts. If set, a CPU interrupt will be pending when the PWMF flag is set.

- 1 = Enable PWM CPU interrupts
- 0 = Disable PWM CPU interrupts

NOTE: When PWMINT is cleared, pending CPU interrupts are inhibited.

PWMF— PWM Reload Flag

This read/write bit is set at the beginning of every reload cycle regardless of the state of the LDOK bit. This bit is cleared by reading PWM control register 1 with the PWMF flag set, then writing a logic 0 to PWMF. If another reload occurs before the clearing sequence is complete, then writing logic 0 to PWMF has no effect.

- 1 = New reload cycle began.
- 0 = New reload cycle has not begun.
- **NOTE:** When PWMF is cleared, pending PWM CPU interrupts are cleared (excluding fault interrupts).

CAUTION: Bits 2 and/or 3 of PCTL1 are reserved and must never be set to a 1. Setting these bits to a 1 will affect the active PWM value registers. Undesirable results will occur.

LDOK-Load OK Bit

This read/write bit allows the counter modulus, counter prescaler, and PWM values in the buffered registers to be used by the PWM generator. These values will not be used until the LDOK bit is set and a new PWM load cycle begins. LDOK may be cleared, if it is set, by writing a logic 0 to it prior to the beginning of a new PWM load cycle. Internally this bit is automatically cleared after the new values are loaded.

- 1 = Okay to load new modulus, prescaler, and PWM values at beginning of next PWM load cycle
- 0 = Not okay to load new modulus, prescaler, and PWM values
- **NOTE:** The user should initialize the PWM registers and set the LDOK bit before enabling the PWM.

PWMEN — PWM Module Enable Bit

This read/write bit enables and disables the PWM generator and the PWM pins. When PWMEN is clear, the PWM generator is disabled and the PWM pins are in the high-impedance state (unless OUTCTL = 1). When the PWMEN bit is set, the PWM generator and PWM pins are activated. For more information, see **9.8 Initialization and the PWMEN Bit**.

- 1 = PWM generator and PWM pins enabled
- 0 = PWM generator and PWM pins disabled

Technical Data

MC68HC908MR8 — Rev 4.0

Pulse-Width Modulator for Motor Control (PWMMC) Control Logic Block

NOTE: A PWM CPU interrupt request can still be generated when LDOK is 0.

9.12.5 PWM Control Register 2

PWM control register 2 controls the PWM load frequency, the PWM correction method, and the PWM counter prescaler. For ease of software and to avoid erroneous PWM periods, some of these register bits are buffered. The PWM generator will not use the prescaler value until the LDOK bit has been set, and a new PWM cycle is starting. The correction bits are used at the beginning of each PWM cycle (if the ISENSx bits are configured for software correction). The load frequency bits are not used until the current load cycle is complete.

NOTE: The user should initialize this register before enabling the PWM.

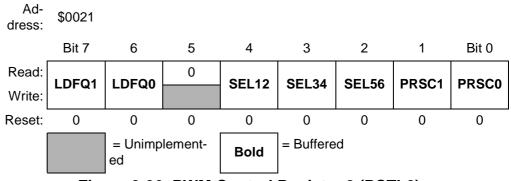


Figure 9-36. PWM Control Register 2 (PCTL2)

LDFQ1 and LDFQ0 — PWM Load Frequency Bits

These buffered read/write bits select the PWM CPU load frequency according to **Table 9-5**.

NOTE: When reading these bits, the value read is the buffer value (not necessarily the value the PWM generator is currently using).

Table 9-5. PWM Reload Frequency

Reload Frequency Bits LDFQ1:LDFQ0	PWM Reload Frequency
00	Every PWM cycle
01	Every 2 PWM cycles
10	Every 4 PWM cycles
11	Every 8 PWM cycles

MOTOROLA

- SEL12 Top/Bottom Correction Bit for PWM Pair 1 (PWMs 1 and 2) This buffered read/write bit selects which PWM value register is used for PWM pins 1 and 2 in complementary mode.
 - 1 = Use PWM value register 2.
 - 0 = Use PWM value register 1.
- **NOTE:** When reading this bit, the value read is the buffer value (not necessarily the value the output control block is currently using).
 - SEL34 Top/Bottom Correction Bit for PWM Pair 2 (PWMs 3 and 4)

This buffered read/write bit selects which PWM value register is used for PWM pins 3 and 4 in complementary mode.

1 = Use PWM value register 4.

0 = Use PWM value register 3.

NOTE: When reading this bit, the value read is the buffer value (not necessarily the value the output control block is currently using).

SEL56 — Top/Bottom Correction Bit for PWM Pair 3 (PWMs 5 and 6)

This buffered read/write bit selects which PWM value register is used for PWM pins 5 and 6 in complementary mode.

1 = Use PWM value register 6.

0 = Use PWM value register 5.

NOTE: When reading this bit, the value read is the buffer value (not necessarily the value the output control block is currently using).

PRSC1:PRSC0 — PWM Prescaler Bits

These buffered read/write bits allow the PWM clock frequency to be modified as shown in **Table 9-6**.

NOTE: When reading these bits, the value read is the buffer value (not necessarily the value the PWM generator is currently using).

Prescaler Bits PRSC1:PRSC0	PWM Clock Frequency
00	f _{OP}
01	f _{OP} /2
10	f _{OP} /4
11	f _{OP} /8

Table 9-6. PWM Prescaler

Technical Data

MC68HC908MR8 — Rev 4.0

NOTE: If PRSC1 and PRSC2 are set to any value other than 0, there is a one PWM cycle latency time before the PWM pins are driven after the PWMEN bit is set.

9.12.6 Dead-Time Write-Once Register

The dead-time write-once register (DEADTM) holds an 8-bit value which specifies the number of CPU clock cycles to use for the dead-time when complementary PWM mode is selected. After this register is written for the first time, it cannot be rewritten unless a RESET occurs. The dead-time is not affected by changes to the prescaler value.

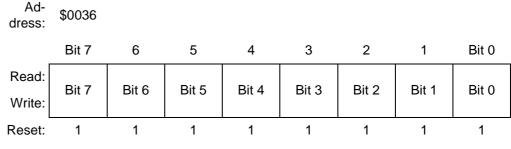


Figure 9-37. Dead-Time Write-Once Register (DEADTM)

9.12.7 PWM Disable Mapping Write-Once Register

The PWM disable mapping write-once register (DISMAP) holds an 8-bit value which determines which PWM pins will be disabled if an external fault or software disable occur. For a further description of the disable mapping, see **9.7 Fault Protection**. After this register is written for the first time, it cannot be rewritten unless a reset occurs.

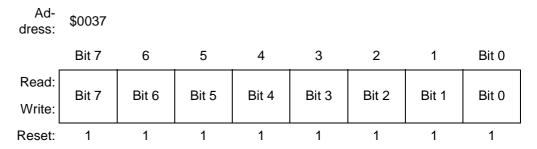


Figure 9-38. PWM Disable Mapping Write-Once Register (DISMAP)

MC68HC908MR8 - Rev 4.0

179

9.12.8 Fault Control Register

This register controls the fault protection circuitry.

Figure 9-39. Fault Control Register (FCR)

FMODE1 — Fault Mode Selection for Fault Pin 1 Bit (Automatic versus Manual Mode)

This read/write bit allows the user to select between automatic and manual mode faults. For further description of each mode, see

9.7 Fault Protection.

- 1 = Automatic mode
- 0 = Manual mode

FINT1 — Fault 1 Interrupt Enable Bit

This read/write bit allows the CPU interrupt caused by faults on fault pin 1 to be enabled. The fault protection circuitry is independent of this bit and will always be active. If a fault is detected, the PWM pins will still be disabled according to the disable mapping register.

1 = Fault pin 1 will cause CPU interrupts.

0 = Fault pin 1 will not cause CPU interrupts.

FMODE4 — Fault Mode Selection for Fault Pin 4 Bit (Automatic versus Manual Mode)

This read/write bit allows the user to select between automatic and manual mode faults. For further description of each mode, see **9.7 Fault Protection**.

1 = Automatic mode

0 = Manual mode

Technical Data

FINT4 — Fault 4 Interrupt Enable Bit

This read/write bit allows the CPU interrupt caused by faults on fault pin 4 to be enabled. The fault protection circuitry is independent of this bit and will always be active. If a fault is detected, the PWM pins will still be disabled according to the disable mapping register.

1 = Fault pin 4 will cause CPU interrupts.

0 = Fault pin 4 will not cause CPU interrupts.

9.12.9 Fault Status Register

This read-only register indicates the current fault status.

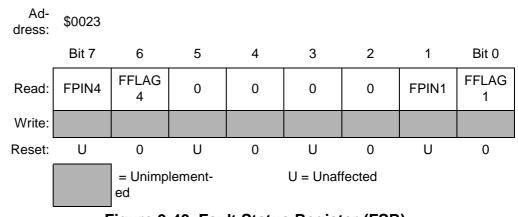


Figure 9-40. Fault Status Register (FSR)

FFLAG1 — Fault Event Flag 1

The FFLAG1 event bit is set within two CPU cycles after a rising edge on fault pin 1. To clear the FFLAG1 bit, the user must write a 1 to the FTACK1 bit in the fault acknowledge register.

1 = A fault has occurred on fault pin 1

0 = No new fault on fault pin 1

FPIN1 — State of Fault Pin 1

This read-only bit allows the user to read the current state of fault pin 1.

1 = Fault pin 1 is at logic 1

0 = Fault pin 1 is at logic 0

Pulse-Width Modulator for Motor Control

FFLAG4 — Fault Event Flag 4

The FFLAG4 event bit is set within two CPU cycles after a rising edge on fault pin 4. To clear the FFLAG4 bit, the user must write a 1 to the FTACK4 bit in the fault acknowledge register.

- 1 = A fault has occurred on fault pin 4
- 0 = No new fault on fault pin 4
- FPIN4 State of Fault Pin 4 Bit

This read-only bit allows the user to read the current state of fault pin 4.

1 = Fault pin 4 is at logic 1.

0 = Fault pin 4 is at logic 0.

9.12.10 Fault Acknowledge Register

The fault acknowledge register (FTACK) is used to acknowledge and clear the FFLAGs. In addition, it is used to monitor the current sensing bits to test proper operation.

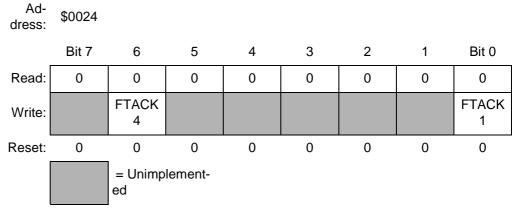


Figure 9-41. Fault Acknowledge Register (FTACK)

Technical Data

MOTOROLA

FTACK1 — Fault Acknowledge 1 Bit

The FTACK1 bit is used to acknowledge and clear FFLAG1. This bit will always read 0. Writing a 1 to this bit will clear FFLAG1. Writing a 0 will have no effect.

FTACK4 — Fault Acknowledge 4 Bit

The FTACK4 bit is used to acknowledge and clear FFLAG4. This bit will always read 0. Writing a 1 to this bit will clear FFLAG4. Writing a 0 will have no effect.

MC68HC908MR8 - Rev 4.0

Pulse-Width Modulator for Motor Control (PWMMC) For More Information On This Product, Go to: www.freescale.com

Pulse-Width Modulator for Motor Control

9.12.11 PWM Output Control Register

This register is used to manually control the PWM pins.

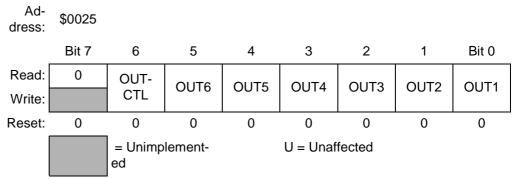


Figure 9-42. PWM Output Control Register (PWMOUT)

OUTCTL— Output control enable

This read/write bit allows the user to manually control the PWM pins. When set, the PWM generator is no longer the input to the dead-time and output circuitry. The OUTx bits determine the state of the PWM pins. Setting the OUTCTL bit does not disable the PWM generator. The generator continues to run, but is no longer the input to the PWM dead-time and output circuitry. When OUTCTL is cleared, the outputs of the PWM generator immediately become the inputs to the dead-time and output circuitry.

1 = PWM outputs controlled manually

0 = PWM outputs determined by PWM generator

Technical Data

MC68HC908MR8 — Rev 4.0

MOTOROLA

Pulse-Width Modulator for Motor Control (PWMMC) PWM Glossary

OUT6:OUT1-PWM Pin Output Control Bits

These read/write bits control the PWM pins according to Table 9-7.

OUTx Bit	Complementary Mode	Independent Mode
OUT1	1 — PWM1 is active 0 — PWM1 is inactive	1 — PWM1 is active 0 — PWM1 is inactive
OUT2	1 — PWM2 is complement of PWM 1 0 — PWM2 is inactive	1 — PWM2 is active 0 — PWM2 is inactive
OUT3	1 — PWM3 is active 0 — PWM3 is inactive	1 — PWM3 is active 0 — PWM3 is inactive
OUT4	1 — PWM4 is complement of PWM 3 0 — PWM4 is inactive	1 — PWM4 is active 0 — PWM4 is inactive
OUT5	1 — PWM5 is active 0 — PWM5 is inactive	1 — PWM5 is active 0 — PWM5 is inactive
OUT6	1 — PWM 6 is complement of PWM 5 0 — PWM6 is inactive	1 — PWM6 is active 0 — PWM6 is inactive

Table 9-7. OUTx Bits

9.13 PWM Glossary

CPU Cycle — One internal bus cycle (1/f_{OP})

PWM Clock Cycle (or Period) — One tick of the PWM counter $(1/f_{OP}$ with no prescaler). See Figure 9-43.

PWM Cycle (or Period)

- Center-aligned mode: The time it takes the PWM counter to count up and count down (modulus * 2/f_{OP} assuming no prescaler). See Figure 9-43.
- Edge-aligned mode: The time it takes the PWM counter to count up (modulus/f_{OP}). See Figure 9-43.

Pulse-Width Modulator for Motor Control

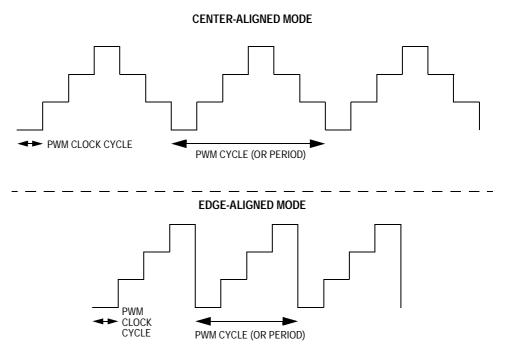


Figure 9-43. PWM Clock Cycle and PWM Cycle Definitions

PWM Load Frequency — The frequency at which new PWM parameters get loaded into the PWM. See **Figure 9-44**.

LDFQ1:LDFQ0 = 01 — RELOAD EVERY TWO CYCLES

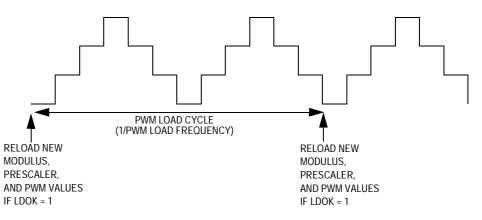


Figure 9-44. PWM Load Cycle/Frequency Definition

Section 10. Monitor ROM (MON)

10.1 Contents

10.2 Introduction
10.3 Features
10.4 Functional Description
10.4.1 Entering Monitor Mode
10.4.2 Forced Monitor Mode
10.4.3 Baud Rate
10.4.4 Data Format
10.4.5 Echoing
10.4.6 Break Signal
10.4.7 Commands
10.5 Security

10.2 Introduction

This section describes the monitor read-only memory (ROM). The monitor ROM (MON) allows complete testing of the microcontroller unit (MCU) through a 2-wire interface with a host computer.

10.3 Features

Features of the monitor ROM include:

- Normal user-mode pin functionality
- Standard mark/space non-return-to-zero (NRZ) communication with host computer
- 9600 baud communication with host computer
- Execution of code in random-access memory (RAM) or ROM

MOTOROLA

Monitor ROM (MON)

10.4 Functional Description

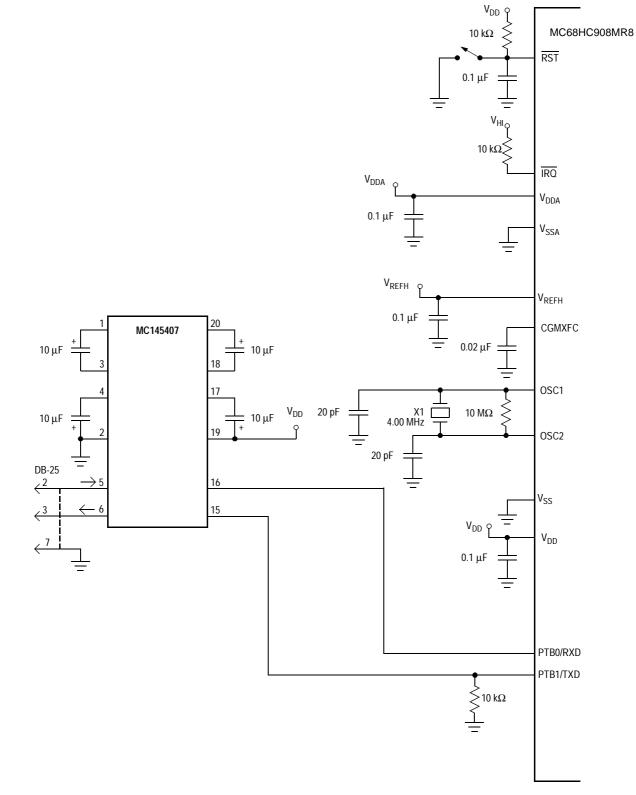
The monitor ROM receives and executes commands from a host computer. **Figure 10-1** shows a sample circuit used to enter monitor mode and communicate with a host computer via a standard RS-232 interface.

Simple monitor commands can access any memory address. In monitor mode, the MCU can execute host-computer code in RAM while all MCU pins retain normal operating mode functions. All communication between the host computer and the MCU is through the serial communications interface (SCI). A level-shifting RS-232 interface is required between the SCI and the host computer. PTB1 requires a pulldown resistor to ensure proper entry into monitor mode.

10.4.1 Entering Monitor Mode

Table 10-1 shows the pin conditions for entering monitor mode.

IRQ Pin	RESET	\$FFFE/ \$FFFF	PLL	PTB0	PTB1	External Clock	CGMOUT	f _{op}	СОР	Baud Rate	Comment	
х	V_{SS}	х	Х	х	х	х	0 0 Disabled		0	No operation until reset = V _{DD}		
V _{HI}	V _{DD} or V _{HI}	х	ON	V _{DD}	V _{SS}	4.0 MHz	MHz 16.0 MHz 8		8.0 MHz Disabled		PLL configured with BCS set by monitor code	
V _{DD}	V _{DD}	Blank (FF)	ON	х	х	4.0 MHz	16.0 MHz	8.0 MHz	Disabled		PLL configured with BCS set by monitor code	
V _{SS}	V _{DD}	Blank (FF)	OFF	х	x	f _{OSC}	f _{OSC} /2	f _{OSC} /4	Disabled	f _{OSC} /1024	Enters monitor mode with any external clock rate within operating spec	
V_{DD}	V_{DD}	Non-blank	Х	Х	Х	Х	Х	Х	Enabled	Х	Enters user mode	


Table 10-1. Mode Selection

X = Don't care

 $PTB0 = V_{DD}$ and $PTB1 = V_{SS}$ to enter monitor mode

PTB0 (RXD) and PTB1 (TXD) used for serial communications (all monitor mode)

Monitor ROM (MON) Functional Description

MC68HC908MR8 — Rev 4.0

MOTOROLA

Monitor ROM (MON)

Enter monitor mode by applying a logic 0 and then a logic 1 to the RST pin (see Table 10-1)

Once out of reset, the MCU waits for the host to send eight security bytes. After receiving the security bytes, the MCU sends a break signal (10 consecutive logic 0s) to the host computer, indicating that it is ready to receive a command.

Monitor mode uses alternate vectors for reset and SWI. The alternate vectors are in the \$FE page instead of the \$FF page and allow code execution from the internal monitor firmware instead of user code. The computer operating properly (COP) module is disabled in monitor mode as long as V_{HI} is applied to either the IRQ pin or the RST pin. Refer to **Section 7. System Integration Module (SIM)** for more information on modes of operation.

10.4.2 Forced Monitor Mode

On FLASH parts, if the voltage applied to the $\overline{IRQ1}$ is less than V_{HI}, the MCU will come out of reset in user mode. The memory reset module monitors the reset vector fetches and will assert an internal reset if it detects that the reset vectors are erased. When the MCU comes out of reset with its reset vector erased, it is forced into monitor mode without requiring high voltage on the IRQ1 pin.

The computer operating properly (COP) module is disabled in forced monitor mode. Any reset other than a power-on reset (POR) will automatically force the MCU to come back to the forced monitor mode.

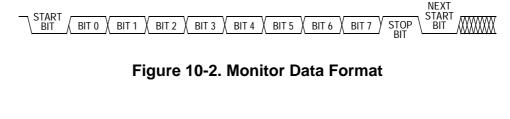
 Table 10-2 is a summary of the differences between user mode and monitor mode.

		Functions										
Modes	СОР	Reset Vector High	Reset Vector Low	SWI Vector High	SWI Vector Low							
User	Enabled	\$FFFE	\$FFFF	\$FFFC	\$FFFD							
Monitor	Disabled ⁽¹⁾	\$FEFE	\$FEFF	\$FEFC	\$FEFD							

Table 10-2. Mode Differences

1. If the high voltage (V_{HI}) is removed from the $\overline{\text{IRQ}}$ pin or the $\overline{\text{RST}}$ pin, the SIM asserts its COP enable output.

Technical Data

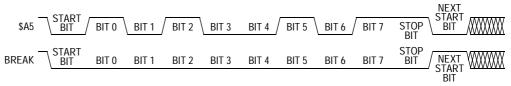

10.4.3 Baud Rate

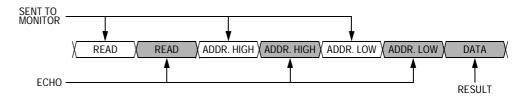
With a 4.0-MHz reference clock source, data is transferred between the monitor and host at 9600 baud. The communication baud rate is achieved by stepping up the internal CPU frequency to 8 MHz, using the phase-locked loop (PLL). A 4.0-MHz reference frequency is necessary in this mode as the PLL will not lock with any other reference clock.

As described in **Table 10-1**, on FLASH parts when V_{SS} is applied to IRQ with \$FFFE and \$FFFF = 0, the PLL setup is bypassed and the baud rate is equal to the reference frequency divided by 1024. This facilitates a faster communication rate in the interest of a first time programmed device. This allows selection of other reference frequencies and thus, facilities a faster communication rate. The reference frequency, in this case while not utilizing the PLL, is limited to the range of f_{OP} . Refer to **21.8 Control Timing**.

10.4.4 Data Format

Communication with the monitor ROM is in standard non-return-to-zero (NRZ) mark/space data format. See **Figure 10-2** and **Figure 10-3**.




Figure 10-3. Sample Monitor Waveforms

The data transmit and receive rate is 9600 baud. Transmit and receive baud rates will be identical.

Monitor ROM (MON)

10.4.5 Echoing

As shown in **Figure 10-4**, the monitor ROM immediately echoes each received byte back to the PTB1/TXD pin for error checking.

Figure 10-4. Read Transaction

Any result of a command appears after the echo of the last byte of the command.

10.4.6 Break Signal

A start bit, followed by nine low bits, is a break signal. See **Figure 10-5**. When the monitor receives a break signal, it delays two bit times before echoing the break signal.

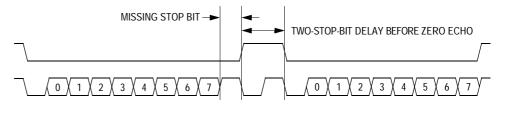
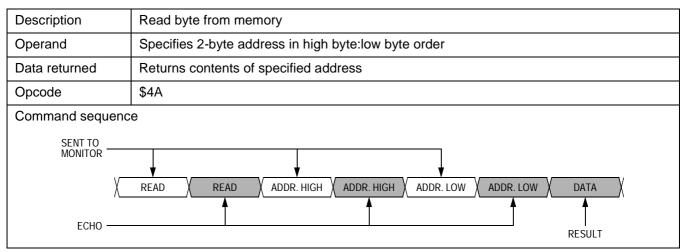


Figure 10-5. Break Transaction

Technical Data

MC68HC908MR8 — Rev 4.0

MOTOROLA


10.4.7 Commands

The monitor ROM uses these commands:

- READ, read memory
- WRITE, write memory
- IREAD, indexed read
- IWRITE, indexed write
- READSP, read stack pointer
- RUN, run user program

Refer to Table 10-3 through Table 10-8.

Table 10-3. READ (Read Memory) Command

Table 10-4. WRITE (Write Memory) Command

Description	Write byte to memory
Operand	Specifies 2-byte address in high byte:low byte order; low byte followed by data byte
Data returned	None
Opcode	\$49
Command sequence	WRITE ADDR. HIGH ADDR. HIGH ADDR. LOW ADDR. LOW DATA DATA

Monitor ROM (MON)

Table 10-5. IREAD (Indexed Read) Command

Description	Description Read next 2 bytes in memory from last address accessed						
Operand	Specifies 2-byte address in high byte:low byte order						
Data returned	Returns contents of next two addresses						
Opcode	\$1A						
Command sequence	Command sequence						
	SENT TO MONITOR VIREAD VIREAD VIREAD VIATA VIATA ECHO						

Table 10-6. IWRITE (Indexed Write) Command

Description	Write to last address accessed + 1					
Operand	Specifies single data byte					
Data returned	None					
Opcode	\$19					
Command sequence	pe					
	SENT TO MONITOR VIWRITE VIWRITE VIWRITE VINCE VIWRITE VIWRITE VINCE					
	ЕСНО					

NOTE: A sequence of IREAD or IWRITE commands can sequentially access a block of memory over the full 64-Kbyte memory map.

Technical Data

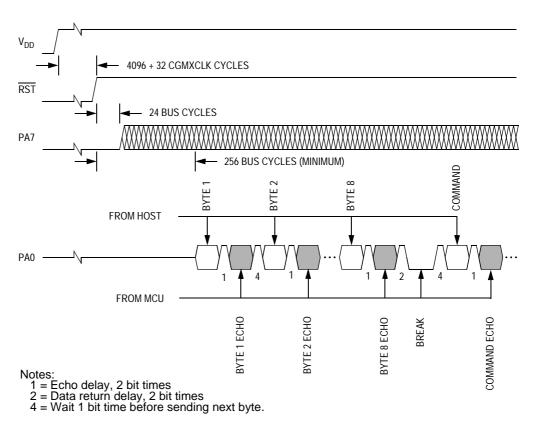
Table 10-7. READSP (Read Stack Pointer) Command

Description	Reads stack pointer
Operand	None
Data returned	Returns stack pointer in high byte:low byte order
Opcode	\$0C
Command sequence	ce
	SENT TO MONITOR READSP READSP READSP SP HIGH SP LOW RESULT

Table 10-8. RUN (Run User Program) Command

Description	Executes RTI instruction							
Operand	None							
Data returned	None							
Opcode	\$28							
Command sequence	Command sequence							
	SENT TO MONITOR X RUN KUN ECHO							

MC68HC908MR8 - Rev 4.0


Monitor ROM (MON)

10.5 Security

A security feature discourages unauthorized reading of ROM locations while in monitor mode. The host can satisfy the security feature at monitor mode entry by sending eight security bytes that match the bytes at locations \$FFF6-\$FFFD. Locations \$FFF6-\$FFFD contain user-defined data.

NOTE: Do not leave locations \$FFF6–\$FFFD blank. For security reasons, program locations \$FFF6–\$FFFD even if they are not used for vectors.

During monitor mode entry, the MCU waits after the power-on reset for the host to send the eight security bytes on pin PTB0 (R_XD). If the received bytes match those at locations \$FFF6–\$FFFD, the host satisfies the security feature and can read all ROM locations and execute code from ROM. Security remains satisfied until a power-on reset occurs. If the reset was not a power-on reset, security remains satisfied and security code entry is not required. See Figure 10-6.

Figure 10-6. Monitor Mode Entry Timing

Technical Data

Upon power-on reset, if the received bytes of the security code do not match the data at locations \$FFF6-\$FFFD, the host fails to satisfy the security feature. The MCU remains in monitor mode, but reading a ROM location returns an invalid value and trying to execute code from ROM causes an illegal address reset. After receiving the eight security bytes from the host, the MCU transmits a break character, signifying that it is ready to receive a command.

NOTE: The MCU does not transmit a break character until after the host sends the eight security bytes.

To determine whether the security code entered is correct, check to see if bit 6 of RAM address \$60 is set. If it is, then the correct security code has been entered and ROM can be accessed.

If the security sequence fails, the device can be reset (via power-pin reset only) and brought up in monitor mode to attempt another entry.

After failing the security sequence, the FLASH memory can also be bulk erased by executing an erase routine that was downloaded into internal RAM. The bulk erase operation clears the security code locations so that all eight security bytes become \$FF.

MC68HC908MR8 - Rev 4.0

Monitor ROM (MON)

Technical Data

MC68HC908MR8 - Rev 4.0

MOTOROLA

Section 11. Timer Interface A (TIMA)

11.1 Contents

11.2 Introduction
11.3 Features
11.4 Functional Description
11.4.1 TIMA Counter Prescaler
11.4.2 Input Capture
11.4.3 Output Compare
11.4.4 Pulse-Width Modulation (PWM)207
11.5 Interrupts
11.6 Wait Mode
11.7 Stop Mode
11.8 TIMA During Break Interrupts
11.9 I/O Signals
11.9.1 TIMA Clock Pin (PTB2/TCLKA)
11.9.2 TIMA Channel I/O Pins (PTB3/TCH0A–PTB4/TCH1A) 213
11.10 I/O Registers
11.10.1 TIMA Status and Control Register
11.10.2 TIMA Counter Registers
11.10.3 TIMA Counter Modulo Registers
11.10.4 TIMA Channel Status and Control Registers
11.10.5 TIMA Channel Registers

Timer Interface A (TIMA)

11.2 Introduction

This section describes the timer interface module (TIMA). The TIMA is a 2-channel timer that provides:

- Timing reference with input capture
- Output compare
- Pulse-width modulation (PWM) functions

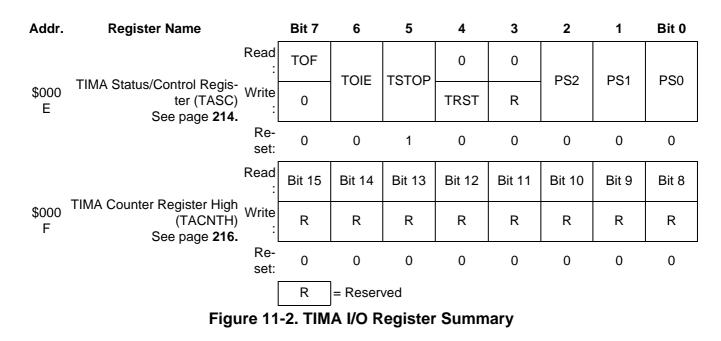
Refer to **Figure 11-1** for a block diagram of the TIMA and to **Figure 11-2** for a summary of the registers.

For further information regarding timers on M68HC08 family devices, please consult the HC08 Timer Reference Manual, TIM08RM/AD.

11.3 Features

Features of the TIMA include:

- Two input capture/output compare channels:
 - Rising-edge, falling-edge, or any-edge input capture trigger
 - Set, clear, or toggle output compare action
- Buffered and unbuffered pulse-width modulation (PWM) signal generation
- Programmable TIMA clock input:
 - 7-frequency internal bus clock prescaler selection
 - External TIMA clock input (4-MHz maximum frequency)
- Free-running or modulo up-count operation
- Toggle any channel pin on overflow
- TIMA counter stop and reset bits


Technical Data

MC68HC908MR8 — Rev 4.0

MOTOROLA

Figure 11-1. TIMA Block Diagram

MC68HC908MR8 — Rev 4.0

MOTOROLA

Technical Data

201

Timer Interface A (TIMA)

Addr.	Register Name		Bit 7	6	5	4	3	2	1	Bit 0
		Read :	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
\$0010	TIMA Counter Register Low (TACNTL) See page 216 .	Write :	R	R	R	R	R	R	R	R
	F. 9	Re- set:	0	0	0	0	0	0	0	0
\$0011	TIMA Counter Modulo Reg- ister High (TAMODH) See page 217.	Read : Write :	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
		Re- set:	1	1	1	1	1	1	1	1
\$0012	TIMA Counter Modulo Reg- ister Low (TAMODL) See page 217.	Read : Write :	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
		Re- set:	1	1	1	1	1	1	1	1
	TIMA Channel 0 Sta- tus/Control Register (TASC0) See page 218.	Read :	CH0F						СНОМА	
\$0013		Write :	0	CH0IE	MS0B	MS0A	ELS0B	ELS0A	TOV0	X
		Re- set:	0	0	0	0	0	0	0	0
\$0014	TIMA Channel 0 Register High (TACH0H) See page 222.	Read : Write :	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
		Re- set:		Indeterminate after reset						
\$0015	TIMA Channel 0 Register Low (TACH0L) See page 218.	Read : Write :	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
	F~9- - - - -	Re- set:			Ind	eterminat	e after re	eset		
			R	= Reserv	ved					
	Figure 11-2	2. TIN	1a i/o f	Registe	r Sumn	nary (C	ontinue	∋d)		

Semiconductor, Inc. Freescale

MC68HC908MR8 — Rev 4.0

Technical Data

Timer Interface A (TIMA) For More Information On This Product, Go to: www.freescale.com

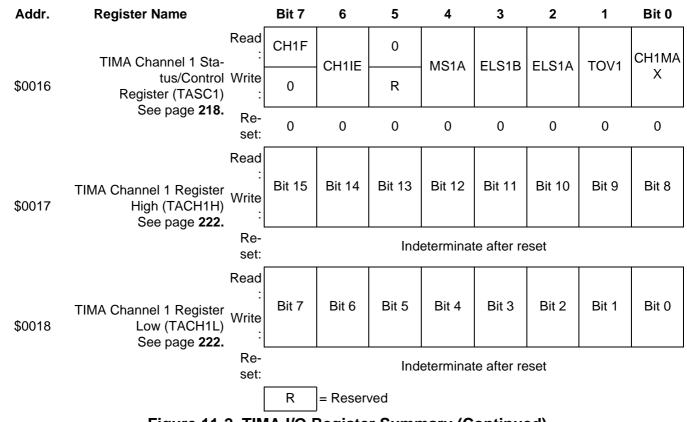


Figure 11-2. TIMA I/O Register Summary (Continued)

MC68HC908MR8 - Rev 4.0

Timer Interface A (TIMA)

11.4 Functional Description

Figure 11-1 shows the TIMA structure. The central component of the TIMA is the 16-bit TIMA counter that can operate as a free-running counter or a modulo up-counter. The TIMA counter provides the timing reference for the input capture and output compare functions. The TIMA counter modulo registers, TAMODH–TAMODL, control the modulo value of the TIMA counter. Software can read the TIMA counter value at any time without affecting the counting sequence.

The two TIMA channels are programmable independently as input capture or output compare channels.

11.4.1 TIMA Counter Prescaler

The TIMA clock source can be one of the seven prescaler outputs or the TIMA clock pin, PTB2/TCLKA. The prescaler generates seven clock rates from the internal bus clock. The prescaler select bits, PS[2:0], in the TIMA status and control register select the TIMA clock source.

11.4.2 Input Capture

An input capture function has three basic parts:

- 1. Edge select logic
- 2. Input capture latch
- 3. 16-bit counter

Two 8-bit registers, which make up the 16-bit input capture register, are used to latch the value of the free-running counter after the corresponding input capture edge detector senses a defined transition. The polarity of the active edge is programmable. The level transition which triggers the counter transfer is defined by the corresponding input edge bits (ELSxB and ELSxA in the TASC0 and TASC1 control registers with x referring to the active channel number).

When an active edge occurs on the pin of an input capture channel, the TIMA latches the contents of the TIMA counter into the TIMA channel registers, TCHxH–TCHxL. Input captures can generate TIMA CPU interrupt requests. Software can determine that an input capture event

Technical Data

has occurred by enabling input capture interrupts or by polling the status flag bit.

The free-running counter contents are transferred to the TIMA channel status and control registers TACHxH and TACHxL (see **11.10.5 TIMA Channel Registers**) on each proper signal transition regardless of whether the TIMA channel flag (CH0F–CH1F in the TASC0–TASC1 registers) is set or clear. When the status flag is set, a CPU interrupt is generated if enabled. The value of the count latched or captured is the time of the event. Because this value is stored in the input capture register two bus cycles after the actual event occurs, user software can respond to this event at a later time and determine the actual time of the event. However, this must be done prior to another input capture on the same pin; otherwise, the previous time value will be lost.

By recording the times for successive edges on an incoming signal, software can determine the period and/or pulse width of the signal. To measure a period, two successive edges of the same polarity are captured. To measure a pulse width, two alternate polarity edges are captured. Software should track the overflows at the 16-bit module counter to extend its range.

Another use for the input capture function is to establish a time reference. In this case, an input capture function is used in conjunction with an output compare function. For example, to activate an output signal a specified number of clock cycles after detecting an input event (edge), use the input capture function to record the time at which the edge occurred. A number corresponding to the desired delay is added to this captured value and stored to an output compare register (see **11.10.5 TIMA Channel Registers**). Because both input captures and output compares are referenced to the same 16-bit modulo counter, the delay can be controlled to the resolution of the counter independent of software latencies.

NOTE: Reset does not affect the contents of the input capture channel register (TACHxH–TACHxL).

11.4.3 Output Compare

With the output compare function, the TIMA can generate a periodic pulse with a programmable polarity, duration, and frequency. When the

MC68HC908MR8 — Rev 4.0

MOTOROLA

Timer Interface A (TIMA)

counter reaches the value in the registers of an output compare channel, the TIMA can set, clear, or toggle the channel pin. Output compares can generate TIMA CPU interrupt requests.

11.4.3.1 Unbuffered Output Compare

Any output compare channel can generate unbuffered output compare pulses as described in **11.4.3 Output Compare**. The pulses are unbuffered because changing the output compare value requires writing the new value over the old value currently in the TIMA channel registers.

An unsynchronized write to the TIMA channel registers to change an output compare value could cause incorrect operation for up to two counter overflow periods. For example, writing a new value before the counter reaches the old value but after the counter reaches the new value prevents any compare during that counter overflow period. Also, using a TIMA overflow interrupt routine to write a new, smaller output compare value may cause the compare to be missed. The TIMA may pass the new value before it is written.

Use these methods to synchronize unbuffered changes in the output compare value on channel x:

- When changing to a smaller value, enable channel x output compare interrupts and write the new value in the output compare interrupt routine. The output compare interrupt occurs at the end of the current output compare pulse. The interrupt routine has until the end of the counter overflow period to write the new value.
- When changing to a larger output compare value, enable TIMA overflow interrupts and write the new value in the TIMA overflow interrupt routine. The TIMA overflow interrupt occurs at the end of the current counter overflow period. Writing a larger value in an output compare interrupt routine (at the end of the current pulse) could cause two output compares to occur in the same counter overflow period.

11.4.3.2 Buffered Output Compare

Channels 0 and 1 can be linked to form a buffered output compare channel whose output appears on the PTB3/TCH0A pin. The TIMA channel registers of the linked pair alternately control the output.

Technical Data

Setting the MS0B bit in TIMA channel 0 status and control register (TASC0) links channel 0 and channel 1. The output compare value in the TIMA channel 0 registers initially controls the output on the PTB3/TCH0A pin. Writing to the TIMA channel 1 registers enables the TIMA channel 1 registers to synchronously control the output after the TIMA overflows. At each subsequent overflow, the TIMA channel registers (0 or 1) that control the output are the ones written to last. TSC0 controls and monitors the buffered output compare function, and TIMA channel 1 status and control register (TASC1) is unused. While the MS0B bit is set, the channel 1 pin, PTB4/TCH1A, is available as a general-purpose input/output (I/O) pin.

NOTE: In buffered output compare operation, do not write new output compare values to the currently active channel registers. User software should track the currently active channel to prevent writing a new value to the active channel. Writing to the active channel registers is the same as generating unbuffered output compares.

11.4.4 Pulse-Width Modulation (PWM)

By using the toggle-on-overflow feature with an output compare channel, the TIMA can generate a PWM signal. The value in the TIMA counter modulo registers determines the period of the PWM signal. The channel pin toggles when the counter reaches the value in the TIMA counter modulo registers. The time between overflows is the period of the PWM signal.

As **Figure 11-3** shows, the output compare value in the TIMA channel registers determines the pulse width of the PWM signal. The time between overflow and output compare is the pulse width. Program the TIMA to clear the channel pin on output compare if the state of the PWM pulse is logic 1. Program the TIMA to set the pin if the state of the PWM pulse is logic 0.

MC68HC908MR8 - Rev 4.0

Timer Interface A (TIMA)

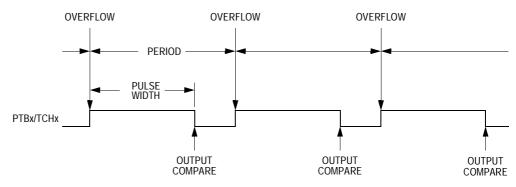


Figure 11-3. PWM Period and Pulse Width

The value in the TIMA counter modulo registers and the selected prescaler output determines the frequency of the PWM output. The frequency of an 8-bit PWM signal is variable in 256 increments. Writing \$00FF (255) to the TIMA counter modulo registers produces a PWM period of 256 times the internal bus clock period if the prescaler select value is \$000. See **11.10.1 TIMA Status and Control Register**.

The value in the TIMA channel registers determines the pulse width of the PWM output. The pulse width of an 8-bit PWM signal is variable in 256 increments. Writing \$0080 (128) to the TIMA channel registers produces a duty cycle of 128/256 or 50 percent.

11.4.4.1 Unbuffered PWM Signal Generation

Any output compare channel can generate unbuffered PWM pulses as described in **11.4.4 Pulse-Width Modulation (PWM)**. The pulses are unbuffered because changing the pulse width requires writing the new pulse width value over the value currently in the TIMA channel registers.

An unsynchronized write to the TIMA channel registers to change a pulse width value could cause incorrect operation for up to two PWM periods. For example, writing a new value before the counter reaches the old value but after the counter reaches the new value prevents any compare during that PWM period. Also, using a TIMA overflow interrupt routine to write a new, smaller pulse width value may cause the compare to be missed. The TIMA may pass the new value before it is written to the TIMA channel registers.

Use these methods to synchronize unbuffered changes in the PWM pulse width on channel x:

- When changing to a shorter pulse width, enable channel x output compare interrupts and write the new value in the output compare interrupt routine. The output compare interrupt occurs at the end of the current pulse. The interrupt routine has until the end of the PWM period to write the new value.
- When changing to a longer pulse width, enable TIMA overflow interrupts and write the new value in the TIMA overflow interrupt routine. The TIMA overflow interrupt occurs at the end of the current PWM period. Writing a larger value in an output compare interrupt routine (at the end of the current pulse) could cause two output compares to occur in the same PWM period.
- **NOTE:** In PWM signal generation, do not program the PWM channel to toggle on output compare. Toggling on output compare prevents reliable 0 percent duty cycle generation and removes the ability of the channel to self-correct in the event of software error or noise. Toggling on output compare also can cause incorrect PWM signal generation when changing the PWM pulse width to a new, much larger value.

11.4.4.2 Buffered PWM Signal Generation

Channels 0 and 1 can be linked to form a buffered PWM channel whose output appears on the PTB3/TCH0A pin. The TIMA channel registers of the linked pair alternately control the pulse width of the output.

Setting the MS0B bit in TIMA channel 0 status and control register (TASC0) links channel 0 and channel 1. The TIMA channel 0 registers initially control the pulse width on the PTB3/TCH0A pin. Writing to the TIMA channel 1 registers enables the TIMA channel 1 registers to synchronously control the pulse width at the beginning of the next PWM period. At each subsequent overflow, the TIMA channel registers (0 or 1) that control the pulse width are the ones written to last. TASC0 controls and monitors the buffered PWM function, and TIMA channel 1 status and control register (TASC1) is unused. While the MS0B bit is set, the channel 1 pin, PTB4/TCH1A, is available as a general-purpose I/O pin.

MOTOROLA

Timer Interface A (TIMA)

NOTE: In buffered PWM signal generation, do not write new pulse width values to the currently active channel registers. User software should track the currently active channel to prevent writing a new value to the active channel. Writing to the active channel registers is the same as generating unbuffered PWM signals.

11.4.4.3 PWM Initialization

To ensure correct operation when generating unbuffered or buffered PWM signals, use this initialization procedure:

- 1. In the TIMA status and control register (TASC):
 - a. Stop the TIMA counter by setting the TIMA stop bit, TSTOP.
 - b. Reset the TIMA counter and prescaler by setting the TIMA reset bit, TRST.
- 2. In the TIMA counter modulo registers (TAMODH–TAMODL), write the value for the required PWM period.
- 3. In the TIMA channel x registers (TACHxH–TACHxL), write the value for the required pulse width.
- 4. In TIMA channel x status and control register (TASCx):
 - a. Write 0:1 (for unbuffered output compare or PWM signals) or 1:0 (for buffered output compare or PWM signals) to the mode select bits, MSxB–MSxA. See Table 11-2.
 - b. Write 1 to the toggle-on-overflow bit, TOVx.
 - c. Write 1:0 (to clear output on compare) or 1:1 (to set output on compare) to the edge/level select bits, ELSxB–ELSxA. The output action on compare must force the output to the complement of the pulse width level. See Table 11-2.
- **NOTE:** In PWM signal generation, do not program the PWM channel to toggle on output compare. Toggling on output compare prevents reliable 0 percent duty cycle generation and removes the ability of the channel to self-correct in the event of software error or noise. Toggling on output compare can also cause incorrect PWM signal generation when changing the PWM pulse width to a new, much larger value.
 - 5. In the TIMA status control register (TASC), clear the TIMA stop bit, TSTOP.

Setting MS0B links channels 0 and 1 and configures them for buffered PWM operation. The TIMA channel 0 registers (TACH0H–TACH0L) initially control the buffered PWM output. TIMA status control register 0 (TASC0) controls and monitors the PWM signal from the linked channels. MS0B takes priority over MS0A.

Clearing the toggle-on-overflow bit, TOVx, inhibits output toggles on TIMA overflows. Subsequent output compares try to force the output to a state it is already in and have no effect. The result is a 0 percent duty cycle output.

Setting the channel x maximum duty cycle bit (CHxMAX) and setting the TOVx bit generates a 100 percent duty cycle output. See **11.10.4 TIMA** Channel Status and Control Registers.

11.5 Interrupts

These TIMA sources can generate interrupt requests:

- TIMA overflow flag (TOF) The TOF bit is set when the TIMA counter reaches the modulo value programmed in the TIMA counter modulo registers. The TIMA overflow interrupt enable bit, TOIE, enables TIMA overflow CPU interrupt requests. TOF and TOIE are in the TIMA status and control register.
- TIMA channel flags (CH1F–CH0F) The CHxF bit is set when an input capture or output compare occurs on channel x. Channel x TIMA CPU interrupt requests are controlled by the channel x interrupt enable bit, CHxIE.

11.6 Wait Mode

The WAIT instruction puts the MCU in low-power standby mode.

The TIMA remains active after the execution of a WAIT instruction. In wait mode, the TIMA registers are not accessible by the CPU. Any enabled CPU interrupt request from the TIMA can bring the MCU out of wait mode.

MC68HC908MR8 — Rev 4.0

Timer Interface A (TIMA)

If TIMA functions are not required during wait mode, reduce power consumption by stopping the TIMA before executing the WAIT instruction.

11.7 Stop Mode

TIMA is inactive after execution of a STOP instruction. The STOP instruction does not affect register conditions or the state of the TIMA counter. TIMA operation resumes when the MCU exits stop mode after an external interrupt.

11.8 TIMA During Break Interrupts

A break interrupt stops the TIMA counter and inhibits input captures.

The system integration module (SIM) controls whether status bits in other modules can be cleared during the break state. The BCFE bit in the SIM break flag control register (SBFCR) enables software to clear status bits during the break state. See **7.7.5 SIM Break Flag Control Register**.

To allow software to clear status bits during a break interrupt, write a logic 1 to the BCFE bit. If a status bit is cleared during the break state, it remains cleared when the MCU exits the break state.

To protect status bits during the break state, write a logic 0 to the BCFE bit. With BCFE at logic 0 (its default state), software can read and write I/O registers during the break state without affecting status bits. Some status bits have a 2-step read/write clearing procedure. If software does the first step on such a bit before the break, the bit cannot change during the break state as long as BCFE is at logic 0. After the break, doing the second step clears the status bit.

11.9 I/O Signals

Port B shares three of its pins with the TIMA. PTB2/TCLKA is an external clock input to the TIMA prescaler. The two TIMA channel I/O pins are PTB3/TCH0A and PTB4/TCH1A.

Technical Data

11.9.1 TIMA Clock Pin (PTB2/TCLKA)

PTB2/TCLKA is an external clock input that can be the clock source for the TIMA counter instead of the prescaled internal bus clock. Select the PTB2/TCLKA input by writing logic 1s to the three prescaler select bits, PS[2:0] (see **11.10.1 TIMA Status and Control Register**). The minimum TCLK pulse width, TCLKLMIN or TCLKHMIN, is:

The maximum TCLK frequency is the least: 4 MHz or bus frequency \div 2.

PTB2/TCLKA is available as a general-purpose I/O pin or ADC channel when not used as the TIMA clock input. When the PTB2/TCLKA pin is the TIMA clock input, it is an input regardless of the state of the DDRB2 bit in data direction register B.

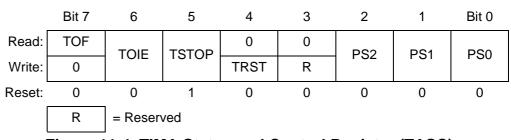
11.9.2 TIMA Channel I/O Pins (PTB3/TCH0A–PTB4/TCH1A)

Each channel I/O pin is programmable independently as an input capture pin or an output compare pin. PTB3/TCH0A and PTB3/TCH1A can be configured as buffered output compare or buffered PWM pins.

11.10 I/O Registers

These I/O registers control and monitor TIMA operation:

- TIMA status and control register (TASC)
- TIMA control registers (TACNTH-TACNTL)
- TIMA counter modulo registers (TAMODH-TAMODL)
- TIMA channel status and control registers (TASC0 and TASC1)
- TIMA channel registers (TACH0H–TACH0L and TACH1H–TACH1L)


Timer Interface A (TIMA)

11.10.1 TIMA Status and Control Register

The TIMA status and control register:

- Enables TIMA overflow interrupts
- Flags TIMA overflows
- Stops the TIMA counter
- Resets the TIMA counter
- Prescales the TIMA counter clock

Address \$000E

TOF — TIMA Overflow Flag Bit

This read/write flag is set when the TIMA counter reaches the modulo value programmed in the TIMA counter modulo registers. Clear TOF by reading the TIMA status and control register when TOF is set and then writing a logic 0 to TOF. If another TIMA overflow occurs before the clearing sequence is complete, then writing logic 0 to TOF has no effect. Therefore, a TOF interrupt request cannot be lost due to inadvertent clearing of TOF. Reset clears the TOF bit. Writing a logic 1 to TOF has no effect.

1 = TIMA counter has reached modulo value.

0 = TIMA counter has not reached modulo value.

TOIE — TIMA Overflow Interrupt Enable Bit

This read/write bit enables TIMA overflow interrupts when the TOF bit becomes set. Reset clears the TOIE bit.

1 = TIMA overflow interrupts enabled

0 = TIMA overflow interrupts disabled

Technical Data

TSTOP — TIMA Stop Bit

This read/write bit stops the TIMA counter. Counting resumes when TSTOP is cleared. Reset sets the TSTOP bit, stopping the TIMA counter until software clears the TSTOP bit.

1 = TIMA counter stopped

- 0 = TIMA counter active
- **NOTE:** Do not set the TSTOP bit before entering wait mode if the TIMA is required to exit wait mode. Also, when the TSTOP bit is set and the timer is configured for input capture operation, input captures are inhibited until TSTOP is cleared.

TRST — TIMA Reset Bit

Setting this write-only bit resets the TIMA counter and the TIMA prescaler. Setting TRST has no effect on any other registers. Counting resumes from \$0000. TRST is cleared automatically after the TIMA counter is reset and always reads as logic 0. Reset clears the TRST bit.

- 1 = Prescaler and TIMA counter cleared
- 0 = No effect
- **NOTE:** Setting the TSTOP and TRST bits simultaneously stops the TIMA counter at a value of \$0000.

PS[2:0] — Prescaler Select Bits

These read/write bits select either the PTB2/TCLKA pin or one of the seven prescaler outputs as the input to the TIMA counter as **Table 11-1** shows. Reset clears the PS[2:0] bits.

PS[2:0]	TIMA Clock Source
000	Internal bus clock ÷ 1
001	Internal bus clock ÷ 2
010	Internal bus clock ÷ 4
011	Internal bus clock ÷ 8
100	Internal bus clock ÷ 16
101	Internal bus clock ÷ 32
110	Internal bus clock ÷ 64
111	PTB2/TCLKA

Timer Interface A (TIMA)

11.10.2 TIMA Counter Registers

Register Name and Ad-

The two read-only TIMA counter registers contain the high and low bytes of the value in the TIMA counter. Reading the high byte (TACNTH) latches the contents of the low byte (TACNTL) into a buffer. Subsequent reads of TACNTH do not affect the latched TACNTL value until TACNTL is read. Reset clears the TIMA counter registers. Setting the TIMA reset bit (TRST) also clears the TIMA counter registers.

NOTE: If TACNTH is read during a break interrupt, be sure to unlatch TACNTL by reading TACNTL before exiting the break interrupt. Otherwise, TACNTL retains the value latched during the break.

TACNTH — \$000F

dress:			φυσυι							
	Bit 7	6	5	4	3	2	1	Bit 0		
Read:	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8		
Write:	R	R	R	R	R	R	R	R		
Reset:	0	0	0	0	0	0	0	0		
Register Name and Ad- dress:			TACNTL	— \$0010						
	Bit 7	6	5	4	3	2	1	Bit 0		
Read:	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
Write:	R	R	R	R	R	R	R	R		
Reset:	0	0	0	0	0	0	0	0		
	R	= Reserved								

Figure 11-5. TIMA Counter Registers (TACNTH and TACNTL)

MOTOROLA

11.10.3 TIMA Counter Modulo Registers

The read/write TIMA modulo registers contain the modulo value for the TIMA counter. When the TIMA counter reaches the modulo value, the overflow flag (TOF) becomes set, and the TIMA counter resumes counting from \$0000 at the next timer clock. Writing to the high byte (TMODH) inhibits the TOF bit and overflow interrupts until the low byte (TMODL) is written. Reset sets the TIMA counter modulo registers.

Register dress:	Register Name and Ad- dress:		TAMODH — \$0011					
	Bit 7	6	5	4	3	2	1	Bit 0
Read: Write:	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
Reset:	1	1	1	1	1	1	1	1
Register dress:	Name and Bit 7	d Ad- 6	TAMODL	_ — \$0012 4	3	2	1	Bit 0
Read: Write:	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Reset:	1	1	1	1	1	1	1	1
Figure	11-6. TI	ΜΑ Cοι	Inter Mo	dulo Re	egisters	(TMOD	H and T	MODL)

NOTE: Reset the TIMA counter before writing to the TIMA counter modulo registers.

MC68HC908MR8 - Rev 4.0

11.10.4 TIMA Channel Status and Control Registers

Register Name and Ad-

Each of the TIMA channel status and control registers:

- Flags input captures and output compares
- Enables input capture and output compare interrupts
- Selects input capture, output compare, or PWM operation
- Selects high, low, or toggling output on output compare

TASC0 - \$0013

- Selects rising edge, falling edge, or any edge as the active input capture trigger
- Selects output toggling on TIMA overflow
- Selects 0% and 100% PWM duty cycle
- Selects buffered or unbuffered output compare/PWM operation

dress:			171000	\$0010				
	Bit 7	6	5	4	3	2	1	Bit 0
Read:	CH0F	CHOIE	MS0B	MS0A	ELS0B	ELS0A	TOV0	СНОМА
Write:	0	ONIOL	NICOD	NOOK	LLOOD	LLOOK	1000	Х
Reset:	0	0	0	0	0	0	0	0
Register dress:	Name and	d Ad-	TASC1 –	- \$0016				
	Bit 7	6	5	4	3	2	1	Bit 0
Read:	CH1F	CH1IE	0	MS1A	ELS1B	ELS1A	TOV1	CH1MA
Write:	0	CITIL	R	WISTA	LLOID	LLOIA	1011	X
Reset:	0	0	0	0	0	0	0	0
	R	= Reserv	ved					

Figure 11-7. TIMA Channel Status and Control Registers (TASC0–TASC1)

Technical Data

CHxF — Channel x Flag Bit

When channel x is an input capture channel, this read/write bit is set when an active edge occurs on the channel x pin. When channel x is an output compare channel, CHxF is set when the value in the TIMA counter registers matches the value in the TIMA channel x registers.

When CHxIE = 1, clear CHxF by reading TIMA channel x status and control register with CHxF set, and then writing a logic 0 to CHxF. If another interrupt request occurs before the clearing sequence is complete, then writing logic 0 to CHxF has no effect. Therefore, an interrupt request cannot be lost due to inadvertent clearing of CHxF.

Reset clears the CHxF bit. Writing a logic 1 to CHxF has no effect.

- 1 = Input capture or output compare on channel x
- 0 = No input capture or output compare on channel x
- CHxIE Channel x Interrupt Enable Bit

This read/write bit enables TIMA CPU interrupts on channel x. Reset clears the CHxIE bit.

- 1 = Channel x CPU interrupt requests enabled
- 0 = Channel x CPU interrupt requests disabled

MSxB — Mode Select Bit B

This read/write bit selects buffered output compare/PWM operation. MSxB exists only in the TIMA channel 0. Setting MS0B disables the channel 1 status and control register and reverts TCH1A to general-purpose I/O. Reset clears the MSxB bit.

- 1 = Buffered output compare/PWM operation enabled
- 0 = Buffered output compare/PWM operation disabled

MSxA — Mode Select Bit A

When ELSxB:A \neq 00, this read/write bit selects either input capture operation or unbuffered output compare/PWM operation. See **Table 11-2**.

- 1 = Unbuffered output compare/PWM operation
- 0 = Input capture operation

When ELSxB:A = 00, this read/write bit selects the initial output level of the TCHx pin once PWM, input capture, or output compare operation is enabled. Reset clears the MSxA bit. See Table 11-2.

- 1 = Initial output level low
- 0 = Initial output level high

NOTE: Before changing a channel function by writing to the MSxB or MSxA bit, set the TSTOP and TRST bits in the TIMA status and control register (TASC).

ELSxB and ELSxA — Edge/Level Select Bits

When channel x is an input capture channel, these read/write bits control the active edge-sensing logic on channel x.

When channel x is an output compare channel, ELSxB and ELSxA control the channel x output behavior when an output compare occurs.

When ELSxB and ELSxA are both clear, channel x is not connected to port B, and pin PTBx/TCHxA is available as a general-purpose I/O pin. However, channel x is at a state determined by these bits and becomes transparent to the respective pin when PWM, input capture, or output compare mode is enabled. **Table 11-2** shows how ELSxA and ELSxA work. Reset clears the ELSxB and ELSxA bits.

MSxB:MSxA	ELSxB:ELSxA	Mode	Configuration		
X0	00	Pin under port control: Initialize timer Output Output level high			
X1	00	preset	Pin under port control: Initialize timer Output level low		
00	01		Capture on rising edge only		
00	10	Input capture	Capture on falling edge only		
00	11		Capture on rising or falling edge		
01	01	Output	Toggle output on compare		
01	10	compare	Clear output on compare		
01	11	or PWM	Set output on compare		
1X	01	Buffered	Toggle output on compare		
1X	10	output compare or	Clear output on compare		
1X	11	buffered PWM	Set output on compare		

Table 11-2. Mode, Edge, and Level Selection

NOTE: Before enabling a TIMA channel register for input capture operation, make sure that the PTBx/TACHx pin is stable for at least two bus clocks.

TOVx — Toggle-On-Overflow Bit

When channel x is an output compare channel, this read/write bit controls the behavior of the channel x output when the TIMA counter overflows. When channel x is an input capture channel, TOVx has no effect. Reset clears the TOVx bit.

- 1 = Channel x pin toggles on TIMA counter overflow.
- 0 = Channel x pin does not toggle on TIMA counter overflow.

NOTE: When TOVx is set, a TIMA counter overflow takes precedence over a channel x output compare if both occur at the same time.

CHxMAX — Channel x Maximum Duty Cycle Bit

When the TOVx bit is at logic 1, setting the CHxMAX bit forces the duty cycle of buffered and unbuffered PWM signals to 100 percent. As **Figure 11-8** shows, the CHxMAX bit takes effect in the cycle after it is set or cleared. The output stays at the 100 percent duty cycle level until the cycle after CHxMAX is cleared.

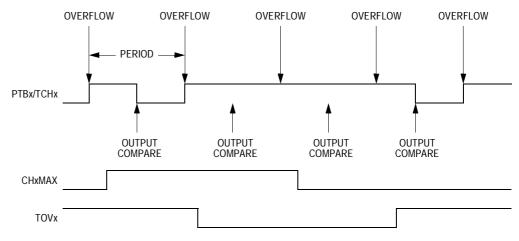
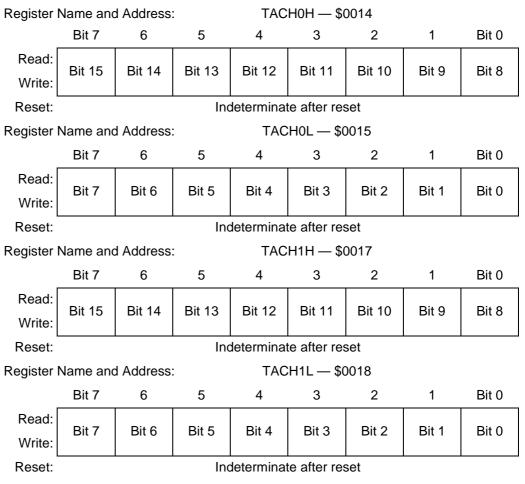


Figure 11-8. CHxMAX Latency


MC68HC908MR8 - Rev 4.0

11.10.5 TIMA Channel Registers

These read/write registers contain the captured TIMA counter value of the input capture function or the output compare value of the output compare function. The state of the TIMA channel registers after reset is unknown.

In input capture mode (MSxB-MSxA = 0:0), reading the high byte of the TIMA channel x registers (TACHxH) inhibits input captures until the low byte (TACHxL) is read.

In output compare mode (MSxB–MSxA \neq 0:0), writing to the high byte of the TIMA channel x registers (TACHxH) inhibits output compares until the low byte (TACHxL) is written.

Technical Data

MC68HC908MR8 — Rev 4.0

Section 12. Timer Interface B (TIMB)

12.1 Contents

12.2 Introduction
12.3 Features
12.4 Functional Description
12.4.1 TIMB Counter Prescaler
12.4.2 Input Capture
12.4.3 Output Compare
12.4.4 Pulse-Width Modulation (PWM)231
12.5 Interrupts
12.6 Wait Mode
12.7 Stop Mode
12.8 TIMB During Break Interrupts
12.9 TIMB Channel I/O Pins (PTB5/TCH0B-PTB6/TCH1B)237
12.10 I/O Registers
12.10.1 TIMB Status and Control Register
12.10.2 TIMB Counter Registers
12.10.3 TIMB Counter Modulo Registers
12.10.4 TIMB Channel Status and Control Registers
12.10.5 TIMB Channel Registers
-

MC68HC908MR8 - Rev 4.0

12.2 Introduction

This section describes the timer interface module (TIMB). The TIMB is a 2-channel timer that provides:

- A timing reference with input capture
- Output compare
- Pulse width modulation (PWM) functions

Refer to **Figure 12-1** for a block diagram of the TIMB and to **Figure 12-2** for a summary of the registers.

For further information regarding timers on M68HC08 family devices, please consult the HC08 Timer Reference Manual, TIM08RM/AD.

12.3 Features

Features of the TIMB include:

- Two input capture/output compare channels
 - Rising-edge, falling-edge, or any-edge input capture trigger
 - Set, clear, or toggle output compare action
- Buffered and unbuffered PWM signal generation
- Programmable TIMB clock with 7-frequency internal bus clock prescaler selection
- Free-running or modulo up-count operation
- Toggle any channel pin on overflow
- TIMB counter stop and reset bits

Technical Data

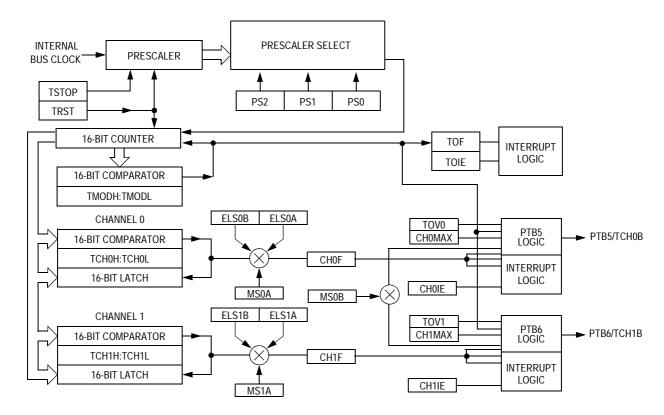
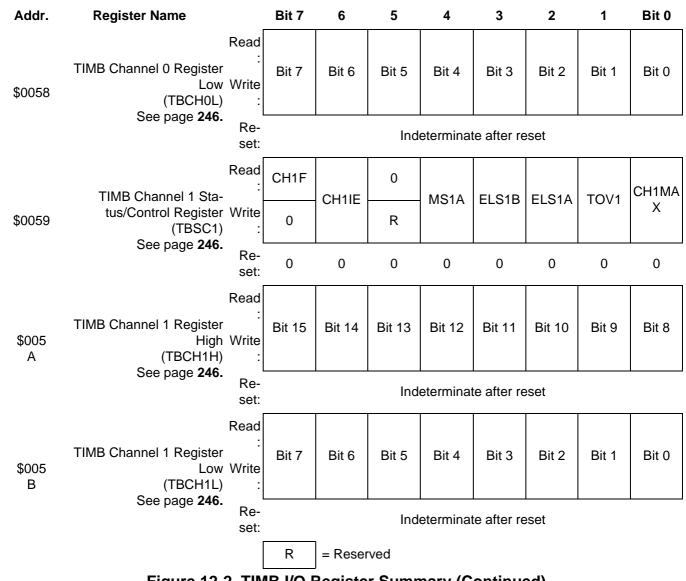


Figure 12-1. TIMB Block Diagram

Figure 12-2. TIMB I/O Register Summary


MC68HC908MR8 - Rev 4.0

Timer Interface B (TIMB)

Addr.	Register Name		Bit 7	6	5	4	3	2	1	Bit 0
		Read :	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
\$0053	TIMB Counter Register Low (TBCNTL) See page 240.	Write :	R	R	R	R	R	R	R	R
		Re- set:	0	0	0	0	0	0	0	0
		Read								
\$0054	TIMB Counter Modulo Reg- ister High (TBMODH)	Write :	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
	See page 241.	Re- set:	1	1	1	1	1	1	1	1
		Read								
\$0055	TIMB Counter Modulo Reg- ister Low (TBMODL)	Write :	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
	See page 241.	Re- set:	1	1	1	1	1	1	1	1
	TIMB Channel 0 Sta-	Read :	CH0F	CH0IE	MS0B	MS0A	ELS0B	ELS0A	TOV0	СНОМА
\$0056	tus/Control Register (TBSC0)	Write :	0	CHOIL	MOOD	NOC	LLOOD	LLSUA	1000	Х
	See page 242.	Re- set:	0	0	0	0	0	0	0	0
		Read								
\$0057	(TBCH0H)	: Write :	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
	See page 246.				Ind	etermina	te after re	eset		
			R	= Reser	ved					
	Figure 12-2	2. TIN	IB I/O F	Reaiste	r Sumn	narv (C	ontinue	ed)		

Figure 12-2. TIMB I/O Register Summary (Continued)

Technical Data

Figure 12-2. TIMB I/O Register Summary (Continued)

12.4 Functional Description

Figure 12-1 shows the TIMB structure. The central component of the TIMB is the 16-bit TIMB counter that can operate as a free-running counter or a modulo up-counter. The TIMB counter provides the timing reference for the input capture and output compare functions. The TIMB counter modulo registers, TBMODH-TBMODL, control the modulo value of the TIMB counter. Software can read the TIMB counter value at any time without affecting the counting sequence.

MC68HC908MR8 - Rev 4.0

MOTOROLA

The two TIMB channels are programmable independently as input capture or output compare channels.

12.4.1 TIMB Counter Prescaler

The TIMB clock source can be one of the seven prescaler outputs. The prescaler generates seven clock rates from the internal bus clock. The prescaler select bits, PS[2:0], in the TIMB status and control register select the TIMB clock source.

12.4.2 Input Capture

An input capture function has three basic parts:

- Edge select logic
- Input capture latch
- 16-bit counter

Two 8-bit registers, which make up the 16-bit input capture register, are used to latch the value of the free-running counter after the corresponding input capture edge detector senses a defined transition. The polarity of the active edge is programmable. The level transition which triggers the counter transfer is defined by the corresponding input edge bits (ELSxB and ELSxA in TBSC0 through TBSC1 control registers with x referring to the active channel number). When an active edge occurs on the pin of an input capture channel, the TIMB latches the contents of the TIMB counter into the TIMB channel registers, TCHxH–TCHxL. Input captures can generate TIMB CPU interrupt requests. Software can determine that an input capture event has occurred by enabling input capture interrupts or by polling the status flag bit.

The free-running counter contents are transferred to the TIMB channel status and control register, TBCHxH–TBCHxL, (see **12.10.5 TIMB Channel Registers**) on each proper signal transition regardless of whether the TIMB channel flag (CH0F–CH1F in TBSC0–TBSC1 registers) is set or clear. When the status flag is set, a CPU interrupt is generated if enabled. The value of the count latched or "captured" is the time of the event. Because this value is stored in the input capture register two bus cycles after the actual event occurs, user software can

Technical Data

MC68HC908MR8 — Rev 4.0

Timer Interface B (TIMB) Functional Description

respond to this event at a later time and determine the actual time of the event. However, this must be done prior to another input capture on the same pin; otherwise, the previous time value will be lost.

By recording the times for successive edges on an incoming signal, software can determine the period and/or pulse width of the signal. To measure a period, two successive edges of the same polarity are captured. To measure a pulse width, two alternate polarity edges are captured. Software should track the overflows at the 16-bit module counter to extend its range.

Another use for the input capture function is to establish a time reference. In this case, an input capture function is used in conjunction with an output compare function. For example, to activate an output signal a specified number of clock cycles after detecting an input event (edge), use the input capture function to record the time at which the edge occurred. A number corresponding to the desired delay is added to this captured value and stored to an output compare register (see **12.10.5 TIMB Channel Registers**). Because both input captures and output compares are referenced to the same 16-bit modulo counter, the delay can be controlled to the resolution of the counter independent of software latencies.

NOTE: Reset does not affect the contents of the input capture channel register (TBCHxH–TBCHxL).

MC68HC908MR8 - Rev 4.0

12.4.3 Output Compare

With the output compare function, the TIMB can generate a periodic pulse with a programmable polarity, duration, and frequency. When the counter reaches the value in the registers of an output compare channel, the TIMB can set, clear, or toggle the channel pin. Output compares can generate TIMB CPU interrupt requests.

12.4.3.1 Unbuffered Output Compare

Any output compare channel can generate unbuffered output compare pulses as described in **12.4.3 Output Compare**. The pulses are unbuffered because changing the output compare value requires writing the new value over the old value currently in the TIMB channel registers.

An unsynchronized write to the TIMB channel registers to change an output compare value could cause incorrect operation for up to two counter overflow periods. For example, writing a new value before the counter reaches the old value but after the counter reaches the new value prevents any compare during that counter overflow period. Also, using a TIMB overflow interrupt routine to write a new, smaller output compare value may cause the compare to be missed. The TIMB may pass the new value before it is written.

Use these methods to synchronize unbuffered changes in the output compare value on channel x:

- When changing to a smaller value, enable channel x output compare interrupts and write the new value in the output compare interrupt routine. The output compare interrupt occurs at the end of the current output compare pulse. The interrupt routine has until the end of the counter overflow period to write the new value.
- When changing to a larger output compare value, enable TIMB overflow interrupts and write the new value in the TIMB overflow interrupt routine. The TIMB overflow interrupt occurs at the end of the current counter overflow period. Writing a larger value in an output compare interrupt routine (at the end of the current pulse) could cause two output compares to occur in the same counter overflow period.

Technical Data

MC68HC908MR8 — Rev 4.0

12.4.3.2 Buffered Output Compare

Channels 0 and 1 can be linked to form a buffered output compare channel whose output appears on the PTB5/TCH0B pin. The TIMB channel registers of the linked pair alternately control the output.

Setting the MS0B bit in TIMB channel 0 status and control register (TBSC0) links channel 0 and channel 1. The output compare value in the TIMB channel 0 registers initially controls the output on the PTB5/TCH0B pin. Writing to the TIMB channel 1 registers enables the TIMB channel 1 registers to synchronously control the output after the TIMB overflows. At each subsequent overflow, the TIMB channel registers (0 or 1) that control the output are the ones written to last. TSC0 controls and monitors the buffered output compare function, and TIMB channel 1 status and control register (TBSC1) is unused. While the MS0B bit is set, the channel 1 pin, PTB6/TCH1B, is available as a general-purpose input/output (I/O) pin.

NOTE: In buffered output compare operation, do not write new output compare values to the currently active channel registers. User software should track the currently active channel to prevent writing a new value to the active channel. Writing to the active channel registers is the same as generating unbuffered output compares.

12.4.4 Pulse-Width Modulation (PWM)

By using the toggle-on-overflow feature with an output compare channel, the TIMB can generate a PWM signal. The value in the TIMB counter modulo registers determines the period of the PWM signal. The channel pin toggles when the counter reaches the value in the TIMB counter modulo registers. The time between overflows is the period of the PWM signal.

As **Figure 12-3** shows, the output compare value in the TIMB channel registers determines the pulse width of the PWM signal. The time between overflow and output compare is the pulse width. Program the TIMB to clear the channel pin on output compare if the state of the PWM pulse is logic 1. Program the TIMB to set the pin if the state of the PWM pulse is logic 0.

MC68HC908MR8 - Rev 4.0

Timer Interface B (TIMB)

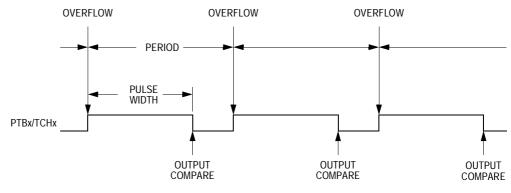


Figure 12-3. PWM Period and Pulse Width

The value in the TIMB counter modulo registers and the selected prescaler output determines the frequency of the PWM output. The frequency of an 8-bit PWM signal is variable in 256 increments. Writing \$00FF (255) to the TIMB counter modulo registers produces a PWM period of 256 times the internal bus clock period if the prescaler select value is \$000 (see **12.10.1 TIMB Status and Control Register**).

The value in the TIMB channel registers determines the pulse width of the PWM output. The pulse width of an 8-bit PWM signal is variable in 256 increments. Writing \$0080 (128) to the TIMB channel registers produces a duty cycle of 128/256 or 50 percent.

12.4.4.1 Unbuffered PWM Signal Generation

Any output compare channel can generate unbuffered PWM pulses as described in **12.4.4 Pulse-Width Modulation (PWM)**. The pulses are unbuffered because changing the pulse width requires writing the new pulse width value over the value currently in the TIMB channel registers.

An unsynchronized write to the TIMB channel registers to change a pulse width value could cause incorrect operation for up to two PWM periods. For example, writing a new value before the counter reaches the old value but after the counter reaches the new value prevents any compare during that PWM period. Also, using a TIMB overflow interrupt routine to write a new, smaller pulse width value may cause the compare to be missed. The TIMB may pass the new value before it is written to the TIMB channel registers.

Technical Data

MC68HC908MR8 — Rev 4.0

Use these methods to synchronize unbuffered changes in the PWM pulse width on channel x:

- When changing to a shorter pulse width, enable channel x output compare interrupts and write the new value in the output compare interrupt routine. The output compare interrupt occurs at the end of the current pulse. The interrupt routine has until the end of the PWM period to write the new value.
- When changing to a longer pulse width, enable TIMB overflow interrupts and write the new value in the TIMB overflow interrupt routine. The TIMB overflow interrupt occurs at the end of the current PWM period. Writing a larger value in an output compare interrupt routine (at the end of the current pulse) could cause two output compares to occur in the same PWM period.
- **NOTE:** In PWM signal generation, do not program the PWM channel to toggle on output compare. Toggling on output compare prevents reliable 0 percent duty cycle generation and removes the ability of the channel to self-correct in the event of software error or noise. Toggling on output compare also can cause incorrect PWM signal generation when changing the PWM pulse width to a new, much larger value.

12.4.4.2 Buffered PWM Signal Generation

Channels 0 and 1 can be linked to form a buffered PWM channel whose output appears on the PTB5/TCH0B pin. The TIMB channel registers of the linked pair alternately control the pulse width of the output.

Setting the MS0B bit in TIMB channel 0 status and control register (TBSC0) links channel 0 and channel 1. The TIMB channel 0 registers initially control the pulse width on the PTB5/TCH0B pin. Writing to the TIMB channel 1 registers enables the TIMB channel 1 registers to synchronously control the pulse width at the beginning of the next PWM period. At each subsequent overflow, the TIMB channel registers (0 or 1) that control the pulse width are the ones written to last. TBSC0 controls and monitors the buffered PWM function, and TIMB channel 1 status and control register (TBSC1) is unused. While the MS0B bit is set, the channel 1 pin, PTB6/TCH1B, is available as a general-purpose I/O pin.

MOTOROLA

NOTE: In buffered PWM signal generation, do not write new pulse width values to the currently active channel registers. User software should track the currently active channel to prevent writing a new value to the active channel. Writing to the active channel registers is the same as generating unbuffered PWM signals.

12.4.4.3 PWM Initialization

To ensure correct operation when generating unbuffered or buffered PWM signals, use this initialization procedure:

- 1. In the TIMB status and control register (TBSC):
 - a. Stop the TIMB counter by setting the TIMB stop bit, TSTOP.
 - Reset the TIMB counter and prescaler by setting the TIMB reset bit, TRST.
- 2. In the TIMB counter modulo registers (TBMODH–TBMODL), write the value for the required PWM period.
- 3. In the TIMB channel x registers (TBCHxH–TBCHxL), write the value for the required pulse width.
- 4. In TIMB channel x status and control register (TBSCx):
 - a. Write 0:1 (for unbuffered output compare or PWM signals) or 1:0 (for buffered output compare or PWM signals) to the mode select bits, MSxB–MSxA. See Table 12-2.
 - b. Write 1 to the toggle-on-overflow bit, TOVx.
 - c. Write 1:0 (to clear output on compare) or 1:1 (to set output on compare) to the edge/level select bits, ELSxB–ELSxA. The output action on compare must force the output to the complement of the pulse width level. See Table 12-2.
- **NOTE:** In PWM signal generation, do not program the PWM channel to toggle on output compare. Toggling on output compare prevents reliable 0 percent duty cycle generation and removes the ability of the channel to self-correct in the event of software error or noise. Toggling on output compare can also cause incorrect PWM signal generation when changing the PWM pulse width to a new, much larger value.
 - 5. In the TIMB status control register (TBSC), clear the TIMB stop bit, TSTOP.

а

MC68HC908MR8 — Rev 4.0

Setting MS0B links channels 0 and 1 and configures them for buffered PWM operation. The TIMB channel 0 registers (TBCH0H–TBCH0L) initially control the buffered PWM output. TIMB status control register 0 (TBSC0) controls and monitors the PWM signal from the linked channels. MS0B takes priority over MS0A.

Clearing the toggle-on-overflow bit, TOVx, inhibits output toggles on TIMB overflows. Subsequent output compares try to force the output to a state it is already in and have no effect. The result is a 0 percent duty cycle output.

Setting the channel x maximum duty cycle bit (CHxMAX) and setting the TOVx bit generates a 100 percent duty cycle output. See **12.10.4 TIMB** Channel Status and Control Registers.

12.5 Interrupts

These TIMB sources can generate interrupt requests:

- TIMB overflow flag (TOF) The TOF bit is set when the TIMB counter reaches the modulo value programmed in the TIMB counter modulo registers. The TIMB overflow interrupt enable bit, TOIE, enables TIMB overflow CPU interrupt requests. TOF and TOIE are in the TIMB status and control register.
- TIMB channel flags (CH1F–CH0F) The CHxF bit is set when an input capture or output compare occurs on channel x. Channel x TIMB CPU interrupt requests are controlled by the channel x interrupt enable bit, CHxIE.

12.6 Wait Mode

The WAIT instruction puts the MCU in low-power standby mode.

The TIMB remains active after the execution of a WAIT instruction. In wait mode, the TIMB registers are not accessible by the CPU. Any enabled CPU interrupt request from the TIMB can bring the MCU out of wait mode.

MC68HC908MR8 — Rev 4.0

If TIMB functions are not required during wait mode, reduce power consumption by stopping the TIMB before executing the WAIT instruction.

12.7 Stop Mode

TIMB is inactive after execution of a STOP instruction. The STOP instruction does not affect register conditions or the state of the TIMB counter.

TIMB operation resumes when the MCU exits stop mode after an external interrupt.

12.8 TIMB During Break Interrupts

A break interrupt stops the TIMB counter and inhibits input captures.

The system integration module (SIM) controls whether status bits in other modules can be cleared during the break state. The BCFE bit in the SIM break flag control register (SBFCR) enables software to clear status bits during the break state. See **7.7.5 SIM Break Flag Control Register**.

To allow software to clear status bits during a break interrupt, write a logic 1 to the BCFE bit. If a status bit is cleared during the break state, it remains cleared when the MCU exits the break state.

To protect status bits during the break state, write a logic 0 to the BCFE bit. With BCFE at logic 0 (its default state), software can read and write I/O registers during the break state without affecting status bits. Some status bits have a 2-step read/write clearing procedure. If software does the first step on such a bit before the break, the bit cannot change during the break state as long as BCFE is at logic 0. After the break, doing the second step clears the status bit.

MC68HC908MR8 — Rev 4.0

12.9 TIMB Channel I/O Pins (PTB5/TCH0B–PTB6/TCH1B)

Port B shares two of its pins with the TIMB. The two TIMB channel I/O pins are PTB5/TCH0B and PTB6/TCH1B.

Each channel I/O pin is programmable independently as an input capture pin or an output compare pin. PTB5/TCH0B and PTB6/TCH1B can be configured as buffered output compare or buffered PWM pins.

12.10 I/O Registers

These I/O registers control and monitor TIMB operation:

- TIMB status and control register (TBSC)
- TIMB control registers (TBCNTH-TBCNTL)
- TIMB counter modulo registers (TBMODH-TBMODL)
- TIMB channel status and control registers (TBSC0 and TBSC1)
- TIMB channel registers (TBCH0H–TBCH0L and TBCH1H–TBCH1L)

12.10.1 TIMB Status and Control Register

The TIMB status and control register:

- Enables TIMB overflow interrupts
- Flags TIMB overflows
- Stops the TIMB counter
- Resets the TIMB counter
- Prescales the TIMB counter clock

Timer Interface B (TIMB)

Address \$0051

Figure 12-4. TIMB Status and Control Register (TBSC)

TOF — TIMB Overflow Flag Bit

This read/write flag is set when the TIMB counter reaches the modulo value programmed in the TIMB counter modulo registers. Clear TOF by reading the TIMB status and control register when TOF is set and then writing a logic 0 to TOF. If another TIMB overflow occurs before the clearing sequence is complete, then writing logic 0 to TOF has no effect. Therefore, a TOF interrupt request cannot be lost due to inadvertent clearing of TOF. Reset clears the TOF bit. Writing a logic 1 to TOF has no effect.

- 1 = TIMB counter has reached modulo value.
- 0 = TIMB counter has not reached modulo value.

TOIE — TIMB Overflow Interrupt Enable Bit

This read/write bit enables TIMB overflow interrupts when the TOF bit becomes set. Reset clears the TOIE bit.

- 1 = TIMB overflow interrupts enabled
- 0 = TIMB overflow interrupts disabled

TSTOP — TIMB Stop Bit

This read/write bit stops the TIMB counter. Counting resumes when TSTOP is cleared. Reset sets the TSTOP bit, stopping the TIMB counter until software clears the TSTOP bit.

- 1 = TIMB counter stopped
- 0 = TIMB counter active
- **NOTE:** Do not set the TSTOP bit before entering wait mode if the TIMB is required to exit wait mode. Also, when the TSTOP bit is set and the timer is configured for input capture operation, input captures are inhibited until TSTOP is cleared.

Technical Data

MC68HC908MR8 — Rev 4.0

TRST — TIMB Reset Bit

Setting this write-only bit resets the TIMB counter and the TIMB prescaler. Setting TRST has no effect on any other registers. Counting resumes from \$0000. TRST is cleared automatically after the TIMB counter is reset and always reads as logic 0. Reset clears the TRST bit.

- 1 = Prescaler and TIMB counter cleared
- 0 = No effect
- **NOTE:** Setting the TSTOP and TRST bits simultaneously stops the TIMB counter at a value of \$0000.

PS[2:0] — Prescaler Select Bits

These read/write bits select one of the seven prescaler outputs as the input to the TIMB counter as **Table 12-1** shows. Reset clears the PS[2:0] bits.

PS[2:0]	TIMB Clock Source
000	Internal Bus Clock ÷ 1
001	Internal Bus Clock ÷ 2
010	Internal Bus Clock ÷ 4
011	Internal Bus Clock ÷ 8
100	Internal Bus Clock ÷ 16
101	Internal Bus Clock ÷ 32
110	Internal Bus Clock ÷ 64
111	Invalid: do not use this value

 Table 12-1. Prescaler Selection

MC68HC908MR8 - Rev 4.0

12.10.2 TIMB Counter Registers

Register Name and Ad-

The two read-only TIMB counter registers contain the high and low bytes of the value in the TIMB counter. Reading the high byte (TBCNTH) latches the contents of the low byte (TBCNTL) into a buffer. Subsequent reads of TBCNTH do not affect the latched TBCNTL value until TBCNTL is read. Reset clears the TIMB counter registers. Setting the TIMB reset bit (TRST) also clears the TIMB counter registers.

NOTE: If TBCNTH is read during a break interrupt, be sure to unlatch TBCNTL by reading TBCNTL before exiting the break interrupt. Otherwise, TBCNTL retains the value latched during the break.

TBCNTH -- \$0052

dress:				<i>4000-</i>					
	Bit 7	6	5	4	3	2	1	Bit 0	
Read:	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	
Write:	R	R	R	R	R	R	R	R	
Reset:	0	0	0	0	0	0	0	0	•
Register dress:	Name and	d Ad-	TBCNTL	— \$0053					
	Bit 7	6	5	4	3	2	1	Bit 0	
Read:	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
Write:	R	R	R	R	R	R	R	R	
Reset:	0	0	0	0	0	0	0	0	
	R	= Reserv	ved						

Figure 12-5. TIMB Counter Registers (TBCNTH and TBCNTL)

Technical Data

MC68HC908MR8 — Rev 4.0

12.10.3 TIMB Counter Modulo Registers

The read/write TIMB modulo registers contain the modulo value for the TIMB counter. When the TIMB counter reaches the modulo value, the overflow flag (TOF) becomes set, and the TIMB counter resumes counting from \$0000 at the next timer clock. Writing to the high byte (TMODH) inhibits the TOF bit and overflow interrupts until the low byte (TMODL) is written. Reset sets the TIMB counter modulo registers.

Register dress:	Register Name and Ad- dress:		TBMODH — \$0054					
	Bit 7	6	5	4	3	2	1	Bit 0
Read: Write:	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
Reset:	1	1	1	1	1	1	1	1
	Register Name and Ad- dress:		TBMODL — \$0055					
•	Name and	d Ad-	TBMODL	. — \$0055	5			
•	Name and Bit 7	d Ad- 6	TBMODL	- — \$0055 4	3	2	1	Bit 0
•						2 Bit 2	1 Bit 1	Bit 0 Bit 0
dress: Read:	Bit 7	6	5	4	3	_		

NOTE: Reset the TIMB counter before writing to the TIMB counter modulo registers.

MC68HC908MR8 - Rev 4.0

12.10.4 TIMB Channel Status and Control Registers

Each of the TIMB channel status and control registers:

- Flags input captures and output compares
- Enables input capture and output compare interrupts
- Selects input capture, output compare, or PWM operation
- · Selects high, low, or toggling output on output compare
- Selects rising edge, falling edge, or any edge as the active input capture trigger
- Selects output toggling on TIMB overflow
- Selects 0% and 100% PWM duty cycle
- Selects buffered or unbuffered output compare/PWM operation

	Bit 7	6	5	4	3	2	1	Bit 0
Read:	CH0F	CH0IE	MS0B	MSOA	ELS0B		TOV0	CH0MA
Write:	0	CHOIL	MOOD	MOOA	LLOOD	LLOOA	1000	Х
Reset:	0	0	0	0	0	0	0	0

Register Name and Ad- TBSC0 — \$0056 dress:

Register Name and Ad- TBSC1 — \$0059 dress:

	Bit 7	6	5	4	3	2	1	Bit 0
Read:	CH1F	CH1IE	0	MS1A	ELS1B	ELS1A	TOV1	CH1MA
Write:	0	CITIL	R	MOTA	LLSID	LLSIA	1001	Х
Reset:	0	0	0	0	0	0	0	0
	R	= Reserv	ved					

Figure 12-7. TIMB Channel Status and Control Registers (TBSC0–TBSC1)

CHxF — Channel x Flag Bit

When channel x is an input capture channel, this read/write bit is set when an active edge occurs on the channel x pin. When channel x is an output compare channel, CHxF is set when the value in the TIMB counter registers matches the value in the TIMB channel x registers.

When CHxIE = 1, clear CHxF by reading TIMB channel x status and control register with CHxF set, and then writing a logic 0 to CHxF. If another interrupt request occurs before the clearing sequence is complete, then writing logic 0 to CHxF has no effect. Therefore, an interrupt request cannot be lost due to inadvertent clearing of CHxF.

Reset clears the CHxF bit. Writing a logic 1 to CHxF has no effect.

- 1 = Input capture or output compare on channel x
- 0 = No input capture or output compare on channel x
- CHxIE Channel x Interrupt Enable Bit

This read/write bit enables TIMB CPU interrupts on channel x. Reset clears the CHxIE bit.

- 1 = Channel x CPU interrupt requests enabled
- 0 = Channel x CPU interrupt requests disabled
- MSxB Mode Select Bit B

This read/write bit selects buffered output compare/PWM operation. MSxB exists only in the TIMB channel 0. Reset clears the MSxB bit.

- 1 = Buffered output compare/PWM operation enabled
- 0 = Buffered output compare/PWM operation disabled

MSxA — Mode Select Bit A

When ELSxB:A \neq 00, this read/write bit selects either input capture operation or unbuffered output compare/PWM operation. See **Table 12-2**.

- 1 = Unbuffered output compare/PWM operation
- 0 = Input capture operation

When ELSxB:A = 00, this read/write bit selects the initial output level of the TCHx pin once PWM, input capture, or output compare operation is enabled. Reset clears the MSxA bit. See Table 12-2.

- 1 = Initial output level low
- 0 = Initial output level high
- **NOTE:** Before changing a channel function by writing to the MSxB or MSxA bit, set the TSTOP and TRST bits in the TIMB status and control register (TBSC).

ELSxB and ELSxA — Edge/Level Select Bits

When channel x is an input capture channel, these read/write bits control the active edge-sensing logic on channel x.

When channel x is an output compare channel, ELSxB and ELSxA control the channel x output behavior when an output compare occurs.

When ELSxB and ELSxA are both clear, channel x is not connected to port B, and pin PTBx/TCHxB is available as a general-purpose I/O pin. However, channel x is at a state determined by these bits and becomes transparent to the respective pin when PWM, input capture, or output compare mode is enabled. Table 12-2 shows how ELSxA and ELSxA work. Reset clears the ELSxB and ELSxA bits.

MSxB:MSxA	ELSxB:ELSxA	Mode	Configuration
X0	00	Output	Pin under port control; Initialize timer Output level high
X1	00	preset	Pin under port control; Initialize timer Output level low
00	01		Capture on rising edge only
00	10	Input capture	Capture on falling edge only
00	11	00000	Capture on rising or falling edge
01	01	Output	Toggle output on compare
01	10	compare	Clear output on compare
01	11	or PWM	Set output on compare
1X	01	Buffered	Toggle output on compare
1X	10	output compare	Clear output on compare
1X	11	or buffered PWM	Set output on compare

Table 12-2. Mode, Edge, and Level Selection

NOTE: Before enabling a TIMB channel register for input capture operation, make sure that the PTBx/TBCHx pin is stable for at least two bus clocks.

TOVx — Toggle-On-Overflow Bit

When channel x is an output compare channel, this read/write bit controls the behavior of the channel x output when the TIMB counter overflows. When channel x is an input capture channel, TOVx has no effect. Reset clears the TOVx bit.

- 1 = Channel x pin toggles on TIMB counter overflow.
- 0 = Channel x pin does not toggle on TIMB counter overflow.
- **NOTE:** When TOVx is set, a TIMB counter overflow takes precedence over a channel x output compare if both occur at the same time.
 - CHxMAX Channel x Maximum Duty Cycle Bit

When the TOVx bit is at logic 1, setting the CHxMAX bit forces the duty cycle of buffered and unbuffered PWM signals to 100 percent. As **Figure 12-8** shows, the CHxMAX bit takes effect in the cycle after it is set or cleared. The output stays at the 100 percent duty cycle level until the cycle after CHxMAX is cleared.

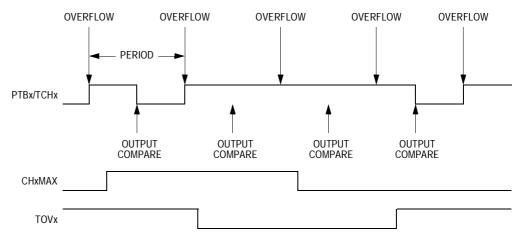


Figure 12-8. CHxMAX Latency

12.10.5 TIMB Channel Registers

These read/write registers contain the captured TIMB counter value of the input capture function or the output compare value of the output compare function. The state of the TIMB channel registers after reset is unknown.

MC68HC908MR8 — Rev 4.0

In input capture mode (MSxB-MSxA = 0:0), reading the high byte of the TIMB channel x registers (TBCHxH) inhibits input captures until the low byte (TBCHxL) is read.

In output compare mode (MSxB–MSxA \neq 0:0), writing to the high byte of the TIMB channel x registers (TBCHxH) inhibits output compares until the low byte (TBCHxL) is written.

Register Name and Address:				TBC	H0H — \$(
	Bit 7	6	5	4	3	2	1	Bit 0		
Read: Write:	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8		
Reset:	Indeterminate after reset									
Register	Name and	d Address	:	TBCH0L — \$0058						
	Bit 7	6	5	4	3	2	1	Bit 0		
Read: Write:	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
Reset:	Indeterminate after reset									
Register Name and Address: TBCH1H — \$005A										
rtegister	Name and	d Address	:	TBC	H1H — \$0	005A				
Register	Name and Bit 7	d Address 6	: 5	TBC 4	H1H — \$(3	005A 2	1	Bit 0		
Read: Write:							1 Bit 9	Bit 0 Bit 8		
Read:	Bit 7	6	5 Bit 13	4	3 Bit 11	2 Bit 10				
Read: Write: Reset:	Bit 7 Bit 15	6	5 Bit 13 Inc	4 Bit 12 determinat	3 Bit 11	2 Bit 10 set				
Read: Write: Reset:	Bit 7 Bit 15	6 Bit 14	5 Bit 13 Inc	4 Bit 12 determinat	3 Bit 11 te after res	2 Bit 10 set				
Read: Write: Reset:	Bit 7 Bit 15 Name and	6 Bit 14 d Address	5 Bit 13 Inc	4 Bit 12 determinat	3 Bit 11 te after res H1L — \$0	2 Bit 10 Set	Bit 9	Bit 8		

MC68HC908MR8 — Rev 4.0

Semiconductor, Inc.

Freescale

Section 13. Serial Communications Interface (SCI)

13.1 Contents

13.3 Features. .248 13.4 Functional Description. .249 13.4.1 Data Format .251 13.4.2 Transmitter .252 13.4.3 Receiver .256 13.5 Wait Mode .262 13.6 Stop Mode .262 13.7 SCI During Break Module Interrupts .262 13.8 I/O Signals .263 13.8.1 PTE2/TxD (Transmit Data) .263 13.8.2 PTB0/RxD (Receive Data) .263 13.9.1 SCI Control Register 1 .264 13.9.2 SCI Control Register 2 .267 13.9.3 SCI Control Register 3 .269 13.9.4 SCI Status Register 1 .271 13.9.5 SCI Status Register 2 .275	13.2 Introduction	8
13.4.1 Data Format 251 13.4.2 Transmitter 252 13.4.3 Receiver 256 13.5 Wait Mode 262 13.6 Stop Mode 262 13.7 SCI During Break Module Interrupts 262 13.8 I/O Signals 263 13.8.1 PTE2/TxD (Transmit Data) 263 13.8.2 PTB0/RxD (Receive Data) 263 13.9 I/O Registers 263 13.9.1 SCI Control Register 1 264 13.9.2 SCI Control Register 2 267 13.9.3 SCI Control Register 3 269 13.9.4 SCI Status Register 1 271	13.3 Features	8
13.4.2 Transmitter 252 13.4.3 Receiver 256 13.5 Wait Mode 262 13.6 Stop Mode 262 13.7 SCI During Break Module Interrupts 262 13.8 I/O Signals 263 13.8.1 PTE2/TxD (Transmit Data) 263 13.8.2 PTB0/RxD (Receive Data) 263 13.9.1 SCI Control Register 1 263 13.9.2 SCI Control Register 2 267 13.9.3 SCI Control Register 3 269 13.9.4 SCI Status Register 1 271	13.4 Functional Description	9
13.4.3 Receiver 256 13.5 Wait Mode 262 13.6 Stop Mode 262 13.7 SCI During Break Module Interrupts 262 13.8 I/O Signals 263 13.8.1 PTE2/TxD (Transmit Data) 263 13.8.2 PTB0/RxD (Receive Data) 263 13.9 I/O Registers 263 13.9.1 SCI Control Register 1 264 13.9.2 SCI Control Register 2 267 13.9.3 SCI Control Register 3 269 13.9.4 SCI Status Register 1 271	13.4.1 Data Format	1
13.5 Wait Mode 262 13.6 Stop Mode 262 13.7 SCI During Break Module Interrupts 262 13.8 I/O Signals 263 13.8.1 PTE2/TxD (Transmit Data) 263 13.8.2 PTB0/RxD (Receive Data) 263 13.9 I/O Registers 263 13.9.1 SCI Control Register 1 264 13.9.2 SCI Control Register 2 267 13.9.3 SCI Control Register 3 269 13.9.4 SCI Status Register 1 271	13.4.2 Transmitter	2
13.6 Stop Mode 262 13.7 SCI During Break Module Interrupts 262 13.8 I/O Signals 263 13.8.1 PTE2/TxD (Transmit Data) 263 13.8.2 PTB0/RxD (Receive Data) 263 13.9 I/O Registers 263 13.9.1 SCI Control Register 1 263 13.9.2 SCI Control Register 2 263 13.9.3 SCI Control Register 3 263 13.9.4 SCI Status Register 1 263	13.4.3 Receiver	6
13.7 SCI During Break Module Interrupts 262 13.8 I/O Signals 263 13.8.1 PTE2/TxD (Transmit Data) 263 13.8.2 PTB0/RxD (Receive Data) 263 13.9 I/O Registers 263 13.9.1 SCI Control Register 1 264 13.9.2 SCI Control Register 2 267 13.9.3 SCI Control Register 3 269 13.9.4 SCI Status Register 1 271	13.5 Wait Mode	2
13.7 SCI During Break Module Interrupts 262 13.8 I/O Signals 263 13.8.1 PTE2/TxD (Transmit Data) 263 13.8.2 PTB0/RxD (Receive Data) 263 13.9 I/O Registers 263 13.9.1 SCI Control Register 1 264 13.9.2 SCI Control Register 2 267 13.9.3 SCI Control Register 3 269 13.9.4 SCI Status Register 1 271	13.6 Stop Mode	2
13.8.1 PTE2/TxD (Transmit Data) 263 13.8.2 PTB0/RxD (Receive Data) 263 13.9 I/O Registers 263 13.9.1 SCI Control Register 1 264 13.9.2 SCI Control Register 2 267 13.9.3 SCI Control Register 3 269 13.9.4 SCI Status Register 1 271		
13.8.2 PTB0/RxD (Receive Data) 263 13.9 I/O Registers 263 13.9.1 SCI Control Register 1 264 13.9.2 SCI Control Register 2 267 13.9.3 SCI Control Register 3 269 13.9.4 SCI Status Register 1 271	13.8 I/O Signals	3
13.9 I/O Registers 263 13.9.1 SCI Control Register 1 264 13.9.2 SCI Control Register 2 267 13.9.3 SCI Control Register 3 269 13.9.4 SCI Status Register 1 271	13.8.1 PTE2/TxD (Transmit Data)	3
13.9.1 SCI Control Register 1 .264 13.9.2 SCI Control Register 2 .267 13.9.3 SCI Control Register 3 .269 13.9.4 SCI Status Register 1 .271	13.8.2 PTB0/RxD (Receive Data)	3
13.9.2 SCI Control Register 2	13.9 I/O Registers	3
13.9.3 SCI Control Register 3 269 13.9.4 SCI Status Register 1 271	13.9.1 SCI Control Register 1	4
13.9.4 SCI Status Register 1	13.9.2 SCI Control Register 2	7
	13.9.3 SCI Control Register 3	9
13.9.5 SCI Status Register 2	13.9.4 SCI Status Register 127	'1
	13.9.5 SCI Status Register 227	' 5
13.9.6 SCI Data Register	13.9.6 SCI Data Register	'6
13.9.7 SCI Baud Rate Register	13.9.7 SCI Baud Rate Register	'6

MC68HC908MR8 - Rev 4.0

Serial Communications Interface (SCI)

13.2 Introduction

This section describes the serial communications interface (SCI) module which allows high-speed asynchronous communications with peripheral devices and other microcontroller units (MCUs).

13.3 Features

Features of the SCI module include:

- Full duplex operation
- Standard mark/space non-return-to-zero (NRZ) format
- 32 programmable baud rates
- Programmable 8-bit or 9-bit character length
- Separately enabled transmitter and receiver
- Separate receiver and transmitter cpu interrupt requests
- Separate receiver and transmitter
- Programmable transmitter output polarity
- Two receiver wakeup methods:
 - Idle line wakeup
 - Address mark wakeup

Technical Data

- Interrupt-driven operation with eight interrupt flags:
 - Transmitter empty
 - Transmission complete
 - Receiver full
 - Idle receiver input
 - Receiver overrun
 - Noise error
 - Framing error
 - Parity error
- Receiver framing error detection
- Hardware parity checking
- 1/16 bit-time noise detection

13.4 Functional Description

The SCI allows full-duplex, asynchronous, NRZ serial communication among the MCU and remote devices, including other MCUs. The transmitter and receiver of the SCI operate independently, although they use the same baud rate generator. During normal operation, the CPU monitors the status of the SCI, writes the data to be transmitted, and processes received data.

Figure 13-1 shows the structure of the SCI module. **Figure 13-2** provides a summary of the input/output (I/O) registers.

MC68HC908MR8 - Rev 4.0

Serial Communications Interface (SCI)

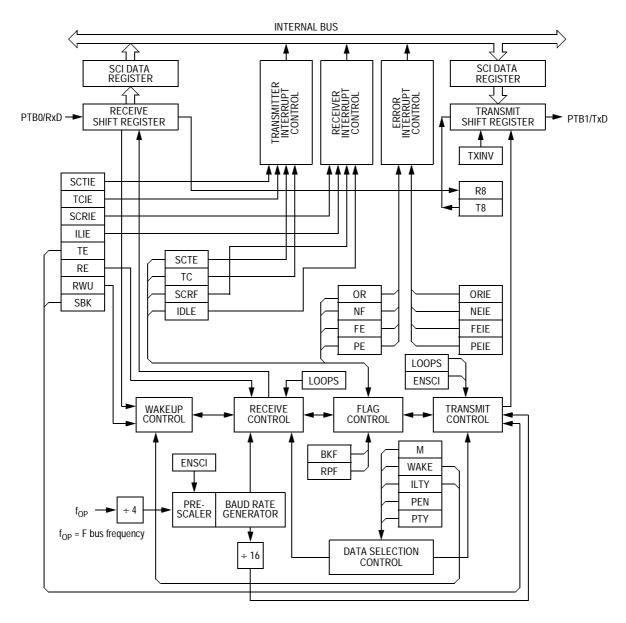


Figure 13-1. SCI Module Block Diagram

Technical Data

Serial Communications Interface (SCI) Functional Description

Addr.	Register Name		Bit 7	6	5	4	3	2	1	Bit 0
\$0038	SCI Control Register 1 (SCC1)	Read: Write:	LOOP S	ENSCI	TXINV	М	WAKE	ILTY	PEN	ΡΤΥ
	See page 264.	Reset:	0	0	0	0	0	0	0	0
\$0039	SCI Control Register 2 (SCC2)	Read: Write:	SCTIE	TCIE	SCRIE	ILIE	TE	RE	RWU	SBK
	See page 267 .	Reset:	0	0	0	0	0	0	0	0
\$003A	SCI Control Register 3	Read:	R8	Т8	0	0	ORIE NEIE		FEIE	PEIE
	(SCC3)	Write:	R	10	R	R				
	See page 270.	Reset:	U	U	0	0	0	0	0	0
S(\$003B	SCI Status Register 1	Read:	SCTE	тс	SCRF	IDLE	OR	NF	FE	PE
	(SCS1)	Write:	R	R	R	R	R	R	R	R
	See page 271.	Reset:	1	1	0	0	0	0	0	0
\$003C	SCI Status Register 2	Read:	0	0	0	0	0	0	BKF	RPF
	(SCS2)	Write:	R	R	R	R	R	R	R	R
	See page 275.	Reset:	0	0	0	0	0	0	0	0
\$003D	SCI Data Register	Read:	R7	R6	R5	R4	R3	R2	R1	R0
	(SCDR) See page 276 .	Write:	T7	T6	T5	T4	Т3	T2	T1	Т0
		Reset:		Unaffected by reset						
S \$003E	SCI Baud Rate Register (SCBR) See page 276.	Read:	0	0	SCD1	SCP0	0	SCD2		SCR0
		Write:	R	R	SCP1		R	SCR2	SCR1	
		Reset:	0	0	0	0	0	0	0	0
			R	R = Reserved		U = Unaffected				

13.4.1 Data Format

The SCI uses the standard non-return-to-zero mark/space data format illustrated in **Figure 13-3**.

MC68HC908MR8 — Rev 4.0

Serial Communications Interface (SCI)

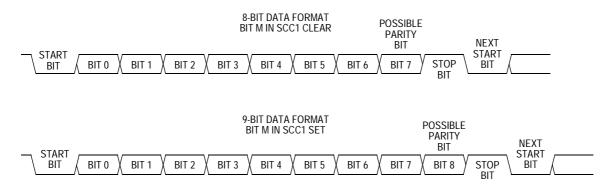


Figure 13-3. SCI Data Formats

13.4.2 Transmitter

Figure 13-4 shows the structure of the SCI transmitter.

13.4.2.1 Character Length

The transmitter can accommodate either 8-bit or 9-bit data. The state of the M bit in SCI control register 1 (SCC1) determines character length. When transmitting 9-bit data, bit T8 in SCI control register 3 (SCC3) is the ninth bit (bit 8).

13.4.2.2 Character Transmission

During an SCI transmission, the transmit shift register shifts a character out to the PTB1/TxD pin. The SCI data register (SCDR) is the write-only buffer between the internal data bus and the transmit shift register.

To initiate an SCI transmission:

- 1. Enable the SCI by writing a logic 1 to the enable SCI bit (ENSCI) in SCI control register 1 (SCC1).
- 2. Enable the transmitter by writing a logic 1 to the transmitter enable bit (TE) in SCI control register 2 (SCC2).
- 3. Clear the SCI transmitter empty bit by first reading SCI status register 1 (SCS1) and then writing to the SCDR.
- 4. Repeat step 3 for each subsequent transmission.

Technical Data

MC68HC908MR8 — Rev 4.0

At the start of a transmission, transmitter control logic automatically loads the transmit shift register with a preamble of logic 1s. After the preamble shifts out, control logic transfers the SCDR data into the transmit shift register. A logic 0 start bit automatically goes into the least significant bit (LSB) position of the transmit shift register. A logic 1 stop bit goes into the most significant bit (MSB) position.

The SCI transmitter empty bit, SCTE, in SCS1 becomes set when the SCDR transfers a byte to the transmit shift register. The SCTE bit indicates that the SCDR can accept new data from the internal data bus. If the SCI transmit interrupt enable bit, SCTIE, in SCC2 is also set, the SCTE bit generates a transmitter CPU interrupt request.

When the transmit shift register is not transmitting a character, the PTB1/TxD pin goes to the idle condition, logic 1. If at any time software clears the ENSCI bit in SCI control register 1 (SCC1), the transmitter and receiver relinquish control of the port B pins.

13.4.2.3 Break Characters

Writing a logic 1 to the send break bit, SBK, in SCC2 loads the transmit shift register with a break character. A break character contains all logic 0s and has no start, stop, or parity bit. Break character length depends on the M bit in SCC1. As long as SBK is at logic 1, transmitter logic continuously loads break characters into the transmit shift register. After software clears the SBK bit, the shift register finishes transmitting the last break character and then transmits at least one logic 1. The automatic logic 1 at the end of a break character guarantees the recognition of the start bit of the next character.

The SCI recognizes a break character when a start bit is followed by eight or nine logic 0 data bits and a logic 0 where the stop bit should be.

MC68HC908MR8 - Rev 4.0

Serial Communications Interface (SCI)

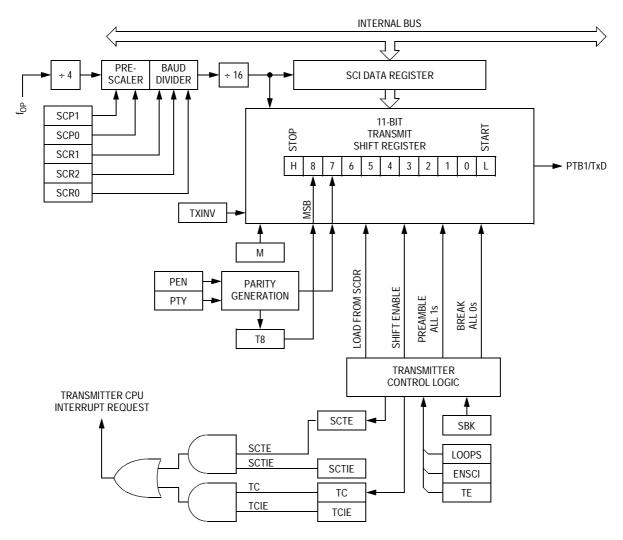


Figure 13-4. SCI Transmitter

Receiving a break character has these effects on SCI registers:

- Sets the framing error bit (FE) in SCS1
- Sets the SCI receiver full bit (SCRF) in SCS1
- Clears the SCI data register (SCDR)
- Clears the R8 bit in SCC3
- Sets the break flag bit (BKF) in SCS2
- May set the overrun (OR), noise flag (NF), parity error (PE), or reception-in-progress flag (RPF) bits

Technical Data

MC68HC908MR8 — Rev 4.0

13.4.2.4 Idle Characters

An idle character contains all logic 1s and has no start, stop, or parity bit. Idle character length depends on the M bit in SCC1. The preamble is a synchronizing idle character that begins every transmission.

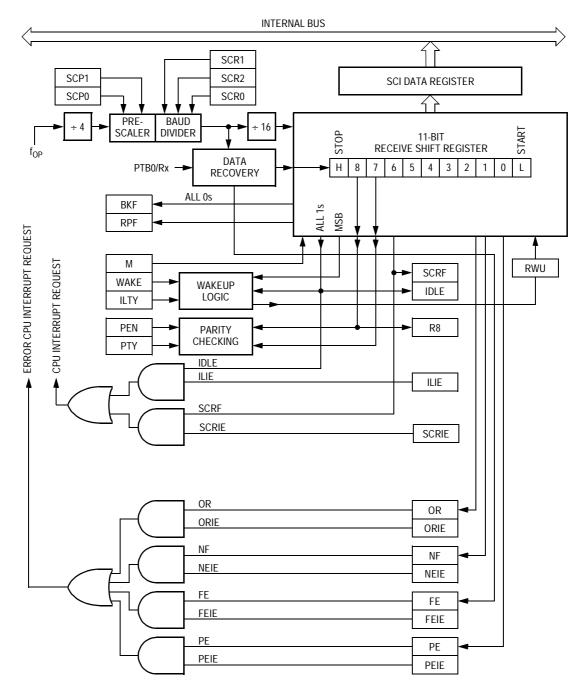
If the TE bit is cleared during a transmission, the PTB1/TxD pin becomes idle after completion of the transmission in progress. Clearing and then setting the TE bit during a transmission queues an idle character to be sent after the character currently being transmitted.

NOTE: When queueing an idle character, return the TE bit to logic 1 before the stop bit of the current character shifts out to the PTB1/TxD pin. Setting TE after the stop bit appears on PTB1/TxD causes data previously written to the SCDR to be lost.

A good time to toggle the TE bit is when the SCTE bit becomes set and just before writing the next byte to the SCDR.

13.4.2.5 Inversion of Transmitted Output

The transmit inversion bit (TXINV) in SCI control register 1 (SCC1) reverses the polarity of transmitted data. All transmitted values, including idle, break, start, and stop bits, are inverted when TXINV is at logic 1. See **13.9.1 SCI Control Register 1**.


13.4.2.6 Transmitter Interrupts

These conditions can generate CPU interrupt requests from the SCI transmitter:

- SCI transmitter empty (SCTE) The SCTE bit in SCS1 indicates that the SCDR has transferred a character to the transmit shift register. SCTE can generate a transmitter CPU interrupt request. Setting the SCI transmit interrupt enable bit, SCTIE, in SCC2 enables the SCTE bit to generate transmitter CPU interrupt requests.
- Transmission complete (TC) The TC bit in SCS1 indicates that the transmit shift register and the SCDR are empty and that no break or idle character has been generated. The transmission complete interrupt enable bit, TCIE, in SCC2 enables the TC bit to generate transmitter CPU interrupt requests.

13.4.3 Receiver

Figure 13-5 shows the structure of the SCI receiver.

Technical Data

MC68HC908MR8 — Rev 4.0

13.4.3.1 Character Length

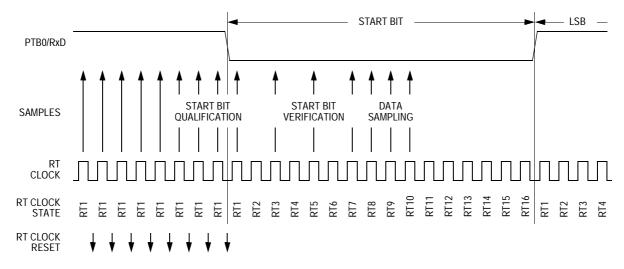
The receiver can accommodate either 8-bit or 9-bit data. The state of the M bit in SCI control register 1 (SCC1) determines character length. When receiving 9-bit data, bit R8 in SCI control register 2 (SCC2) is the ninth bit (bit 8). When receiving 8-bit data, bit R8 is a copy of the eighth bit (bit 7).

13.4.3.2 Character Reception

During an SCI reception, the receive shift register shifts characters in from the PTB0/RxD pin. The SCI data register (SCDR) is the read-only buffer between the internal data bus and the receive shift register.

After a complete character shifts into the receive shift register, the data portion of the character transfers to the SCDR. The SCI receiver full bit, SCRF, in SCI status register 1 (SCS1) becomes set, indicating that the received byte can be read. If the SCI receive interrupt enable bit, SCRIE, in SCC2 is also set, the SCRF bit generates a receiver CPU interrupt request.

13.4.3.3 Data Sampling


The receiver samples the PTB0/RxD pin at the RT clock rate. The RT clock is an internal signal with a frequency 16 times the baud rate. To adjust for baud rate mismatch, the RT clock is resynchronized at these times (see Figure 13-6):

- After every start bit
- After the receiver detects a data bit change from logic 1 to logic 0 (after the majority of data bit samples at RT8, RT9, and RT10 return a valid logic 1 and the majority of the next RT8, RT9, and RT10 samples return a valid logic 0)

To locate the start bit, data recovery logic does an asynchronous search for a logic 0 preceded by three logic 1s. When the falling edge of a possible start bit occurs, the RT clock begins to count to 16.

MC68HC908MR8 — Rev 4.0

Serial Communications Interface (SCI)

Figure 13-6. Receiver Data Sampling

To verify the start bit and to detect noise, data recovery logic takes samples at RT3, RT5, and RT7. **Table 13-1** summarizes the results of the start bit verification samples.

RT3, RT5, and RT7 Samples	Start Bit Verification	Noise Flag
000	Yes	0
001	Yes	1
010	Yes	1
011	No	0
100	Yes	1
101	No	0
110	No	0
111	No	0

Table 13-1. Start Bit Verification

If start bit verification is not successful, the RT clock is reset and a new search for a start bit begins.

Technical Data

MOTOROLA

To determine the value of a data bit and to detect noise, recovery logic takes samples at RT8, RT9, and RT10. Table 13-2 summarizes the results of the data bit samples.

RT8, RT9, and RT10 Samples	Data Bit Determination	Noise Flag
000	0	0
001	0	1
010	0	1
011	1	1
100	0	1
101	1	1
110	1	1
111	1	0

Table 13-2. Data Bit Recovery

NOTE: The RT8, RT9, and RT10 samples do not affect start bit verification. If any or all of the RT8, RT9, and RT10 start bit samples are logic 1s following a successful start bit verification, the noise flag (NF) is set and the receiver assumes that the bit is a start bit.

To verify a stop bit and to detect noise, recovery logic takes samples at RT8, RT9, and RT10. Table 13-3 summarizes the results of the stop bit samples.

RT8, RT9, and RT10 Samples	Framing Error Flag	Noise Flag
000	1	0
001	1	1
010	1	1
011	0	1
100	1	1
101	0	1
110	0	1
111	0	0

MOTOROLA

Serial Communications Interface (SCI) For More Information On This Product, Go to: www.freescale.com

13.4.3.4 Framing Errors

If the data recovery logic does not detect a logic 1 where the stop bit should be in an incoming character, it sets the framing error bit, FE, in SCS1. The FE flag is set at the same time that the SCRF bit is set. A break character that has no stop bit also sets the FE bit.

13.4.3.5 Receiver Wakeup

So that the MCU can ignore transmissions intended only for other receivers in multiple-receiver systems, the receiver can be put into a standby state. Setting the receiver wakeup bit, RWU, in SCC2 puts the receiver into a standby state during which receiver interrupts are disabled.

Depending on the state of the WAKE bit in SCC1, either of two conditions on the PTB0/RxD pin can bring the receiver out of the standby state:

- Address mark An address mark is a logic 1 in the most significant bit position of a received character. When the WAKE bit is set, an address mark wakes the receiver from the standby state by clearing the RWU bit. The address mark also sets the SCI receiver full bit, SCRF. Software can then compare the character containing the address mark to the user-defined address of the receiver. If they are the same, the receiver remains awake and processes the characters that follow. If they are not the same, software can set the RWU bit and put the receiver back into the standby state.
- Idle input line condition When the WAKE bit is clear, an idle character on the PTB0/RxD pin wakes the receiver from the standby state by clearing the RWU bit. The idle character that wakes the receiver does not set the receiver idle bit, IDLE, or the SCI receiver full bit, SCRF. The idle line type bit, ILTY, determines whether the receiver begins counting logic 1s as idle character bits after the start bit or after the stop bit.
- **NOTE:** Clearing the WAKE bit after the PTB0/RxD pin has been idle can cause the receiver to wake up immediately.

MOTOROLA

13.4.3.6 Receiver Interrupts

These sources can generate CPU interrupt requests from the SCI receiver:

- SCI receiver full (SCRF) The SCRF bit in SCS1 indicates that the receive shift register has transferred a character to the SCDR.
 SCRF can generate a receiver CPU interrupt request. Setting the SCI receive interrupt enable bit, SCRIE, in SCC2 enables the SCRF bit to generate receiver CPU interrupts.
- Idle input (IDLE) The IDLE bit in SCS1 indicates that 10 or 11 consecutive logic 1s shifted in from the PTB0/RxD pin. The idle line interrupt enable bit, ILIE, in SCC2 enables the IDLE bit to generate CPU interrupt requests.

13.4.3.7 Error Interrupts

These receiver error flags in SCS1 can generate CPU interrupt requests:

- Receiver overrun (OR) The OR bit indicates that the receive shift register shifted in a new character before the previous character was read from the SCDR. The previous character remains in the SCDR, and the new character is lost. The overrun interrupt enable bit, ORIE, in SCC3 enables OR to generate SCI error CPU interrupt requests.
- Noise flag (NF) The NF bit is set when the SCI detects noise on incoming data or break characters, including start, data, and stop bits. The noise error interrupt enable bit, NEIE, in SCC3 enables NF to generate SCI error CPU interrupt requests.
- Framing error (FE) The FE bit in SCS1 is set when a logic 0 occurs where the receiver expects a stop bit. The framing error interrupt enable bit, FEIE, in SCC3 enables FE to generate SCI error CPU interrupt requests.
- Parity error (PE) The PE bit in SCS1 is set when the SCI detects a parity error in incoming data. The parity error interrupt enable bit, PEIE, in SCC3 enables PE to generate SCI error CPU interrupt requests.

MC68HC908MR8 - Rev 4.0

13.5 Wait Mode

The WAIT and STOP instructions put the MCU in low powerconsumption standby modes.

The SCI module remains active after the execution of a WAIT instruction. In wait mode the SCI module registers are not accessible by the CPU. Any enabled CPU interrupt request from the SCI module can bring the MCU out of wait mode.

If SCI module functions are not required during wait mode, reduce power consumption by disabling the module before executing the WAIT instruction.

13.6 Stop Mode

The SCI module is inactive after execution of a STOP instruction. The STOP instruction does not affect register conditions of the SCI. SCI operation resumes when the MCU exits stop mode after an external interrupt.

13.7 SCI During Break Module Interrupts

The system integration module (SIM) controls whether status bits in other modules can be cleared during interrupts generated by the break module. The BCFE bit in the SIM break flag control register (SBFCR) enables software to clear status bits during the break state.

To allow software to clear status bits during a break interrupt, write a logic 1 to the BCFE bit. If a status bit is cleared during the break state, it remains cleared when the MCU exits the break state.

To protect status bits during the break state, write a logic 0 to the BCFE bit. With BCFE at logic 0 (its default state), software can read and write I/O registers during the break state without affecting status bits. Some status bits have a 2-step read/write clearing procedure. If software does the first step on such a bit before the break, the bit cannot change during the break state as long as BCFE is at logic 0. After the break, doing the second step clears the status bit.

Technical Data

MC68HC908MR8 — Rev 4.0

MOTOROLA

13.8 I/O Signals

Port B shares two of its pins with the SCI module. The two SCI I/O pins are:

- PTB1/TxD Transmit data
- PTB0/RxD Receive data

13.8.1 PTE2/TxD (Transmit Data)

The PTB1/TxD pin is the serial data output from the SCI transmitter. The SCI shares the PTB1/TxD pin with port B. When the SCI is enabled, the PTB1/TxD pin is an output regardless of the state of the DDRF1 bit in data direction register B (DDRB).

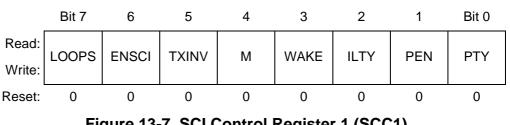
13.8.2 PTB0/RxD (Receive Data)

The PTB0/RxD pin is the serial data input to the SCI receiver. The SCI shares the PTB0/RxD pin with port B. When the SCI is enabled, the PTB0/RxD pin is an input regardless of the state of the DDRB0 bit in data direction register B (DDRB).

13.9 I/O Registers

These I/O registers control and monitor SCI operation:

- SCI control register 1 (SCC1)
- SCI control register 2 (SCC2)
- SCI control register 3 (SCC3)
- SCI status register 1 (SCS1)
- SCI status register 2 (SCS2)
- SCI data register (SCDR)
- SCI baud rate register (SCBR)


MC68HC908MR8 - Rev 4.0

13.9.1 SCI Control Register 1

SCI control register 1 (SCC1):

- Enables loop mode operation
- Enables the SCI •
- Controls output polarity •
- Controls character length •
- Controls SCI wake-up method
- Controls idle character detection •
- Enables parity function •
- Controls parity type

Ad-\$0038 dress:

LOOPS — Loop Mode Select Bit

This read/write bit enables loop mode operation. In loop mode the PTB0/RxD pin is disconnected from the SCI, and the transmitter output goes into the receiver input. Both the transmitter and the receiver must be enabled to use loop mode. Reset clears the LOOPS bit.

- 1 = Loop mode enabled
- 0 = Normal operation enabled

ENSCI — Enable SCI Bit

This read/write bit enables the SCI and the SCI baud rate generator. Clearing ENSCI sets the SCTE and TC bits in SCI status register 1 and disables transmitter interrupts. Reset clears the ENSCI bit.

- 1 = SCI enabled
- 0 = SCI disabled

Technical Data

ы.

TXINV — Transmit Inversion Bit

This read/write bit reverses the polarity of transmitted data. Reset clears the TXINV bit.

- 1 = Transmitter output inverted
- 0 = Transmitter output not inverted
- **NOTE:** Setting the TXINV bit inverts all transmitted values, including idle, break, start, and stop bits.
 - M Mode (Character Length) Bit

This read/write bit determines whether SCI characters are eight or nine bits long. (See **Table 13-4**.) The ninth bit can serve as an extra stop bit, as a receiver wakeup signal, or as a parity bit. Reset clears the M bit.

1 = 9-bit SCI characters

0 = 8-bit SCI characters

WAKE — Wakeup Condition Bit

This read/write bit determines which condition wakes up the SCI: a logic 1 (address mark) in the most significant bit (MSB) position of a received character or an idle condition on the PTB0/RxD pin. Reset clears the WAKE bit.

- 1 = Address mark wakeup
- 0 = Idle line wakeup
- ILTY Idle Line Type Bit

This read/write bit determines when the SCI starts counting logic 1s as idle character bits. The counting begins either after the start bit or after the stop bit. If the count begins after the start bit, then a string of logic 1s preceding the stop bit may cause false recognition of an idle character. Beginning the count after the stop bit avoids false idle character recognition, but requires properly synchronized transmissions. Reset clears the ILTY bit.

1 = Idle character bit count begins after stop bit.

0 = Idle character bit count begins after start bit.

MC68HC908MR8 - Rev 4.0

PEN — Parity Enable Bit

This read/write bit enables the SCI parity function (see **Table 13-4**). When enabled, the parity function inserts a parity bit in the most significant bit position (see **Figure 13-3**). Reset clears the PEN bit.

- 1 = Parity function enabled
- 0 = Parity function disabled
- PTY Parity Bit

This read/write bit determines whether the SCI generates and checks for odd parity or even parity (see **Table 13-4**). Reset clears the PTY bit.

- 1 = Odd parity
- 0 = Even parity
- **NOTE:** Changing the PTY bit in the middle of a transmission or reception can generate a parity error.

Control Bits		Character Format				
М	PEN:PTY	Start Bits	Data Bits	Parity	Stop Bits	Character Length (Bits)
0	0X	1	8	None	1	10
1	0X	1	9	None	1	11
0	10	1	7	Even	1	10
0	11	1	7	Odd	1	10
1	10	1	8	Even	1	11
1	11	1	8	Odd	1	11

Table 13-4. Character Format Selection

MC68HC908MR8 — Rev 4.0

13.9.2 SCI Control Register 2

SCI control register 2 (SCC2):

- Enables these CPU interrupt requests:
 - Enables the SCTE bit to generate transmitter CPU interrupt requests
 - Enables the TC bit to generate transmitter CPU interrupt requests
 - Enables the SCRF bit to generate receiver CPU interrupt requests
 - Enables the IDLE bit to generate receiver CPU interrupt requests
- Enables the transmitter
- Enables the receiver
- Enables SCI wake up
- Transmits SCI break characters

Address: \$0039

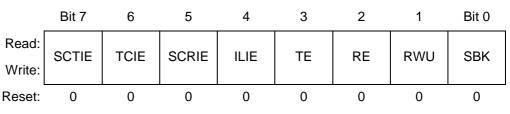


Figure 13-8. SCI Control Register 2 (SCC2)

SCTIE — SCI Transmit Interrupt Enable Bit

This read/write bit enables the SCTE bit to generate SCI transmitter CPU interrupt requests. Setting the SCTIE bit in SCC3 enables SCTE CPU interrupt requests. Reset clears the SCTIE bit.

- 1 = SCTE enabled to generate CPU interrupt
- 0 = SCTE not enabled to generate CPU interrupt

TCIE — Transmission Complete Interrupt Enable Bit

This read/write bit enables the TC bit to generate SCI transmitter CPU interrupt requests. Reset clears the TCIE bit.

- 1 = TC enabled to generate CPU interrupt requests
- 0 = TC not enabled to generate CPU interrupt requests
- SCRIE SCI Receive Interrupt Enable Bit

This read/write bit enables the SCRF bit to generate SCI receiver CPU interrupt requests. Setting the SCRIE bit in SCC3 enables the SCRF bit to generate CPU interrupt requests. Reset clears the SCRIE bit.

- 1 = SCRF enabled to generate CPU interrupt
- 0 = SCRF not enabled to generate CPU interrupt
- ILIE Idle Line Interrupt Enable Bit

This read/write bit enables the IDLE bit to generate SCI receiver CPU interrupt requests. Reset clears the ILIE bit.

- 1 = IDLE enabled to generate CPU interrupt requests
- 0 = IDLE not enabled to generate CPU interrupt requests
- TE Transmitter Enable Bit

Setting this read/write bit begins the transmission by sending a preamble of 10 or 11 logic 1s from the transmit shift register to the PTB1/TxD pin. If software clears the TE bit, the transmitter completes any transmission in progress before the PTB1/TxD returns to the idle condition (logic 1). Clearing and then setting TE during a transmission queues an idle character to be sent after the character currently being transmitted. Reset clears the TE bit.

- 1 = Transmitter enabled
- 0 = Transmitter disabled
- **NOTE:** Writing to the TE bit is not allowed when the enable SCI bit (ENSCI) is clear. ENSCI is in SCI control register 1.
 - RE Receiver Enable Bit

Setting this read/write bit enables the receiver. Clearing the RE bit disables the receiver but does not affect receiver interrupt flag bits. Reset clears the RE bit.

- 1 = Receiver enabled
- 0 = Receiver disabled

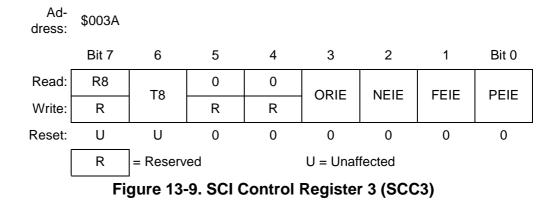
- **NOTE:** Writing to the RE bit is not allowed when the enable SCI bit (ENSCI) is clear. ENSCI is in SCI control register 1.
 - RWU Receiver Wakeup Bit

This read/write bit puts the receiver in a standby state during which receiver interrupts are disabled. The WAKE bit in SCC1 determines whether an idle input or an address mark brings the receiver out of the standby state and clears the RWU bit. Reset clears the RWU bit.

- 1 = Standby state
- 0 = Normal operation
- SBK Send Break Bit

Setting and then clearing this read/write bit transmits a break character followed by a logic 1. The logic 1 after the break character guarantees recognition of a valid start bit. If SBK remains set, the transmitter continuously transmits break characters with no logic 1s between them. Reset clears the SBK bit.

- 1 = Transmit break characters
- 0 = No break characters being transmitted
- **NOTE:** Do not toggle the SBK bit immediately after setting the SCTE bit. Toggling SBK too early causes the SCI to send a break character instead of a preamble.


13.9.3 SCI Control Register 3

SCI control register 3 (SCC3):

- Stores the ninth SCI data bit received and the ninth SCI data bit to be transmitted
- Enables SCI receiver full (SCRF)
- Enables SCI transmitter empty (SCTE)
- Enables the following interrupts:
 - Receiver overrun interrupts
 - Noise error interrupts
 - Framing error interrupts
 - Parity error interrupts

MOTOROLA

Serial Communications Interface (SCI)

R8 — Received Bit 8

When the SCI is receiving 9-bit characters, R8 is the read-only ninth bit (bit 8) of the received character. R8 is received at the same time that the SCDR receives the other 8 bits.

When the SCI is receiving 8-bit characters, R8 is a copy of the eighth bit (bit 7). Reset has no effect on the R8 bit.

T8 — Transmitted Bit 8

When the SCI is transmitting 9-bit characters, T8 is the read/write ninth bit (bit 8) of the transmitted character. T8 is loaded into the transmit shift register at the same time that the SCDR is loaded into the transmit shift register. Reset has no effect on the T8 bit.

ORIE — Receiver Overrun Interrupt Enable Bit

This read/write bit enables SCI error CPU interrupt requests generated by the receiver overrun bit, OR.

- 1 = SCI error CPU interrupt requests from OR bit enabled
- 0 = SCI error CPU interrupt requests from OR bit disabled
- NEIE Receiver Noise Error Interrupt Enable Bit

This read/write bit enables SCI error CPU interrupt requests generated by the noise error bit, NE. Reset clears NEIE.

- 1 = SCI error CPU interrupt requests from NE bit enabled
- 0 = SCI error CPU interrupt requests from NE bit disabled

Technical Data

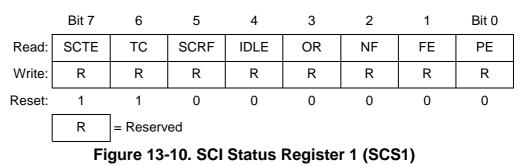
MOTOROLA

FEIE — Receiver Framing Error Interrupt Enable Bit

This read/write bit enables SCI error CPU interrupt requests generated by the framing error bit, FE. Reset clears FEIE.

- 1 = SCI error CPU interrupt requests from FE bit enabled
- 0 = SCI error CPU interrupt requests from FE bit disabled
- PEIE Receiver Parity Error Interrupt Enable Bit

This read/write bit enables SCI receiver CPU interrupt requests generated by the parity error bit, PE. Reset clears PEIE. See **13.9.4** SCI Status Register 1


- 1 = SCI error CPU interrupt requests from PE bit enabled
- 0 = SCI error CPU interrupt requests from PE bit disabled

13.9.4 SCI Status Register 1

SCI status register 1 (SCS1) contains flags to signal these conditions:

- Transfer of SCDR data to transmit shift register complete
- Transmission complete
- Transfer of receive shift register data to SCDR complete
- Receiver input idle
- Receiver overrun
- Noisy data
- Framing error
- Parity error

Ad- \$003B dress:

SCTE — SCI Transmitter Empty Bit

This clearable, read-only bit is set when the SCDR transfers a character to the transmit shift register. SCTE can generate an SCI transmitter CPU interrupt request. When the SCTIE bit in SCC2 is set, SCTE generates an SCI transmitter CPU interrupt request. In normal operation, clear the SCTE bit by reading SCS1 with SCTE set and then writing to SCDR. Reset sets the SCTE bit.

- 1 = SCDR data transferred to transmit shift register
- 0 = SCDR data not transferred to transmit shift register

TC — Transmission Complete Bit

This read-only bit is set when the SCTE bit is set, and no data, preamble, or break character is being transmitted. TC generates an SCI transmitter CPU interrupt request if the TCIE bit in SCC2 is also set. TC is cleared automatically when data, preamble, or break is queued and ready to be sent. There may be up to 1.5 transmitter clocks of latency between queueing data, preamble, and break and the transmission actually starting. Reset sets the TC bit.

- 1 = No transmission in progress
- 0 = Transmission in progress

SCRF — SCI Receiver Full Bit

This clearable, read-only bit is set when the data in the receive shift register transfers to the SCI data register. SCRF can generate an SCI receiver CPU interrupt request. When the SCRIE bit in SCC2 is set, SCRF generates a CPU interrupt request. In normal operation, clear the SCRF bit by reading SCS1 with SCRF set and then reading the SCDR. Reset clears SCRF.

1 = Received data available in SCDR

0 = Data not available in SCDR

IDLE — Receiver Idle Bit

This clearable, read-only bit is set when 10 or 11 consecutive logic 1s appear on the receiver input. IDLE generates an SCI error CPU interrupt request if the ILIE bit in SCC2 is also set. Clear the IDLE bit by reading SCS1 with IDLE set and then reading the SCDR. After the receiver is enabled, it must receive a valid character that sets the SCRF bit before an idle condition can set the IDLE bit. Also, after the

Technical Data

272

MOTOROLA

IDLE bit has been cleared, a valid character must again set the SCRF bit before an idle condition can set the IDLE bit. Reset clears the IDLE bit.

- 1 = Receiver input idle
- 0 = Receiver input active or idle since the IDLE bit was cleared
- OR Receiver Overrun Bit

This clearable, read-only bit is set when software fails to read the SCDR before the receive shift register receives the next character. The OR bit generates an SCI error CPU interrupt request if the ORIE bit in SCC3 is also set. The data in the shift register is lost, but the data already in the SCDR is not affected. Clear the OR bit by reading SCS1 with OR set and then reading the SCDR. Reset clears the OR bit.

1 = Receive shift register full and SCRF = 1

0 = No receiver overrun

Software latency may allow an overrun to occur between reads of SCS1 and SCDR in the flag-clearing sequence. **Figure 13-11** shows the normal flag-clearing sequence and an example of an overrun caused by a delayed flag-clearing sequence. The delayed read of SCDR does not clear the OR bit because OR was not set when SCS1 was read. Byte 2 caused the overrun and is lost. The next flag-clearing sequence reads byte 3 in the SCDR instead of byte 2.

In applications that are subject to software latency or in which it is important to know which byte is lost due to an overrun, the flag-clearing routine can check the OR bit in a second read of SCS1 after reading the data register.

NF — Receiver Noise Flag Bit

This clearable, read-only bit is set when the SCI detects noise on the PTB0/RxD pin. NF generates an NF CPU interrupt request if the NEIE bit in SCC3 is also set. Clear the NF bit by reading SCS1 and then reading the SCDR. Reset clears the NF bit.

- 1 = Noise detected
- 0 = No noise detected

Serial Communications Interface (SCI)

FE — Receiver Framing Error Bit

This clearable, read-only bit is set when a logic 0 is accepted as the stop bit. FE generates an SCI error CPU interrupt request if the FEIE bit in SCC3 also is set. Clear the FE bit by reading SCS1 with FE set and then reading the SCDR. Reset clears the FE bit.

1 = Framing error detected

0 = No framing error detected

PE — Receiver Parity Error Bit

This clearable, read-only bit is set when the SCI detects a parity error in incoming data. PE generates a PE CPU interrupt request if the PEIE bit in SCC3 is also set. Clear the PE bit by reading SCS1 with PE set and then reading the SCDR. Reset clears the PE bit.

1 = Parity error detected

0 = No parity error detected

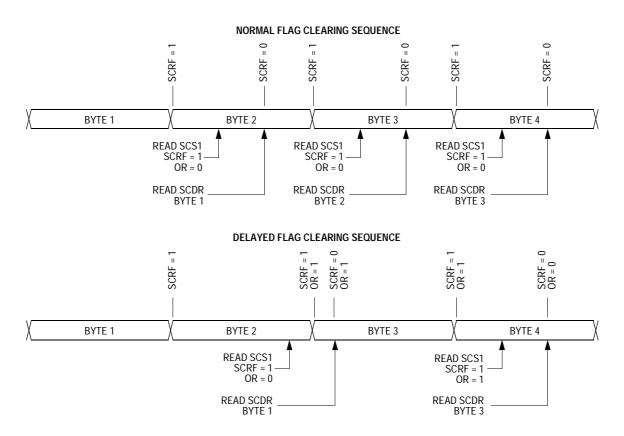


Figure 13-11. Flag Clearing Sequence

MC68HC908MR8 - Rev 4.0

13.9.5 SCI Status Register 2

SCI status register 2 (SCS2) contains flags to signal these conditions:

- Break character detected
- Incoming data

Address: \$003C

	Bit 7	6	5	4	3	2	1	Bit 0	
Read:	0	0	0	0	0	0	BKF	RPF	
Write:	R	R	R	R	R	R	R	R	
Reset:	0	0	0	0	0	0	0	0	
	R = Reserved								
Figure 13-12. SCI Status Register 2 (SCS2)									

BKF — Break Flag Bit

This clearable, read-only bit is set when the SCI detects a break character on the PTB0/RxD pin. In SCS1, the FE and SCRF bits are also set. In 9-bit character transmissions, the R8 bit in SCC3 is cleared. BKF does not generate a CPU interrupt request. Clear BKF by reading SCS2 with BKF set and then reading the SCDR. Once cleared, BKF can become set again only after logic 1s again appear on the PTB0/RxD pin followed by another break character. Reset clears the BKF bit.

1 = Break character detected

0 = No break character detected

RPF — Reception-in-Progress Flag Bit

This read-only bit is set when the receiver detects a logic 0 during the RT1 time period of the start bit search. RPF does not generate an interrupt request. RPF is reset after the receiver detects false start bits (usually from noise or a baud rate mismatch, or when the receiver detects an idle character. Polling RPF before disabling the SCI module or entering stop mode can show whether a reception is in progress.

- 1 = Reception in progress
- 0 = No reception in progress

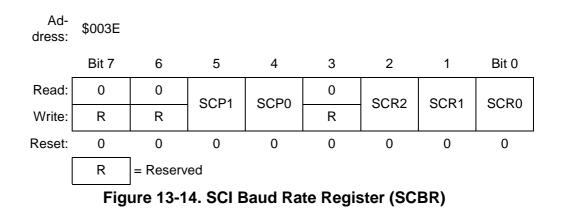
MC68HC908MR8 — Rev 4.0

13.9.6 SCI Data Register

The SCI data register (SCDR) is the buffer between the internal data bus and the receive and transmit shift registers. Reset has no effect on data in the SCI data register.

Ad- dress:	\$003D							
	Bit 7	6	5	4	3	2	1	Bit 0
Read:	R7	R6	R5	R4	R3	R2	R1	R0
Write:	T7	T6	T5	T4	Т3	T2	T1	Т0
Reset:	•	Unaffected by reset						

manected by reset


Figure 13-13. SCI Data Register (SCDR)

R7/T7:R0/T0 — Receive/Transmit Data Bits

Reading address \$003D accesses the read-only received data bits, R7:R0. Writing to address \$003D writes the data to be transmitted, T7:T0. Reset has no effect on the SCI data register.

13.9.7 SCI Baud Rate Register

The SCI baud rate register (SCBR) selects the baud rate for both the receiver and the transmitter.

Semiconductor, Inc.

Freescale

MC68HC908MR8 — Rev 4.0

SCP1 and SCP0 — SCI Baud Rate Prescaler Bits

These read/write bits select the baud rate prescaler divisor as shown in **Table 13-5**. Reset clears SCP1 and SCP0.

SCP1:SCP0	Prescaler Divisor (PD)
00	1
01	3
10	4
11	13

Table 13-5. SCI Baud Rate Prescaling

SCR2–SCR0 — SCI Baud Rate Select Bits

These read/write bits select the SCI baud rate divisor as shown in **Table 13-6**. Reset clears SCR2–SCR0.

Table 13-6. SCI Baud Rate Selection

SCR2:SCR1:SCR0	Baud Rate Divisor (BD)
000	1
001	2
010	4
011	8
100	16
101	32
110	64
111	128

Use this formula to calculate the SCI baud rate:

Baud rate = f_{OP} / 64 x PD x BD

where:

 f_{OP} = clock source (f_{Bus}) PD = prescaler divisor BD = baud rate divisor

Table 13-7 shows the SCI baud rates that can be generated with a 4.00-MHz crystal and the CGM set for an f_{OP} of 8.00 MHz and with a 4.9152-MHz crystal with the CGM set for an an f_{OP} of 7.3728 MHz.

Serial Communications Interface (SCI)

SCP1:SCP0	Prescaler Divisor (PD)	SCR2:SCR1: SCR0	Baud Rate Divisor (BD)	Baud Rate (f _{OP} = 7.3728 MHz)	Baud Rate (f _{OP} = 8.00 MHz)
00	1	000	1	115,200.00	125,000.00
00	1	001	2	57,600.00	62,500.00
00	1	010	4	28,800.00	31,250.00
00	1	011	8	14,400.00	15,625.00
00	1	100	16	7200.00	7812.50
00	1	101	32	3600.00	3906.25
00	1	110	64	1800.00	1953.13
00	1	111	128	900.00	976.56
01	3	000	1	38,400.00	41,666.67
01	3	001	2	19,200.00	20,833.33
01	3	010	4	9600.00	10,416.67
01	3	011	8	4800.00	5208.33
01	3	100	16	2400.00	2604.17
01	3	101	32	1200.00	1302.08
01	3	110	64	600.00	651.04
01	3	111	128	300.00	325.52
10	4	000	1	28,800.00	31,250.00
10	4	001	2	14,400.00	15,625.50
10	4	010	4	7200.00	7812.50
10	4	011	8	3600.00	3906.25
10	4	100	16	1800.00	1953.13
10	4	101	32	900.00	976.56
10	4	110	64	450.00	488.28
10	4	111	128	225.00	244.14
11	13	000	1	8861.54	9615.38
11	13	001	2	4430.77	4807.69
11	13	010	4	2215.38	2403.85
11	13	011	8	1107.69	1201.92
11	13	100	16	553.85	600.96
11	13	101	32	276.92	300.48
11	13	110	64	138.46	150.24
11	13	111	128	69.23	75.12

Table 13-7. SCI Baud Rate Selection Examples

Technical Data

MC68HC908MR8 - Rev 4.0

Semiconductor, Inc.

Freescale

Section 14. Input/Output (I/O) Ports

14.1 Contents

14.2 Ir	ntroduction	79
14.3 P	Port A	81
14.3.1	Port A Data Register	81
14.3.2	Data Direction Register A	82
14.4 P	Port B	84
14.4.1	Port B Data Register	84
14.4.2	Data Direction Register B2	85
14.5 P	Port C	86
14.5.1	Port C Data Register	87
14.5.2	Data Direction Register C	88

14.2 Introduction

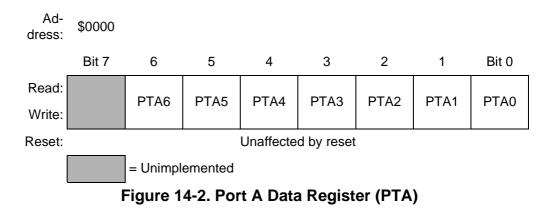
Fourteen bidirectional input-output (I/O) pins, two input pins, and six output pins form three parallel ports.

When using the 28-pin package versions of the MC68HC908MR8, set the data direction register bits in DDRA such that bits 6, 5, and 4 are written to a logic 1 (along with any other output bits on PORTA). Setting PORTA's data direction register bits 6, 5, and 4 will terminate the input buffers on that port.

NOTE: Connect any unused I/O pins to an appropriate logic level, either V_{DD} or V_{SS} . (PWM6–PWM1 pins require no termination). Although the I/O ports do not require termination for proper operation, termination reduces excess current consumption and the possibility of electrostatic damage.

Input/Output (I/O) Ports

Addr.	Register Name		Bit 7	6	5	4	3	2	1	Bit 0
\$0000	Port A Data Register (PTA) See page 281.	Read: Write:		PTA6	PTA5	PTA4	PTA3	PTA2	PTA1	PTA0
		Reset:	Unaffected by reset							
\$0001	Port B Data Register (PTB) See page 284.	Read: Write:		PTB6	PTB5	PTB4	PTB3	PTB2	PTB1	PTB0
		Reset:	Unaffected by reset							
\$0002	Port C Data Register (PTC)	Read: Write:							PTC1	PTC0
	See page 287.	Reset:	Unaffected by reset							
\$0003	Unimplemented									
\$0004	Data Direction Register A (DDRA) See page 282.	Read: Write:		DDRA 6	DDRA 5	DDRA 4	DDRA 3	DDRA 2	DDRA 1	DDRA 0
		Reset:	0	0	0	0	0	0	0	0
Data [\$0005	Data Direction Register B (DDRB)	Read: Write:		DDRB 6	DDRB 5	DDRB 4	DDRB 3	DDRB 2	DDRB 1	DDRB 0
	See page 284.	Reset:	0	0	0	0	0	0	0	0
\$0006	Data Direction Register C (DDRC) See page 287.	Read: Write:							DDRC 1	DDRC 0
		Reset:	U	U	U	U	U	U	0	0
			= Unimple- mented		R	= Rese	rved	U	= Unaff	ected
Figure 14-1 I/O Port Register Summary										


Figure 14-1. I/O Port Register Summary

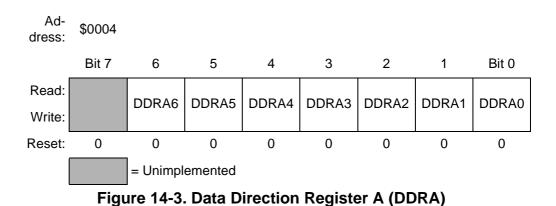
14.3 Port A

Port A is a 7-bit, general-purpose, bidirectional I/O port.

14.3.1 Port A Data Register

The port A data register (PTA) contains a data latch for each of the eight port A pins.

PTA[6:0] — Port A Data Bits


These read/write bits are software programmable. Data direction of each port A pin is under the control of the corresponding bit in data direction register A. Reset has no effect on port A data.

MC68HC908MR8 - Rev 4.0

Input/Output (I/O) Ports

14.3.2 Data Direction Register A

Data direction register A (DDRA) determines whether each port A pin is an input or an output. Writing a logic 1 to a DDRA bit enables the output buffer for the corresponding port A pin; a logic 0 disables the output buffer.

DDRA[6:0] — Data Direction Register A Bits

These read/write bits control port A data direction. Reset clears DDRA[6:0], configuring all port A pins as inputs.

- 1 = Corresponding port A pin configured as output
- 0 = Corresponding port A pin configured as input
- **NOTE:** Avoid glitches on port A pins by writing to the port A data register before changing data direction register A bits from 0 to 1.

Figure 14-4 shows the port A I/O logic.

Technical Data

MC68HC908MR8 — Rev 4.0

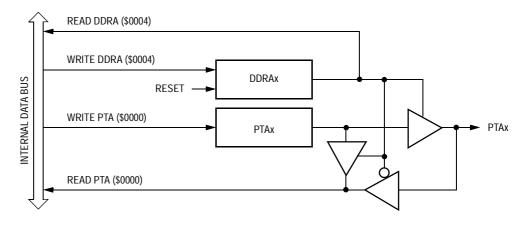


Figure 14-4. Port A I/O Circuit

When bit DDRAx is a logic 1, reading address \$0000 reads the PTAx data latch. When bit DDRAx is a logic 0, reading address \$0000 reads the voltage level on the pin. The data latch can always be written, regardless of the state of its data direction bit. Table 14-1 summarizes the operation of the port A pins.

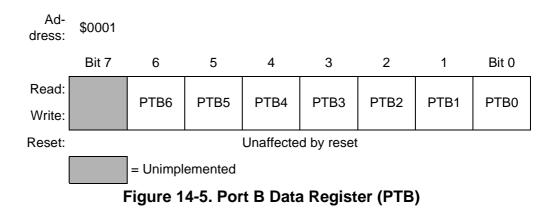
Table 14-1	. Port A Pin	Functions
------------	--------------	-----------

DDRA Bit	PTA Bit	I/O Pin Mode	Accesses to DDRA	Accesses to PTA		
БК	Ы		Read/Write	Read	Write	
0	X ⁽¹⁾	Input, Hi-Z ⁽²⁾	DDRA[6:0]	Pin	PTA[6:0] ⁽³⁾	
1	Х	Output	DDRA[6:0]	PTA[6:0]	PTA[6:0]	

1. X = don't care

2. Hi-Z = high impedance

3. Writing affects data register, but does not affect input.


Input/Output (I/O) Ports

14.4 Port B

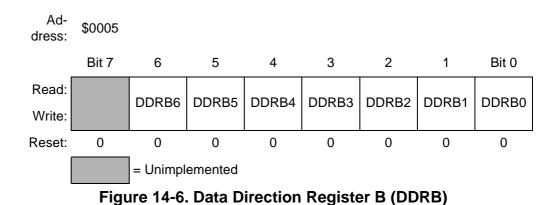
Port B is a 7-bit general-purpose bidirectional I/O port that shares its pins with the serial communications interface (SCI) module.

14.4.1 Port B Data Register

The port B data register (PTB) contains a data latch for each of the eight port B pins.

PTB[6:0] — Port B Data Bits

These read/write bits are software-programmable. Data direction of each port B pin is under the control of the corresponding bit in data direction register B. Reset has no effect on port B data.


Technical Data

MC68HC908MR8 - Rev 4.0

MOTOROLA

14.4.2 Data Direction Register B

Data direction register B (DDRB) determines whether each port B pin is an input or an output. Writing a logic 1 to a DDRB bit enables the output buffer for the corresponding port B pin; a logic 0 disables the output buffer.

DDRB[6:0] — Data Direction Register B Bits

These read/write bits control port B data direction. Reset clears DDRB[6:0], configuring all port B pins as inputs.

- 1 = Corresponding port B pin configured as output
- 0 = Corresponding port B pin configured as input
- **NOTE:** Avoid glitches on port B pins by writing to the port B data register before changing data direction register B bits from 0 to 1.

Figure 14-7 shows the port B I/O logic.

MC68HC908MR8 - Rev 4.0

Input/Output (I/O) Ports

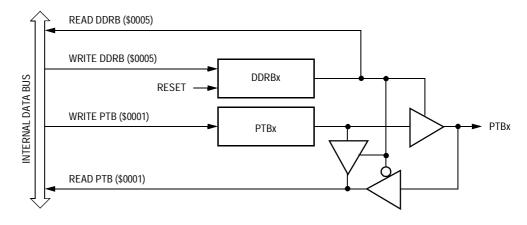


Figure 14-7. Port B I/O Circuit

When bit DDRBx is a logic 1, reading address \$0001 reads the PTBx data latch. When bit DDRBx is a logic 0, reading address \$0001 reads the voltage level on the pin. The data latch can always be written, regardless of the state of its data direction bit. Table 14-2 summarizes the operation of the port B pins.

Table 14-2.	Port B Pir	n Functions
-------------	------------	-------------

DDRB Bit	PTB Bit	I/O Pin Mode	Accesses to DDRB	Accesses to PTB		
Bit	Dit		Read/Write	Read	Write	
0	X ⁽¹⁾	Input, Hi-Z ⁽²⁾	DDRB[6:0]	Pin	PTB[6:0] ⁽³⁾	
1	Х	Output	DDRB[6:0]	PTB[6:0]	PTB[6:0]	

1. X = don't care

2. Hi-Z = high impedance

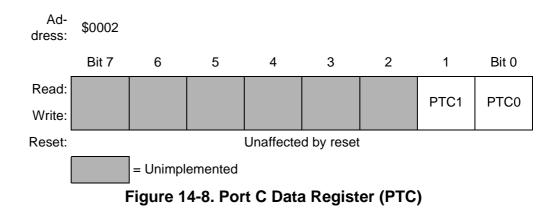
3. Writing affects data register, but does not affect input.

14.5 Port C

Port C is a 2-bit special-purpose I/O port sharing its pins with the pulse width modulator for motor control module (PMC) FAULT input pins. These two pins mirror the state of FAULT1 and FAULT4 pins. Level changes on these input pins will be interpreted as fault conditions.

The port C data register contains a data latch for each of the two port pins.

Technical Data


MC68HC908MR8 — Rev 4.0

Port C bit 1 is not used on the 28-pin packages. For that reason, a pull-down resistor is connected to V_{SS} to prevent a false fault input on FAULT4.

NOTE: PORTC has the capability of being used as an output port. When either pin of PORTC is set as an output, by setting its respective PORTC data direction register bit, the respective fault pin logic is disconnected from that pin and the fault input will be defaulted to normal non-fault condition to facilitate the use of PORTC as an output pin and not interfere with the PWM generator. To regain the fault capability for the respective fault input pin, clear the PORTC data direction register bit for that pin.

14.5.1 Port C Data Register

The port C data register (PTC) contains a data latch for each of the two port C pins.

PTC[1:0] - Port C Data Bits

These read/write bits are software programmable. Data direction of each port C pin is under the control of the corresponding bit in data direction register C. Reset has no effect on port C data.

Input/Output (I/O) Ports

14.5.2 Data Direction Register C

Data direction register C (DDRC) determines whether each port C pin is an input or an output. Writing a logic 1 to a DDRC bit enables the output buffer for the corresponding port C pin; a logic 0 disables the output buffer.

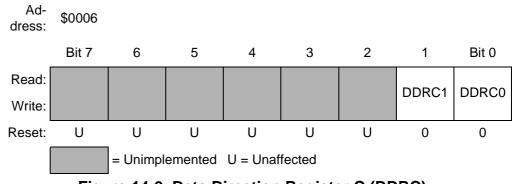


Figure 14-9. Data Direction Register C (DDRC)

DDRC[1:0] — Data Direction Register C Bits

These read/write bits control port C data direction. Reset clears DDRC[1:0], configuring all port C pins as inputs.

- 1 = Corresponding port C pin configured as output
- 0 = Corresponding port C pin configured as input
- **NOTE:** Avoid glitches on port C pins by writing to the port C data register before changing data direction register C bits from 0 to 1.

Figure 14-10 shows the port C I/O logic.

Technical Data

MC68HC908MR8 - Rev 4.0

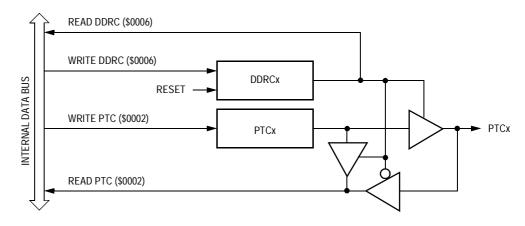


Figure 14-10. Port C I/O Circuit

When bit DDRCx is a logic 1, reading address \$0002 reads the PTCx data latch. When bit DDRCx is a logic 0, reading address \$0002 reads the voltage level on the pin. The data latch can always be written, regardless of the state of its data direction bit. Table 14-3 summarizes the operation of the port C pins.

Table 14-3.	Port C Pin	Functions
-------------	------------	-----------

DDRC	РТС	I/O Pin Mode	Accesses to DDRC	Access	es to PTC
Bit	Bit		Read/Write	Read	Write
0	X ⁽¹⁾	Input, Hi-Z ⁽²⁾	DDRC[1:0]	Pin	PTC[1:0] ⁽³⁾
1	Х	Output	DDRC[1:0]	PTC[1:0]	PTC[1:0]

1. X = don't care

2. Hi-Z = high impedance on PTC0 and a pull-down R_{PD} on PTC1

3. Writing affects data register, but does not affect input.

Input/Output (I/O) Ports

Technical Data

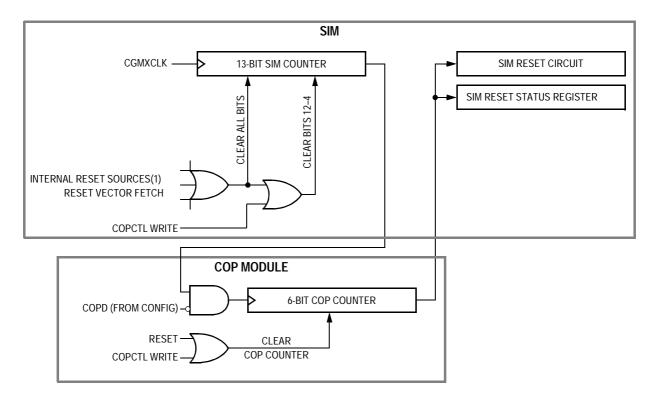
MC68HC908MR8 - Rev 4.0

Section 15. Computer Operating Properly (COP)

15.1 Contents

15.2 Introduction
15.3 Functional Description
15.4 I/O Signals
15.4.1 CGMXCLK
15.4.2 COPCTL Write
15.4.3 Power-On Reset
15.4.4 Internal Reset
15.4.5 Reset Vector Fetch
15.4.6 COP Disable
15.5 COP Control Register
15.6 Interrupts
15.7 Monitor Mode
15.8 Wait Mode
15.9 Stop Mode
15.10 COP Module During Break Mode

15.2 Introduction


This section describes the computer operating properly module (COP, version B), a free-running counter that generates a reset if allowed to overflow. The COP module helps software recover from runaway code. Prevent a COP reset by periodically clearing the COP counter.

MC68HC908MR8 - Rev 4.0

Computer Operating Properly (COP)

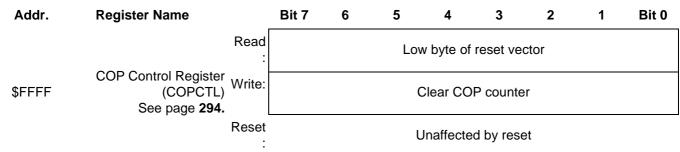

15.3 Functional Description

Figure 15-1 shows the structure of the COP module.


```
Technical Data
```

MC68HC908MR8 — Rev 4.0

Semiconductor, Inc.

Freescale

The COP counter is a free-running, 6-bit counter preceded by the 13-bit system integration module (SIM) counter. If not cleared by software, the COP counter overflows and generates an asynchronous reset after $2^{18}-2^4$ CGMXCLK cycles. With a 4.9152-MHz crystal, the COP timeout period is 53.3 ms. Writing any value to location \$FFFF before overflow occurs clears the COP counter and prevents reset.

A COP reset pulls the RST pin low for 32 CGMXCLK cycles and sets the COP bit in the SIM reset status register (SRSR) (see **7.7.4 SIM Reset Status Register**).

NOTE: Place COP clearing instructions in the main program and not in an interrupt subroutine. Such an interrupt subroutine could keep the COP from generating a reset even while the main program is not working properly.

15.4 I/O Signals

This subsection describes the signals shown in Figure 15-1.

15.4.1 CGMXCLK

CGMXCLK is the crystal oscillator output signal. CGMXCLK frequency is equal to the crystal frequency.

15.4.2 COPCTL Write

Writing any value to the COP control register (COPCTL) (see **15.5 COP Control Register**) clears the COP counter and clears bits 12–4 of the SIM counter. Reading the COP control register returns the reset vector.

15.4.3 Power-On Reset

The power-on reset (POR) circuit in the SIM clears the SIM counter 4096 CGMXCLK cycles after power-up.

MOTOROLA

Computer Operating Properly (COP)

15.4.4 Internal Reset

An internal reset clears the SIM counter and the COP counter.

15.4.5 Reset Vector Fetch

A reset vector fetch occurs when the vector address appears on the data bus. A reset vector fetch clears the SIM counter.

15.4.6 COP Disable

Semiconductor, Inc

reescale

The COP disable (COPD) signal reflects the state of the COP disable bit (COPD) in the configuration register (CONFIG). See **5.4 CONFIG Bits**.

15.5 COP Control Register

The COP control register (COPCTL) is located at address \$FFFF and overlaps the reset vector. Writing any value to \$FFFF clears the COP counter and starts a new timeout period. Reading location \$FFFF returns the low byte of the reset vector.

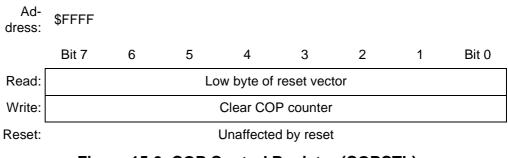


Figure 15-3. COP Control Register (COPCTL)

15.6 Interrupts

The COP does not generate CPU interrupt requests.

MC68HC908MR8 - Rev 4.0

15.7 Monitor Mode

The COP is disabled in monitor mode when $V_{DD} + V_{HI}$ is present on the IRQ pin or on the RST pin.

15.8 Wait Mode

The WAIT instruction puts the MCU in low power-consumption standby mode.

The COP continues to operate during wait mode.

15.9 Stop Mode

Stop mode turns off the COP prescaler clock. Service the COP immediately before entering or after exiting stop mode to ensure a full COP timeout period after entering or exiting stop mode.

15.10 COP Module During Break Mode

The COP is disabled during a break interrupt when $V_{DD} + V_{HI}$ is present on the RST pin.

MC68HC908MR8 - Rev 4.0

Computer Operating Properly (COP)

Technical Data

MC68HC908MR8 — Rev 4.0

Section 16. External Interrupt (IRQ)

16.1 Contents

16.2	Introduction	. 297
16.3	Features	. 297
16.4	Functional Description	. 298
16.5	IRQ Pin	. 301
16.6	IRQ Module During Wait Mode	. 302
16.7	IRQ Module During Stop Mode	. 302
16.8	IRQ Module During Break Mode	. 302
16.9	IRQ Status and Control Register	. 303

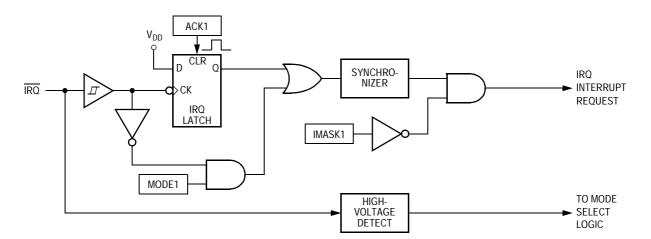
16.2 Introduction

This section describes the external interrupt module, which supports external interrupt functions.

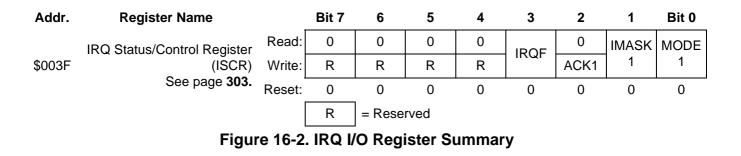
16.3 Features

Features of the IRQ module include:

- A dedicated external interrupt pin, IRQ
- Hysteresis buffers


External Interrupt (IRQ)

16.4 Functional Description


A logic 0 applied to any of the external interrupt pins can latch a CPU interrupt request. Figure 16-1 shows the structure of the IRQ module.

Interrupt signals on the \overline{IRQ} pin are latched into the IRQ latch. An interrupt latch remains set until one of the following actions occurs:

- Vector fetch A vector fetch automatically generates an interrupt acknowledge signal that clears the latch that caused the vector fetch.
- Software clear Software can clear an interrupt latch by writing to the appropriate acknowledge bit in the interrupt status and control register (ISCR). Writing a logic 1 to the ACK1 bit clears the IRQ latch.
- Reset A reset automatically clears both interrupt latches.


```
Technical Data
```

MC68HC908MR8 - Rev 4.0

The external interrupt pins are falling-edge-triggered and are software-configurable to be both falling-edge and low-level-triggered. The MODE1 bit in the ISCR controls the triggering sensitivity of the IRQ pin.

When the interrupt pin is edge-triggered only, the interrupt latch remains set until a vector fetch, software clear, or reset occurs.

When the interrupt pin is both falling-edge and low-level-triggered, the interrupt latch remains set until both of these occur:

- Vector fetch, software clear, or reset
- Return of the interrupt pin to logic 1

The vector fetch or software clear can occur before or after the interrupt pin returns to logic 1. As long as the pin is low, the interrupt request remains pending.

When set, the IMASK1 bit in the ISCR mask all external interrupt requests. A latched interrupt request is not presented to the interrupt priority logic unless the IMASK bit is clear.

NOTE: The interrupt mask (I) in the condition code register (CCR) masks all interrupt requests, including external interrupt requests. See Figure 16-3.

External Interrupt (IRQ)

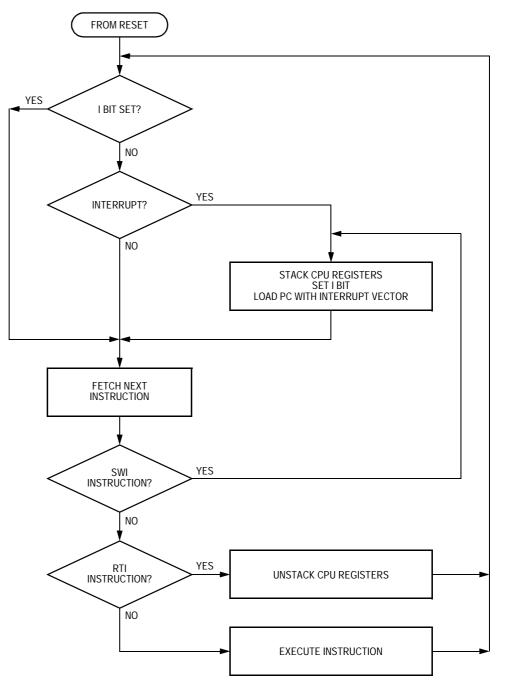


Figure 16-3. IRQ Interrupt Flowchart

Technical Data

MC68HC908MR8 — Rev 4.0

16.5 IRQ Pin

A logic 0 on the \overline{IRQ} pin can latch an interrupt request into the IRQ latch. A vector fetch, software clear, or reset clears the IRQ latch.

If the MODE1 bit is set, the \overline{IRQ} pin is both falling-edge-sensitive and low-level-sensitive. With MODE1 set, both of these actions must occur to clear the IRQ latch:

- Vector fetch, software clear, or reset A vector fetch generates an interrupt acknowledge signal to clear the latch. Software can generate the interrupt acknowledge signal by writing a logic 1 to the ACK1 bit in the interrupt status and control register (ISCR). The ACK1 bit is useful in applications that poll the IRQ pin and require software to clear the IRQ latch. Writing to the ACK1 bit can also prevent spurious interrupts due to noise. Setting ACK1 does not affect subsequent transitions on the IRQ pin. A falling edge that occurs after writing to the ACK1 bit latches another interrupt request. If the IRQ mask bit, IMASK1, is clear, the CPU loads the program counter with the vector address at locations \$FFFA and \$FFFB.
- Return of the IRQ pin to logic 1 As long as the IRQ pin is at logic 0, the IRQ latch remains set.

The vector fetch or software clear and the return of the \overline{IRQ} pin to logic 1 can occur in any order. The interrupt request remains pending as long as the \overline{IRQ} pin is at logic 0.

If the MODE1 bit is clear, the \overline{IRQ} pin is falling-edge-sensitive only. With MODE1 clear, a vector fetch or software clear immediately clears the IRQ latch.

Use the branch if IRQ pin high (BIH) or branch if IRQ pin low (BIL) instruction to read the logic level on the IRQ pin.

NOTE: When using the level-sensitive interrupt trigger, avoid false interrupts by masking interrupt requests in the interrupt routine.

External Interrupt (IRQ)

16.6 IRQ Module During Wait Mode

The IRQ module remains active in wait mode. Clearing the IMASK1 bit in the IRQ status and control register (ISCR) enables IRQ central processor unit (CPU) interrupt requests to bring the microcontroller unit (MCU) out of wait mode.

16.7 IRQ Module During Stop Mode

The IRQ module remains active in stop mode. Clearing the IMASK1 bit in the IRQ status and control register (ISCR) enables IRQ CPU interrupt requests to bring the MCU out of stop mode.

16.8 IRQ Module During Break Mode

The system integration (SIM) module controls whether the IRQ interrupt latch can be cleared during the break state. The BCFE bit in the SIM break flag control register (SBFCR) enables software to clear the latches during the break state. See **7.7.5 SIM Break Flag Control Register**.

To allow software to clear the IRQ latch during a break interrupt, write a logic 1 to the BCFE bit. If a latch is cleared during the break state, it remains cleared when the MCU exits the break state.

To protect the latches during the break state, write a logic 0 to the BCFE bit. With BCFE at logic 0 (its default state), writing to the ACK1 bit in the IRQ status and control register during the break state has no effect on the IRQ latches. See **16.9 IRQ Status and Control Register**.

MC68HC908MR8 — Rev 4.0

16.9 IRQ Status and Control Register

The IRQ status and control register (ISCR) has these functions:

- Clears the IRQ interrupt latch
- Masks IRQ interrupt requests
- Controls triggering sensitivity of the IRQ interrupt pin

Address: \$003F

	Bit 7	6	5	4	3	2	1	Bit 0
Read:	0	0	0	0	IRQF	0	IMASK1	MODE1
Write:	R	R	R	R		ACK1		MODET
Reset:	0	0	0	0	0	0	0	0
	R	= Reserv	/ed					
						_		

Figure 16-4. IRQ Status and Control Register (ISCR)

ACK1 — IRQ Interrupt Request Acknowledge Bit

Writing a logic 1 to this write-only bit clears the IRQ latch. ACK1 always reads as logic 0. Reset clears ACK1.

IMASK1 — IRQ Interrupt Mask Bit

Writing a logic 1 to this read/write bit disables IRQ interrupt requests. Reset clears IMASK1.

- 1 = IRQ interrupt requests disabled
- 0 = IRQ interrupt requests enabled
- MODE1 IRQ Edge/Level Select Bit

This read/write bit controls the triggering sensitivity of the \overline{IRQ} pin. Reset clears MODE1.

- 1 = IRQ interrupt requests on falling edges and low levels
- $0 = \overline{IRQ}$ interrupt requests on falling edges only

IRQF — IRQ Flag

This read-only bit acts as a status flag, indicating an IRQ event occurred.

- 1 = External IRQ event occurred.
- 0 = External IRQ event did not occur.

External Interrupt (IRQ)

Technical Data

MC68HC908MR8 — Rev 4.0

Section 17. Low-Voltage Inhibit (LVI)

17.1 Contents

17.2 Introduction
17.3 Features
17.4 Functional Description
17.4.1 Polled LVI Operation
17.4.2 Forced Reset Operation
17.4.3 False Reset Protection
17.4.4 LVI Trip Selection
17.5 LVI Status and Control Register
17.6 LVI Interrupts
17.7 Wait Mode
17.8 Stop Mode

17.2 Introduction

This section describes the low-voltage inhibit (LVI) module, which monitors the voltage on the V_{DD} pin and can force a reset when the V_{DD} voltage falls to the LVI trip voltage.

17.3 Features

Features of the LVI module include:

- Programmable LVI reset
- Programmable power consumption
- Digital filtering of V_{DD} pin level
- Selectable LVI trip voltage

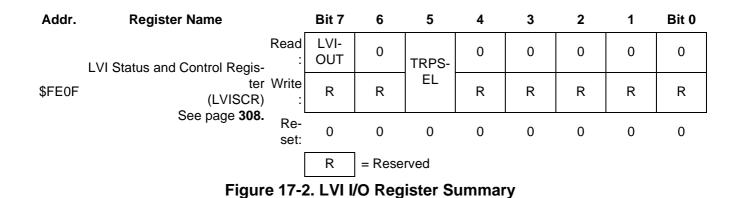
Low-Voltage Inhibit (LVI)

17.4 Functional Description

Figure 17-1 shows the structure of the LVI module. The LVI is enabled out of reset. The LVI module contains a bandgap reference circuit and comparator.

The LVI power bit, LVIPWR, enables the LVI to monitor V_{DD} voltage. The LVI reset bit, LVIRST, enables the LVI module to generate a reset when V_{DD} falls below a voltage, V_{LVRX} , and remains at or below that level for nine or more consecutive CGMXCLK.

- V_{LVRX} and V_{LVHX} are determined by the TRPSEL bit in the LVI status and control register (LVISCR). See Figure 17-2.
- LVIPWR and LVIRST are in the configuration (CONFIG) register. See **5.4 CONFIG Bits**.


Once an LVI reset occurs, the MCU remains in reset until V_{DD} rises above a voltage, V_{LVRX} + V_{LVHX}. V_{DD} must be above V_{LVRX} + V_{LVHX} for only one central processor unit (CPU) cycle to bring the microcontroller unit (MCU) out of reset. See **7.4.2.5 Low-Voltage Inhibit (LVI) Reset**. The output of the comparator controls the state of the LVIOUT flag in the LVISCR.

NOTE: An LVI reset also drives the RST pin low to provide low-voltage protection to external peripheral devices.

Figure 17-1. LVI Module Block Diagram

MC68HC908MR8 - Rev 4.0

17.4.1 Polled LVI Operation

In applications that can operate at V_{DD} levels below V_{LVRX}, software can monitor V_{DD} by polling the LVIOUT bit. In the configuration register, the LVIPWR bit must be at logic 1 to enable the LVI module, and the LVIRST bit must be at logic 0 to disable LVI resets. TRPSEL in the LVISCR selects V_{LVRX}. See **5.4 CONFIG Bits**.

17.4.2 Forced Reset Operation

In applications that require V_{DD} to remain above V_{LVRX} , enabling LVI resets allows the LVI module to reset the MCU when V_{DD} falls to the V_{LVRX} level and remains at or below that level for nine or more consecutive CPU cycles. In the CONFIG register, the LVIPWR and LVIRST bits must be at logic 1 to enable the LVI module and to enable LVI resets. TRPSEL in the LVISCR selects V_{LVRX} .

17.4.3 False Reset Protection

The V_{DD} pin level is digitally filtered to reduce false resets due to power supply noise. In order for the LVI module to reset the MCU, V_{DD} must remain at or below V_{LVRX} for nine or more consecutive CPU cycles. V_{DD} must be above V_{LVRX} + V_{LVHX} for only one CPU cycle to bring the MCU out of reset. TRPSEL in the LVISCR selects V_{LVRX} + V_{LVHX}.

MC68HC908MR8 - Rev 4.0

MOTOROLA

Low-Voltage Inhibit (LVI)

17.4.4 LVI Trip Selection

The TRPSEL bit allows the user to choose between 5 percent and 10 percent tolerance when monitoring the supply voltage. The 10 percent option is enabled out of reset. Writing a logic 1 to TRPSEL will enable the 5 percent option.

NOTE: The MCU is guaranteed to operate at a minimum supply voltage. The trip point (V_{LVR1} or V_{LVR2}) may be lower than this.

17.5 LVI Status and Control Register

The LVI status register flags V_{DD} voltages below the V_{LVRX} level.

	Bit 7	6	5	4	3	2	1	Bit 0
Read:	LVIOUT	0	TRPS-	0	0	0	0	0
Write:	R	R	EL	R	R	R	R	R
Reset:	0	0	0	0	0	0	0	0
	R	= Reserv	ved					

Figure 17-3. LVI Status and Control Register (LVISCR)

LVIOUT — LVI Output Bit

This read-only flag becomes set when the V_{DD} voltage falls below the V_{LVRX} voltage for 32 to 40 CGMXCLK cycles. See Table 17-1. Reset clears the LVIOUT bit.

Table 17-1.	LVIOUT Bit	Indication
-------------	------------	------------

	V _{DD}	LVIOUT
At level:	For number of CGMXCLK cycles:	
$V_{DD} > V_{LVRX} + V_{LVHX}$	Any	0
V _{DD} < V _{LVRX}	< 32 CGMXCLK CYCLES	0
V _{DD} < V _{LVRX}	Between 32 and 40 CGMXCLK cycles	0 or 1
V _{DD} < V _{LVRX}	> 40 CGMXCLK cycles	1

Technical Data

MC68HC908MR8 — Rev 4.0

Table 17-1. LVIOUT Bit Indication

	V _{DD}	LVIOUT
At level:	For number of CGMXCLK cycles:	
$V_{LVRX} < V_{DD} < V_{LVRX} + V_{LVHX}$	Any	Previous value

TRPSEL — LVI Trip Select Bit

This bit selects the LVI trip point. Reset clears this bit.

- 1 = 5 percent tolerance. The trip point and recovery point are determined by V_{LVR1} and V_{LVH1} respectively.
- 0 = 10 percent tolerance. The trip point and recovery point are determined by V_{LVR2} and V_{LVH2} respectively.
- **NOTE:** If LVIPWR and LVIRST are at logic 1, note that when changing the tolerance, LVI reset will be generated if the supply voltage is below the trip point.

17.6 LVI Interrupts

The LVI module does not generate interrupt requests.

17.7 Wait Mode

The WAIT instruction puts the microcontroller unit (MCU) in low power-consumption standby mode.

With the LVIPWR bit in the configuration register programmed to logic 1, the LVI module is active after a WAIT instruction.

With the LVIRST bit in the configuration register programmed to logic 1, the LVI module can generate a reset and bring the MCU out of wait mode.

17.8 Stop Mode

The STOP instruction puts the MCU in low power-consumption standby mode.

MC68HC908MR8 - Rev 4.0

Low-Voltage Inhibit (LVI)

With the LVIPWR bit in the configuration register programmed to logic 1, the LVI module is active after a STOP instruction.

With the LVIRST bit in the configuration register programmed to logic 1, the LVI module can generate a reset and bring the MCU out of stop mode.

Technical Data

MC68HC908MR8 — Rev 4.0

Section 18. Analog-to-Digital Converter (ADC)

18.1 Contents

18.2 Introduction
18.3 Features
18.4 Functional Description
18.4.1 ADC Port I/O Pins
18.4.2 Voltage Conversion
18.4.3 Conversion Time
18.4.4 Continuous Conversion
18.4.5 Result Justification
18.4.6 Monotonicity
18.5 Interrupts
18.6 Wait Mode
18.7 Stop Mode
18.8 I/O Signals
18.8.1 ADC Voltage Reference Pin (V _{REFH})
18.8.2 ADC Voltage In (ADVIN)
18.8.3 ADC External Connection
18.9 I/O Registers
18.9.1 ADC Status and Control Register
18.9.2 ADC Data Register High
18.9.3 ADC Data Register Low
18.9.4 ADC Clock Register

Analog-to-Digital Converter (ADC)

18.2 Introduction

This section describes the 10-bit analog-to-digital converter (ADC).

For further information regarding analog-to-digital converters on Motorola microcontrollers, please consult the HC08 ADC Reference Manual, ADCRM/AD.

18.3 Features

Features of the ADC module include:

- Four to seven channels with multiplexed input
- Linear successive approximation
- 10-bit resolution, 8-bit accuracy
- Single or continuous conversion
- Conversion complete flag or conversion complete interrupt
- Selectable ADC clock
- Left or right justified result.
- Left justified sign data mode
- High impedance buffered ADC input

18.4 Functional Description

Depending on the package option, up to seven ADC channels are available for sampling external sources at pins PTA6/ATD6:PT00/ATD0. To achieve the best possible accuracy, these pins are implemented as input-only pins when the analog-to-digital (A/D) feature is enabled. An analog multiplexer allows the single ADC to select one of the seven ADC channels as ADC voltage IN (ADCVIN). ADCVIN is converted by the successive approximation algorithm. When the conversion is completed, the ADC places the result in the ADC data register (ADRH and ADRL) and sets a flag or generates an interrupt. See Figure 18-1.

Technical Data

MC68HC908MR8 — Rev 4.0

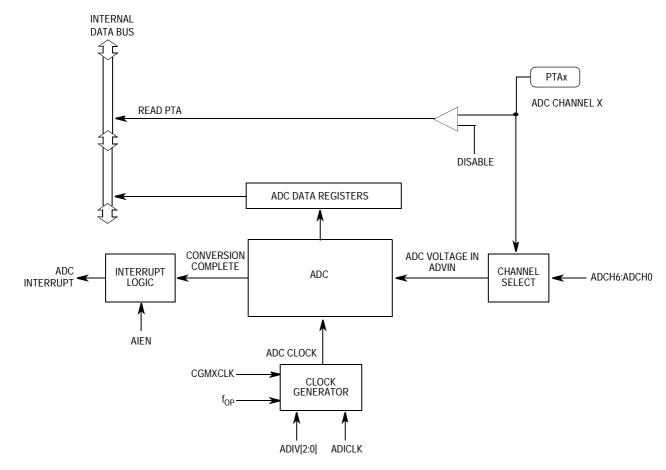


Figure 18-1. ADC Block Diagram

18.4.1 ADC Port I/O Pins

PTA6/ATD6:PTA0/ATD6 are general-purpose input/output (I/O) pins that are shared with the ADC channels.

The channel select bits define which ADC channel/port pin will be used as the input signal. The ADC overrides the port logic when that port is selected by the ADC multiplexer. The remaining ADC channels/port pins are controlled by the port logic and can be used as general-purpose input/output (I/O) pins. Writes to the port register or data direction register (DDR) will not have any effect on the port pin that is selected by the ADC. Read of a port pin which is in use by the ADC will return a logic 0.

MC68HC908MR8 - Rev 4.0

MOTOROLA

Analog-to-Digital Converter (ADC)

18.4.2 Voltage Conversion

When the input voltage to the ADC equals V_{REFH}, the ADC converts the signal to \$3FF (full scale). If the input voltage equals V_{SS}, the ADC converts it to \$000. Input voltages between V_{REFH} and V_{REFL} are straight-line linear conversions. All other input voltages will result in \$3FF if greater than V_{REFH} and \$000 if less than V_{SS}.

NOTE: Input voltage should not exceed the analog supply voltages.

18.4.3 Conversion Time

Conversion starts after a write to the ADC status and control register (ADSCR). A conversion is between 16 and 17 ADC clock cycles, therefore:

Conversion time = $\frac{16 \text{ to } 17 \text{ ADC cycles}}{\text{ADC frequency}}$

Number of bus cycles = conversion time x bus frequency

The ADC conversion time is determined by the clock source chosen and the divide ratio selected. The clock source is either the bus clock or CGMXCLK and is selectable by ADICLK located in the ADC clock register. For example, if CGMXCLK is 4 MHz and is selected as the ADC input clock source, the ADC input clock /4 prescale is selected:

Conversion time = $\frac{16 \text{ to } 17 \text{ ADC cycles}}{4 \text{ MHz/4}} = 16 \text{ to } 17 \text{ }\mu\text{s}$

NOTE: The ADC frequency must be between f_{ADIC} minimum and f_{ADIC} maximum to meet A/D specifications.

Since an ADC cycle may be comprised of several bus cycles (four in the prior example) and the start of a conversion is initiated by a bus cycle write to the ADSCR, from zero to four additional bus cycles may occur before the start of the initial ADC cycle. This results in a fractional ADC cycle and is represented as the 17th cycle.

MC68HC908MR8 — Rev 4.0

18.4.4 Continuous Conversion

In the continuous conversion mode, the ADC data registers (ADRH and ADRL) will be filled with new data after each conversion. Data from the previous conversion will be overwritten whether that data has been read or not. Conversions will continue until the ADCO bit is cleared. The COCO bit is set after the first conversion and will stay set for the next several conversions until the next write of the ADC status and control register or the next read of the ADC data register.

18.4.5 Result Justification

The conversion result may be formatted in four different ways:

- 1. Left justified
- 2. Right justified
- 3. Left justified sign data mode
- 4. 8-bit truncation mode

All four of these modes are controlled using MODE0 and MODE1 bits located in the ADC clock register (ADCLK).

Left justification will place the eight most significant bits (MSB) in the corresponding ADC data register high, ADRH. This may be useful if the result is to be treated as an 8-bit result where the two least significant bits (LSB), located in the ADC data register low, ADRL, can be ignored. However, ADRL must be read after ADRH or else the interlocking will prevent all new conversions from being stored.

Right justification will place only the two MSBs in the corresponding ADC data register high, ADRH, and the eight LSBs in ADC data register low, ADRL. This mode of operation is typically used when a 10-bit unsigned result is desired.

Left justified sign data mode is similar to left justified mode with one exception. The MSB of the 10-bit result, AD9 located in ADRH, is complemented. This mode of operation is useful when a result, represented as a signed magnitude from mid-scale, is needed.

Finally, 8-bit truncation mode will place the eight MSBs in ADC data register low, ADRL. The two LSBs are dropped. This mode of operation

MC68HC908MR8 — Rev 4.0

Analog-to-Digital Converter (ADC)

is used when compatibility with 8-bit ADC designs are required. No interlocking between ADRH and ADRL is present.

NOTE: Quantization error is affected when only the most significant eight bits are used as a result. See **Figure 18-2**.

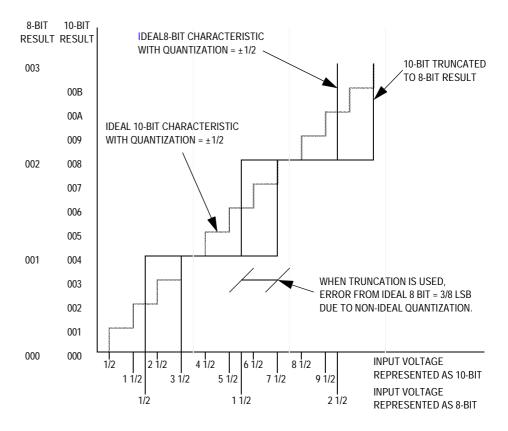


Figure 18-2. 8-Bit Truncation Mode Error

18.4.6 Monotonicity

The conversion process is monotonic and has no missing codes.

18.5 Interrupts

When the AIEN bit is set, the ADC module is capable of generating a CPU interrupt after each ADC conversion. A CPU interrupt is generated if the COCO bit is at logic 0. The COCO bit is not used as a conversion complete flag when interrupts are enabled.

Technical Data

MC68HC908MR8 — Rev 4.0

Semiconductor, Inc

0

eescal

Ň.

LL.

18.6 Wait Mode

The WAIT instruction can put the MCU in low power-consumption standby mode.

The ADC continues normal operation during wait mode. Any enabled CPU interrupt request from the ADC can bring the MCU out of wait mode. If the ADC is not required to bring the MCU out of wait mode, power down the ADC by setting ADCH[4:0] in the ADC status and control register before executing the WAIT instruction.

18.7 Stop Mode

The STOP instruction can put the MCU in low power-consumption standby mode.

The ADC module becomes inactive after the execution of a STOP instruction. Any pending conversion is aborted. ADC conversions resume when the MCU exits stop mode after an external interrupt. Allow one conversion cycle to stabilize the analog circuitry after exiting stop mode.

18.8 I/O Signals

The ADC module has seven input signals that are shared with port A.

18.8.1 ADC Voltage Reference Pin (V_{REFH})

 V_{REFH} is the power supply for setting the reference voltage. Connect the V_{REFH} pin to the same voltage potential as V_{DDA} . There will be a finite current associated with V_{REFH} .

NOTE: Route V_{REFH} carefully for maximum noise immunity and place bypass capacitors as close as possible to the package.

MC68HC908MR8 - Rev 4.0

Analog-to-Digital Converter (ADC)

18.8.2 ADC Voltage In (ADVIN)

ADVIN is the input voltage signal from one of the seven ADC channels to the ADC module.

18.8.3 ADC External Connection

18.8.3.1 V_{REFH}

Both ac and dc current are drawn through V_{REFH}. The ac current is in the form of current spikes required to supply charge to the capacitor array at each successive approximation step. The dc current flows through the internal resistor string. The best external component to meet both these current demands is a capacitor in the 0.01 μ F to 1 μ F range with good high-frequency characteristics. This capacitor is connected between V_{REFH} and V_{SS} and must be placed as close as possible to the package pins. Resistance in the path is not recommended because the dc current will cause a voltage drop which could result in conversion errors.

18.8.3.2 ANx

Empirical data shows that capacitors from the analog inputs to V_{RL} improve ADC performance. 0.01 μ F and 0.1 μ F capacitors with good high-frequency characteristics are sufficient. These capacitors must be placed as close as possible to the package pins.

18.8.3.3 Grounding

In cases where separate power supplies are used for analog and digital power, the ground connection between these supplies should be at the V_{SS} pin. This should be the only ground connection between these supplies if possible. The V_{SS} pin makes a good single-point ground location.

MC68HC908MR8 — Rev 4.0

18.9 I/O Registers

These I/O registers control and monitor operation of the ADC:

- ADC status and control register (ADSCR)
- ADC data registers (ADRH and ARDL)
- ADC control register (ADCR)
- ADC clock register (ADCLK)

18.9.1 ADC Status and Control Register

These paragraphs describe the function of the ADC status and control register (ADSCR). Writing ADSCR aborts the current conversion and initiates a new conversion.

Ad- dress:	\$0040							
	Bit 7	6	5	4	3	2	1	Bit 0
Read: Write:	сосо	AIEN	ADCO	ADCH4	ADCH3	ADCH2	ADCH1	ADCH0
Reset:	0	0	0	1	1	1	1	1

COCO — Conversions Complete Bit

When AIEN bit is a logic 0, the COCO is a read-only bit which is set each time a conversion is completed except in the continuous conversion mode where it is set after the first conversion. This bit is cleared whenever the ADC status and control register is written or whenever the ADC data register is read.

If AIEN bit is a logic 1, the COCO is a read/write bit which selects the CPU to service the ADC interrupt request. Reset clears this bit.

1 = Conversion completed (AIEN = 0) interrupt (AIEN = 1)

0 = Conversion not completed (AIEN = 0)/CPU interrupt (AIEN = 1)

MC68HC908MR8 — Rev 4.0

Analog-to-Digital Converter (ADC)

AIEN — ADC Interrupt Enable Bit

When this bit is set, an interrupt is generated at the end of an ADC conversion. The interrupt signal is cleared when the data register is read or the status/control register is written. Reset clears the AIEN bit.

1 = ADC interrupt enabled

- 0 = ADC interrupt disabled
- ADCO ADC Continuous Conversion Bit

When set, the ADC will convert samples continuously and update the ADR register at the end of each conversion. Only one conversion is allowed when this bit is cleared. Reset clears the ADCO bit.

1 = Continuous ADC conversion

0 = One ADC conversion

ADCH[4:0] — ADC Channel Select Bits

ADCH4, ADCH3, ADCH2, ADCH1, and ADCH0 form a 5-bit field which is used to select one of the ADC channels detailed in **Table 18-1**. Take care to prevent switching noise from corrupting the analog signal when simultaneously using a port pin as both an analog and digital input.

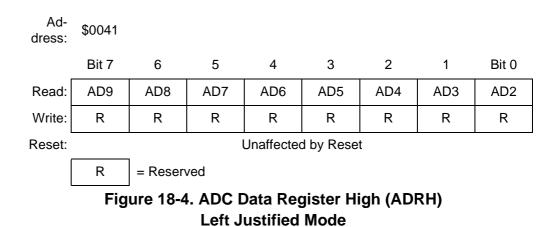
The ADC subsystem is turned off when the channel select bits are all set to 1. This feature allows for reduced power consumption for the MCU when the ADC is not used.

NOTE: Recovery from the disabled state requires one conversion cycle to stabilize.

The voltage levels supplied from internal reference nodes as specified in **Table 18-1** are used to verify the operation of the ADC converter both in production test and for user applications.

Technical Data

ADCH4	ADCH3	ADCH2	ADCH1	ADCH0	Input select
0	0	0	0	0	PTA0
0	0	0	0	1	PTA1
0	0	0	1	0	PTA2
0	0	0	1	1	PTA3
0	0	1	0	0	PTA4
0	0	1	0	1	PTA5
0	0	1	1	0	PTA6
0	0	1	1	1	Unused*
0	1	0	0	0	Unused*
0	1	0	0	1	Unused*
0	1	0	1	0	Unused*
0	1	0	1	1	Ø
0	1	1	0	0	Ø
0	1	1	0	1	Ø
0	1	1	1	0	Ø
0	1	1	1	1	Ø
1	0	0	0	0	Ø
1	1	0	1	0	Unused*
1	1	0	1	1	Reserved**
1	1	1	0	0	Unused*
1	1	1	0	1	V _{REFH}
1	1	1	1	0	V _{SS}
1	1	1	1	1	ADC power off


 Table 18-1. Mux Channel Select

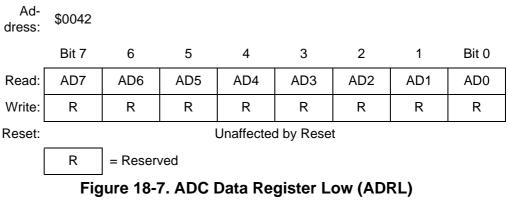
* If any unused channels are selected, the resulting ADC conversion will be unknown. ** Used for factory testing.


Analog-to-Digital Converter (ADC)

18.9.2 ADC Data Register High

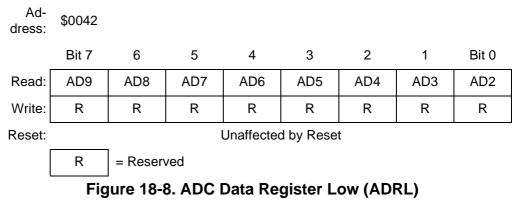
In left justified mode, this 8-bit result register holds the eight MSBs of the 10-bit result. This register is updated each time an ADC single channel conversion completes. Reading ADRH latches the contents of ADRL until ADRL is read. Until ADRL is read, all subsequent ADC results will be lost.

In right justified mode, this 8-bit result register holds the two MSBs of the 10-bit result. All other bits read as 0. This register is updated each time a single channel ADC conversion completes. Reading ADRH latches the contents of ADRL until ADRL is read. Until ADRL is read, all subsequent ADC results will be lost.


Right Justified Mode

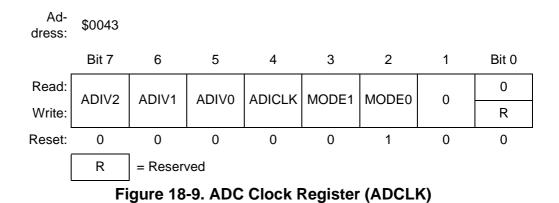
18.9.3 ADC Data Register Low

In left justified mode, this 8-bit result register holds the two LSBs of the 10-bit result. All other bits read as 0. This register is updated each time a single channel ADC conversion completes. Reading ADRH latches the contents of ADRL until ADRL is read. Until ADRL is read all subsequent ADC results will be lost.


In right justified mode, this 8-bit result register holds the eight LSBs of the 10-bit result. This register is updated each time an ADC conversion completes. Reading ADRH latches the contents of ADRL until ADRL is read. Until ADRL is read all subsequent ADC results will be lost.

Right Justified Mode

Analog-to-Digital Converter (ADC)


In 8-bit mode, this 8-bit result register holds the eight MSBs of the 10-bit result. This register is updated each time an ADC conversion completes. In 8-bit mode, this register contains no interlocking with ADRH.

8-Bit Mode

18.9.4 ADC Clock Register

This register selects the clock frequency for the ADC, selecting between modes of operation.

ADIV2: ADIV0 — ADC Clock Prescaler Bits

ADIV2, ADIV1, and ADIV0 form a 3-bit field which selects the divide ratio used by the ADC to generate the internal ADC clock. Table 18-2 shows the available clock configurations. The ADC clock should be set to between 500 kHz and 1 MHz.

MC68HC908MR8 — Rev 4.0

ы.

ADIV2	ADIV1	ADIV0	ADC Clock Rate
0	0	0	ADC input clock /1
0	0	1	ADC input clock /2
0	1	0	ADC input clock /4
0	1	1	ADC input clock /8
1	Х	Х	ADC input clock /16

Table 18-2. ADC Clock Divide Ratio

X = don't care

ADICLK — ADC Input Clock Select Bit

ADICLK selects either bus clock or CGMXCLK as the input clock source to generate the internal ADC clock. Reset selects CGMXCLK as the ADC clock source.

If the external clock (CGMXCLK) is equal or greater than 1 MHz, CGMXCLK can be used as the clock source for the ADC. If CGMXCLK is less than 1 MHz, use the PLL-generated bus clock as the clock source. As long as the internal ADC clock is at f_{ADIC}, correct operation can be guaranteed.

0 = External clock, CGMXCLK

$$f_{ADIC} = \frac{CGMXCLK \text{ or bus frequency}}{ADIV[2:0]}$$

MODE1:MODE0 — Modes of Result Justification Bits

MODE1:MODE0 selects among four modes of operation. The manner in which the ADC conversion results will be placed in the ADC data registers is controlled by these modes of operation. Reset returns right-justified mode.

- 00 = 8-bit truncation mode
- 01 = Right justified mode
- 10 = Left justified mode
- 11 = Left justified sign data mode

Analog-to-Digital Converter (ADC)

Technical Data

MC68HC908MR8 — Rev 4.0

Section 19. Power-On Reset (POR)

19.1 Contents

19.2	Introduction	. 327
19.3	Functional Description	. 327

19.2 Introduction

This section describes the power-on reset (POR) module.

19.3 Functional Description

The POR module provides a known, stable signal to the MCU at power-on. This signal tracks V_{DD} until the MCU generates a feedback signal to indicate that it is properly initialized. At this time, the POR drives its output low. The POR is not a brown-out detector, low-voltage detector, or glitch detector. V_{DD} at the POR must go completely to 0 to reset the MCU. To detect power-loss conditions, use a low-voltage inhibit module (LVI) or other suitable circuit.

MC68HC908MR8 - Rev 4.0

Power-On Reset (POR)

Technical Data

MC68HC908MR8 — Rev 4.0

Section 20. Break (BRK)

20.1 Contents

20.2 Introduction

This section describes the break (BRK) module. The break module can generate a break interrupt that stops normal program flow at a defined address to enter a background program.

MC68HC908MR8 — Rev 4.0

Break (BRK)

20.3 Features

Features of the break module include:

- Accessible input/output (I/O) registers during the break interrupt
- Central processor unit (CPU) generated break interrupts
- Software-generated break interrupts
- Computer operating properly (COP) disabling during break interrupts

20.4 Functional Description

When the internal address bus matches the value written in the break address registers, the break module issues a breakpoint signal to the CPU. The CPU then loads the instruction register with a software interrupt instruction (SWI) after completion of the current CPU instruction. The program counter vectors to \$FFFC and \$FFFD (\$FEFC and \$FEFD in monitor mode).

These events can cause a break interrupt to occur:

- A CPU-generated address (the address in the program counter) matches the contents of the break address registers.
- Software writes a logic 1 to the BRKA bit in the break status and control register.

When a CPU-generated address matches the contents of the break address registers, the break interrupt begins after the CPU completes its current instruction. A return-from-interrupt instruction (RTI) in the break routine ends the break interrupt and returns the microcontroller unit (MCU) to normal operation. Figure 20-1 shows the structure of the break module.

20.4.1 Flag Protection During Break Interrupts

The BCFE bit in the system integration module (SIM) break flag control register (SBFCR) enables software to clear status bits during the break state.

Technical Data

MC68HC908MR8 — Rev 4.0

Break (BRK) Functional Description

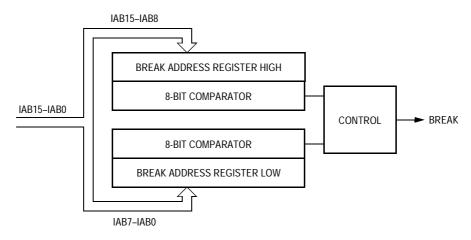


Figure 20-1. Break Module Block Diagram

Addr.	Register Name		Bit 7	6	5	4	3	2	1	Bit 0
		Read :	0	0	0	1	0	0	BW	0
\$FE0 0	SIM Break Status Register (SBSR) See page 336.	Write :	R	R	R	R	R	R	NOTE	R
	Re- set:	0	0	0	1	0	0	0	0	
\$FE0 3	SIM Break Flag Con- trol Register (SBFCR) See page 337.	Read : Write :	BCFE	R	R	R	R	R	R	R
	1.0	Re- set:	0							
\$FE0 C	Break Address Regis- ter High (BRKH) See page 334.		Bit 15	14	13	12	11	10	9	Bit 8
	000 page 004.	Re- set:	0	0	0	0	0	0	0	0

Figure 20-2. I/O Register Summary

MC68HC908MR8 — Rev 4.0

Break (BRK)

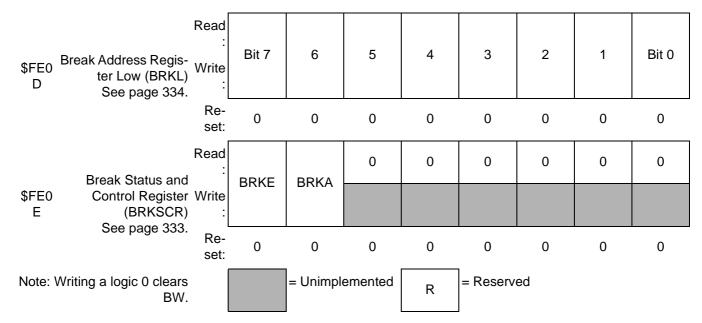


Figure 20-2. I/O Register Summary

20.4.2 CPU During Break Interrupts

The CPU starts a break interrupt by:

- Loading the instruction register with the SWI instruction
- Loading the program counter with \$FFFC and \$FFFD (\$FEFC and \$FEFD in monitor mode)

The break interrupt begins after completion of the CPU instruction in progress. If the break address register match occurs on the last cycle of a CPU instruction, the break interrupt begins immediately.

20.4.3 TIM During Break Interrupts

A break interrupt stops the timer counters.

20.4.4 COP During Break Interrupts

The COP is disabled during a break interrupt when V_{TST} is present on the $\overline{\text{RST}}$ pin.

Technical Data

MC68HC908MR8 — Rev 4.0

20.5 Low-Power Modes

The WAIT and STOP instructions put the MCU in low powerconsumption standby modes.

20.5.1 Wait Mode

If enabled, the break module is active in wait mode. In the break routine, the user can subtract one from the return address on the stack if SBSW is set. Clear the BW bit by writing logic 0 to it.

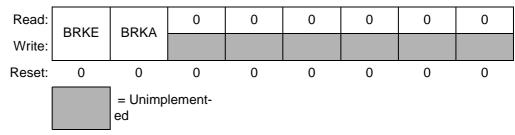
20.5.2 Stop Mode

A break interrupt causes exit from stop mode and sets the SBSW bit in the break status register.

20.6 Break Module Registers

These registers control and monitor operation of the break module:

- Break status and control register (BRKSCR)
- Break address register high (BRKH)
- Break address register low (BRKL)
- SIM break status register (SBSR)
- SIM break flag control register (SBFCR)


20.6.1 Break Status and Control Register

The break status and control register (BRKSCR) contains break module enable and status bits.

Ad- dress:	\$FE0E							
	Bit 7	6	5	4	3	2	1	Bit 0
Fic	aure 20-3	. Breał	<pre>status</pre>	and Co	ontrol Re	eaister (BRKSC	CR)

MC68HC908MR8 - Rev 4.0

Break (BRK)

BRKE — Break Enable Bit

This read/write bit enables breaks on break address register matches. Clear BRKE by writing a logic 0 to bit 7. Reset clears the BRKE bit.

- 1 = Breaks enabled on 16-bit address match
- 0 = Breaks disabled on 16-bit address match

BRKA — Break Active Bit

This read/write status and control bit is set when a break address match occurs. Writing a logic 1 to BRKA generates a break interrupt. Clear BRKA by writing a logic 0 to it before exiting the break routine. Reset clears the BRKA bit.

1 = When read, break address match

0 = When read, no break address match

20.6.2 Break Address Registers

The break address registers (BRKH and BRKL) contain the high and low bytes of the desired breakpoint address. Reset clears the break address registers.

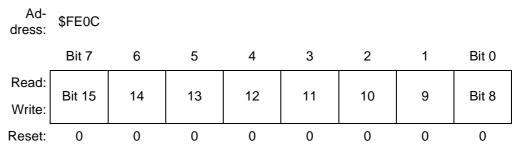
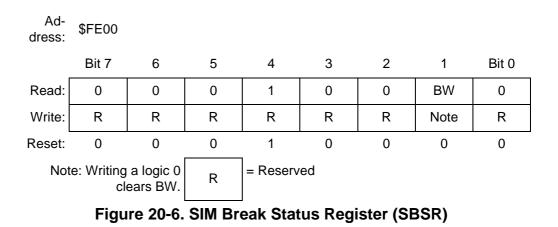


Figure 20-4. Break Address Register High (BRKH)

MC68HC908MR8 — Rev 4.0

Break (BRK) Break Module Registers

Freescale Semiconductor, Inc.


MC68HC908MR8 - Rev 4.0

MOTOROLA

Break (BRK)

20.6.3 SIM Break Status Register

The SIM break status register (SBSR) contains a flag to indicate that a break caused an exit from wait mode. The flag is useful in applications requiring a return to wait mode after exiting from a break interrupt.

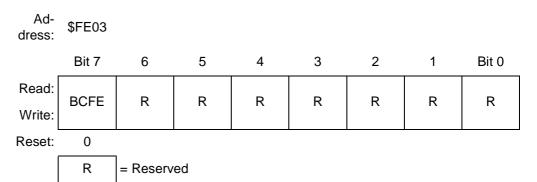
BW — Break Wait Bit

This read/write bit is set when a break interrupt causes an exit from wait mode. Clear BW by writing a logic 0 to it. Reset clears BW.

- 1 = Break interrupt during wait mode
- 0 = No break interrupt during wait mode

BW can be read within the break interrupt routine. The user can modify the return address on the stack by subtracting 1 from it. The example code shown in **Figure 20-7** works if the H register was stacked in the break interrupt routine. Execute this code at the end of the break interrupt routine.

Technical Data


MC68HC908MR8 - Rev 4.0

```
HIBYTE EQU
              5
LOBYTE EOU
              6
                              ; If not BW, do RTI
       BRCLR BW, BSR, RETURN ; See if wait mode or stop
                              ; mode was exited by break.
             LOBYTE, SP
                              ; If RETURNLO is not 0,
       TST
                              ; then just decrement low byte.
       BNE
             DOLO
                              ; Else deal with high byte also.
       DEC
             HIBYTE, SP
             LOBYTE, SP
                              ; Point to WAIT/STOP opcode.
DOLO
       DEC
RETURN PULH
                              ; Restore H register.
       RTI
```

Figure 20-7. Example Code

20.6.4 SIM Break Flag Control Register

The SIM break flag control register (SBFCR) contains a bit that enables software to clear status bits while the MCU is in a break state.

BCFE — Break Clear Flag Enable Bit

This read/write bit enables software to clear status bits by accessing status registers while the MCU is in a break state. To clear status bits during the break state, the BCFE bit must be set.

- 1 = Status bits clearable during break
- 0 = Status bits not clearable during break

Break (BRK)

Technical Data

MC68HC908MR8 — Rev 4.0

Section 21. Electrical Specifications

21.1 Contents

21.2	Introduction.	339
21.3	Absolute Maximum Ratings	3 40
21.4	Functional Operating Range	341
21.5	Thermal Characteristics	342
21.6	DC Electrical Characteristics.	343
21.7	Memory Characteristics	345
21.8	Control Timing	346
21.9	Timer Interface Module Characteristics	346
21.10	Clock Generation Module Component Specifications	347
21.11	CGM Operating Conditions	347
21.12	CGM Acquisition/Lock Time Specifications	348
21.13	Analog-to-Digital Converter (ADC) Characteristics	349

21.2 Introduction

This section contains electrical and timing specifications. These values are design targets and have not yet been fully characterized.

MC68HC908MR8 - Rev 4.0

MOTOROLA

Electrical Specifications

21.3 Absolute Maximum Ratings

Maximum ratings are the extreme limits to which the MCU can be exposed without permanently damaging it.

NOTE: This device is not guaranteed to operate properly at the maximum ratings. Refer to **21.6 DC Electrical Characteristics** for guaranteed operating conditions.

Characteristic ⁽¹⁾	Symbol	Value	Unit
Supply voltage	V _{DD}	–0.3 to +6.0	V
Input voltage	V _{In}	V _{SS} – 0.3 to V _{DD} + 0.3	V
Input high voltage	V _{HI}	V _{DD} + 4	V
Maximum current per pin excluding V_{DD} and V_{SS}	I	± 25	mA
Storage temperature	t _{STG}	–55 to +150	°C
Maximum current out of V _{SS}	I _{MVSS}	100	mA
Maximum current Into V _{DD}	I _{MVDD}	100	mA

1. Voltages are referenced to V_{SS} .

NOTE: This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum-rated voltages to this high-impedance circuit. For proper operation, it is recommended that V_{In} and V_{Out} be constrained to the range $V_{SS} \leq (V_{In} \text{ or } V_{Out}) \leq V_{DD}$. Reliability of operation is enhanced if unused inputs are connected to an appropriate logic voltage level (for example, either V_{SS} or V_{DD}).

Electrical Specifications Functional Operating Range

21.4 Functional Operating Range

Characteristic	Symbol	Value	Unit
Operating temperature range ⁽¹⁾ MC68HC908MR8CP MC68HC908MR8CFA MC68HC908MR8CDW MC68HC908MR8VFA MC68HC908MR8VP MC68HC908MR8VDW MC68HC908MR8MFA MC68HC908MR8MP MC68HC908MR8MDW	T _A	-40 to +85 -40 to +85 -40 to +85 -40 to +105 -40 to +105 -40 to +105 -40 to +125 -40 to +125 -40 to +125	°C
Operating voltage range	V _{DD}	5.0 ± 10%	V

1. Contact a Motorola representative for temperature availability.

C = Extended temperature range (-40 to +85°C)

V = Industrial temperature range (-40 to +105°C)

M = Automotive temperature range (-40 to +125 $^{\circ}$ C)

MC68HC908MR8 - Rev 4.0

Electrical Specifications

21.5 Thermal Characteristics

Characteristic	Symbol	Value	Unit
Thermal resistance 32-pin LQFP 28-pin PDIP 28-pin SOIC	θ_{JA}	68.9 ⁽¹⁾ 	°C/W
I/O pin power dissipation	P _{I/O}	User determined	W
Power dissipation ⁽²⁾	P _D	$P_D = (I_{DD} \times V_{DD})$ + $P_{I/O} = K/(T_J + 273^{\circ}C)$	W
Constant ⁽³⁾	К	$P_{D} x (T_{A} + 273^{\circ}C) + P_{D}^{2} x \theta_{JA}$	W/°C
Average junction temperature	TJ	$T_A + (P_D \times \theta_{JA})$	°C
Maximum junction temperature	T _{JM}	125	°C

1. 32-pin LQFP resistance measured at 200 ft/min.

2. Power dissipation is a function of temperature.

3. K is a constant unique to the device. K can be determined for a known T_A and measured P_D . With this value of K, P_D and T_J can be determined for any value of T_A .

Technical Data

Electrical Specifications DC Electrical Characteristics

21.6 DC Electrical Characteristics

Characteristic ⁽¹⁾	Symbol	Min	Typ ⁽²⁾	Мах	Unit
Output high voltage $I_{Load} = -2.0 \text{ mA for all I/O pins except:}$ Port A bits 0 and 1 Port B bits 5 and 6 $I_{Load} = -7.0 \text{ mA for:}$ Port A bits 0 and 1 and port B bits 5–6, a maximum of four 15-mA outputs may be active at any time	V _{OH}	V _{DD} –0.8 V _{DD} –1.0			V
Output low voltage $I_{Load} = 1.6$ mA for all I/O pins except: Port A bits 0 and 1 Port B bits 5 and 6 $I_{Load} = 15$ mA for: Port A bits 0 and 1 and Port B bits 5–6, a maximum of four 15-mA outputs may be active at any time	V _{OL}	_	_	0.4 1.5	V
Input high voltage All ports, IRQs, RESET, OSC1	V _{IH}	0.7 x V _{DD}	_	V _{DD}	V
Input low voltage All ports, IRQs, RESET, OSC1	V _{IL}	V _{SS}	_	0.3 x V _{DD}	V
V _{DD} supply current Run ⁽³⁾ Wait ⁽⁴⁾ Stop ⁽⁵⁾ Up to 85°C Above 85°C 25°C with LVI enabled Quiescent ⁽⁵⁾	I _{DD}			40 12 5 15 350 100	mA mA μA μA μA
I/O ports high-impedance leakage current	IIL	_	_	±10	μΑ
Input current except PTC1/FAULT4	I _{In}		—	±1	μΑ
Input current PTC1/FAULT4	I _{In}	80		208	μA
Capacitance Ports (as input or output)	C _{Out} C _{In}			12 8	pF
Low-voltage inhibit falling	V _{LVRF1}	4.0	4.4	—	V
Low-voltage reset/recover hysteresis	V _{LVH1}	20	50	—	mV
Low-voltage recover rising	V _{LVRR1}		4.5	4.75	V

MC68HC908MR8 — Rev 4.0

Electrical Specifications

Characteristic ⁽¹⁾	Symbol	Min	Тур ⁽²⁾	Max	Unit
			<u>,</u>	— Co	ntinued
Low-voltage inhibit falling	V _{LVRF2}	3.8	4.1	—	V
Low-voltage reset/recover hysteresis	V _{LVH2}	50	100	_	mV
Low-voltage recover rising	V _{LVRR2}	—	4.2	4.6	V
POR re-arm voltage ⁽⁶⁾	V _{POR}	0	_	100	mV
POR rise time ramp rate ⁽⁷⁾	R _{POR}	0.035	—	_	V/ms

1. V_{DD} = 5.0 Vdc ±10%, V_{SS} = 0 Vdc, T_A = T_L to T_H , unless otherwise noted

2. Typical values reflect average measurements at midpoint of voltage range, 25°C only.

3. Run (operating) I_{DD} measured using external square wave clock source (f_{OSC} = 8.2 MHz); all inputs 0.2 V from rail; no dc loads; less than 100 pF on all outputs; C_L = 20 pF on OSC2; all ports configured as inputs; OSC2 capacitance linearly affects run I_{DD}; measured with all modules enabled

4. Wait I_{DD} measured using external square wave clock source (f_{OSC} = 8.2 MHz); all inputs 0.2 V from rail; no dc loads; less than 100 pF on all outputs; C_L = 20 pF on OSC2; all ports configured as inputs; OSC2 capacitance linearly affects wait I_{DD}; measured with PLL and LVI enabled

5. Quiescent I_{DD} measured with PLL and LVI disengaged; OCS1 grounded; no port pins sourcing current. It is measured through combination of V_{DD} and V_{DDA}.

6. Maximum is highest guaranteed voltage for POR.

7. Maximum is the highest possible voltage for POR. If minimum V_{DD} is not reached before the internal POR reset is released, RST must be driven low externally until minimum V_{DD} is reached.

Technical Data

MC68HC908MR8 - Rev 4.0

21.7 Memory Characteristics

Characteristic	Symbol	Min	Тур	Max	Unit
RAM data retention voltage	V _{RDR}	1.3	—	_	V
FLASH program bus clock frequency	—	1	_		MHz
FLASH read bus clock frequency	f _{Read} ⁽¹⁾	32k	—	8.4M	Hz
FLASH page erase time	t _{Erase} ⁽²⁾	1	—		ms
FLASH mass erase time	t _{MErase} ⁽³⁾	4	_		ms
FLASH PGM/ERASE to HVEN set up time	t _{nvs}	10	—		μs
FLASH high-voltage hold time	t _{nvh}	5	—		μs
FLASH high-voltage hold time (mass erase)	t _{nvhl}	100	—		μs
FLASH program hold time	t _{pgs}	5	—	_	μs
FLASH program time	t _{PROG}	30	—	40	μs
FLASH return to read time	t _{rcv} ⁽⁴⁾	1	—	_	μs
FLASH cumulative program HV period	t _{HV} ⁽⁵⁾	_	—	4	ms
FLASH row erase endurance ⁽⁶⁾	—	10k	100k ⁽⁷⁾	_	Cycles
FLASH row program endurance ⁽⁸⁾	—	10k	100k ⁽⁷⁾	_	Cycles
FLASH data retention time ⁽⁹⁾		10	100 ⁽¹⁰⁾		Years

Notes:

1. f_{Read} is defined as the frequency range for which the FLASH memory can be read.

2. If the page erase time is longer than t_{Erase} (Min), there is no erase-disturb, but it reduces the endurance of the FLASH memory.

- 3. If the mass erase time is longer than t_{MErase} (Min), there is no erase-disturb, but it reduces the endurance of the FLASH memory.
- 4. t_{rcv} is defined as the time it needs before the FLASH can be read after turning off the high voltage charge pump, by clearing HVEN to logic 0.
- 5. t_{HV} is defined as the cumulative high voltage programming time to the same row before next erase. t_{HV} must satisfy this condition: $t_{nvs} + t_{nvh} + t_{pgs} + (t_{PROG} \times 64) \le t_{HV}$ max.
- 6. The minimum row endurance value specifies each row of the FLASH memory is guaranteed to work for at least this many erase / program cycles.
- 7. FLASH endurance is a function of the temperature at which erasure occurs. Typical endurance degrades when the temperature while erasing is less than 25°C.
- 8. The minimum row endurance value specifies each row of the FLASH memory is guaranteed to work for at least this many erase / program cycles.
- 9. The FLASH is guaranteed to retain data over the entire operating temperature range for at least the minimum time specified.
- 10. Motorola performs reliability testing for data retention. These tests are based on samples tested at elevated temperatures. Due to the higher activation energy of the elevated test temperature, calculated life tests correspond to more than 100 years of operation/storage at 55°C

Electrical Specifications

21.8 Control Timing

Characteristic ⁽¹⁾	Symbol	Min	Max	Unit
Frequency of operation ⁽²⁾ Crystal option External clock option ⁽³⁾	f _{OSC}	1 dc ⁽⁴⁾	8 32.8	MHz
Internal operating frequency	f _{OP}		8.2	MHz
RESET input pulse width low ⁽⁵⁾	t _{IRL}	50	—	ns

1. V_{DD} = 5.0 Vdc ± 10%; V_{SS} = 0 Vdc; timing shown with respect to 20% V_{DD} and 70% V_{DD} , unless otherwise noted 2. See **21.8 Control Timing** for more information.

3. No more than 10 percent duty cycle deviation from 50 percent.

- 4. Some modules may require a minimum frequency greater than dc for proper operation; see appropriate table for this information.
- 5. Minimum pulse width reset is guaranteed to be recognized. It is possible for a smaller pulse width to cause reset.

21.9 Timer Interface Module Characteristics

Characteristic	Symbol	Min	Max	Unit
Input capture pulse width	t _{⊤IH} t _{⊤IL}	125	_	ns
Input clock pulse width	t _{⊤CH} t _{⊤CL}	(1/f _{OP}) + 5	_	ns

Technical Data

MC68HC908MR8 — Rev 4.0

21.10 Clock Generation Module Component Specifications

Characteristic	Symbol	Min	Тур	Max	Notes
Crystal load capacitance	CL		_	_	Consult crystal manufacturing data
Crystal fixed capacitance	C ₁	_	2 * C _L	_	Consult crystal manufacturing data
Crystal tuning capacitance	C ₂	_	2 * C _L		Consult crystal manufacturing data
Feedback bias resistor	R _B	_	22 MΩ	_	
Series resistor	R _S	0	330 kΩ	1 MΩ	Not required
Filter capacitor	C _F	_	C _{FACT} * (V _{DDA} /f _{XCLK})	_	—
Bypass capacitor	C _{BYP}	_	0.1 μF	_	C_{BYP} must provide low ac impedance from $f = f_{XCLK}/100$ to $100 * f_{VCLK}$, so series resistance must be considered.

21.11 CGM Operating Conditions

Characteristic	Symbol	Min	Тур	Max
Crystal reference frequency	f _{XCLK}	1 MHz	_	8 MHz
Range nominal multiplier	f _{NOM}	—	4.9152 MHz	—
VCO center-of-range frequency	f _{VRS}	4.9152 MHz	_	32.8 MHz
VCO frequency multiplier	N	1	_	15
VCO center of range multiplier	L	1	_	15
VCO operating frequency	f _{VCLK}	f _{VRSMIN}		f _{VRSMAX}

Electrical Specifications

21.12 CGM Acquisition/Lock Time Specifications

Description	Symbol	Min	Тур	Max	Notes
Filter capacitor multiply factor	C _{FACT}	—	0.0154	—	F/sV
Acquisition mode time factor	K _{ACQ}	—	0.1135	—	V
Tracking mode time factor	K _{TRK}	—	0.0174	—	V
Manual mode time to stable	t _{ACQ}	_	(8 * V _{DDA})/ (f _{XCLK} * K _{ACQ)}	_	If C _F chosen correctly
Manual stable to lock time	t _{AL}	_	(4 * V _{DDA})/ (f _{XCLK} * K _{TRK})	_	If C _F chosen correctly
Manual acquisition time	t _{Lock}	—	t _{ACQ} + t _{AL}	—	—
Tracking mode entry frequency tolerance	Δ_{TRK}	0	_	±3.6%	_
Acquisition mode entry frequency tolerance	$\Delta_{\sf ACQ}$	±6.3%	_	±7.2%	_
Lock entry frequency tolerance	Δ_{Lock}	0	—	±0.9%	—
Lock exit frequency tolerance	$\Delta_{\sf UNL}$	±0.9%	_	±1.8%	—
Reference cycles per acquisition mode measurement	n _{ACQ}	_	32	_	_
Reference cycles per tracking mode measurement	n _{TRK}	_	128	_	—
Automatic mode time to stable	t _{ACQ}	n _{ACQ} /f _{XCLK}	(8 * V _{DDA})/ (f _{XCLK} * K _{ACQ)}	_	If C _F chosen correctly
Automatic stable to lock time	t _{AL}	n _{TRK} /f _{XCLK}	(4 * V _{DDA})/ (f _{XCLK} * K _{TRK})	_	If C _F chosen correctly
Automatic lock time	t _{Lock}	—	t _{ACQ} + t _{AL}	—	—
PLL jitter (deviation of average bus frequency over 2 ms)	f _J	0	_	± (f _{CRYS}) * (0.025 %) * (N/4)	N = VCO freq. mult. (GBNT)

Technical Data

MC68HC908MR8 — Rev 4.0

21.13 Analog-to-Digital Converter (ADC) Characteristics

Characteristic	Symbol	Min	Тур	Max	Unit	Notes
A/D reference voltage	V _{REFH}	4.5	_	5.5	V	_
Input voltages	V _{ADIN}	0	—	V _{REFH}	V	V _{ADIN} <= V _{REFH}
Resolution	B _{AD}	10	_	10	Bits	—
Absolute accuracy	A _{AD}	_	_	4	Counts	Includes quantization
ADC internal clock	f _{ADIC}	500 k	—	1 M	Hz	$t_{AIC} = 1/f_{ADIC}$
Conversion range	R _{AD}	V _{SSA}	—	V _{REFH}	V	_
Power-up time	t _{ADPU}	16	—		t _{AIC} cycles	_
Conversion time	t _{ADC}	16	—	17	t _{AIC} cycles	_
Sample time	t _{ADS}	5	—	—	t _{AIC} cycles	_
Monotonicity	M _{AD}			Gua	aranteed	
Zero input reading	Z _{ADI}	000	—	003	Hex	$V_{ADIN} = V_{SSA}$
Full-scale reading	F _{ADI}	3FD	_	3FF	Hex	V _{ADIN} = V _{REFH}
Input capacitance	C _{ADI}	_	_	30	pF	Not characterized
Absolute accuracy (8-bit truncation mode)	A _{AD}	_	_	±1	Counts	Includes quantization
Quantization error (8-bit truncation mode)	_	_	_	+7/8 -1/8	LSB	—

MC68HC908MR8 — Rev 4.0

Electrical Specifications

Technical Data

MC68HC908MR8 — Rev 4.0

Section 22. Mechanical Specifications

22.1 Contents

22.2	Introduction	351
22.3	32-Pin LQFP (Case #873A)	352
22.4	28-Pin PDIP (Case #710)	353
22.5	28-Pin SOIC (Case #751F)	353

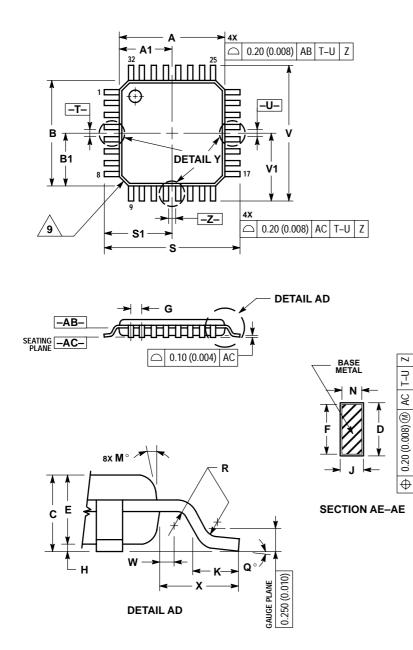
22.2 Introduction

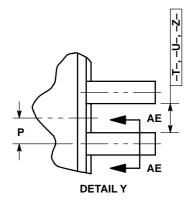
The MC68HC908MR8 is available in these packages:

- 32-pin low-profile quad flat pack (LQFP)
- 28-pin dual in-line package (PDIP)
- 28-pin small outline package (SOIC)

The package information contained in this section is the latest available at the time of this publication. To make sure that you have the latest package specifications, contact one of the following:

- Local Motorola Sales Office
- World Wide Web at http://www.motorola.com/semiconductors/


Follow World Wide Web on-line instructions to retrieve the current mechanical specifications.


MC68HC908MR8 - Rev 4.0

MOTOROLA

Mechanical Specifications

22.3 32-Pin LQFP (Case #873A)

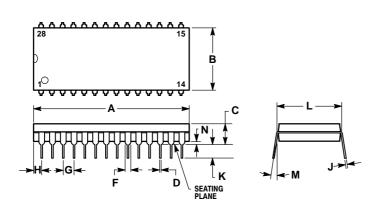
AC

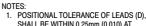
0.20 (0.008)

 \oplus

- NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. CONTROLLING DIMENSION: MILLIMETER.
- 2. DATUM PLANE –AB– IS LOCATED AT BOTTOM OF LEAD AND IS COINCIDENT WITH THE LEAD 3 WHERE THE LEAD EXITS THE PLASTIC BODY AT THE BOTTOM OF THE PARTING LINE.
- DATUMS –T–, –U–, AND –Z– TO BE DETERMINED AT DATUM PLANE –AB–. 4
- 5. DIMENSIONS S AND V TO BE DETERMINED AT
- SEATING PLANE -AC-. DIMENSIONS A AND B DO NOT INCLUDE MOLD 6. PROTRUSION. ALLOWABLE PROTRUSION IS 0.250 (0.010) PER SIDE. DIMENSIONS A AND B DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE -AB-.
- DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. DAMBAR PROTRUSION SHALL NOT CAUSE THE D DIMENSION TO EXCEED 7. 0.520 (0.020).
- 8 MINIMUM SOLDER PLATE THICKNESS SHALL BE 0.0076 (0.0003). EXACT SHAPE OF EACH CORNER MAY VARY
- 9. FROM DEPICTION.

	MILLIN	NETERS	INC	HES
DIM	MIN	MAX	MIN	MAX
Α	7.000) BSC	0.276	BSC
A1	3.500) BSC	0.138	BSC 3
В	7.000) BSC	0.276	BSC
B1	3.500	BSC	0.138	BSC
С	1.400	1.600	0.055	0.063
D	0.300	0.450	0.012	0.018
E	1.350	1.450	0.053	0.057
F	0.300	0.400	0.012	0.016
G	0.800	BSC	0.031	BSC
Н	0.050	0.150	0.002	0.006
J	0.090	0.200	0.004	0.008
K	0.500	0.700	0.020	0.028
М	12°	REF	12° REF	
Ν	0.090	0.160	0.004	0.006
Р	0.400 BSC		0.016	BSC
Q	1°	5°	1°	5°
R	0.150	0.250	0.006	0.010
S	9.000) BSC	0.354 BSC	
S1	4.500 BSC		0.177 BSC	
V	9.000 BSC		0.354 BSC	
V1	4.500 BSC		0.177 BSC	
W	0.200) REF	0.008	3 REF
Х	1.000) REF	0.039	PREF

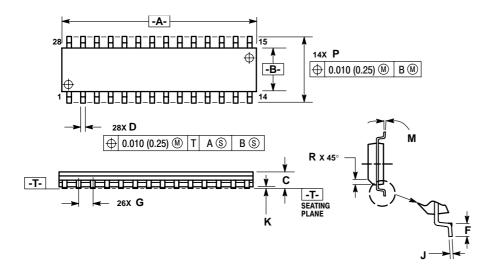

L.


Technical Data

MC68HC908MR8 — Rev 4.0

Mechanical Specifications 28-Pin PDIP (Case #710)

22.4 28-Pin PDIP (Case #710)


SHALL BE WITHIN 0.25mm (0.010) AT MAXIMUM MATERIAL CONDITION, IN RELATION TO SEATING PLANE AND

EACH OTHER. 2. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL.

З.	DIMENSION B DOES NOT INC	LUDE
	MOLD FLASH.	

	MILLIM	ETERS	INC	HES
DIM	MIN	MAX	MIN	MAX
Α	36.45	37.21	1.435	1.465
В	13.72	14.22	0.540	0.560
С	3.94	5.08	0.155	0.200
D	0.36	0.56	0.014	0.022
F	1.02	1.52	0.040	0.060
G	2.54	BSC	0.100	BSC
н	1.65	2.16	0.065	0.085
J	0.20	0.38	0.008	0.015
ĸ	2.92	3.43	0.115	0.135
L	15.24	15.24 BSC 0.600 B		BSC
М	0°	15°	0°	15°
Ν	0.51	1.02	0.020	0.040

22.5 28-Pin SOIC (Case #751F)

- NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. CONTROLLING DIMENSION: MILLIMETER.
- 2. DIMENSION A AND B DO NOT INCLUDE MOLD 3. PROTRUSION.
- MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE. DIMENSION D DOES NOT INCLUDE 4.
- 5. DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.13 (0.005) TOTAL IN EXCESS OF D DIMENSION AT MAXIMUM MATERIAL CONDITION.

	MILLIM	ETERS	INC	HES
DIM	MIN	MAX	MIN	MAX
Α	17.80	18.05	0.701	0.711
В	7.40	7.60	0.292	0.299
C	2.35	2.65	0.093	0.104
D	0.35	0.49	0.014	0.019
F	0.41	0.90	0.016	0.035
G	1.27 BSC		0.050 BSC	
J	0.23	0.32	0.009	0.013
K	0.13	0.29	0.005	0.011
М	0 °	8°	0°	8°
Р	10.05	10.55	0.395	0.415
R	0.25	0.75	0.010	0.029

MC68HC908MR8 - Rev 4.0

Mechanical Specifications

Technical Data

MC68HC908MR8 — Rev 4.0

Section 23. Ordering Information

23.1 Contents

23.2	Introduction	. 355
23.3	MC Order Numbers	. 355

23.2 Introduction

This section contains instructions for ordering the MC68HC908MR8.

23.3 MC Order Numbers

Table 23-1. MC Order Numbers

MC Order Number ⁽¹⁾	Operating Temperature Range (°C)
MC68HC908MR8CFA	- 40 to + 85
MC68HC908MR8CP	– 40 to + 85
MC68HC908MR8CDW	– 40 to + 85
MC68HC908MR8VFA	– 40 to + 105
MC68HC908MR8VP	– 40 to + 105
MC68HC908MR8VDW	– 40 to + 105
MC68HC908MR8MFA	– 40 to + 125
MC68HC908MR8MP	– 40 to + 125
MC68HC908MR8MDW	– 40 to + 125

1. FA = quad flat pack

P = plastic dual in line package

DW = Small outline integrated circuit (SOIC) package

MC68HC908MR8 — Rev 4.0

Ordering Information

Technical Data

MC68HC908MR8 - Rev 4.0

Revision History

Contents

Introduction	
Changes from Rev 3.0 published in April 2002 to Rev 4	0 published in
July 2002	

Introduction

This section contains the revision history for the MC68HC908MR8 advance information data book.

Changes from Rev 3.0 published in April 2002 to Rev 4.0 published in July 2002

Section	Page (in Rev 0.4)	Description of change
Electrical Specifications	343	V_{OL} max updated for I _{Load} = 15 mA Stop I _{DD} limits updated for different temperature specs

Revision History

Technical Data

MC68HC908MR8 - Rev 4.0

Glossary

A — See accumulator (A).

- accumulator (A) An 8-bit general-purpose register in the CPU08. The CPU08 uses the accumulator to hold operands and results of arithmetic and logic operations.
- acquisition mode A mode of PLL operation during startup before the PLL locks on a frequency. Also see tracking mode.
- address bus The set of wires that the CPU or DMA uses to read and write memory locations.
- addressing mode The way that the CPU determines the operand address for an instruction. The M68HC08 CPU has 16 addressing modes.
- ALU See arithmetic logic unit (ALU).
- arithmetic logic unit (ALU) The portion of the CPU that contains the logic circuitry to perform arithmetic, logic, and manipulation operations on operands.
- asynchronous Refers to logic circuits and operations that are not synchronized by a common reference signal
- **baud rate** The total number of bits transmitted per unit of time.
- **BCD** See binary-coded decimal (BCD)
- **binary** Relating to the base 2 number system
- **binary number system** The base 2 number system, having two digits, 0 and 1. Binary arithmetic is convenient in digital circuit design because digital circuits have two permissible voltage levels, low and high. The binary digits 0 and 1 can be interpreted to correspond to the two digital voltage levels.
- binary-coded decimal (BCD) A notation that uses 4-bit binary numbers to represent the 10 decimal digits and that retains the same positional structure of a decimal number. For example,

234 (decimal) = 0010 0011 0100 (BCD)

MC68HC908MR8 — Rev 4.0

Technical Data

359

Glossary

- **bit** A binary digit. A bit has a value of either logic 0 or logic 1.
- **branch instruction** An instruction that causes the CPU to continue processing at a memory location other than the next sequential address.
- **break module** A module in the M68HC08 Family. The break module allows software to halt program execution at a programmable point to enter a background routine.
- breakpoint A number written into the break address registers of the break module. When a number appears on the internal address bus that is the same as the number in the break address registers, the CPU executes the software interrupt instruction (SWI).
- **break interrupt** A software interrupt caused by the appearance on the internal address bus of the same value that is written in the break address registers.
- bus A set of wires that transfers logic signals.
- **bus clocks** There are two bus clocks, IT12 and IT23. These clocks are generated by the CGM and distributed throughout the MCU by the SIM. The frequency of the bus clocks, or operating frequency, is f_{OP}. While the frequency of these two clocks is the same, the phase is different.
- byte A set of eight bits.
- C The carry/borrow bit in the condition code register. The CPU08 sets the carry/borrow bit when an addition operation produces a carry out of bit 7 of the accumulator or when a subtraction operation requires a borrow. Some logical operations and data manipulation instructions also clear or set the carry/borrow bit (as in bit test and branch instructions and shifts and rotates).
- CCR See condition code register.
- **central processor unit (CPU)** The primary functioning unit of any computer system. The CPU controls the execution of instructions.
- **CGM** See clock generator module (CGM).
- clear To change a bit from logic 1 to logic 0; the opposite of set.
- **clock** A square wave signal used to synchronize events in a computer.
- clock generator module (CGM) A module in the M68HC08 Family. The CGM generates a base clock signal from which the system clocks are derived. The CGM may include a crystal oscillator circuit and/or phase-locked loop (PLL) circuit.

- **comparator** A device that compares the magnitude of two inputs. A digital comparator defines the equality or relative differences between two binary numbers.
- **computer operating properly module (COP)** A counter module in the M68HC08 Family that resets the MCU if allowed to overflow.
- **condition code register (CCR)** An 8-bit register in the CPU08 that contains the interrupt mask bit and five bits that indicate the results of the instruction just executed.
- **control bit** One bit of a register manipulated by software to control the operation of the module.
- **control unit** One of two major units of the CPU. The control unit contains logic functions that synchronize the machine and direct various operations. The control unit decodes instructions and generates the internal control signals that perform the requested operations. The outputs of the control unit drive the execution unit, which contains the arithmetic logic unit (ALU), CPU registers, and bus interface.
- **COP** See computer operating properly module (COP).
- **counter clock** The input clock to the TIM counter. This clock is an output of the prescaler sub-module. The frequency of the counter clock is f_{TCNT} , and the period is t_{TCNT} .
- CPU See central processor unit (CPU).
- CPU08 The central processor unit of the M68HC08 Family.
- **CPU cycles** A CPU clock cycle is one period of the internal bus-rate clock, f_{OP}, normally derived by dividing a crystal oscillator source by two or more so the high and low times will be equal. The length of time required to execute an instruction is measured in CPU clock cycles.
- **CPU registers** Memory locations that are wired directly into the CPU logic instead of being part of the addressable memory map. The CPU always has direct access to the information in these registers. The CPU registers in an M68HC08 are:
 - A, 8-bit accumulator
 - H:X, 16-bit index register
 - SP, 16-bit stack pointer
 - PC, 16-bit program counter
 - CCR, condition code register containing the V, H, I, N, Z, and C bits

Glossary

- CSIC customer-specified integrated circuit
- **cycle time** The period of the operating frequency: $t_{CYC} = 1/fOP$.
- decimal number system Base 10 numbering system that uses the digits zero through nine.
- **direct memory access module (DMA)** A M68HC08 Family module that can perform data transfers between any two CPU-addressable locations without CPU intervention. For transmitting or receiving blocks of data to or from peripherals, DMA transfers are faster and more code-efficient than CPU interrupts.
- DMA See direct memory access module (DMA).
- **DMA service request** A signal from a peripheral to the DMA module that enables the DMA module to transfer data.
- **duty cycle** A ratio of the amount of time the signal is on versus the time it is off. Duty cycle is usually represented by a percentage.
- **EEPROM** Electrically erasable, programmable, read-only memory. A non-volatile type of memory that can be electrically reprogrammed.
- **EPROM** Erasable, programmable, read-only memory. A non-volatile type of memory that can be erased by exposure to an ultraviolet light source and then reprogrammed.
- **exception** An event such as an interrupt or a reset that stops the sequential execution of the instructions in the main program.
- external interrupt module (IRQ) A module in the M68HC08 Family with both dedicated external interrupt pins and port pins that can be enabled as interrupt pins.
- fetch To copy data from a memory location into the accumulator.
- firmware Instructions and data programmed into non-volatile memory.
- **free-running counter** A device that counts from zero to a predetermined number, then rolls over to zero and begins counting again.
- **full-duplex transmission** Communication on a channel in which data can be sent and received simultaneously.
- H The upper byte of the 16-bit index register (H:X) in the CPU08.

- H The half-carry bit in the condition code register of the CPU08. This bit indicates a carry from the low-order four bits of the accumulator value to the high-order four bits. The half-carry bit is required for binary-coded decimal arithmetic operations. The decimal adjust accumulator (DAA) instruction uses the state of the H and C bits to determine the appropriate correction factor.
- **hexadecimal** Base 16 numbering system that uses the digits 0 through 9 and the letters A through F.
- high byte The most significant eight bits of a word.
- illegal address An address not within the memory map.
- illegal opcode A non-existent opcode.
- I The interrupt mask bit in the condition code register of the CPU08. When I is set, all interrupts are disabled.
- index register (H:X) A 16-bit register in the CPU08. The upper byte of H:X is called H. The lower byte is called X. In the indexed addressing modes, the CPU uses the contents of H:X to determine the effective address of the operand. H:X can also serve as a temporary data storage location.
- **input/output (I/O)** Input/output interfaces between a computer system and the external world. A CPU reads an input to sense the level of an external signal and writes to an output to change the level on an external signal.
- **instructions** Operations that a CPU can perform. Instructions are expressed by programmers as assembly language mnemonics. A CPU interprets an opcode and its associated operand(s) and instruction.
- **interrupt** A temporary break in the sequential execution of a program to respond to signals from peripheral devices by executing a subroutine.
- **interrupt request** A signal from a peripheral to the CPU intended to cause the CPU to execute a subroutine.
- I/O See input/output (I/0).
- IRQ See external interrupt module (IRQ).
- jitter Short-term signal instability.
- **latch** A circuit that retains the voltage level (logic 1 or logic 0) written to it for as long as power is applied to the circuit.

MC68HC908MR8 — Rev 4.0

MOTOROLA

Technical Data

Glossary

- latency The time lag between instruction completion and data movement.
- least significant bit (LSB) The rightmost digit of a binary number.
- **logic 1** A voltage level approximately equal to the input power voltage (V_{DD}).
- **logic 0** A voltage level approximately equal to the ground voltage (V_{ss}).
- low byte The least significant eight bits of a word.
- **low voltage inhibit module (LVI)** A module in the M68HC08 Family that monitors power supply voltage.
- LVI See low-voltage inhibit module (LVI).
- M68HC08 A Motorola family of 8-bit MCUs.
- mark/space The logic 1/logic 0 convention used in formatting data in serial communication.
- **mask** 1. A logic circuit that forces a bit or group of bits to a desired state. 2. A photomask used in integrated circuit fabrication to transfer an image onto silicon.
- **mask option** An optional microcontroller feature that the customer chooses to enable or disable.
- MCU Microcontroller unit. See microcontroller.
- **memory location** Each M68HC08 memory location holds one byte of data and has a unique address. To store information in a memory location, the CPU places the address of the location on the address bus, the data information on the data bus, and asserts the write signal. To read information from a memory location, the CPU places the address of the location on the address bus and asserts the read signal. In response to the read signal, the selected memory location places its data onto the data bus.
- memory map A pictorial representation of all memory locations in a computer system.
- **microcontroller** Microcontroller unit (MCU). A complete computer system, including a CPU, memory, a clock oscillator, and input/output (I/O) on a single integrated circuit.
- **modulo counter** A counter that can be programmed to count to any number from zero to its maximum possible modulus.
- **monitor ROM** A section of ROM that can execute commands from a host computer for testing purposes.
- most significant bit (MSB) The leftmost digit of a binary number.

Technical Data

MC68HC908MR8 — Rev 4.0

- **multiplexer** A device that can select one of a number of inputs and pass the logic level of that input on to the output.
- N The negative bit in the condition code register of the CPU08. The CPU sets the negative bit when an arithmetic operation, logical operation, or data manipulation produces a negative result.
- nibble A set of four bits (half of a byte).
- **object code** The output from an assembler or compiler that is itself executable machine code or is suitable for processing to produce executable machine code.
- opcode A binary code that instructs the CPU to perform an operation.
- **open-drain** An output that has no pullup transistor. An external pullup device can be connected to the power supply to provide the logic 1 output voltage.
- **operand** Data on which an operation is performed. Usually, a statement consists of an operator and an operand. For example, the operator may be an add instruction, and the operand may be the quantity to be added.
- **oscillator** A circuit that produces a constant frequency square wave that is used by the computer as a timing and sequencing reference.
- overflow A quantity that is too large to be contained in one byte or one word.
- page zero The first 256 bytes of memory (addresses \$0000-\$00FF).
- **parity** An error-checking scheme that counts the number of logic 1s in each byte transmitted. In a system that uses odd parity, every byte is expected to have an odd number of logic 1s. In an even parity system, every byte should have an even number of logic 1s. In the transmitter, a parity generator appends an extra bit to each byte to make the number of logic 1s odd for odd parity or even for even parity. A parity checker in the receiver counts the number of logic 1s in each byte. The parity checker generates an error signal if it finds a byte with an incorrect number of logic 1s.
- PC See program counter (PC).
- peripheral A circuit not under direct CPU control.
- **phase-locked loop (PLL)** An oscillator circuit in which the frequency of the oscillator is synchronized to a reference signal.
- PLL See phase-locked loop (PLL).

MC68HC908MR8 — Rev 4.0

Glossary

- pointer Pointer register. An index register is sometimes called a pointer register because its contents are used in the calculation of the address of an operand and, therefore, points to the operand.
- **polarity** The two opposite logic levels, logic 1 and logic 0, which correspond to two different voltage levels, V_{DD} and V_{SS}.
- polling Periodically reading a status bit to monitor the condition of a peripheral device.
- port A set of wires for communicating with off-chip devices.
- **prescaler** A circuit that generates an output signal related to the input signal by a fractional scale factor such as 1/2, 1/8, 1/10, etc.
- **program** A set of computer instructions that causes a computer to perform a desired operation or operations.
- program counter (PC) A 16-bit register in the CPU08. The PC register holds the address of the next instruction or operand that the CPU will use.
- **pull** An instruction that copies into the accumulator the contents of a stack RAM location. The stack RAM address is in the stack pointer.
- **pullup** A transistor in the output of a logic gate that connects the output to the logic 1 voltage of the power supply.
- pulse-width The amount of time a signal is on as opposed to being in its off state.
- **pulse-width modulation (PWM)** Controlled variation (modulation) of the pulse width of a signal with a constant frequency.
- **push** An instruction that copies the contents of the accumulator to the stack RAM. The stack RAM address is in the stack pointer.
- PWM period The time required for one complete cycle of a PWM waveform.
- PMC Pulse width modulated motor control module
- RAM Random access memory. All RAM locations can be read or written by the CPU. The contents of a RAM memory location remain valid until the CPU writes a different value or until power is turned off.
- RC circuit A circuit consisting of capacitors and resistors having a defined time constant.
- read To copy the contents of a memory location to the accumulator.

- register A circuit that stores a group of bits.
- **reserved memory location** A memory location that is used only in special factory test modes. Writing to a reserved location has no effect. Reading a reserved location returns an unpredictable value.
- reset To force a device to a known condition.
- **ROM** Read-only memory. A type of memory that can be read but cannot be changed (written). The contents of ROM must be specified before manufacturing the MCU.
- SCI See serial communication interface module (SCI).
- serial Pertaining to sequential transmission over a single line.
- serial communication interface module (SCI) A module in the M68HC08 Family that supports asynchronous communication.
- **serial peripheral interface module (SPI)** A module in the M68HC08 Family that supports synchronous communication.
- set To change a bit from logic 0 to logic 1; opposite of clear.
- **shift register** A chain of circuits that can retain the logic levels (logic 1 or logic 0) written to them and that can shift the logic levels to the right or left through adjacent circuits in the chain.
- signed A binary number notation that accommodates both positive and negative numbers. The most significant bit is used to indicate whether the number is positive or negative, normally logic 0 for positive and logic 1 for negative. The other seven bits indicate the magnitude of the number.
- SIM See system integration module (SIM).
- software Instructions and data that control the operation of a microcontroller.
- **software interrupt (SWI)** An instruction that causes an interrupt and its associated vector fetch.
- **SPI** See serial peripheral interface module (SPI).
- stack A portion of RAM reserved for storage of CPU register contents and subroutine return addresses.
- **stack pointer (SP)** A 16-bit register in the CPU08 containing the address of the next available storage location on the stack.
- start bit A bit that signals the beginning of an asynchronous serial transmission.

MC68HC908MR8 - Rev 4.0

Technical Data

Glossary

status bit — A register bit that indicates the condition of a device.

stop bit — A bit that signals the end of an asynchronous serial transmission.

- **subroutine** A sequence of instructions to be used more than once in the course of a program. The last instruction in a subroutine is a return from subroutine (RTS) instruction. At each place in the main program where the subroutine instructions are needed, a jump or branch to subroutine (JSR or BSR) instruction is used to call the subroutine. The CPU leaves the flow of the main program to execute the instructions in the subroutine. When the RTS instruction is executed, the CPU returns to the main program where it left off.
- **synchronous** Refers to logic circuits and operations that are synchronized by a common reference signal.
- **system integration module (SIM)** One of a number of modules that handle a variety of control functions in the modular M68HC08 Family. The SIM controls mode of operation, resets and interrupts, and system clock distribution.
- TIM See timer interface module (TIM).
- timer interface module (TIM) A module used to relate events in a system to a point in time.

timer — A module used to relate events in a system to a point in time.

- toggle To change the state of an output from a logic 0 to a logic 1 or from a logic 1 to a logic 0.
- **tracking mode** Mode of low-jitter PLL operation during which the PLL is locked on a frequency. Also see acquisition mode.
- two's complement A means of performing binary subtraction using addition techniques. The most significant bit of a two's complement number indicates the sign of the number (1 indicates negative). The two's complement negative of a number is obtained by inverting each bit in the number and then adding 1 to the result.

unbuffered — Utilizes only one register for data; new data overwrites current data.

- **unimplemented memory location** A memory location that is not used. Writing to an unimplemented location has no effect. Reading an unimplemented location returns an unpredictable value. Executing an opcode at an unimplemented location causes an illegal address reset.
- V The overflow bit in the condition code register of the CPU08. The CPU08 sets the V bit when a two's complement overflow occurs. The signed branch instructions BGT, BGE, BLE, and BLT use the overflow bit.

Technical Data

MC68HC908MR8 — Rev 4.0

- variable A value that changes during the course of program execution.
- VCO See voltage-controlled oscillator.
- **vector** A memory location that contains the address of the beginning of a subroutine written to service an interrupt or reset.
- **voltage-controlled oscillator (VCO)** A circuit that produces an oscillating output signal of a frequency that is controlled by a dc voltage applied to a control input.
- waveform A graphical representation in which the amplitude of a wave is plotted against time.
- **wired-OR** Connection of circuit outputs so that if any output is high, the connection point is high.
- word A set of two bytes (16 bits).
- write The transfer of a byte of data from the CPU to a memory location.
- X The lower byte of the index register (H:X) in the CPU08.
- **Z** The zero bit in the condition code register of the CPU08. The CPU08 sets the zero bit when an arithmetic operation, logical operation, or data manipulation produces a result of \$00.

MC68HC908MR8 - Rev 4.0

Technical Data

Glossary

Technical Data

MC68HC908MR8 — Rev 4.0

HOW TO REACH US:

USA/EUROPE/LOCATIONS NOT LISTED:

Motorola Literature Distribution; P.O. Box 5405, Denver, Colorado 80217 1-303-675-2140 or 1-800-441-2447

JAPAN:

Motorola Japan Ltd.; SPS, Technical Information Center, 3-20-1, Minami-Azabu Minato-ku, Tokyo 106-8573 Japan 81-3-3440-3569

ASIA/PACIFIC:

Motorola Semiconductors H.K. Ltd.; Silicon Harbour Centre, 2 Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong 852-26668334

TECHNICAL INFORMATION CENTER:

1-800-521-6274

HOME PAGE:

http://www.motorola.com/semiconductors

Information in this document is provided solely to enable system and software implementers to use Motorola products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part.

Motorola and the Stylized M Logo are registered in the U.S. Patent and Trademark Office. digital dna is a trademark of Motorola, Inc. All other product or service names are the property of their respective owners. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

© Motorola, Inc. 2002

MC68HC908MR8/D

For More Information On This Product, Go to: www.freescale.com