

CDP68HC68W1

March 1998

CMOS Serial Digital Pulse Width Modulator

Features

- Programmable Frequency and Duty Cycle Output
- Serial Bus Input; Compatible with Motorola/Intersil SPI Bus, Simple Shift-Register Type Interface
- 8 Lead PDIP Package
- Schmitt Trigger Clock Input
- 4V to 6V Operation, -40°C to 85°C Temperature Range
- 8MHz Clock Input Frequency

Pinout

Description

The CDP68HC68W1 modulates a clock input to supply a variable frequency and duty-cycle output signal. Three 8-bit registers (pulse width, frequency and control) are accessed serially after power is applied to initialize device operation. The value in the pulse width register selects the high duration of the output period. The frequency register byte divides the clock input frequency and determines the overall output clock period. The input clock can be further divided by two or a low power mode may be selected by the lower two bits in the control register. A comparator circuit allows threshold control by setting the output low if the input at the V_T pin rises above 0.75V. The CDP68HC68W1 is supplied in an 8 lead PDIP package (E suffix).

Ordering Information

PART NUMBER	TEMP. RANGE (^o C)	PACKAGE	PKG. NO.
CDP68HC68W1E	-40 to 85	8 Ld PDIP	E8.3

Block Diagram

Absolute Maximum Ratings

Operating Conditions

Temperature Range (T_A)-40^oC to 85^{o} C

T_A = Full Package Temperature Range (All Package Types)

Thermal Information

PDIP Package
Device Dissipation Per Output Transistor 100mW
Maximum Storage Temperature Range (T _{STG})65°C to 150°C
Maximum Lead Temperature (During Soldering)
At Distance 1/16 \pm 1/32 in. (1.59 \pm 0.79mm)
From Case for 10s Max

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTE:

1. θ_{JA} is measured with the component mounted on an evaluation PC board in free air.

DC Electrical Specifications

PARAMETER	SYMBOL	MIN	ТҮР	MAX	UNITS
CDP68HC68W1 , $V_{DD} = 5V \pm 10\%$, $V_{SS} = 0V$, $T_A = -40^{\circ}C$ to 8	5 ⁰ C				
DC Operating Voltage Range	-	4	-	6	V
Input Voltage Range (Except V _T Pin)	V _{IH}	0.7•V _{DD}	-	V _{DD} +0.3V	V
	V _{IL}	-0.3	-	0.3•V _{DD}	V
V _T Pin Output Voltage Threshold	V _{IT}	0.4	-	0.15•V _{DD}	V
Device Current in "Power Down" Mode, Clock Disabled	I _{PD}	-	-	1	μΑ
Low Level Output Voltage (I _{OL} = 1.6mA)	V _{OL}	-	-	0.4	V
High Level Output Voltage (I _{OH} = -1.6mA)	V _{OH}	V _{DD} - 0.4V	-	-	V
Input Leakage Current	I _{IN}	-	-	±1	μΑ
Operating Device Current (f _{CLK} = 1MHz)	I _{OPER}	-	-	1	mA
Clock Input Capacitance (V _{IN} = 0V, f _{CLK} = 1MHz, T _A = 25 ^o C)	C _{IN}	-	-	10	pF

Control Timing

PARAMETER	SYMBOL	MIN	MAX	UNITS					
CDP68HC68W1 , $V_{DD} = 5V \pm 10\%$, $V_{SS} = 0V$, $T_A = -40^{\circ}C$ to $85^{\circ}C$									
Clock Frequency	F _{CLK}	DC	8.0	MHz					
Cycle Time	tCYC	-	-	ns					
Clock to PWM Out	^t PWMO	-	125	ns					
Clock High Time	^t CLKH	50	-	ns					
Clock Low Time	^t CLKL	50	-	ns					
Rise Time (20% V _{DD} to 70% V _{DD})	t _R	_	100	ns					
Fall Time (70% V_{DD} to 20% V_{DD})	t _F	-	100	ns					

SPI Interface Timing

PARAMETER	SYMBOL	MIN	MAX	UNITS					
CDP68HC68W1 , $V_{DD} = 5V \pm 10\%$, $V_{SS} = 0V$, $T_A = -40^{\circ}C$ to $85^{\circ}C$									
Serial Clock Frequency	fscк	DC	2.1	MHz					
Cycle Time	tscyc	480	-	ns					
Enable Lead Time	t _{ELD}	240	-	ns					
Enable Lag Time	t _{ELG}	-	200	ns					
Serial Clock (SCK) High Time	t _{SH}	190	-	ns					
Serial Clock (SCK) Low Time	t _{SL}	190	-	ns					
Data Setup Time	t _{DSU}	100	-	ns					
Data Hold Time	^t DHD	100	-	ns					
Fall Time (70% V_{DD} to 20% V_{DD} , C_L = 200pF)	^t SCKF	-	100	ns					
Rise Time (20% V _{DD} to 70% V _{DD} , $C_L = 200pF$)	^t SCKR	-	100	ns					

FIGURE 1. PWM TIMING

Introduction

The digital pulse width modular (DPWM) divides down a clock signal supplied via the CLK input as specified by the control, frequency, and pulse width data registers. The resultant output signal, with altered frequency and duty cycle, appears at the output of the device on the PWM pin.

Functional Pin Description

$V_{\mbox{\scriptsize DD}}$ and $V_{\mbox{\scriptsize SS}}$

These pins are used to supply power and establish logic levels within the PWM. V_{DD} is a positive voltage with respect to V_{SS} (ground).

CLK

The CLK pin is an input only pin where the clock signal to be altered by the PWM circuitry is supplied. This is the source of the PWM output. This input frequency can be internally divided by either one or two, depending on the state of the CD bit in the control register.

CS

The CS pin is the chip select input to the PWM's SPI interface. A high-to-low (1 to 0) transition selects the chip. A lowto-high (0 to 1) transition deselects the chip and transfers data from the shift registers to the data registers.

VT

The VT pin is the input to the voltage threshold comparator on the PWM. An analog voltage greater than 0.75V (at V_{DD} = 5V) on this pin will immediately cause the PWM output to go to logic "0". This will be the status until the V_T input is returned to a voltage below 0.4V, the W1 is deselected, and then one or more of the data registers is written to.

An analog voltage on this pin less than 0.75V (at $V_{DD} = 5V$) will allow the device to operate as specified by the values in the registers.

DATA

Data input at this pin is clocked into the shift register (i.e., latched) on the rising edge of the serial clock (SCK), most significant bits first.

SCK

The SCK pin is the serial clock input to the PWM's SPI interface. A rising edge on this pin will shift data available at the (DATA) pin into the shift register.

PWM

This pin provides the resultant output frequency and pulse width. After V_{DD} power up, the output on this pin will remain a logic "0", until the chip is selected, 24 bits of information clocked in, and the chip deselected.

Functional Description

Serial Port

Data are entered into the three DPWM registers serially through the DATA pin, accompanied by a clock signal applied to the SCK. The user can supply these serial data via shift register(s) or a microcontroller's serial port, such as the SPI port available on most CDP68HC05 microcontrollers. Micro-controller I/O lines can also be used to simulate a serial port.

Data are written serially, most significant bit first, in 8, 16 or 24-bit increments. Data are sampled and shifted into the PWMs shift register on each rising edge of the SCK. The serial clock should remain low when inactive. Therefore, when using a 68HC05 microcontroller's SPI port to provide data, program the microcontroller's SPI control register bits CPOL, CPHA to 0, 0.

The CDP68HC68W1 latches data words after device deselection. Therefore, \overline{CS} must go high (inactive) following each write to the W1.

Power-Up Initialization

Upon V_{DD} power up, the output of the PWM chip will remain at a low level (logic zero) until:

- 1. The chip is selected (\overline{CS} pin pulled low).
- 2. 24-bit of information are shifted in.
- 3. The chip is deselected (\overline{CS} pin pulled high).

The 24-bits of necessary information pertain to the loading of the PWM 8-bit registers, in the following order:

- 1. Control register
- 2. Frequency register
- 3. Pulse width register

See section entitled **Pulse Width Modulator Data Regis***ters* for a description of each register. Once initialized, the specified PWM output signal will appear until the device is reprogrammed or the voltage on the V_T pin rises above the specified threshold. Reprogramming the device will update the PWM output after the end of the present output clock period.

Reprogramming Shortcuts

After the device has been fully programmed upon power up, it is only necessary to input 8 bits of information to alter the output pulse width, or 16 bits to alter the output frequency.

Altering the Pulse Width: The pulse width may be changed by selecting the chip, inputting 8 bits, and deselecting the chip. By deselecting the chip, data from the first 8-bit shift register are latched into the pulse width register (PWM register). The frequency and control registers remain unchanged. The updated PWM information will appear at the output only after the end of the previous total output period.

Altering the Frequency: The frequency can be changed by selecting the chip, inputting 16 bits (frequency information followed by pulse width information), and deselected the

chip. Deselection will transfer 16 bits of data from the shift register into the frequency register and PW register. The updated frequency and PW information will appear at the PWM output pin only after the end of the previous total output period.

Altering the Control Word: Changing the clock divider and/or power control bit in the CDPHC68W1 control register requires full 24-bit programming, as described under Power Up Initialization.

Pulse Width Modulator Data Registers

Byte 1: Control Register

7	6	5	4	3	2	1	0
0	0	0	0	0	0	PC	CD

- B7-B2 Unused; "don't care".
- B2, PC Power Control Bit. If this bit is a "0", the chip will remain in the active state. If the bit is set to a "1", internal clocking and the voltage comparator (VT) circuit and voltage reference will be disabled. Thus the chip will enter a low current drain mode. The chip may only reenter the active mode by clearing this bit and clocking in a full 24 bits of information.
- B0, CD Clock Divider Bit. If this bit is a "0", the chip will set internal clocking (CLK) at a divide-by-one rate with respect to the (CLK). If this bit is set to "1", the internal clocking will be set to divide-by-2 state.

Byte 2: Frequency Data Register

7

	6	5	4	3	2	1		
PWM Frequency Register								

B7-B0 This register contains the value that will determine the output frequency or total period by:

$$\mathsf{F}_{\mathsf{OUT}} = \frac{\mathsf{F}_{\mathsf{IN}}}{(\mathsf{N}+1)(\mathsf{CD}+1)}$$

F_{OUT} = resultant PWM output frequency

FIN = the frequency of input CLK

n = value in frequency register

CD = value of clock divider bit in control register.

For a case of n (binary value in frequency register) equal to 5, CD (clock divider) = 0 (divide-by-1), the PWM output will be a frequency 1/6 that of the input clock (CLK). Likewise, the output clock period will be equal to 6 input CLK periods.

Byte 3: Pulse Width Data Register

B7-B0 This register contains the value that will determine the pulse width or duty cycle (high duration) of the output PWM waveform.

PW = (N+1) (CD+1)

PW = Pulse width out as measured in number of input CLK periods.

CD = Value of clock divider bit in control register.

N = Value in PW register.

For a case of n (binary value in PW register) equal to 3 and CD (clock divider) = 0 (divide-by-1), the output will be 4 input clock periods of a high level followed by the remaining clocks of the total period which will be a low level.

Assuming the frequency register contains a value of 5, the resultant PWM output would be high for 4 CLK periods, low for 2.

Using the CDP68HC68W1

Programming the CDP68HC68W1

- 1. Select chip
- 2. Write to control register
- 3. Write to frequency register
- 4. Write to pulse width register
- 5. Deselect chip

NEXT - TO then alter the pulse width

1. Select chip

0

- 2. Write to pulse width register*
- 3. Deselect chip

OR - To then alter the frequency (and possibly PW):

- 1. Select chip
- 2. Write to frequency register*
- 3. Write to pulse width register*
- 4. Deselect chip

NOTE: All writes use 8-bit words

Example

when CD = 0,

When CD=0, frequency register = 4, pulse width register = 1; output = high for 2 input CLK periods, low for 3;

1. Select chip

2. Then write (most significant bit first) to the control, the frequency, and pulse width registers (control = 00, frequency = 04, PW = 1)

3. Deselect the chip

New pulse width out begins and PWM goes high when \overline{CS} is raised after last SCK pulse (assuming no previous time-out). PWM then toggles on falling CLK edges.

Resulting output waveform: Control = 00 = Divide-by-1, frequency = 4;

PW = 1: (1 + 1) (0 + 1) = 2 CLKs high time.

CDP68HC68W1 Application Example

The following example was written for a system which has the CDP68HC68W1 connected to the SPI bus of a CDP68HC05C8B microcontroller. The program sets the W1 to run a divide by 200 frequency with a duty cycle of 30% by writing to the Control Register, the Frequency Data Register, and the Pulse Width Data Register. The frequency and pulse width are then modified. Finally the pulse width is modified without changing the frequency. The program was assembled using the Intersil HASM 3.0 assembler.

Frequency = $\frac{\text{INPCLK}}{(04+1)(0+1)} = \frac{\text{INPCLK}}{5}$

INTERSIL Corpora	tion (c)	1990 - 1	997					
68HC05 Assembler	Version	3.0.2						
Filename:	W1.LST							
Source Created:	01/08/98	, 10:36	am					
Assembled:	01/08/98	, 10:36	am					
00001		* * * * * * *	* * * * * * * *	******	* * * * * * * *	***************************************		
00002		* File:		W1.S				
00003		*		Example	W1 rout	ines - sets W1 to a divide by		
00004		*		200 out	put with	30% duty cycle		
00005		*						
00006		* Date:		Thursday, January 8, 1998				
00007		* * * * * * *	* * * * * * * *	***************************************				
00008								
00009		******	* * * * * * * *	*******	* * * * * * * *	***************		
00010		*	Partial	Map of (CDP68HC0	5C8B Hardware Registers		
00011		* * * * * * *	* * * * * * * *	* * * * * * * * *	* * * * * * * *	**************		
00012								
00013 0000			Section	Register	rs, \$000	0		
00014 0000		PortA	ds	1	;Port A			
00015 0001		PortB	ds	1	;Port B			
00016 0002		PortC	ds	1	;Port C			
00017 0003		PortD	ds	1	;Port D	1		
00018 0004		DDRA	ds	1	;Port A	Data Direction Register		
00019 0005		DDRB	ds	1	;Port B	DDR		
00020 0006		DDRC	ds	1	;Port C	DDR		
00021 0007		Freel	ds	3	;three	unused locations		
00022 000A		SPCR	ds	1	SPT Co	ntrol Register		
00023 \$0006 =	6	SPE	eau	6	SPT En	able bit		
$00024 \pm 0004 =$	4	MSTR	equi	4	SPT Ma	ster Mode bit		
00025 0008	-	SDSB	de	1	SPT St	atus Register		
00025 \$0007 -	7	SPDR	0.5	7	SPI DU	ag hit for ANDS CMPs etc		
00020 00007 -	,	SPIP	de	1	SPI PI	ta Register		
00027 0000		DEDIC	us	T	/SFI Da	ta Register		
00028		******	******	*******	*******	*****		
00020		*	CDD684C	68W1 Con	etante			
00031		******	*******	*******	*******	*****		
00031								
00032 \$0000 -	0	w 1	0.071	0	·W1 ic	connected to bit 0 of Port A		
	2	W1 DC	equ	2	WI IS	Control: 1 - power down		
00034 \$0002 =	2	W1_PC	equ	2	, POwer	Divider: 1 = divide by 2		
00035 \$0001 =	T	WI_CD	equ	T	CLOCK	Divider. I = divide by 2		
00036								
00037						*****		
00038		*				· · · · · · · · · · · · · · · · · · ·		
00039			Main Ro	utines				
00040		******	*******	*******	******	************		
00041								
00042 0100			Section	Code, Şi	0100			
00043								
00044* [6] 0100	AD37		jsr	Init_W1		;turn on PAO		
00045		Set200_	30					
00046 [5] 0102	1100		bclr	W1,Port	A	;select W1 (CE is active low)		
00047* [6] 0104	AD28		jsr	Set_SPI	_Mode	;Setup the 68HC05 SPI control		
00048						;to talk to the W1		
00049								
00050		*****	Set Up	Control,	Frequen	cy, and Pulse Width		
00051								
00052		SendCom	mands					
00053 [2] 0106	A601		lda	#W1_CD		;set divide by two clock on Wl		

CDP68HC68W1

00054*	[6]	0108	AD29		jsr	SPI xmit		
00055	[2]	010A	A663		lda	#99	;set	frequency to divide by 2000
00055	[6]	0100	7005		iar	CDT vmit	1000	riequency to arviae by 2000
00050	[0]	0100	AD25		Jac	#20	. act	pulse width to 20% duty guale
00057	[4]	0106	ADID		iua	#29	/set	puise width to 30% duty cycle
00058^	[6]	0110	ADZI		jsr	SPI_xmit		
00059								
00060				Deselec	tW1_1			
00061	[5]	0112	1000		bset	W1,PortA	;dese	lect the W1 which loads registers
00062							; wit	h values transmitted
00063								
00064					;			
00065					: Her	e the CDP68HC05C	8B WOU	ld generally
00066					; att	end to other pro	coccin	
00000					, acc	end to other pro-	CCSSIII	9 133065
00067					'			
00068					N. 116		1	3. 1.
00069				******	Modily	Frequency and Pu	ise wi	ath
00070								
00071	[5]	0114	1100		bclr	W1,PortA	;sele	ct Wl (CE is active low)
00072*	[6]	0116	AD16		jsr	Set_SPI_Mode	;Setu	p the CDP68HC05 SPI Control
00073							;to t	alk to the W1
00074				SendCom	mands2			
00075	[2]	0118	A631		lda	#49	;set	frequency to divide by 100 (the
00076*	[6]	011A	AD17		isr	SPT xmit	;divi	de by 2 is still in effect)
00077	[2]	0110	A609		lda	#9	:00+	nulse width to 20% duty cycle
00077	[6]	0110	A005		iam	CDT amit	/ BCC	puise width to zon daty cycle
00078-	[0]	OILE	AD15		JSI	SPI_XIIIIC		
00079								
00080				Deselec	tW1_2		_	
00081	[5]	0120	1000		bset	Wl,PortA	;dese	lect the Wl which loads registers
00082								
00083					;			
00084					; Her	e the CDP68HC05C	8B wou	ld again
00085					; att	end to other pro-	cessin	g issues
00086					;	-		5
00087					-			
00000				******	Modify	Dulco Width		
00000					MOULLY	Fuibe Widen		
00089	[]	0122	1100		halw	M1 Dowt A	·acle	at W1 (CE is patiwo low)
00090	[2]	0122	1100		DCIL	WI, POPLA	, sere	CL WI (CE IS ACLIVE IOW)
00091*	[6]	0124	AD08		jsr	Set_SPI_Mode	/Setu	p the 68HC05 SPI control
00092							;to t	alk to the Wl
00093				SendCom	mands3			
00094	[2]	0126	A611		lda	#17	;set	pulse width to 38% duty cycle
00095*	[6]	0128	AD09		jsr	SPI_xmit		
00096								
00097				Deselec	tW1 3			
00098	[5]	012A	1000		bset	W1.PortA	;dese	lect the W1 which loads registers
00099							;with	values transmitted
00100				Finich			/ 11 2 0 11	Varado oranomicoda
00101	[2]	0120	2055	1, TUT 211	hra	*	:1000	forever
00101	[2]	UIZC	ZUFE		JIA		, 100b	TOTEACT
00102								
00103				******	* * * * * * * * *		*****	* * * * * * * * * * * * * * * * * * * *
00104				*	Common	Subroutines		
00105				******	* * * * * * * *	* * * * * * * * * * * * * * * * * *	* * * * * *	************
00106								
00107		012E			Section	Subroutines, *		
00108								
00109				Set SPI	Mode			
00110	[2]	012E	A650		lda	#(2!SPE+2!MSTR)	;Enab	le SPI as a Master with
00111	[4]	0130	B70A		sta	SPCR	CDHA	=CPOL=0.
00110	[]	0120	01		rta	51.010	, Cr IIA	
00112	[0]	0132	οı	ODT V-	1 L S			
00113		0100		SPI_Xmi	L .			- · · · · · · · · · · · · · · · · · · ·
00114	[4]	0133	B70C		sta	SPDR	;send	A to SPI device
00115				SPI_wai	t			
00116	[5]	0135	OFOBFD		brclr	SPIF,SPSR,SPI_w	ait	;wait until transmit complete
00117	[6]	0138	81		rts			
00118								
00119				Init W1				
00120	[5]	0139	1000		bset	W1,PortA	;disa	ble the W1 (CE is active low)
00121	[5]	013B	1004		bset	W1,DDRA	;bv a	ctivating PAO as a high
		-			-		4 00	2 2

Dual-In-Line Plastic Packages (PDIP)

NOTES:

- 1. Controlling Dimensions: INCH. In case of conflict between English and Metric dimensions, the inch dimensions control.
- 2. Dimensioning and tolerancing per ANSI Y14.5M-1982.
- 3. Symbols are defined in the "MO Series Symbol List" in Section 2.2 of Publication No. 95.
- 4. Dimensions A, A1 and L are measured with the package seated in JEDEC seating plane gauge GS-3.
- D, D1, and E1 dimensions do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.010 inch (0.25mm).
- E and e_A are measured with the leads constrained to be perpendicular to datum -C-.
- 7. e_B and e_C are measured at the lead tips with the leads unconstrained. e_C must be zero or greater.
- 8. B1 maximum dimensions do not include dambar protrusions. Dambar protrusions shall not exceed 0.010 inch (0.25mm).
- 9. N is the maximum number of terminal positions.
- Corner leads (1, N, N/2 and N/2 + 1) for E8.3, E16.3, E18.3, E28.3, E42.6 will have a B1 dimension of 0.030 - 0.045 inch (0.76 - 1.14mm).

E8.3 (JEDEC MS-001-BA ISSUE D) 8 LEAD DUAL-IN-LINE PLASTIC PACKAGE

	INC	HES	MILLIM		
SYMBOL	MIN	MAX	MIN	MAX	NOTES
A	-	0.210	-	5.33	4
A1	0.015	-	0.39	-	4
A2	0.115	0.195	2.93	4.95	-
В	0.014	0.022	0.356	0.558	-
B1	0.045	0.070	1.15	1.77	8, 10
С	0.008	0.014	0.204	0.355	-
D	0.355	0.400	9.01	10.16	5
D1	0.005	. 0.13		-	5
E	E 0.300 0.325		7.62	8.25	6
E1	0.240	0.280	6.10	7.11	5
е	0.100	BSC	2.54	BSC	-
e _A	0.300 BSC		7.62 BSC		6
e _B	-	0.430	-	10.92	7
L	0.115 0.150		2.93	2.93 3.81	
N	8	3	8	3	9

Rev. 0 12/93

All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.

Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see web site http://www.intersil.com

Sales Office Headquarters

NORTH AMERICA

Intersil Corporation P. O. Box 883, Mail Stop 53-204 Melbourne, FL 32902 TEL: (407) 724-7000 FAX: (407) 724-7240

EUROPE

Intersil SA Mercure Center 100, Rue de la Fusee 1130 Brussels, Belgium TEL: (32) 2.724.2111 FAX: (32) 2.724.22.05

ASIA

Intersil (Taiwan) Ltd. Taiwan Limited 7F-6, No. 101 Fu Hsing North Road Taipei, Taiwan Republic of China TEL: (886) 2 2716 9310 FAX: (886) 2 2715 3029